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Chapter 1

Introduction

This Thesis develops itself within the Materials Science domain. I present in this Chapter an
overview of the field, focusing primarily on the context that has motivated my research. In Sec-
tion 1.1 I overview the family of materials known as Perovskites. The set of compounds belonging
to this cathegory represent a portion of Materials Science field that has extreme relevence, not
only in the scientific scope but also for device engineering due of the extraordinary fundamental
(and functionalizable) properties they can exhibit. In Section 1.2 I introduce the computational
approach to this field of study. It is precisely here, within the theoretical and simulation perspec-
tive, where the core of this Thesis is established. Finally, in Section 1.3 I describe and discuss the
main objectives of my project and the general structure of this Manuscript.

1.1 ABO3 perovskite oxides
As described in C. Kittel’s book “Introduction to solid state physics”[1], a perovskite structure is a
structure that is equivalent to that of the prototype perovskite, CaTiO3. Generically, perovskites
have the chemical formula ABO3. As with the structure of calcium titanate, A cations are located
at the vertices of a cube, the B cation occupies the center of the structure and is caged by a regular
octahedra of oxygens, which are positioned at the center of the faces of the cube. The standard
cubic structure of perovskites is represented in panel (a) of Figure 1.1.

(a) (b) (c)
Figure 1.1: Sketch of the 5-atom unit cell of the Perovskite structure. (a) Structure of the so-called cubic
phase (with associated space group Pm3̄m). For a generic perovskite of chemical formula ABO3, the A cations are
shown in black, the B cation is represented by the blue atom in the center of the cube and the oxygens are sketched
in red. The oxygens form an octahedra, which has been highlighted in pale green. (b) Ferroelectric distortion of the
cubic cell. (c) Antiferrodistortive distortion of the cubic cell.
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Chapter 1. Introduction

(a) (b)

Figure 1.2: Experimental evidence of ferroelectricity from literature for PbTiO3 and PbZrxTi1−xO3.
(a) Experimental study of the structural phase transition of PbTiO3, characterized by the appearance of a sponta-
neous polarization as order parameter (from Ref. [2]). (b) P-E hysteresis loop of a PbZr0.53Ti0.47O3 thick film (from
Ref. [3]), showing the switcheable character of the polarization by applying an external electric field.

Perovskite materials can display a variety of different properties. Some of these can be under-
stood from a structural perspective. Within this scope, the deformations of the cubic cell presented
in Figure 1.1 are linked to the rise of highly functionalizable properties such as ferroelectricity or
piezoelectricity, which will be defined in the following sections. Perovskites nonetheless can exhibit
a variety of other properties of high interest - ferromagnetism, multiferroic couplings, electrocaloric
or magnetooptic effects are but an example of the richness of applicability of these compounds.
These latter properties, however very relevant, are not discussed in this text.

The emphasis in this Thesis is set around two perovskite compounds: lead titanate (PbTiO3), a
ferroelectric material, and strontium titanate (SrTiO3), well known for being a paraelectric material
with ferroelastic properties.

1.1.1 Ferroelectricity, ferroelasticity and piezoelectricity
Ferroelectricity is the property of materials that display a spontaneous polarization (panel (a) of
Figure 1.2), which is zero above Tc (paraelectric phase) and non-zero for T < Tc. The polarization
in perovskites is originated by a polar distortion of the cell, leading to a ferroelectric phase as
depicted in panel (b) of Figure 1.1. In a ferroelectric material the polarization can be reversed
by the application of an external electric field, typically exhibiting a hysteresis loop (see panel (b)
in Figure 1.2). The display of the spontaneous polarization is accompanied by an increase of the
dielectric susceptibility χij , which is defined as

χij = ∂Pi
∂Ej

= − ∂F

∂Ei∂Ej
, (1.1.1)

where P is the electric polarization, E is the external electric field, F is the free energy and
i, j label the cartesian directions of space. The larger the dielectric susceptibility, the larger the
polarization induced by the electric field, since P = χε0E + P0, where P0 is the spontaneous part
of the polarization.

Similarly to ferroelectricity, ferroelasticity is the property of materials that exhibit a spon-
taneous change in strain η in absence of external stress σ or external applied electric field. For
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1.1. ABO3 perovskite oxides

Figure 1.3: Change of the strain as a function of temperature in SrTiO3. This result is extracted from Ref. [4].

example, the ground state of SrTiO3 consists in the display of an oxygen octahedra rotation (de-
picted in panel (c) of Figure 1.1). The oxygen octahedra rotation is related to an elongation of the
crystal unit cell along one axis. This change in strain, evidenced experimentally in Figure 1.3 as a
function of temperature, is the signature of a ferroelastic material.

A material is piezoelectric if an applied stress leads to a change in the polarization of the
material. Also, in a piezoelectric material an applied external electric field implies a strain variation
(known as the reverse piezoelectric effect). The change in strain is linear with the electric field, in
contrast with the electrostictive effect, in which the relationship is quadratic [5]. All ferroelectric
materials are piezoelectric, although the opposite statement is not true. The key quantity in a
piezoelectric material is its piezoelectric coefficient dik, defined as

dik =
(
∂ηk
∂Ei

)∣∣∣∣
σ
, (1.1.2)

where i, j = 1, 2, 3 are the cartesian directions, k = 1, .., 6 is the so-called Voigt notation and E is
the electric field. In the Voigt notation, (1, 2, 3, 4, 5, 6) ↔ (xx, yy, zz, yz, zx, xy). The larger the
piezoelectric coefficient, the larger the response of the material to an applied stress or to an applied
external electric field.

1.1.2 Structural phase transitions
Ferroelectricity and ferroelasticity are characterized by the spontaneous display of a physical prop-
erty when undergoing a structural phase transition. This type of phase transitions are characterized
by a distortion of the cell under certain thermodynamic conditions. It is customary to understand
and study them by defining an adequate order parameter. This is usually a quantity that is zero
above the transition point, and attains a certain value when the transition occurs. As an example,
in proper ferroelectric phase transitions the order parameter is the electric polarization of a material
(see panel (a) in Figure 1.2).

The analysis of the order parameter in structural phase transitions is critical to understand the
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Figure 1.4: Analysis of a second order phase transition as described by the Landau theory. (a) Different
free energy curves for temperatures above, below and T0 as described by the Landau theory. (b) Value of the dielectric
susceptibility as a function of the temperature.

character of the transition, and can be studied using the Landau theory of phase transitions. In this
theory the free energy is expanded as a function of the order parameter, while the temperature is
included as a parameter of the coefficients of the expansion. For a ferroelectric material F (P ;T ) =
F (−P ;T ), and second-order phase transition theory can be written as

F (P ;T ) = −1
2γ(Tc − T )P 2 + 1

4A4P
4 − EP, (1.1.3)

where Tc is the transition temperature and E the external electric field. The minima of the free
energy for a given T correspond to the equillibrium phases of the material.

In the panels of the Figure 1.4 I show how this expression of the free energy represents the phase
transition. As displayed, the parametrization through the temperature allows for the functional of
the free energy to evolve. In particular, as the temperature crosses the Tc the free energy develops
a double-well energy potential (panel (a) of Figure 1.4), indicating the occurrence at a non-zero
polarization.

The transition temperature in a second-order phase transition is characterized by a divergence
of the dielectric suspceptibility, as seen in panel (b) of Figure 1.4. From Eq. 1.1.1 follows that
this quantity is related to the inverse of the curvature of the potential energy surface. Hence,
large dielectric susceptibilities indicate flat energy landscapes in which the material can undergo
structural distortions without high energy costs.

1.1.3 Main structural distortions
The properties discussed in the previous section have their origin in the atomic structure of the
material. When undergoing a structural phase transition, the atomic structure is distorted giving
rise to the different effects described. In this work I focus on two types of occurring distortions
in the perovskite structure: the antiferrodistortive (AFD) and the ferroelectric (FE) distortions.
As discussed in [6], the distortions occurring in ABO3 perovskites can be understood through the
Goldschmidt tolerance factor [7]. It is defined as

t = RA +RO√
2(RB +RO)

, (1.1.4)
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1.1. ABO3 perovskite oxides

O
B

A

Figure 1.5: Depiction of the cubic perovskite structure, where the atoms have been depicted according to their
ionic radii. The side of the cube is of length a.

where Ri is the nominal ionic radii of the atom type i. In the ideal cubic perovskite structure
the distance A−O is

√
2 times bigger than the distance B−O (see Figure 1.5). If one considers the

ionic radii of the atoms, the structure is such that the atoms are “in contact”. Hence, the distances
between the atoms coincide with the sum of their ionic radii. The tolerance factor is a ratio of
these distances, properly weighted by the factor

√
2. If t = 1 the distances A − O and B − O are

compensated, and so the structure would tend to be stable in the cubic phase.

For t < 1, there is more space between A and O than between B and O. The perovskite cell will
tend then to compensate the empty space by adjusting the structure, usually leading to a rotation
of the regular oxygen octahedron. An example of this is calcium titanate, for which the ground
state involves three rotations. Rotations are the type of distortions known as antiferrodistortive
(AFD), in which the oxygen octahedra is rotated along one or more axis, either in phase or in
anti-phase fashion. Panel (c) of Figure 1.1 is a sketch of an anti-phase rotation occurring along
one axis as an example. Note that the atoms that are involved in the rotation are connected to
the adjacent cells, and so the rotation of the adjacent cells in the plane perpendicular to that of
the rotation axis occurs necessarily in anti-phase. Additionally, in some cases t < 1 leads to a
displacement of the A cations towards the oxygens, as is the case of lead titanate, which develops
a polarization parallel to the [001] crystallographic axis in its ground state.

