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On the Use of Vertex-Frequency Analysis for
Anomaly Detection in Graph Signals

Gabriela Lewenfus, Wallace A. Martins, Symeon Chatzinotas, and Bjorn Ottersten

Abstract— Graph signals (GS) are widespread in many areas
of data analysis, such as in social, genetics, and biomolecular
networks as well as in several engineering applications. Detecting
localized properties of GS using spectral tools while taking
into account the underlying graph topology is still an active
research topic called vertex-frequency analysis (VFA). This paper
provides a brief and up-to-date overview on state-of-the-art VFA
tools, namely windowed graph Fourier transform and spectral
graph wavelet transform. In addition, the paper shows how VFA
can be applied to detect and localize anomalies in GS. In the
particular example of localizing a malfunctioning weather station,
the average area under ROC curve achieved by the local factor
outlier technique can be improved from 72% to 87% when fed
with VFA-extracted features to detect small drifts in temperature
measurements, ranging from 0.5°C to 4°C.

Keywords— GSP, vertex-frequency analysis, Fourier transform,
wavelets, anomaly detection

I. INTRODUCTION

Many current practical problems can be modeled via data
signals defined on the nodes of a weighted graph. Social me-
dia [1], traffic [2], wireless networks [3], genetic networks [4],
and functional relationship across brain regions [5] are instan-
ces of this kind of data. Graphs could also describe similarities
among high dimensional data points in statistical learning,
being useful to machine learning solutions [6]. Graph signal
processing (GSP) extends classical discrete signal processing
(DSP) techniques in order to reveal relevant information about
these unstructured data by exploring the underlying topology.

In DSP, both wavelet transform and windowed Fourier
transform (also termed short-time Fourier transform) are well-
known frequency-analysis tools that also provide localized
information in time/space. Graph signals (GS) can also have
different localized spectral properties across nodes and vertex-
frequency analysis (VFA) approaches have been developed in
the past decade to deal with GS [7].

This paper provides an up-to-date overview on graph spec-
tral methods for VFA and proposes a general methodology for
anomaly detection and localization in GS. Section II defines
notations and provides a brief review on GSP. Section III
describes the windowed graph Fourier transform (WGFT) [8],
followed by the spectral graph wavelet transform (SGWT) [9]
in Section IV. In Section V, we propose a framework for
applying VFA concepts to the problem of anomaly detection
in graphs and, in Section VI, we provide experimental results
with real data. Section VII contains some concluding remarks
and future research directions.
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II. GSP: NOTATION AND BACKGROUND

Let G & (V,£,A) be a weighted graph, where V 2
{v1,...,un} is the set of N nodes, £ is the set of edges,
and A is an N x N matrix containing edge weights A,,,.
In this paper, we only consider undirected weighted graphs
(i.e., A is symmetric) with no self loops. The degree of node
n, dy, is the sum of weights of all edges connected to node
n. The degree matrix D is a diagonal matrix containing each
node degree d,,. Filters described in this text are based on the
Laplacian matrix L £ D — A, which resembles a discrete
version of the Laplace-Betrami operator [10]. The Laplacian
matrix is symmetric semidefinite having a zero eigenvalue. The
constant function is thus always the smoothest eigenvector,
providing an interpretation of DC component to the magnitude
of the frequency content corresponding to the zero eigenvalue.
Other approaches use matrix A as building block for graph
filters [11] and, to this date, there is no consensus regarding
which approach brings more advantages.

In this paper, a GS is a real-valued scalar function x : V —
R taking values on the graph nodes, and it will be represented
by the N-dimensional vector x. The order of arrangement of
the nodes in the vector is arbitrary and does not have any
impact on the frequency representation of the GS; we shall
associate V with the set {1,..., N} so that the signal value
on the n™ vertex, z(v,), can be denoted as x[n].

Let 0 = A\ < ... < Ay 2 Apax and ui,...,uy be the
eigenvalues and corresponding orthonormal eigenvectors of the
Laplacian matrix L = UAU?. The rows of U will be denoted
as 6l for n € {1,...,N}. The Laplacian eigenvectors are
the Fourier basis and, therefore, the graph Fourier transform
(GFT) of a GS x is x £ UTx. Notice that the Laplacian eigen-
values satisfy A\, = uf Lug, = >, Apn(ug[n] — ug[m])?
and, therefore, a low )\, is associated with an eigenvector with
small variations between nodes, assuming A,,, > 0.

