Financial markets dependence modeling using vine copulae

Preliminary work for vine copula modeling in finance

Simon PETITJEAN & Jang SCHILTZ

Luxembourg School of Finance Faculty of Law, Economics and Finance University of Luxembourg

Vine copulas and their Applications July 8, 2019

- Introduction
 - Context of the project
- - Dependence measures and minimum spanning tree
 - Example of risk decomposition of portfolio performance
- - Definition & Providers
 - Decomposition methodology
- - Focus on asset decomposition
 - Selected index for vine copula model

Context of the project

- Luxembourgish fund industry is a leading industry in Europe with EUR 4,280 Bn net assets¹ and the total european fund industry represents EUR 16,032 Bn1.
- The project is supported by the private sector for investment fund net asset validation.

- Introduction
 - Context of the project
- Portfolio analysis validation
 - Dependence measures and minimum spanning tree
 - Example of risk decomposition of portfolio performance
- Financial Market Indices
 - Definition & Providers
 - Decomposition methodology
- 4 Application
 - Focus on asset decomposition
 - Selected index for vine copula model

Dependence measures for copula modeling

Different dependent measures appear in the literature:

- Concordance measures (Schweizer & Wolff, 1981)
- Dissimilarity or distance measures (Berndt & Clifford, 1994)
- Other non linear measures (Székely et al. 2007), (Lopez-Paz et al. 2013), (Reshef et al 2011)
- Financial performance or benchmarking measures (Sharpe, 1966), (Keating & Shadwick, 2002), (Cogneau & Hubner, 2009)

Sequential approach based on weights

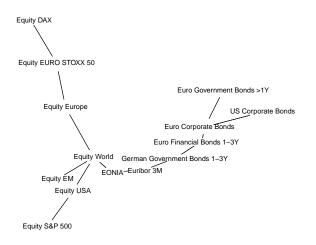
The sequential approach based on weights relies on minimization of weights to select the ideal structure of the tree. Minimum spanning tree algorithm:

$$T_1 = \operatorname{argmin}_{T = \{N, E\}SP} \sum_{e \in E} \omega_{i(e), j(e)}, \tag{1}$$

where

$$\omega_{i(e),j(e)} = TE_{i(e),j(e)} = \sqrt{\frac{1}{N-1} \sum_{k=1}^{n} (x_{i(e),k} - x_{j(e),k})^2}$$

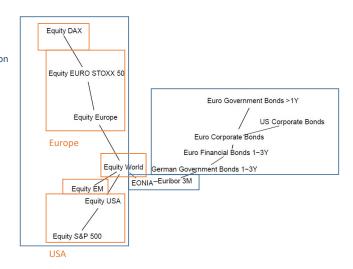
are the weights associated to the variable pairs (i, j).

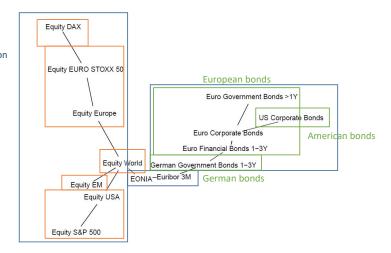

Tracking error as basis for the minimum spanning tree

Advantages of using tracking error for the MST algorithm:

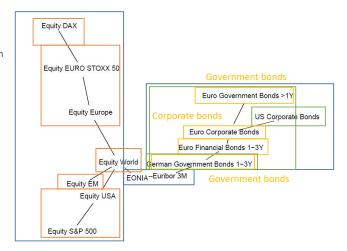
- It is equivalent to the Euclidean distance.
- It is not a monotonic dependence measure.
- It is already used in the finance literature for benchmark replication.

The MST gives very intuitive results for portfolio risks decomposition.




Equity DAX Asset decomposition Equity EURO STOXX 50 Euro Government Bonds > 1Y Equity Europe US Corporate Bonds Euro Corporate Bonds Furo Financial Bonds 1-3Y Equity World German Government Bonds 1-3Y EONIA-Euribor 3M **Bonds** Equity EM Equity USA Interest rates Equity S&P 500

Equity


Asset decomposition Equity geographic decomposition

Asset decomposition Equity geographic decomposition Bond market decomposition

Asset decomposition Equity geographic decomposition Bond market decomposition Bond type decomposition

- - Context of the project
- - Dependence measures and minimum spanning tree
 - Example of risk decomposition of portfolio performance
- Financial Market Indices
 - Definition & Providers
 - Decomposition methodology
- - Focus on asset decomposition
 - Selected index for vine copula model

Definition & Providers

- A market index is a selection of a pool of assets selected according to some crietria.
- Main indices providers are MSCI, Markit, ICE, HFR, Bloomberg, FTSE, JPM, ...

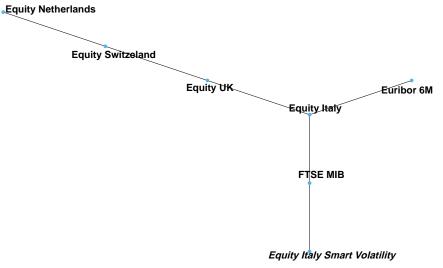
A need of preliminary work

The target to have a preliminary work to pre-select market indices is designed to select the most relevant market indices for vine copula modeling (and reduce dimensionality)

- The decomposition is a quantitative methodology dependence measures with market indices
- It help to select 10 market indices over 1500+ (quantitative portfolio analysis)
- The target of the methodology is to determine investment fund characteristic
- The methodology should be used to decompose characteristics by characteristic (asset class, sectorial exposure, regional exposure, etc)

- Introduction
 - Context of the project
- 2 Portfolio analysis validation
 - Dependence measures and minimum spanning tree
 - Example of risk decomposition of portfolio performance
- Financial Market Indices
 - Definition & Providers
 - Decomposition methodology
- 4 Application
 - Focus on asset decomposition
 - Selected index for vine copula model

Application data sets


Is the top tail correlated index a good index for asset class determination?

- financial period of 31/12/2017 to 31/12/2018
- daily returns of 755 different fund strategies
- 1067 base of market indices with a target of reduction to 10

	TRUE/FALSE Ratio	
Equity Bond & Mixed Strategies Total	81.17% 51.97% 61.00%	

Example of resulting vine copula

Pair densities on tree 1

Euribor 6M, Equity Italy	Equity Italy Smart Volatility, FTSE MIB	FTSE MIB, Equity Italy	Equity Netherlands, Equity Switzeland	Equity Italy, Equity UK	Equity Switzeland, Equity UK