Contrarily, the tolerance factor can be t > 1. This means that the distance B − O may be
optimized, since the B cation will have affinity to move towards the oxygens and the space to do
so. The type of distortion that then occurs is the ferroelectric (FE) distortion of the perovskite
cubic cell. This distortion is characterized by a cooperative displacement of the center of positive
charges opposed to the displacement of the center of negative charges, as depicted in panel (b) of
Figure 1.1. Since the center of positive and negative charge are separated, a dipolar momentum
appears in the cell. The consequence of this structural distortion is the spontaneous polarization
that appears in ferroelectric materials. The FE distortion is usually accompanied by an elongation
of the cell in the direction of the dipolar moment, and can occur along different crystallographic axes
at the same time - an example is the ground state of barium titanate (BaTiO3) at low temperatures,
which is characterized by a polarization parallel to the [111] axis and a rhombohedral unit cell [8].
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MPB

(a) (b)

Figure 1.6: Experimental and theoretical results for the study of the MPB in PZT. (a) Experimental
phase diagram of PZT from Ref. [9], showing the narrow MPB. The diagram is displayed both as a function of the
mole composition of PbTiO3 and the temperature. (b) Theoretical study of the piezoelectric coefficients and the
dielectric susceptibility of PZT for varying mole fraction of PbTiO3 from Ref. [10]. The model used for the study is
a Landau-Ginzburg-Devonshire developed in Ref. [11].

1.1.4 Application and optimization of functional perovskite oxides

One of the most studied properties of perovskites over the last decades is piezoelectricity due to
its potential functionalization and application for device design. The perovskite solid solution lead
zirconate titanate (PZT or PbZr1−xTixO3, where the B crystallographic site can either be Zr or
Ti and x represents the mole fraction) is an example of a material for which optimization provided
outstanding piezoelectric properties.

Panel (a) of Figure 1.6 shows the phase diagram as described in Ref. [9]. In the Figure, RLT
and RHT are rhombohedral phases displaying a polarization parallel to the [111] crystallographic
axis. As the concentration of Ti increases, the phase diagram crosses the so-called morphotropic
phase boundary (MPB) and the ground state becomes a tetragonal phase with polarization parallel
to the [001] crystallographic axis. It is precisely within the MPB that the susceptibility and the
piezoelectric coefficient of the material is maximized (see panel (b) in Figure 1.6).

The origin of the large values for the susceptibility and the piezoelectric coefficients achieved at
the MPB are two-fold. First, as discussed in Section 1.1.1, large values of the dielectric susceptibil-
ity indicate low energy cost to develop a structural distortion. As a consequence, the polarization
of the material can rotate from [111] to [001] without huge energetic costs. Second, the works
in Ref. [12] and Ref. [13] show the existence of a monoclinic phase at the MPB, allowing for a
continuous rotation of the polarization. The explanation proposed in these works is that, instead
of different phases coexisting within the MPB, the monoclinic phase acts as a bridging phase that
allows the material to transit from the rhombohedral phase to the tetragonal phase in a continuous
way.

12



1.2. Predictive simulations in Materials Science

fs

ps

ns

μs

ms

s

m

h

Å nm μm mm m

Time

Distance

Quantum 
mechanics

(DFT)

Atomistic
force fields

Phase fields
(continuum)

Finite elements,
process

simulation

~200 atoms

~100.000 atoms

Figure 1.7: Comparative diagram of different simulation techniques, focusing on their accessible simulation box
size.

1.2 Predictive simulations in Materials Science
Traditionally simulations have been widely used to understand (and predict) the properties of ma-
terials, although the field is wide enough to include applications to Biology [14] or Chemistry [15].
In the context of this Thesis the simulation domain is within Condensed Matter theory, and in
particular, the study of the Perovskite materials.

The scientific community in Materials Science has a applied a substantial effort to study mate-
rials from a theoretical point of view. A way of achieving this is through computational simulations
that allow to study the behavior of materials under simulated conditions. The level of detail of the
theory used to perform the simulations depends on the nature of the problem of interest, ranging
from continuum models of matter [16] to first-principles theory in which the most fundamental
quantum-mechanical description is applied [17]. In Figure 1.7 I show a schematic of the time and
spatial scales that the different simulation approaches typically have access to.

1.2.1 Quantum mechanical simulations and DFT

The most accurate known theory to study condensed matter at the atomic scale is Quantum
Mechanics. The theory provides a complete description of the system through the Schrödinger
equation, which consists on the eigenvalue problem of the Hamiltonian associated to it. The solu-
tion of the equation provides the information necessary to understand all the processes that occur
in the crystal lattice.

Let us consider a set of atoms with Ne electrons, organized in a crystal lattice. In the Born-
Oppenheimer approximation one considers that the nucleus of the atoms can be represented by a
potential acting on the electrons, as the relaxation time of the electrons is much faster than the
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nuclei due to the difference of masses. Let us call this potential

vionic(ri) =
∑
k

qQk
|ri −Rk|

, (1.2.1)

where Rk stands for the coordinates of the atom nuclei, ri are the coordinates of the electrons, q
is the electron charge and Qk is the charge of the nucleus k. The Born-Oppenheimer approximation
allows to write the Schrödinger equation in terms of a wavefunction ϕ = ϕ(r1, . . . , rNe) which
depends only on the electronic coordinates. The non-relativistic Schrödinger equation associated
to the problem is then [18]

∑
i

−~∇2
i

2me
+ vext(ri) +

∑
i<j

U(ri, rj)

ϕ(ri, . . . , rNe) = Eϕ(ri, . . . , rNe) (1.2.2)

where the term ~∇2
i

2me is the kinetic energy operator of the electrons (with mass me), U(ri, rj) is
the electrostatic electron-electron Coulombic interaction, vext = vionic + vfields and E is the energy
associated to the eigenstate ϕ. The term vfields accounts for additional external applied fields.

The computational solution of this N -body problem is extremely complex. An illustration of
this can be shown by assuming the integration of the problem using a mesh of M points. Since
there are Ne electrons and three cartesian directions in the 3D space, there are M3Ne values to
be computed. For a simple mesh of 10 points and a problem involving 10 electrons, the problem
requires the calculation of 1030 values for the description of the wavefunction.

A different approach to tackle the N -body problem is the Density Functional Theory. Formally,
the electronic density is given by

n(r) = Ne

∫
d3r2· · ·

∫
d3rNeϕ

∗(r, r2, . . . , rNe)ϕ(r, r2, . . . , rNe). (1.2.3)

One of the most relevant and surprising results in the DFT is that this relationship can be re-
versed [19]: if the density function of the ground state n0(r) is found, then the wavefunction of the
ground state ϕ0(r1, . . . , rNe) can be found as it can be written as a functional of the density. That
is to say, the information contained in the wavefunction of the ground state is the same information
available in the electron density function.

This result, presented by Hohenberg and Kohn in Ref. [19] and known as the HK theorem,
has several implications. Since the ground state wavefunction is a functional of the density, the
observables can be written as a functional of the density - and particularily, the energy of the
ground state can be written as a functional of the density. This energy, which depends on the
definition of vionic(ri), is usually then written as

E[n] = T [n] + U [n] + Vext[n] = Ts[n] + Tc[n] + UH [n] + Ux[n] + Vext[n] (1.2.4)

where T and U are called universal functionals of the density (independent of vionic(ri)) and Vext
is the potential energy due to the atomic nuclei and additional external fields. In the last ex-
pression, T = Ts + Tc; here, Ts is the sum of the single particle kinetic energies, which is the
main contribution to T ; Tc is the correlation energy, defined as Tc = T − Ts. On the other hand,
U = UH +Ux, where UH is the Hartree energy that accounts for the simple electrostatic interaction
between electrons, and the main contribution to U ; while Ux is the exchange energy. The exchange
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Figure 1.8: Comparative of the experimental observation of polarization vortices in PTO/STO superlattices and
theoretical relaxation of the same phase using DFT. (a) Theoretical calculation of the metastable phase displaying
vortices of electric dipoles in the PTO layers of PTO/STO superlattices, from Ref. [20]. (b) Experimental observation
of local dipoles arranged in vortices in the PTO layers of PTO/STO superlattices, from Ref. [21].

and correlation energy contributions are usually written as the exchange-correlation energy con-
tribution, Exc = Tc + Ux. This energy term is ensured by the Hohenberg-Kohn theorem to be a
functional of the density. It is important to note that the theory formulated thus far is formally
exact.

Additionally to the dramatic simplification that the HK theorem implies for the solution of the
N -body problem, Kohn and Sham proposed an efficient iterative scheme to solve the Schrödinger
equation [22]. This method proposes a way of calculating the exchange-correlation energy through
an approximative expression for the exchange-correlation potential vxc[n], in which an associated
problem of non-interacting electrons is solved. The key in the process is the self-consistent cycle
that leads to the convergence of the exchange-correlation energy, in which the interaction of the
electrons is recovered, leading to an electron density that coincides with that of the original problem.
The solution to the problem is found by calculating the variation of the energy over the density,

HKS = δE

δn
= δTs

δn
+ vxc + vH + vext. (1.2.5)

The non-interacting electron Schrödinger equation is then(
−~∇2

2me
+ vxc + vH + vext

)
ϕl(r) = Elϕl(r) (1.2.6)

where l labels the orbital of the electron. The density is then calculated as

n(r) =
∑
l

fl|ϕl(r)|2, (1.2.7)

where fl is the occupation of the l-th orbital.

The DFT approach to solve the quantum-mechanical problem is an efficient strategy. This al-
lowed to conduct investigations on crystalline materials with a great level of accuracy and agreement
with experimental results. An example of this is the work in Ref. [20] on (SrTiO3)n/(PbTiO3)n
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Figure 1.9: Phonon dispersion of the cubic phase of lead titanate as computed using DFT, from Ref. [23]. The
colors indicate the contribution to the eigenvectors of the different atoms: red is used for the A cations, green for the
B cations and green for the oxygen contribution.

superlattices, in which they were able to predict the energetics of a phase displaying polarization
vortices (panel (b) of Figure 1.8) that was later observed experimentally [21] in the PbTiO3 layers
(see panel (a) of Figure 1.8).

Another example of the advantage of using DFT is the work presented in Ref. [23]. Here, the
authors used DFT to study the phonon dispersion of the cubic phase of BaTiO3, PbTiO3 and
PbZrO3. Notably, they were also able to characterize the vibrations by analyzing the contribution
of the different atomic species to the eigenvectors. The analysis of the vibrations provides informa-
tion on the structural instabilities of the materials.

Other important examples of the application of Density Functional Theory in the context of
ferroic materials are the study in Ref. [24] analyzing the limit thickness at which the ferroelec-
tric instability of barium titanate thin films disappears, or the research performed in Ref. [25] of
multiferroic thin films of bismuth ferrite, in which the origin of the enhancement of its intrinsic
polarization is studied.