The GS convolution between x and y is inspired by the
classic convolution theorem, being defined in the frequency
domain as the element-wise multiplication X ©y [9]. Filtering
is also defined in the frequency domain as follows: consider
h : [0, Amax] — R and let H = h(A) be a diagonal matrix
with diagonal entries h(A,); the output signal y is

y = Uy = UHx = UHU x = Hx, (1)

in which H 2 UHU is the graph-domain representation of
filter . If H = h(L) is a polynomial on L, then it is a linear
shift-invariant filter when the shift of x on G is Lx [11].

III. WINDOWED GRAPH FOURIER TRANSFORM

The classical windowed Fourier transform divides the signal
into segments, via a sliding window, before applying the
discrete Fourier transform (DFT) to each piece. In order to
describe the WGFT [8], it is necessary to first generalize the
concept of translation. In DSP, centering a window w[m] into
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sample n, for example, is the same as convolving w[m| with
the Kronecker delta function &,,[m]. In the GSP framework,
the GFT of §,, (zero vector with 1 in the n'h entry) is
given by UT§,, = 11,,. The translation of a window function
w: [0, Amax] — R to node n on G is

tY £ Uw(A)d, = U (woi,), )

where w £ [w(\1),...,w(Ayx)]T. Note that this definition of
translation on graphs does not preserve signal energy. In fact,
if w(0) # 0, the energy of the translated window tY is limited
by Tlﬁ\w(OH and maxy{a,[k]}||lw]2 [8].

In order to achieve localization in the frequency domain, the
convolution theorem is used in its dual form: to concentrate the
GS x on a graph frequency k, one has to multiply x element-
wise by the Laplacian eigenvector uy. This operation is called
modulation and is defined as

mk(x) éX@llk. 3)

Putting together (2) and (3), WGFT atoms and coefficients
corresponding to a GS x are respectively defined as
Wik 2 my (t¥) and Ty g 2 (x, Wi k) - 4)
The matrix of WGFT coefficients X" can be computed by first
filtering the GS x by T = Uw(A)UT and then multiplying
each entry of Tx element-wise by each column of U. The
computational cost of this process is N? for matrix vector mul-
tiplication plus N2 for element-wise multiplication, yielding
an overcomplete representation composed by N2 coefficients.
If the window function w has nonzero mean, the original
GS x is perfectly recovered from its WGFT coefficients by [8]

x[n] = E xﬂkwmk[n] (5)

One can notice that the WGFT has some disadvantages:
(1) it increases the number of coefficients to represent a GS
from N to N?; (ii) it is computationally expensive and has
poor scalability; indeed, WGFT atoms depend on the com-
putation of Laplacian eigendecomposition, being prohibitive
for large graphs. Actually, translation can be approximated
by a Chebyshev polynomial on the Laplacian matrix (see
Section IV), however, to the best of our knowledge, there
is no method for approximating the modulation operation
in (3); (iii) it does not provide a tight frame' for irregular
graphs [8]; tight frames allow the interpretation of spectograms
as an energy density function, improving stability in recovering
signals from noisy measurements, while also enabling faster
computations [12]; (iv) the resolution in the frequency domain
is uniform, just like in the classical DSP.

Wavelets, on the other hand, can: (i) have a more compact
representation with N - S coefficients, with the number of
scales satisfying S < N; (ii) be fully implemented without
resorting to Laplacian eigendecomposition; (iii) provide a tight
frame, depending on the choice of the mother/scale functions;
(iv) have adaptive resolution in accordance with Heisenberg’s
theorem [12]. Next section introduces VFA using wavelets.

"When A||x||2 < >, . l(x,w,)|? < BJ|x||3 for some constant
A,B > 0, then the dictionary of atoms {w,, 1} is a frame. If A = B
the frame is said to be right.

