

XDEM: Extended Discrete Element Method

Workshop on HPC Collaboration between **Europe and Latin America** July 16, 2015

Luxembourg XDEM Research Centre http://luxdem.uni.lu/

Bernhard Peters Xavier Besseron

- based on the classical Discrete Element Method (DEM) to describe motion of granular materials (discrete phase)
- extended by
 - thermodynamics for particles
 - an interface to Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA)
- Coupling to external commercial/OpenSource software

Technology Concept

- Appropriate solution strategy for discrete and continuous phase
- High resolution of both discrete and continuous phase
- No empirical correlations
- No expensive experiments, sometimes even not feasible
- Retains individual inputs
- Common post-processing preferred, although individual post-processing feasible

Combination of expert tools for maximum synergy by coupling continuous and discrete phases in physical and numerical space

- Storage and transport of granular material
- Mining and its machinery
- Agriculture and its machinery
- Processing industry: Fluidised beds, fixed and moving bed reactors for
 - Drying
 - Thermal conversion (combustion, gasification)
 - Processing of raw materials
- Pharmaceutical industry e.g. coating, drug production
- Food industry (transport, coating, processing)
- Material science

XDEM

Computational Process Engineering

Heatflux: 130 kW/m2

Computational Process Engineering

- Generic model to describe particle processes:
 - Temperature distribution
 - Flow inside pore space
 - Chemical conversion
 - Distribution of reactands and products
- Interface to CFD via heat and mass transfer

0.95

0.90

0.85

0.65 ⊾ 1.0

-] 0.80 Dorosity 0.75 0.70

08

06

Dimension [-]

Forward Acting Grate

Spatial and Temporal Temperature Distribution

Void Space and Gas Velocity

Drying

Packed Bed Conversion

Thermal Conversion: Reduction

Computational Dynamics

XDEM: Extended Discrete Element Method

Page 15

Computational Dynamics

- Prediction of motion of granular material for industrial applications
- Based on the Discrete-Element Method Dynamics

1.30

1.35

0.900

0250

0.000

- Integration of Newtonian dynamics to yield position and orientation
- Interface to FEM for mechanical load

Vibrating Grate

Residence Time on a Forward Acting Grate

Transport of Debris

Computational Material Science

XDEM: Extended Discrete Element Method

Page 21

Computational Material Science

- Inclusion of arbitrary adhesive/bonding forces
- isotropic/anisotropic material behaviour
- crack development and propagation
- fracture mechanics due to mechanical impact or gas forces

Collision and Bonding

XDEM

Computational Fluid Dynamics & Finite Element Analysis

Stress/strain analysis of a Membrane

ani la

Tire-Ground Interaction

Fluidisation

XDEM & High Performance Computing

XDEM: Extended Discrete Element Method

Page 34

Parallel Implementation

XDEM is computation intensive and uses a lot of memory

- \rightarrow Parallel and distributed implementation
 - Aggregates memory of many computing nodes
 - Benefits from speedup of many computing cores
- Simulation Space Decomposition approach
- Load balancing based on
 - Orthogonal Recursive Bisection (ORB)
 - Metis partitioning library
- Communication using MPI

Page 35

- OpenMP implementation
 → First trials showed promising results
- Accelerators: GPUs / Intel Xeon Phi

 → Probably the next big step for XDEM
 → Need to implement fast collision detection algorithms
- Post-processing / Visualization
 - \rightarrow Currently in 2 steps:
 - Data reconstruction + Offline visualization
 - \rightarrow Need for real-time data processing and visualization

Summary

XDEM is a novel and advanced simulation framework for multi-physics applications

XDEM is versatile

- Multi-phases, particle-based simulations
- Motion, Thermo-dynamical and Chemical conversion
- Coupling with CFD and FEA libraries
- \rightarrow Large range of industrial applications

XDEM is getting ready for HPC

- MPI-based parallel implementation
- Accelerator support coming?

XDEM team: 90% of mechanical/chemical engineers \rightarrow Need additional expertise in Computer Science / HPC

Engineering aspect

- New industrial applications
- New "models" to include
- High Performance Computing aspect
 - OpenMP implementation
 - Accelerators support: GPUs / Intel Xeon Phi

Post-processing / Visualization

• Real-time visualization tool

Thank you for you attention!

Question?

Luxembourg XDEM Research Centre http://luxdem.uni.lu/

d Peters Sesseron bernhard.peters@uni.lu xavier.besseron@uni.lu