1.2.2 First-principles based models
Although the DFT greatly eases the calculation of the solution of the quantum-mechanical problem
it is still a challenge to compute simulation boxes of more than 200 of atoms. In particular, it is
all but impossible to access large-scale simulations using DFT.

This limitation has motivated the development of several approaches to access larger scale sim-
ulation boxes (see Figure 1.7). This is usually achieved by reducing the detail level, and force fields
methods are a fantastic example of this. This modelization family is typically characterized as an
all-atom approach in which the energy of the crystal or the molecules is parametrized by describing
the atomic interactions of the system in a simplified form. It is also relatively customary to use
DFT to compute the parameters of the model. The name of this family of models arises from
the utility they provide at performing large-scale molecular dynamics, for which one solves the
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equations of motion using a defined potential. Although it is true that such simulations can be run
using first-principles calculations, force fields models allow to simulate much larger simulation boxes.

In the literature there are several examples of force fields model potentials that are fitted us-
ing DFT data. It is a particularily strong field of development in computational chemistry, with
outstanding examples as the Reactive Force Fields (ReaxFF) amongst many others (I particular-
ily recommend Table I in Ref. [26] for an updated summary of the different potentials and their
capabilites). Also, effective model potentials have been used in the past to perform simulations of
large simulation boxes with coarse-grained description of the systems. I review in Section 2.1 some
of the examples aforementioned.

This Thesis is developed around a recent formulation of force fields models: the SCALE-UP
model potentials [27], presented in 2013. The formulation of the models, which is described in
Section 2.2, is based on a Taylor expansion of the energy, and hence it is very flexible and general.
As such, the models are well suited to be fit to first-principles data, providing an outstanding ap-
proximation of the energetics of the crystalline materials.

The extense applicability of this formulation has lead many works to arise recently, allowing
the characterization of PTO 180º domain walls with in-plane polarization [28], providing insight on
thermal transport across PbTiO3 180º domain walls[29, 30], or the first theoretical study of electric
skyrmions in homogeneous systems [31].

In the original methodology presented in Ref. [27] the authors propose a numerical scheme to
fit the coefficients of a selected set of terms representing atomic interactions of particular physi-
cal importance to describe the systems. This method to obtain models is, however, a priori not
flexible and relies on the manual identification of the most important interactions in the system.
Also, the numerical optimizations performed in the process slow significantly the model production.

The original formulation of the models is well adapted to describe single perovskite systems.
One of the perspectives of the SCALE-UP model potentials is the deveolpment of a methodology to
model complex systems, as chemically inhomogeneous or nanostructured materials. This, however,
was not explored by the authors and requires a further formulation development.

1.3 Objectives

Based on the general topic overview presented in this Thesis I defined main objectives to achieve
in this work, that I believe constitute an important scientific development and have a very positive
contribution to research, and which development is expressed in this Manuscript.

The first objective was to design an automatic methodology to generate models. As I discuss in
the paragraphs above the SCALE-UP model potentials have a strong potential applicability. The
development of a general approach for the model construction process was the natural continuation
of the work in Ref. [27], as it would allow to easily produce models for the scientific problems of
interest and reduce the time devoted in the model construction itself.

The second objective of this Thesis arose from the high scientific interest of studying chemically
inhomogeneous systems. The simulation box size that this kind of simulation requires is, in general,
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beyond the capabilities of DFT simulations due to the high computational cost involved. Instead,
the idea of exploring the applicability of SCALE-UP model potentials to study this family of sys-
tems is an enticing approach, as it is a much lighter framework to approach the problem from the
computational point of view. Potentially, this would allow to study a very wide variety of systems,
as could be nanostructured crystals or property-engineering through material design [32, 33].

Finally, I also wanted to explore the applicability of the models that I could generate by achiev-
ing the first objective. Since the test system for the demonstration of the process was SrTiO3 it
was natural to use a produced model potential to study an open problem. The study of the domain
walls in strontium titanate has been extense in the literature, although the structure and properties
they may exhibit are still subject of discussion. Consequently I decided to study the structure and
properties of the 180º anti-phase domain walls of this material.

The Manuscript is organized as follows. In Chapter 2 I review some modelization approaches
that have been widely used in the field. Also, I introduce the SCALE-UP model potentials, which
are the model potentials I use on the development of this research. In Chapter 3 I present and
discuss the methodology developed for the construction of SCALE-UP models. This methodology
is applied to construct a model for SrTiO3, with which I studied the transition temperature of the
material as an example of application. In Chapter 4 I develop the formulation of model potentials
suitable for studying chemically inhomogeneous systems, with a brief application to SrTiO3/PbTiO3
superlattices. Finally, in Chapter 5 I present a discussion on the applications of SCALE-UP model
potentials. In particular, I use the model potential developed in Chapter 3 to study the 180º anti-
phase domain walls in SrTiO3. In Chapter 5 I also summarize briefly two collaboratinos in which
I have participated and which involve SCALE-UP simulations.
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Chapter 2

Atomistic model potentials

I review in this Chapter different approaches when it comes to modeling the potential energy of a
material without explicitely solving the electronic problem at the quantum-mechanical level. First,
in Section 2.1.1 I describe examples of model potentials that have been widely used in Materials Sci-
ence research. These model potentials have the characteristic of being computationally much more
efficient than DFT calculations, with their parameters obtained either using first-principles calcu-
lations or experimental data. In Section 2.2 I describe in detail the formulation for the SCALE-UP
model potentials, in which one can see reflected some of the ideas of the different methods intro-
duced in the first Section of this Chapter. This family of models will be then used throughout this
Thesis.

2.1 Examples of model potentials
I contextualize the SCALE-UP model potentials by discussing a collection of model potentials that
are present nowadays in research. The ideas behind the motivation and the formulation of these
model potentials are in a way recovered by the second-principles model potentials.

The core of defining models for materials consists in formulating with physical relevance the en-
ergy of the material through approximations. Techniques for very accurate material studies such as
DFT have been succesfully developed. However, they are not well suited for the study of large-scale
phenomena. Typically these calculations require large simulation boxes, and the computational cost
of solving the electronic problem limits the simulation boxes that can be accessed. For this reason,
several examples of modelization without explicit treatment of electrons at a quantum-mechanical
level have been extensively developed and used in material science, providing new insights and
better understanding of the driving physical or chemical mechanisms related to the macroscopic
phenomena of interest.

2.1.1 All-atoms effective models
I describe here two families of models developed using atomistic perspectives. The all-atoms ef-
fective models (or force fields) usually define a set of atomic interactions that describe the lattice-
dynamical properties of the system. Here I review two methods, namely the Lennard-Jones po-
tentials and the Reactive Force Fields (ReaxFF), that describe the interaction between atoms in a
simplified form.
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Figure 2.1: Potential energy for the diluted Neon gas as a function of distance between particles, computed used
the Lennard-Jones potential in a desktop machine. I used the tabulated values for the Neon gas from [1].

The Lennard-Jones potential

One of the canonical examples of model potentials in materials science are the Lennard-Jones
potentials [34]. This potential has its origin in the equation of states of gases and models the
interaction between pairs of atoms, and more precisely, in the second coefficient of the empirical
equation

pv = A+ B

v
+ C

v2 · · ·+
F

v8 , (2.1.1)

where p, v are the values of pressure and volume and the coefficients A to F correspond to
empirical coefficients. The coefficients are typically extracted through experimental observations
in temperature. In the derivation of the potential the focus of the work in Ref. [34] starts at
approximating the equation of state of a gas that is strongly diluted,

pv = kNT
(

1 + B

v

)
. (2.1.2)

This equation of state can be integrated if one considers molecules with spherical symmetry to
obtain the second coefficient B. In the derivation, the authors assume that a central force exists
between the molecules which is inversely proportional to the distance between them. With this
it is possible to recover the potential energy through integration, leading to the usual form of the
Lennard-Jones potential energy,

U(r) = 4ε
[(
σ

r

)m
−
(
σ

r

)n]
. (2.1.3)

where ε represents the depth of the potential well, σ is the zero force interaction distance and r
is the distance between the pair of particles. Normally the exponents used for studying noble gases
are n = 6 and m = 12, where the constraint on the m exponent is to be greater than n; however, the
determination of the exponents depends on the material of study [35]. The term r−12 is intimately
related to the description of the atomic repulsion due to the Pauli exclusion principle [1, 5]. The
sixth-order term of the power law is related to the Van der Waals attractive interaction.
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The potential typically takes the form depicted in Figure 2.1. As can be seen, it describes a
minimum corresponding to the equillibrium interaction distance. Before the minimum, the deriva-
tive of the potential indicates that the interatomic forces are strongly repulsive, indicating the
dominance of the r−12 term. After the minimum, the forces begin to be attractive, suggested by
the positive slope of the curve. The interaction is, as expected, converging to zero as the distance
goes to infinity. Because of the simplicity of the energy expression it is possible to analytically
study the optimal bond distance:

f(r) = dU(r)
dr

= −4ε
[
12
(
σ12

r13

)
− 6

(
σ6

r7

)]
, (2.1.4)

f(r) = 0⇔ 12
(
σ12

r13

)
− 6

(
σ6

r7

)
= 0⇔ r = 21/6σ, (2.1.5)

showing the point at which the interaction reaches its equillibrium point. Also, it is clear that
for r < 21/6σ the forces become repulsive, and for r beyond that value, the forces are attractive.

This power law expression for the interaction of atoms in a molecule is extremely flexible and
computationally efficient. For example, one can use tabulated values in temperature of noble gases
to fit the coefficients of the Lennard-Jones potential (for the conditions in which the approximation
holds). Then, one can extend the equation for N particles in a crystal [1]

Utot = 4ε
2 N

∑
ij

(
σ

pijR

)12

−
(

σ

pijR

)6
 (2.1.6)

where pijR represents the distance between atoms i and j, and R is the nearest neighbor distance.
Since this energy expression is analytically very simple it allows to perform statistical simulations
to study materials in large simulation boxes. For example, the calculation of the force on the atoms
or molecules is a simple task, opening the possibility to perform Molecular Dynamics simulations
at large-scale. It is for this reason that the Lennard-Jones has been widely used for many applica-
tions, from modeling of metals [35] to studying phase diagrams of fluids [36], amongst many other
examples of application.