IV. SPECTRAL GRAPH WAVELET TRANSFORM

As in the WGFT definition, the SGWT is defined by a basic
function, called wavelet mother/kernel, v : RT — RT in
the frequency domain [9]. This mother function must be a
band-pass signal satisfying ¢(0) = 0 and lim,_,~ 9(2) = 0.
Wavelet atoms p,, ., with (n,s) € {1,..., N} x {1,...,5},
are GS constructed by dilating the mother function ¢ by a
factor oy € RT, and then translating it to vertex n, as follows:

¥, 2 Up(aA)ib, = (Uy(a,A)UT) 68, (6)
Given a GS x, SGWT coefficients are defined as
T 2 (XY, (7)

and collecting all coefficients in a vector x¥, one can write
x¥ = ¥"x, where ¥ € RV*5N has columns v, ,.

Since wavelet atoms are orthogonal to the eigenvector
u; associated with \; = 0, it is necessary to introduce a
scaling function, as in classical DSP, in order to represent low
frequencies. The scaling function ¢ : RT™ — R* must be a
low-pass filter, satisfying ¢(0) > 0 and lim,_, o ¢(z) = 0.

A signal x is recovered from a set of SGWT coefficients
x¥ by solving the least-squares problem X £ argmin ||x¥ —
Ty, overy.

The following scaling functions ¢ and wavelet mothers v
will be used to construct SGWTs:

(a) cubic spline [9];

(b) Meyer [13], with parameters (a, M) = (3,2);

(¢) Hann [14], with parameters (K, ag, a1, R) = (1, 3, %,3);
(d) ideal filter [15].

Designing the wavelet atoms in (6) depends on computing
the Laplacian eigendecomposition, which may be prohibitive
for large graphs. Filters can actually be approximated by
Chebyshev polynomials on the graph Laplacian and the filte-
ring procedure can be performed directly in the vertex domain.
Chebyshev polynomials are defined on the interval [—1,1],
thus requiring the mapping of [0, Ayax] into [—1,1] in order
to encompass the entire Laplacian spectrum. This eventually
means that only the largest eigenvalue must be computed. The
Chebyshev polynomials are recursively defined as

Cq(L) = QEqul(L) - qu2(L) ®)

2

where L £ L-1I Cy(L)21, and C;(L) 2 L,

max

and the coefficients for approximating ts (L) £ Utp(a,A)UT
in (6) via ¢5(L) £ 1c, oI+ Zqul Cs,qCq(L) are

Cs g = %/0 cos(g0)y (as A

The Chebyshev polynomials in (8) allows faster compu-
tations and each Cy(L) needs to be computed once for all
filters. Only the coefficients in (9) need to be updated. Fig. 1
depicts the approximation of cubic splines, Meyer kernels,
Hann kernels, and ideal filters by a 50""-order Chebyshev
polynomial. Ideal filters are approximated by the Jackson-
Chebyshev polynomial [16], which is able to cancel the
ripples at the cost of expanding the transition band. This
approximation is useful to enhance the stop-band attenuation.
As can be seen, the cubic spline provides higher localization
in low frequencies, however, it does not generate a tight
frame, since W(\) 2 |¢(N)|2 + 25, [ih(asA)|? shown in

m;x (cosf + 1)) de. 9
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(b) Meyer

[~

Amplitude

(=}

=)

3
2
E«O.S
< H
0.0 - . ool LN SN N
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Frequency Frequency
Fig. 1. Wavelets and their approximations in frequency domain for S = 5.

One low-pass filter (in blue) and five band-pass filters (in yellow, green, red,
purple, and magenta) are shown. Dashed lines correspond to the true wavelet
kernel in the range [0, Amax]. Solid lines show the corresponding 50*"-order
polynomial approximation of the wavelet kernels: (a) cubic spline; (b) Meyer
kernel; (c) Hann kernel; and (d) ideal filter. Solid black lines show W (\) for
the approximations and dashed gray lines, for the actual wavelet kernels.

gray dashed line, is not constant within the interval [0, Apax],
whereas Meyer, Hann, and ideal kernels do form tight frames.
The Meyer wavelet [13] needs a high-degree polynomial to
achieve good approximations. The Laplacian matrix is usually
sparse but the higher the degree of approximation the denser is
the approximated filters. If the graph is extremely large, a high
degree approximation may be infeasible not only for matrix
multiplication but also for storage. In order to have a better
approximation by low-order Chebyshev polynomials, one may
construct wavelet kernels based on sinusoidal waves [14], [17].
The graph wavelet based on Hann kernel shown in Fig. 1(c)
has uniform band-pass filters; the authors in [14] suggest to
warp these Hann wavelets with a function w(A) = log(A) to
achieve finest resolutions at low frequencies.