Reactive force fields

The ReaxFF (Reactive Force Fields) is a more recent approach for modeling, presented in Ref. [37].
The peculiarity of this force field model is that it is focused on describing accurately the reactivity
of the bonds. The effective potential is formulated in a way that allows for explicit treatment (in
an effective way) of the electrons, so that the model can simulate bond deformation, bond break-
ing/formation and electron hoping without having to solve the problem at a quantum-mechanical
level. The model retains a great level of accuracy, as the functional parameters are fitted to DFT.

The main motivation for the formulation of this model potentials is that, even though existing
force fields models for quantum chemistry simulation reproduce well the geometries and properties
of chemical compounds [38–40] they fail to describe properly the chemical reactivity. In their formu-
lation, van Duin et al. describe the energy of the system as a combination of several contributions
related to the description of the bonds:

E = Ebond + Eover + Eunder + Eval + Epen + Etors + Econj + EvdWaals + ECoulomb (2.1.7)
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Figure 2.2: Sketch of the main degrees of freedom considered for the bonds by the ReaxFF models.

The first contribution, Ebond, is the energy related to the bond. It is characterized by a func-
tional that defines the bond order as a function of the bond length and depends on the available
bonds in the compound. For example, in Ref. [37] the authors consider the different bonds that
may occur between the atoms of hydrocarbon compounds (for carbon-carbon, for example, they
consider the sigma bond and the two pi bonds possible by studying the different orbitals involved
in bond). This allows to construct a functional that accounts for the correct coordination of the
atoms by studying their valences.

This leads to the second and third energy contributions, Eover and Eunder, related to the over
and undercoordination of the atoms. In this way it is possible to model the bond formation or
creation: an overcoordinated atom will introduce a penalty to the energy so that the atom will be
prone to change its coordination. Analogously, undercoordination will translate into favoring elec-
tron transition to create additional bonds or modifying the order of the bond in the uncoordinated
atoms. The penalties are accounted through the Epen energy term.

They describe the Eval as the energy related to the angle of the bond (depicted by the bend
described in Sketch 2.2), which is sensitive to the bond order. In this way, the atoms are allowed
to move while the energy of the bond is accounting for the bond angles. This term is relevant to
predict the geometries of the modeled system, which is a key factor in studies of organic molecules.
Similarily, Etors accounts for the torsion of the angles, which has an impact on how the bonds
between atoms can rotate, leading to rotations of parts of the molecule.

The model accounts also for the energy contribution of conjugated systems, described in the en-
ergy contribution term Econj. This energy is descriptive of how the bonds of p orbitals in molecules
help in stabilization by delocalizing the electrons, typically by alternating single and double/triple
bonds. The electrons delocalize accross the subsequent p orbitals, for which the ReaxFF models
the energetics through the bond order parameters.

Finally, the model potential takes into account the Van der Waals interactions and Coulombic
forces in the system (EvdWaals and ECoulomb terms). The effect of this is relatively similar to that
of the Lennard-Jones potential, effectively modeling the repulsion/attraction forces appearing be-
tween atoms due to these sources. This interactions are essential to describe how the bonds can
stretch.
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The parameters included in the different terms of the energy are computed using DFT. Because
of the detailed description of the energetics, the models achieve a high accuracy when compared
to the results of first principles calculations. They focused on optimizing the force fields model
through fitting the target interaction distances, so that the model is effectively reproducing ab-
initio predicted forces in the region of interest while being much lighter in the calculation of the
energy.

To demonstrate the usefulness of the model, the authors studied the bond dissociation of a
variety of compounds, from single to multimolecular aromatic systems. They compared the ob-
tained results for heat of formation with experimental values, obtaining differences of the order of
10 kcal/mol for either radicals or conjugated systems. Also, they compared the geometries of the
molecules as calculated using ReaxFF compared to experimental results, obtaining angles that are
deviated by usually less than 0.1 degrees.

Nowadays the ReaxFF approach has been applied to study a wide variety of systems. In
computational chemistry it has been extensively used to study organic compounds reactivity [41].
The method has been applied to study ferroelectric perovskite crystals as well [42, 43]. It has
also been used to analyze how sodium wears graphite cathodes for battery applications [44] and to
simulate the combustion of char in different atmospheric conditions [45], using simulation boxes of
tens of thousands of atoms. Recently, it has been also used to understand the proton transfer of
H3O+ and OH− in water, proving that ReaxFF is also adequate to study acid/base reactions in
aqueous solutions [46].

2.1.2 Coarse-grained modeling. The Effective Hamiltonians.

A common approach to modeling is the definition of coarse-graining approximations. The idea
behind is to define new simplified entities representing a collection of atoms. This reduces the
degrees of freedom of the system and allows for much simpler calculations. As a consequence,
much larger simulation boxes can be computed. This approach has been used widely in fields
like biology, in which one can think of different degrees of grains: aminoacids, proteins, or glucids
can be modeled as single entities that interact with their environment, overlooking the detail of
the atomic interactions and focusing on the properties that the whole structure exhibits [47]. In
materials science, an example of coarse-graining are the Effective Hamiltonians proposed by W.
Zhong, D. Vanderbilt and K. Rabe in their modeling of Barium Titanate [8], the formulation for
which is discussed in Ref. [48].

Effective Hamiltonians

The Effective Hamiltonians are non-atomistic models of the potential energy of materials. The
coarse-graining step consists on defining a new set of variables in which the system is modeled.
Here, instead of treating explicitely all the atoms in the system, the authors introduce a new entity
that they call local modes. In the case of the ferroelectric materials, the local mode proposed by
the authors consists on a 3D vector for which the components are the amplitude of the ferroelectric
polar distortion (FE) of the perovskite 5-atom cubic unit cell. The coarse-graining is sketched in
Figure 2.3.

In order to obtain the FE distortion characteristic of Barium Titanate the authors use the
eigenvector associated to the FE instability of the force-constant matrix (also known as the Hes-
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FE distortion Local mode

Figure 2.3: Sketch of the coarse-graining step. At the left, the FE distortion of the cubic cell. At the right, the
quantity that substitutes it in the model, the local mode.

sian Matrix). The new system is then constructed by assigning a local mode to each cell contained
in the simulation, as sketched in Figure 2.4.

The energy functional proposed by W. Zhong and collaborators is

E({ui},η) = Eself({ui}) + Edpl({ui}) + Eshort({ui}) + Eelas(η) + Eint({ui},η). (2.1.8)

Here, ui is the local mode related to the i-th cell and η are the homogeneous strains of the system.
In the following paragraphs I describe the different contributions of the energy.

The first term is the energy related to the local mode itself. It is modeled using a fourth-order
polynomial that is compliant with the symmetry of the local mode. The energy contribution is

Eself({ui}) =
∑
i

[
κ2u

2
i + αu4

i + γ(u2
ixu

2
iy + u2

iyu
2
iz + u2

izu
2
ix)
]
. (2.1.9)

where i labels the cells of the system. The different parameters κ, α and γ are determined
using DFT. This can be usually done by considering structures related with the mode for which
the energy or its derivatives are calculated using first-principles.

The second term of the energy corresponds to the long-range dipole-dipole interaction that
is present in semiconductors or insulator materials, in which there is no free charge distribution
preventing for the Coulomb interactions to appear. These interactions are in nature of infinite
range. For its description the Born effective-charge tensor (Z∗) and the high-frequency dielectric
permitivity tensor (ε∞) are used. Since the atoms have not an explicit description in the model it
is required to calculate the Born effective charge of the local mode itself. This is done by projecting
the Born effective charges of the atoms by the local mode. The Coulomb energy interaction is

Edpl({ui}) = Z∗2

ε∞

∑
i<j

ui · uj − 3(Rij · ui)(Rij · uj)
R3
ij

(2.1.10)
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2.1. Examples of model potentials

Figure 2.4: Sketch of the coarse-grained system with a certain arrangement of local modes. Each vertex in the
sketch corresponds to the center of a cell, and the arrows represent the local mode associated to the cells.

where Rij is the vector from the center of cell i to the center of cell j. This expression is then
adapted to ease the computation by performing an Ewald summation. This is also an example of
how calculations can be performed faster, as the result can be written in a compact way of the type

Edpl({ui}) =
∑
iαjβ

Qiαjβuiαujβ (2.1.11)

where Qiαjβ is a matrix that can be calculated beforehand containing the results of the Ewald
sum.

The third term of the model is the short-range interaction between modes. This can be written
as

Eshort({ui}) = 1
2
∑
i 6=j

∑
αβ

Jiαjβuiαujβ (2.1.12)

where Jiαjβ represents the interaction matrix. This interaction matrix has a strong decay in
interaction distance, and similarily to the local mode self energy contribution, symmetry consider-
ations can greatly simplify the calculation of its components by analyzing the interaction between
neighbors. In Ref. [48], they consider interactions up to third nearest-neighbors for the insulator
perovskite barium titanate.

The elastic energy is the next contribution to the energy in the model. It is split between the
homogeneous strain and the inhomogeneous strain contributions (the latter will not be discussed in
this Manuscript). The symmmetry of the cubic perovskite cell eases the form of the former, which
can be written as

Eelas
H (η) = N

2
∑
l=1...6

Bllη
2
l + N

2
∑
l=1...3
m=1...3
l 6=m

Blmηlηm (2.1.13)

where ηl are the homogeneous strains written in Voigt notation, and Blm are the components
of the bare (also called undressed) elastic tensor. The final contribution to the energy considered

25



Chapter 2. Atomistic model potentials

in the model is related to the coupling between the strains and the local modes,

Eint({ui},η) = 1
2
∑
i

∑
lαβ

Blαβηluiαuiβ (2.1.14)

This model is a good example of how coarse-graining can help in improving the efficiency of
simulations of materials properties. The model is fitted to DFT data, which means that it consists
on an approximation to the DFT energy having a complete description of the physics of the sys-
tem. A polynomial-like energy is naturally much faster to compute than solving the Schrödinger
equation in DFT, and hence simulation boxes of 10.000 to 20.000 atoms could be computed. This
enabled the authors to study the phase diagram of Barium Titanate using Monte Carlo simulations
to compute the transition temperatures of the different phases of the material, a calculation that
remains inaccessible nowadays using DFT. Further, the model potentials where applied to a wide
variety of perovskite compounds, such as Strontium Titanate, proving that the methodology is
flexible. In Ref. [13] an example of application for PbZr1−xTixO3 can be found, combining the
Effective Hamiltonians with the Virtual Crystal Approximation to study the morphotropic phase
boundary of the material, key in the remarkable piezoelectric response of the material.

Nowadays the model potentials presented are extensively used for materials science research.
For example, it has been intensively used to study electrocaloric and inverse electrocaloric effects
of barium titanate and its potential tunability [49–51], predictive phase discovery on bismuth
ferrite [52], studies on the relaxor ferroelectric lead manganate niobate [53, 54] or on the analysis
of the origin of the ground state of NaNbO3 [55], a material particularily challenging to study from
a theoretical point of view due to the extreme complexity of its potential energy surface.

2.2 SCALE-UP: second-principles model potentials
The methods for model construction developed during this Thesis project focus on a particular fla-
vor of Force Fields model potentials introduced in Ref. [27], which coined the name for the family
of models of this kind as Second Principles. In particular, the models have been implemented for
computer simulations in the SCALE-UP package (Second-principles Computational Approach for
Lattice and Electrons). In this Section I introduce the general notation and describe the formula-
tion of this family of methods, focusing on the lattice part of the model.

2.2.1 Introduction: polynomial model potentials for crystals
As it has been discussed previously many approaches have been used in the past to overcome the
practical limitations of DFT. This case is no exception of a general rule: the goal is to transform
the difficulty of computing the energy via solving the many-body Schrödinger equation into a poly-
nomial expression of the energy that allows for faster calculations, hence increasing the accessible
simulation box and simulation time and accessing scientific research that is, in practice, out of
the reach of first-principles calculations. As in the previous examples, the model does not involve
explicit treatment for the electrons.

The formulation of the second-principles model potentials within SCALE-UP is developed in the
form of a Taylor expansion of the energy. This approach is very practical for several reasons: it is
flexible, in the sense that interactions are described in the form of polynomial entities that cover all
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the possible interactions; it is fast, as evaluating polynomials in a computer is an extremely efficient
process since it only involves sum and product operations; and it approximates remarkably well
the function that is being Taylor-expanded. Further, the expansion is performed at the chemical
bond region, and so the model captures the interatomic couplings close to this distance with great
accuracy. As a consequence, the approximation is not valid for the description of bond creation
or destruction. It should be underlined also that the model does not account for the electrons of
the atoms; instead, the atom-atom interaction is modelled, and in the case of insulators, atoms
are considered to hold a constant tensorial electrical charge that accounts for anisotropy. I assume
throughout this Thesis that the function that is being Taylor-expanded is the energy as computed
using DFT, ultimately allowing us to approximate first-principles calculations using polynomials
(and for this reason they are called second-principles).

2.2.2 Description of the expansion point: the Reference Structure
These model potentials describe the energy of a crystal. The material is characterized by a peri-
odically repeated cell containing atoms at specific locations - usually known as the unit cell. The
choice of unit cell is arbitrary, but is always defined by the cell lattice parameters (corresponding
to the cell basis vectors) and the coordinates of the atoms in the cell. I define in the following the
Reference Structure (RS), which corresponds to point at which the energy is Taylor-expanded.

Assuming the crystal is embedded in a 3D space, one can generically describe the cell basis as
the set of three vectors, that I will refer to as (a,b, c). Let us define also τκ as the coordinates
of atom κ within the cell, where the subindex runs for all the atoms in the cell. Since the cell is
repeated periodically one can use integers (l1, l2, l3) to locate any cell in the space,

Rl1l2l3 = l1a + l2b + l3c (2.2.1)
In order to ease the notation, let us assume a particular ordering of the cells in space through

a bijective mapping l1l2l3 ↔ l, so that one can refer to the lth cell of the crystal as Rl. It is now
trivial to describe the coordinates of the atoms on any cell:

rlκ = Rl + τκ. (2.2.2)

Equation 2.2.2 defines the Reference Structure.

The variables of the model potential

The SCALE-UP model potentials use as variables the displacements of the atoms and the strains of
the cell. They are a natural choice of variables since, if the RS is known, by using these variables
it is possible describe any deformation of it in the following way:

rlκ = (Id3 + S(η)) (Rl + τκ) + ulκ, (2.2.3)
where ulκα represents the displacement of atom κ in cell l along the direction α and Id3 is the 3×3
identity matrix. Also, S represents the strain matrix,

S(η) =


η11 η12 η13

η21 η22 η23

η31 η32 η33

 , (2.2.4)
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Figure 2.5: Sketch of how the variables describe a distortion of the cell. At the left, the original undistorted unit
cell, with two atoms (blue and green). At the right the distortion is applied over the original cell (now grayed and
depicted with a dashed cage). The central atom position (grayed-green atoms) is updated by the strain on the cell
(dashed arrow), and a total displacement is applied to the atomic coordinates (solid-line arrow) to its final position.
The blue atom position does not change in the example.

where ηab are the strain components.

In the scope of the model potentials I consider that the strain matrix is symmetrical, and so it
is possible to use the standard Voigt notation defined through

η1 := η11 ; η4 := 2η23 = 2η32

η2 := η22 ; η5 := 2η13 = 2η31

η3 := η33 ; η6 := 2η12 = 2η21.

(2.2.5)

The description of the atomic position rlκ in Eq. 2.2.3 is given in the following way (see Sketch 2.5
for more details). First, the cell deformation with respect the RS cell is accounted for via the strain
variables. As the strain is applied both over the cell basis and the RS atomic positions, the frac-
tional coordinates of the atoms are not affected in the process. Then, the atomic displacements
are applied over the transformed cell basis and on the updated atomic positions, and hence they
are absolute displacements of the atoms. It is clear that any form of periodic structure can be
expressed in this way. Note that the expression in Eq. 2.2.3 introduces independently the variables
of the distortion, namely, the strains and the displacements.

In the following I alleviate further the notation by also considering a bijective mapping lκ↔ i,
that for example, allows us to rewrite Eq. 2.2.3 into

ri = (Id3 + S(η))(Ri + τi) + ui. (2.2.6)
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2.2.3 The model potentials as a Taylor expansion of the energy
I describe in the following paragraphs how the energy is Taylor-expanded from the RS in terms of
the displacements ui and strains η. The contributions can be generally written as

E(u,η) = ERS + Ep(u) + Es(η) + Esp(u,η). (2.2.7)

In this expression ERS the value RS potential energy (as computed using DFT, for example);
Ep (where “p” stands for “phonon”) corresponds to the energy due to atomic displacements from
the RS; Es (where “s” stands for “strain”) is the elastic energy, the contribution of homogeneous
cell deformations; and Esp (where “sp” stands for “strain-phonon”) describes how the strains and
displacements cooperate to define the Potential Energy Surface (PES).

Following several previous works[8, 56] the phonon part of the energy is treated so that it takes
into account both the short-range interactions and the long-range electrostatic interactions of the
material, and thus one can write

Ep(u) = Esrp (u) + Elrp (u) (2.2.8)

where “sr“ stands for short-range and ”lr“ stands for long-range, referring to the Coulombic
long-range electrostatic interactions. The electrostatic interaction is analogous to the formulation
used in the Effective Hamiltonians described previously in this Chapter.

The atomic displacement contribution, Ep

For the Ep short-range interactions the usual multivariate Taylor expression is used,

Esr
p (u) = 1

2!
∑
iαjβ

K
(2)
iαjβuiαujβ + 1

3!
∑

iαjβkγ

K
(3)
iαjβkγuiαujβukγ + . . . . (2.2.9)

Here, K stands for the coefficient of the polynomial term of the expansion and the superindex
indicates the order of the term. The coefficients of the terms correspond to the nth derivatives of
the energy with respect the displacements at the RS (i.e., u = 0, η = 0), and hence

K(n) = ∂nEeff
∂uiα∂ujβ . . .

∣∣∣∣∣
RS
. (2.2.10)

The expansion starts at second order in the derivatives. The reason is that the RS will be usually
a configuration that is a critical point of the PES, and thus the first derivatives are necessarily zero.
This also affects in the same way the elastic part of the energy, which as I show below in the text,
also has the first terms at the harmonic order. It is also worth mentioning that, unless the RS is a
stable point of the PES with strong harmonic character, it will always be necessary to expand the
energy up to at least fourth order in order to get models in which the energy is bounded from below
and displays an absolute minimum of the energy, corresponding to the ground state of the material.

The Acoustic Sum Rule

The coefficients of Eq. 2.2.9 have to satisfy, at all orders, the so-called acoustic sum rules (ASRs).
These rules preserves translational symmetry, which means that rigid translation of the material
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does not have an impact on the energy. Due to the spatial truncation on the short-range interac-
tions a formulation presented as in Eq. 2.2.9 would not fulfill this rule (truncations of the model
will be discussed further in the text).

The derivation of the rule is quite simple if one considers a rigid displacement uiα = δα, for all
i. Then, the energy at the RS and at the rigid displacement should be equal, which means

E0 = E0 + 1
2!
∑
iαjβ

K
(2)
iαjβδαδβ ⇒

∑
iαjβ

K
(2)
iαjβδαδβ = 0 (2.2.11)

This sum can be rewritten now

0 =
∑
iαjβ

K
(2)
iαjβδαδβ =

∑
αlβ

K
(2)
0αlβδαδβ =

∑
αβ

(∑
l

K
(2)
0αlβ

)
δαδβ ⇒

∑
l

K
(2)
0αlβ = 0 (2.2.12)

Only the harmonic part of the energy is written as an example; however, the equation holds
individually for every order in the expansion. Note that such a condition over the coefficients
means, in fact, that there are dependencies between them. For example, one could consider from
Eq. 2.2.11 the solution

K
(2)
iαjβ = −

∑
k 6=i

K
(2)
kαjβ , (2.2.13)

and introduce this into Eq. 2.2.9 (at the harmonic order). The resulting polynomial has then
coefficients associated to the terms expressed in differences of displacements. This rule is however
extremely challenging to express in higher orders of the energy derivatives. Instead of doing so, in
SCALE-UP model potentials the formulation of the short-range interactions is written as

Esr
p (u) = E0 + 1

2!
∑
ijkh
αβ

K̃
(2)
ijαkhβ (uiα − ujα) (ukβ − uhβ) + . . . . (2.2.14)

It is clear that any rigid displacement will be automatically canceled due to the formulation in
terms of displacement differences. However, in doing so one has to address several considerations
as on how it is related to the original Taylor expansion.