Another important concern on spectral filter design is the
graph spectrum distribution. The aforementioned wavelet ker-
nels are adapted to the interval [0, Aj,ax], however, as generic
graph Laplacians may have a highly irregular eigenvalue
distribution, it is possible to design a graph filter having no
spectrum elements in the pass-band. Authors in [14] construct
tight wavelet frames adapted to spectrum wavelets by warping
kernel filters with a smooth approximation of the cumulative
spectral function. This function can also be approximated by
Chebyshev polynomials and then spectrum-adapted filters can
be designed without Laplacian eigendecomposition. Note that,
if nodes n and m are L-hops apart (i.e., the shortest path
length between nodes m and n is L), then (L*),,, = 0 for
any ¢ < L and therefore the polynomial degree controls the
vertex localization of approximated filters.

V. ANOMALY DETECTION IN GRAPH SIGNALS

Anomaly detection is the identification of instances of data
differing significantly from the majority of the dataset and
is applied in a variety of problems, such as fraud, intrusion,
medical imaging, and event detection in sensor networks [18].

In [19], the authors applied GFT and high-pass filtering
for detecting anomalies in the whole network, but without
providing any clue about where is the corrupted measurement.
In [20] a graph-filtering-based method is developed to identify
anomalies in wireless sensor networks, and in [21] the SGWT
is used to identify patterns in dynamic networks. Centrality
measures of graphs, such as node degree, shortest path dis-
tance, and entries of uj,, have also been used as extracted

features to feed anomaly detectors [22]. Aligned with these
works, we propose the following methodology for VFA-based
classification to detect and localize point anomalies in GS:
(i) define the adjacency matrix A of the graph based on a
similarity measure across nodes. Section VI provides an
example of a possible choice for A in sensor graphs. An
important assumption to this approach is that connected
nodes have similar measurements.
(i) compute a VFA representation of the raw input data. For
instance, SGWT provides SN coefficients, which can all
be used as new features, or just a subset of scales (e.g.,
coefficients of a single specific scale).
(iii) feed a machine-learning-based or statistics-based classi-
fier with the new transformed features.

VI. EXPERIMENTS

In this section, we describe some numerical examples that
illustrate many of the concepts previously described in the
paper. We start with a toy example to better understand the
WGFT localization capabilities and limitations, then we move
to another example that points to the good SGWT properties
as a VFA tool, and we finish the section by showcasing the
proposed methodology for anomaly detection based on VFA
through a particular example of detecting a malfunctioning
sensor in a Brazilian weather station network.

A. Graph description

We employed data from [23], which provides monthly ave-
rage temperatures recorded by 296 Brazilian weather stations
during the period of 1961-1990. The adjacency matrix A is
constructed as in [19]: the node n is in the neighborhood N,
of m if n represents one of the L nearest weather stations to
the station represented by node m or if m represents one of
the L nearest weather stations to n. The resulting matrix is
symmetric and its nonzero coefficients are

A ’-Ymn
Amn = ;

Z Yin Z Yim

iEN, JENm

(10)

2 2 2 . .
where Yynn = e~ @nnthnn)/o* with d,,, and hyy respecti-

vely denoting the geodesic distance and the height difference
between stations m and n, and ¢ > 0 is a free parameter.
Unlike [19], the difference in altitude h,,,,, is included because
it is strongly correlated with temperature. In addition, all
entries of A are divided by the largest eingenvalue in order to
provide more stable operations.