First, obtaining Eq. 2.2.14 from Eq. 2.2.9 requires transformations of the form described in
Eq. 2.2.13 (to all orders), as well as the identities that may arise from the fact that polynomial’s
partial derivatives are commutative - thus additional conditions arise. As it is clear, this is an
arbitrary choice, and hence it is not unique. In contrast, the reverse path is trivial. One needs only
to expand the terms in Eq. 2.2.14 to recover Eq. 2.2.9.

Second, the original expression Eq. 2.2.9 is a polynomial in terms of the displacements {ui},
which are a complete basis. It is clear that the set of variables {(uiα − ujα)} is a linear combina-
tion of the original basis. In that sense, a model expressed in terms of differences of displacements
can have redundancy of terms; however, although not being basis, it is a complete set of interactions.

Finally, writing the Taylor expansion in form of displacement differences allows to interpret
the individual terms as spring-like interactions. Even though the new form of the coefficients is
different from that of the force-constants of the material (i.e., the derivatives of the energy), it is
in fact an interesting way of treating the atoms in the crystal lattice, allowing us to interpret the
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interaction between the individual atoms on the system. Hence a term like K̃(2)
ijαkhβ (uiα − ujα)2

provides information on whether the atoms are prone to move or not from their reference position
by just looking at the sign of the coefficient, how unstable it is; adding anharmonic terms allows
also to interpret if the atoms would tend to have a displaced stable distance, etc.

The cell strain contribution, Es

Similarily to the initial development of Ep, the energy can be expanded in terms of the strain as a
usual Taylor expansion:

Es(η) = N

2!
∑
ab

C
(2)
ab ηaηb + N

3!
∑
abc

C
(3)
abcηaηbηc . . . , (2.2.15)

where the coefficients C(n) correspond to the different orders of the expanded elastic coefficients
- which again can be written as the derivatives of the energy with respect to the strains of the cell.
Note the addition of the cummulative factor N , which accounts for the number of unit cells in the
supercell.

The elastic energy contribution used in the model potentials will be usually considered up to
a harmonic order, unless of course, anharmonic orders contribute substantially. It would also be
necessary to add higher orders in the expansion if the RS would have an elastic instability, as then
at least a fourth order polynomial would be required for the energy to have a minimum.

The coupling between phonons and strains, Esp

As for any multivariate Taylor expansion it is relevant to define properly the coupling between all
its variables. In this case the model contains two families of variables, the displacements and the
strains. The strain-phonon coupling terms allow to fit the interplay between them, improving the
ability of the model at reproducing the complete PES of the material.

The coupling between the phonons and the strains can be written as

Esp(u,η) = 1
2!
∑
a
iα

∆(1,1)
aiα ηauiα + 1

3!
∑
a

iαjβ

∆(1,2)
aiαjβηauiαujβ + 1

3!
∑
ab
iα

∆(2,1)
abiαηaηbuiα . . . . (2.2.16)

Here ∆(n,m) define the coefficient of the term, and the superindex indicates the order of the
expansion where n refers to the order in the strains and m refers to the order in the displacements.
As it was the case of the Ep, the expression can be adapted to follow the ASRs using exactly the
same argument. In this case, the Taylor expansion transforms into

Esp(u,η) = 1
2!
∑
a
ijα

∆̃(1,1)
aijαηa(uiα − ujα) + 1

3!
∑
a

ijαkhβ

∆(1,2)
aijαkhβηa(uiα − ujα)(ukβ − uhβ)+

1
3!
∑
ab
ijα

∆(2,1)
abijαηaηb(uiα − ujβ) . . . .

(2.2.17)

It is again clear that such formulation respects ASR explicitly. Also, it completes the physical
picture. For example, it follows from Eq. 2.2.17 that now derivatives of the energy with respect
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the displacements have explicit dependencies with the strain variables, and viceversa, providing the
model with a description of how the elastic properties may change with the displacement of the
atoms, or how the strain can induce in the atomic positions forces that favor particular distortions
of the crystal.

Symmetry adapted terms

The model potential is formulated as a polynomial in terms of displacements of the atoms in the
crystal and the strains of the particular RS cell chosen. The RS will be chosen in the framework
of the SCALE-UP model potentials as a structure with a particular symmetry associated. Due to
the symmetry of the crystal there are terms representing symmetry invariants (with respect the
symmetry of the RS). In practice, this means that due to symmetry terms can be identified as
equivalent, and hence, have the same coefficients. This applies to all the types of terms described
previously. For example, with a 3-axis, and for a cubic cell the diagonal terms of the strain tensor
yield

N

2
(
C11η

2
1 + C22η

2
2 + C33η

2
3

)
= NC11

2
(
η2

1 + η2
2 + η2

3

)
, (2.2.18)

since the symmetry operation translates into C11 = C22 = C33. The symmetry adapted term
(SAT) are defined as the grouped terms that have the same coefficient due to symmetry, and one
selects any of the terms as the representative of the SAT. Then, for example, the term C11η

2
1 is a

representative of the SAT described in Eq. 2.2.18.

Symmetry considerations become relevant in practice, where one has a limited amount of re-
sources to describe a polynomial entirely. They effectively reduce the amount of independent
coefficients of the model, which are the parameters of it. Therefore, it follows that the higher the
symmetry for the RS, the simpler the Taylor expansion will become.

Models for insulators: the long-range electrostatic interaction

Electrostatics become very relevant when modeling specific materials like semi-conductors or in-
sulators. In such cases it is sensible to describe the model in terms of short-range and long-range
interactions - as Coulombic interactions are present and have an infinite range.

The Coulombic interactions have origin on the interaction between the dipoles that may appear
in the material as a consequence of distortions of the ions in the crystal. By assigning charges to
the ions by means of the Born effective-charges tensor Z∗iβα, one can write the dipoles as

diα =
∑
β

Z∗iβαuiβ. (2.2.19)

In the framework of the SCALE-UP model potentials the contribution of the electrical dipoles
is considered only at the harmonic order for the Ep energy contribution. The approach by Gonze
and Lee [56] allows for a correct description of the electrostatics of the material accounting for the
so-called LO-TO splitting, the discontinuity of the phonon bands that appear at q = 0. These
couplings are described by

K
(2),lr
iαjβ =

∑
γδ

Z∗iαγZ
∗
jαδ

(
(ε−1
∞ )γδ
D3 − 3∆γ∆δ

D5

)
det ε∞−1/2 (2.2.20)
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where

∆α =
∑
β

(ε−1
∞ )αβ∆rβ,

D =
√

∆ ·∆r,
∆r = Rj + τj −Ri − τi.

(2.2.21)

Here, ε∞ corresponds to the high-frequency dielectric permitivity tensor. This equation is equiv-
alent to Eq. 2.1.10 in the formulation of the Effective Hamiltonians.

Truncation of the model

Although the formulation above is general and the energy is presented as a Taylor series in practice
the interactions are effectively truncated in three different ways. First, the model is spatially trun-
cated by the choice of the interactions included and the size of the supercell. Second, the model is
truncated in the number of bodies of the terms included. Bodies refer to the different atom labels
included in a single term, and one can limit the complexity of the terms by choosing terms up
to a certain number of bodies. Third, the models are truncated in the order of the expansion, as
the Taylor expansion must be finite. Assuming that the RS is a critical point of the PES and is
not a stable point, it is required to expand at least up to fourth-order for the model to have a
well-defined absolute minimum of the energy, which physically represents the ground state of the
material modeled.

Models fitted to DFT

In Ref. [27] the authors devised a strategy to fit the model potentials to DFT calculations by using a
set of three Goal Functions. Goal functions are functionals of the parameters for which the minimum
with respect to the parameters is the set of fitted parameters of the model. They also performed
several DFT calculations at critical points of the potential energy surface to use as the data to be fit.

The first Goal Function they considered was the mean-squared error in energy between the
model and the DFT calculations. Once the energies are fitted, they proposed a second Goal Func-
tion based on the derivatives of the energy, aiming at altering as less as possible the result of the
first Goal Function minimization. In this way, and since the authors were fitting the derivatives
for structures for which ∇E = 0, they ensured that the location of the critical points of the PES
was the correct. Finally, they added a third Goal Function consisting on the error on the second
derivatives of the energy. More precisely, they projected the DFT-calculated eigenvectors of the
Hessian Matrix into the model’s calculated Hessian Matrix. In the ideal case, this solves the eigen-
value problem and has as a result the product of the eigenvalue and the eigenvector. Hence, the
Goal Function was built by mesuring the difference between this projection and the solution of the
eigenvalue problem as computed with DFT.

This scheme is efficient and was sufficient for the authors to produce a model for PbTiO3 and
SrTiO3 yielding a very good accuracy with respect to DFT. It is, however, not an automatic or
flexible scheme, in the sense that it requires knowledge of the specific phases that one wants to fit
the model to. In contrast, in Section 3 I present a more general approach to the construction of
SCALE-UP model potentials.
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Figure 2.6: Sketch of the three Goal Function minimization scheme. First, the energy is minimized to be under
a certain level curve (left). Then, the position of the extrema of the PES is located within the level curve (center).
Finally, the correct curvature of the critical point is found (right), as described in the text. Figure courtesy of J. C.
Wojde l.

2.2.4 Calculation of forces and stresses
It is also convenient to comment in detail on the calculation of the lattice-dynamical quantities
from the model. The forces on the atoms will be simply given by

fi = − ∂E

∂ui

∣∣∣∣
(u,η)

(2.2.22)

for a particular configuration of atomic displacements and strains (u,η). The expression for the
stress calculation is more delicate: it requires to compute the derivative of the energy with respect
the strains under the condition that the atoms fractional coordinates do not change.

Let A be the 3× 3 matrix constructed by joining the vectors that define the elemental unit cell
of the reference structure in columns; then, the relative position r′lκ of an atom is defined by

r′lκ = [(Id3 + η)A]−1rlκ. (2.2.23)

However, because of how the positions of the atoms in the formulation of the model potentials
are defined (Eq. 2.2.6) the change in strain does not affect the displacement variable. It follows
that if the displacements are not zero the derivative of the energy with respect the strains does not
preserve the relative positions of the atoms, as the displacement of the atoms is independent of this
calculation. In order to calculate properly the stress one has to take this into account and apply
the adequate derivative chain rule. For now let us write the calculation of the stress as

σa = − ∂′E

∂′ηa

∣∣∣∣
(u,η)

(2.2.24)

The symbol ∂′ is used to indicate that this derivative occurs under the constraint that the
relative positions r′lκ of the (however displaced) atoms are kept constant. The constraint takes a
form of a dependency of the displacements on the strains. I will develop this expression by using
an appropriate chain rule over this dependency in the following paragraphs.
To compute the stress corresponding to a configuration defined by ({ulκ},η), one has to consider
a perturbed structure (η + δη, {ulκ + δulκ}) that is constructed by imposing an infinitessimal
deformation δη and whose atoms are at the same relative positions as those of the state of interest.
Hence, the displacements δulκ have to be chosen so that

[(Id3 + η) A)]−1 [(Id3 + η) (Rl + τκ) + ulκ] =
[(Id3 + η + δη) A]−1 [(Id3 + η + δη) (Rl + τκ) + ulκ + δulκ]

(2.2.25)
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which reduces to
δulκ = δη (Id3 + η)−1 ulκ. (2.2.26)

Hence, the stress can be obtained from the chain rule

σa = − ∂
′E

∂′ηa
= − ∂E

∂ηa
−
∑
lκα

∂E

∂ulκα

∂ulκα
∂ηa

(2.2.27)

where ∂ulκα
∂ηa

is obtained from Eq. 2.2.26.
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Chapter 3

Automatic model generation for
SCALE-UP

In Chapter 2 I have introduced the formalism behind the second-principles model potentials within
the framework of SCALE-UP. Here in Chapter 3 I describe a method to construct SCALE-UP
model potentials. In Section 3.1 I formally describe the fitting process developed in my research
for this particular case of model potentials. I present an application of the method in Section 3.2
for Strontium Titanate, for which I demonstrate the advantages of the fitting process and describe
an example of research application for the study of the material’s phase transition. In Annex A I
briefly discuss some implementation details and include a sketch of the whole model construction
process in the form of a structured summary. This Chapter is based on the article published on
2017 in Physical Review B [57].

3.1 Formalism
I adopt in the following mathematical development the formalism introduced in Chapter 2.2 for
the SCALE-UP model potentials.

3.1.1 The fitting method

The procedure to calculate the parameters that fit a model to a particular set of data is a complex
problem that can be approached in several ways [58], depending on the mathematical properties
of the model. The method that will be described in this Section is based on a standard discrete
mathematics solution to a general optimization problem. In this method one defines a positively
defined function, called Goal Function (GF), that measures a particular quantity relevant in the
fitting process that allows to compare the model with the data that is used to fit it. Then the
parameters that fit the model to the data are found by minimizing the GF. The data intrinsically
defines the upper limit of the model’s accuracy, and is generically referred to as the Training Set
(TS).

In the general mathematical approach the GF will be usally a multivariate function with non-
linear dependency with respect to the parameters, and because of that, the minimization problem
may turn into a hard task that can require advanced [59–61] and costly numerical methods to solve.
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Nonetheless, the SCALE-UP model potentials are linear with respect to the parameters, and as I
show in this Section, this property allows to find an analyitical solution to the optimization prob-
lem, turning the process of model fitting into a fast and easy calculation.

The Goal Function

Let us first alleviate slightly the notation by revisiting the description of the model potential
(Section 2.2) using a simpler parametric formulation. One can write

E[Θp](u,η) =
∑
λ

θλtλ(u,η) + Efixed(u,η) (3.1.1)

where Θp := {θ1, . . . , θp} is the set of parameters of the model and Tp := {t1, . . . , tp} is the set of
the corresponding polynomial terms, which depend on the displacements u := {ui} and strains η.
The polynomial terms belong to the family of short-range interaction terms, both in the Ep and
Esp energy contributions in the model. The energy term Efixed contains all the interactions that are
not involved in the fitting process: these can be terms for which the parameter is considered to be
fixed, or other known energy contributions. For example, this energy contributions can be due to
the elastic energy or long-range dipole-dipole interactions. The parameters of these contributions
can be straight-forwardly calculated using DFT.

Now let us define the goal function. A GF is a functional that measures a meaningful quantity
allowing to fit the model to the TS data. I have chosen the functional to represent the mean square
error in forces and stresses between the model and the TS. The strength of the functional is that
it is parametrized by the same parameters that the model has, so by optimizing the value of the
parameters to reduce the error in forces and stresses one is effectively fitting the model. I chose to
define the GF as

G[Θp,TS] = 1
M1

∑
sτ

(
fTS
τ (s)− fτ [Θp](s)

)2
+ 1
M2

∑
sa

Ω2(s)
(
σTSa (s)− σa[Θp](s)

)2
. (3.1.2)

In this expression s ∈ TS labels the structures in the training set, and fTS
τ (s), σTS

a (s) are the
corresponding forces and stresses in the TS. I indicate the forces and stresses as computed using
the model by fτ [θp] and σa[θp], where I make explicit their dependency with the parameters of the
model. I have used the bijective mapping iα ↔ τ to ease the notation. The values M1 and M2
are the normalization factors computed as the cardinal of the elements of the corresponding sums.
Finally, Ω(s) is a factor that was proposed by Sheppard et al. [62] that allows to weight properly
forces and stresses in the same expression - in their case, applied to the so-called Nudged Elastic
Band method for the study of minimum energy paths using DFT. This factor is defined through

Ω(s) =
(
V (s)

√
N
)−1/3

, (3.1.3)

where N is the number of atoms in the simulation cell and V (s) is the cell volume for configuration
s. The forces and stresses from the model potentials are computed as described in the Section 2.2.4.

The extrema of the GF

The equation 3.1.1 is a convenient way to study the extrema of the GF as formulated in 3.1.2.
The reason is that it provides with a very compact expression to describe the dependency of the
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model potential on the parameters. It is possible to see how the forces and stresses depend on those
parameters, and ultimately, how the GF can be written explicitely in terms of them.

First, it is now quite simple to write the expressions for the contributions to the forces and
stresses of each term in a general way. Let us define the SAT derivatives with respect to the atomic
displacements and strains for a particular configuration of the training set s by

f̄λτ (s) = −∂tλ(u,η)
∂uτ

∣∣∣∣
s

(3.1.4)

and
σ̄λa(s) = −∂

′tλ(u,η)
∂′ηa

∣∣∣∣
s

. (3.1.5)

The primed derivatives in equation 3.1.5 indicate that the chain rule discussed in Section 2.2.4
is applied. Using these definitions one can now compute the total force and stress for the s config-
uration by summing over all terms as

fτ (s) =
∑
λ

θλf̄λτ (s) + ffixed
τ (s) (3.1.6)

and
σa(s) =

∑
λ

θλσ̄λa(s) + σfixed
a (s), (3.1.7)

where
ffixed
τ (s) := ∂Efixed

∂uτ

∣∣∣∣∣
s

; σfixed
a (s) := ∂′Efixed

∂′ηa

∣∣∣∣∣
s

. (3.1.8)

It is possible now to rewrite the GF expression 3.1.2 into

G[Θp,TS] = 1
M1

∑
sτ

(
fTS
τ (s)−

∑
λ

θλf̄λτ (s)− ffixed
τ (s)

)2

+ 1
M2

∑
sa

Ω2(s)
(
σTS
a (s)−

∑
λ

θλσ̄λa(s)− σfixed
a (s)

)2

,

(3.1.9)

where the dependency of the GF with the parameters is made explicit. This exercise now turns
into a basic academic development in which one uses the properties of differential calculus to study
the extrema of a function, where the variables of the problem are the parameters θλ ∈ Θp. The
general equations to solve to find its critical points are

∂G[Θp,TS]
∂θµ

= 0 ∀ µ ∈ {1, . . . , p}. (3.1.10)

Then, using Eq. 2.2.4 one can write:

0 = ∂G[Θp,TS]
∂θµ

= 2
M1

∑
sτ

(
fTS −

∑
λ

θλf̄λτ (s)− ffixed
τ (s)

)
f̄µτ (s)+

2
M2

∑
sa

Ω2(s)
(
σTS
a (s)−

∑
λ

θλσ̄λa(s)− σfixed
a (s)

)
σ̄µa(s).

(3.1.11)
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It is possible to isolate the θλ factors by using the commutative property of finite sums, leading
to

∑
λ

[∑
s

(
1
M1

∑
τ

f̄µτ (s)f̄λτ (s) + 1
M2

∑
a

Ω2(s)σ̄µa(s)σ̄λa(s)
)]

θλ =

∑
s

{
1
M1

∑
τ

[
fTS
τ (s)− ffixed

τ (s)
]
f̄µτ (s) + 1

M2

∑
a

Ω2(s)
[
σTS
a (s)− σfixed

a (s)
]
σ̄µa(s)

}
.

(3.1.12)

By defining now

∆µλ(s) :=
∑
s

(
1
M1

∑
τ

f̄µτ (s)f̄λτ (s) + 1
M2

∑
a

Ω2(s)σ̄µa(s)σ̄λa(s)
)

(3.1.13)

and

Γµ(s) :=
∑
s

{
1
M1

∑
τ

[
fTS
τ (s)− ffixed

τ (s)
]
f̄µτ (s)+

1
M2

∑
a

Ω2(s)
[
σTS
a (s)− σfixed

a (s)
]
σ̄µa(s)

} (3.1.14)

one can rewrite 3.1.12 into ∑
λ

∆µλ(s)θλ = Γµ(s), (3.1.15)

The form of this last equation is very well known to anyone familiar with linear algebra: it
constitutes a system of linear equations with θλ as variables, to which the solution is the extrema of
the function G[Θp,TS]. Additionally, the solution of the system in Eq. 3.1.15 is the set of parameter
values that fit the model to the TS.

Now that the analytical extremum of the GF is found it is possible to study its stability and
character. It is important to note that G[Θp,TS] ≥ 0, since it is a sum of parabolas with the
positive parameters 1/M1 and 1/M2. The lower bound (G = 0) represents a point in which the
forces and stresses computed using the model match perfectly those of the training set.