B. Representation using WGFT

Consider Fig. 2, which uses the aforementioned graph
structure to convey an artificially generated continuous by
parts GS x defined as

ifnenN,

ol = { ek

where N (north) and S (south) are subsets of vertexes high-
lighted in different colors in Fig. 2(a), and ¢ is drawn from a
zero-mean Gaussian distribution with variance 0.01. The Gaus-
sian kernel w(A\) = e=*"/10 is used as the spectral window
for computing WGFT coefficients. Fig. 2(b) depicts the resul-
ting GS x, whereas Figs. 2(c)-(d) show the absolute values
of WGFT coefficients corresponding to the two frequencies

2uyg[n] + e,
U100 [n] + €,

Y
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Fig. 2. Brazilian weather station graph: (a) graph divided into two sets of
nodes (N and S); (b) original GS x in (11); and (c)-(d) WGFT coefficients
x¥, in (4) at 11*" and 100" frequencies, respectively.

with largest coefficients’ energies. As expected, nodes in the
north region present larger WGFT coefficient magnitudes for
frequencies around the 10*" Laplacian eigenvalue, whereas
nodes in the south region present larger WGFT coefficient
magnitudes for frequencies at the 100*" eigenvalue.

Many nodes in the Brazilian north region in Fig. 2(c)
achieve very small values because the eigenvector uj; is
concentrated on the northeast of the graph. WGFT atoms
W, are not always jointly well-localized around 7 in vertex
domain and Ay in frequency domain, for some eigenvectors
can be too much concentrated on certain vertexes. Indeed, it is
true that t% in (2) is localized around vertex n, but if ug[n] is
close to zero, then wy, x[n] = t¥[n]ug[n] in (4) will be small.
Similarly, my(-) in (3) is localized around A in frequency
domain, but if @, [k] is close to zero, w,, ;[k] is also going to be
small. If an eigenvector uj is concentrated around vertex n, it
will have small values on the other vertexes, giving rise to the
aforementioned problem. Therefore, simultaneous localization
in both vertex and frequency domains is limited by the graph
coherence 1 = makx|uk[n]| < 1. The sensor graph in Fig. 2

n

has 1 = 0.94 (a la7rge value) meaning that some of its WGFT
atoms will not be well-localized, which is a limitation of the
WGFT representation.

C. Representation using SGWT

We now use the actual temperature measurements of De-
cember for the GS x. We also generated a disturbed GS by
introducing an anomaly to a single vertex in the northeast
region by adding 2°C to its value—a mild drift from the actual
value. Each graph in Fig. 3 depicts the absolute difference
between SGWT coefficients ¥ , of the original signal and
the corrupted one, for a given scale s and with n varying in
{1,..., N}. Wavelet atoms were constructed from the wavelet
approximation in Fig. 1. Each wavelet scale s is chosen
such that the magnitude difference between coefficients of the
corrupted node is the largest one. In fact, each SGWT detected
a very localized variation in the transformed coefficients, but
the largest magnitude differences appear in different scales of
detail. For instance, the corruption of the vertex measurement
was better detected by the scale of detail s = 5 when an
SGWT with cubic spline kernel is applied, and by the scale
s = 2 when an SGWT with Hann kernel is used. As expected,
the ideal filter approximation yields the worst localization.

(b) Meyer s =4

(a) Cubic spline s =5

Fig. 3. Magnitude difference between SGWT coefficients of non-corrupted
and corrupted December temperatures for each wavelet kernel. Each s
corresponds to the scale with the highest magnitude difference.

D. SGWT-based anomaly detector

Now, we showcase the methodology described in Section V.
We started from the original dataset in [23] to create a new
dataset containing some malfunctioning weather stations. Then
the usual division into training and test sets is considered to
design and assess the performance of a VFA-based classifier.

To generate training anomaly/corrupted data, a Gaussian
noise with variance 4°C2, truncated for absolute values smaller
than 0.5, was added to the temperature in June in a quarter of
the nodes, which were randomly selected. The set of non-
corrupted training data was generated using another quar-
ter of nodes, but now without modifying its corresponding
temperature measurements. The test set was composed by
the remaining nodes, and 50% of these nodes had their
measurements corrupted, in December, by the same (truncated)
Gaussian distribution as in the training set.

Following the general methodology in Section V, the SGWT
was applied to the six months before the current month (first
semester for training and second semester for test) for each
node in traning and test sets in order to feed a Gaussian process
classifier (GPC) with radial basis function (RBF) kernel [24].
For example, suppose node n is in the training dataset, then
SGWT was applied to the signals of temperature in January,
February, March, April, May and, June. The transformed
coefficients xﬁys for a predefined scale s were the extracted
feature that fed GPC. The underlying hyperparameters are:
kernel function, number of neighbors L in the adjacency
matrix, number of wavelet scales .S, wavelet coefficients used
in feature extraction for a given scale s (we are using only one
SGWT scale as features), and the order ) of the Chebyshev
approximation. Table I contains the chosen hyperparameters
for each kernel function and the respective f1-score.’

Feeding GPC with raw vertex-domain data provided an
average f1-score of 51%, much worse than using SGWT; the
four VFA-based classifiers achieved an f1-score greater than
85% even with low-oder approximations.

Unlike the scenario described in the previous experiment,

2 f1-score is a measure of accuracy that combines the precision p, which
is the number of actual positive samples classified as positives divided by
the total number of samples classified as positives, and recall r, which is the
number of actual positive samples classified as positive divided by the number
of actual positive samples. f1-score is then given by 2

p.
p+r’
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TABLE I
Hiperparameters of the VFA-based classifiers and corresponding f1-score
Kernel L S T s Q] flscore
Cubic spline | 10 [ 10 | 3 | 10 88%
Meyer 20 | 5 4110 87%
Hann 20 5 3 3 86%
Ideal filter 10 5 5 3 85%

where a balanced dataset was used, practical problems of
point-anomaly detection have to deal with a small percentage
of corrupted data. In order to evaluate the performance of
the proposed VFA-based methodology from Section V in
unbalanced scenario, a new dataset was generated for an
unsupervised learning setup. This time, only 10% of the nodes
from the entire dataset were corrupted by a Gaussian noise
with variance 4°C? in the month of December. The SGWT was
applied to the new dataset as in the supervised experiment and
the transformed features fed the local outlier factor (LOF) [25]
from scikit-learn, an unsupervised outlier detector. In order
to report an average trend of the algorithm behavior without
being biased by the particular choice of the corrupted nodes,
the entire process (dataset definition and outlier detection)
was repeated 50 times. Fig. 4 depicts the boxplot of the
overall performance achieved by each LOF combined with
the SGWT using the receiver operating characteristic (ROC)
curve that measures true positive rate against false positive
rate. The boxplot shows the area under the curve (AUC). We
also evaluated the score of the LOF fed with raw data in vertex
domain. The four VFA-based LOF classifiers outperformed the
LOF classifier fed with raw input, especially the Hann kernel.

LOF1

0.6

LOF2 LOF3 LOF4 LOF

Fig. 4. Boxplot of AUC of ROC for each VFA-based classifier and LOF in 50
runs. LOF1, LOF2, LOF3, and LOF4 represent the LOF combined with cubic
spline, Meyer, Hann and ideal SGWT, respectively. Orange lines represent
the median of distributions, boxes represent the quartiles, and vertical lines
extend to the most extreme non-outlier data point. Parameters in LOF are
default except for contamination (set as 0.2).

VII. CONCLUSIONS

VFA is a useful tool to analyze GS simultaneously in fre-
quency and vertex domains, being a potential tool for current
big data applications. In the anomaly detection experiment,
SGWT coefficients extracted good features from data, so
that very small drifts in temperature measurements due to
malfunctioning sensors could be detected with high accuracy
by GPC and LOF, having a clear advantage over classifiers
that consider only the time-series structure of temperature me-
asurements (like feeding GPC and LOF with raw data). While
WGFT is a natural extension of the standard short-time Fourier
transform, it has many disadvantages, which are overcome
by SGWT. Indeed, SGWT scales well for large graphs, as
filtering can be performed without computing the Laplacian
eigendecomposition and, depending on the application, a low-
order polynomial approximation may be highly satisfactory.
As future works, it would be interesting to consider wavelet
transforms that are able to mix time and vertex domains

and extending VFA methods for directed graphs that consider
directional flow of data in networks.
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