A way to show that the solution of equation 3.1.15 is stable is to study the Hessian matrix of
the GF at the extrema of the function. By taking second derivatives on equation 3.1.9 one may
write

Hµλ(s) := ∂2G[Θp,TS]
∂θλ∂θµ

= 2
M1

∑
sτ

f̄λτ (s)f̄µτ (s) + 2
M2

∑
sa

Ω2(s)σ̄λa(s)σ̄µa(s). (3.1.16)

The eigenvalue problem associated to this equation is

Hλµv
i
λ = civiλ, (3.1.17)

39



Chapter 3. Automatic model generation for SCALE-UP

where vi is the ith normalized eigenvector and ci the corresponding eigenvalue. This leads to

ci =
∑
λµ

viλHλνv
i
ν

=
∑
λµ

∑
s

[
2
M1

∑
τ

viλf̄λτ (s)f̄µτ (s)viµ + 2
M2

Ω2(s)
∑
a

viλσ̄λa(s)σ̄µa(s)viµ

]

=
∑
s

[
2
M1

∑
τ

∑
λ

∑
µ

viλf̄λτ (s)f̄µτ (s)viµ + 2
M2

Ω2(s)
∑
a

∑
λ

∑
µ

viλσ̄λa(s)σ̄µa(s)viµ

]

=
∑
s

[
2
M1

∑
τ

(∑
λ

viλf̄λτ (s)
)(∑

µ

f̄µτ (s)viµ

)
+

2
M2

Ω2(s)
∑
a

(∑
λ

viλσ̄λa(s)
)(∑

µ

σ̄µa(s)viµ

)]

=
∑
s

 2
M1

∑
τ

(∑
λ

viλf̄λτ (s)
)2

+ 2
M2

Ω2(s)
∑
a

(∑
λ

viλσ̄λa(s)
)2
 ≥ 0.

(3.1.18)

This result contains all the information about the character of the extrema of the GF. First,
the eigenvalues ci have to be non-negative. The consequence of this is that the point representing
the extrema of the function is not a maximum (which would require ci < 0 ∀i) nor a saddle point
(which would require positive and negative eigenvalues), and thus, it has to be a minimum.

The topology of the solution is however slightly more intrincate. On one hand, the eigenvalues
of the matrix can be strictly positive. Then the solution is a minimum of the GF (more precisely
the global minimum since it is a function with exactly one extrema), and is then the solution rep-
resenting the parameters that fit the model to the data. On the other hand, if at least one of the
eigenvalues ci is zero, then the solution is a collection of points, all of them describing equivalent
minima. As for any linear system of equations, it follows that the solution is not unique and one
can find a linear dependency between parameters leading to the equivalent solutions.

It is interesting to discuss about the origin of linear dependencies in this particular system of
equations. If there is a subset of θλ which are linearily dependent it means that the associated
terms tλ are in fact linearily dependent. But how can this be?

Let us first introduce a simplified notation that will be useful to discuss short-range interactions.
In this Manuscript I will describe the displacement variables uiα as iα. For example, for a second
order interaction along the x direction between the A and O atoms I will write the interaction as

(Ax −Ox)2. (3.1.19)

Now, the distinct character of the terms depends on the completeness of the training set. One
can write a simple example:

t1 = (Ax −Bx)2 , t2 = (Ax − Cx)2 . (3.1.20)

In this example A,B and C represent three fictitious atoms. Then, t1 is the interaction associ-
ated to the atomic displacements of A and B along the x direction, and t2 represents the interaction
between A and C atoms displacing along the x direction. Let us imagine now that the TS contains
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only information related to the displacement of the fictitious atom A. Then, under the process of
fitting described previously, it is clear that t1 and t2 are indistinguishable, and so in appearence,
linearily dependent due to the lack of completeness of the TS.

In
t. 

1

Int. 2

Int. 1

Figure 3.1: Sketch representation of a finite-size effect that could lead to an apparent linear dependency between
terms that are actually independent, but the size of the cell does not allow to distinguish one from the other.

A second source for linear dependencies is related to the periodic boundary conditions used
when modelling crystals, and can be illustrated in a very simple example as in Figure 3.1. Periodic
boundary conditions define in practice a spatial cutoff distance for the interactions. In the 2D
example, interactions are allowed up to a 2 × 2 repetition of the unit cell. However, due to the
periodic boundary conditions, Interactions 1 and 2 in the sketch become equivalent, even though
for an infinite crystal they would be different. Therefore, if one would attempt to evaluate the
solution of Eq. 3.1.15 using a TS obtained for a 2×2 repetition of the unit cell the two interactions
would appear as linearily dependent.

In practice, this are two situations that are easy to deal with. In the first case it is enough to
increase the complexity of the TS by adding additional data. As for the second source of linear
dependencies, since the terms are redundant it is enough to retain the shortest interaction term and
disregard the long-distance one of the terms that become linearily dependent. From a technical
point of view this is in fact easy to detect, as the matrix representing the left-hand-side of the
system of equations in Eq. 3.1.15 becomes singular whenever linear dependencies exist.

3.1.2 Iterative model construction
The model fitting constitutes a critical but small part of model design itself. I discuss now an
optimal way of automatically finding which are the most relevant interactions the model potentials
have to have in order to reproduce optimally the training set.

The model potentials within the SCALE-UP framework are polynomials, written in a basis of
differences of displacements instead of the usual Taylor expansion representation. The terms of
the polynomial represent couplings between the atoms within the simulation box (which one can
understand as a Nx×Ny×Nz repetition of the unit cell, and I refer to as supercell). Therefore, the
number of possible interactions that can occur depend on the size of the crystal cell that is used
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Generate all possible models of 1 term:

Find the model with lowest GF value

Iteration step 1

Generate all models of 2 terms 
using SWFS:

Find the model with lowest GF value

Iteration step 2

Figure 3.2: Iterative scheme of the Step-Wise Forward Selection method (SWFS in the flowchart). All steps for
i > 2 are analogous to Step 2.

to model the material, and scales exponentially with it. Also, this number can be reduced by a
variety of cutoffs that can be easily put in place (see 2.2.3 for a description of the different cutoffs
of the model): the maximum order of the polynomial expansion, the maximum allowed spatial
range of the interactions, and the maximum number of bodies allowed for a single interaction. It is
not difficult to design an algorithm that generates the interactions according to these constraints.
Nonetheless, even for small supercells the size of the set of occurring interactions is large.

The amount of possible atomic interactions existing even for small supercell (for example, the
standard that I am going to use is a 2 × 2 × 2 repetition of the 5-atom unit cell for perovskites,
later in the application) challenges the model construction process in practice. I propose a simple
example to show the complexity of attempting to build a model using a brute-force approach.

I call p-model a model of p terms, where Tp ⊂ TP and Θp ⊂ ΘP . Here, TP represents the set
of the P possible interactions in the supercell, and ΘP are their associated parameters. Usually
for the applications and the cutoffs operating for SCALE-UP model potentials, P ≈ 500. Let us
assume that a model of p = 20 terms is being constructed, obtained amongst the P terms. Of every
p-model contained within TP , and provided a training set, one can compute using the algorithm
presented in this chapter the value min

Θp
G[Θp, TS] for each Tp ⊂ TP . I define the set of the GF

values for models of p terms as

Gp := {min
Θp

G[Θp,TS] | ∀ Tp ⊂ TP }. (3.1.21)

The objective is to find the p-model that leads to the minimum value of Gp, which I can define
as

T ∗p := {Tp ⊂ TP | min
Θp

G[Θp,TS] = min Gp}. (3.1.22)

Naturally, T ∗p has to be found in practice through inspection of all possible Tp. It is then logical
that a practical question arises: how many models have to be inspected (and hence, fitted) to know
which model corresponds to T ∗p ? Using the values of the example and simple combinatory, one has(

500
20

)
= 500!

50! 450! ≈ 1035 (3.1.23)

possible candidates. Even though the scheme to fit models is extremely fast, it is in reality
unfeasible to inspect all possibilities and find T ∗p .
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Stepwise procedure with forward selection

In order to overcome this difficulty I propose to use the method of the Step-wise Forward Se-
lection [63] (SWFS). This method is a general mathematical procedure that constructively adds
complexity to the model by attempting to rank the relevance of the terms when presented with the
training set data at each step.

The algorithm is described as follows (see Figure 3.2). The first step is to exactly find T ∗1 , for
which there are P possibilities, and hence it is a feasible search. Let us call t1∗ ∈ T ∗1 the term
constituting the best 1-model. Next, one fins T ∗2 under the constraint that t1∗ ∈ T ∗2 . This process
can be iterated as many times as necessary, until a sufficiently small GF value is obtained.

The process is dramatically more efficient than the brute force method. At each step of the
iteration process (P − i) models are inspected, being i the step of the SWFS procedure. Hence the
number of steps to build a p-model is

p∑
i=0

(P − i) = (p+ 1)P −
p∑
i=0

i = (p+ 1) [P − p/2]� P !
p!(P − p)! , (3.1.24)

where the Newton binomial formula is the number of steps of the brute-force method.

The SWFS method by default is constructive and adds the next most important interaction,
but of course, since the space of possible models is constrained one cannot be sure that it is pro-
viding the best possible model. I designed two experiments to inspect what was the impact of the
constrained search.

In the first experiment, I search through all p-models. This is only doable in practice for p < 5,
and the result of the experiment indicates that the forward selection method selects the best p-
model in almost all cases.

In the second experiment I refine the SFWS algorithm. The idea behind is to see if there is
a term substitution that would lead to a lower value of the GF. In order to do so, at each step
the algorithm attempts to substitute any of the terms of the model by another term that is not
in the model. By doing this substitution the restriction on the configurational space is effectively
weakened. This allows to explore models that are not considered by the SWFS method, although
the algorithm remains efficient. I observed that this strategy rarely finds a better choice of model,
or if so, never leads to a meaningful change in the GF value.

3.1.3 Model validation
The concept of model validation refers to a critical aspect of model construction: how to correctly
assess that an optimal model has been generated. In the framework of the presented scheme, for
example, this means developing a criterium that would allow to decide what is the optimal amount
of terms in the model. In order to talk about the optimal (or best approximative) model it is very
useful to introduce two concepts that are the two faces of the same coin: underfitting and overfitting.

In statistics [64], an underfitted model is a model that lack relevant parameters that are needed
to describe a particular sampled data. In the methodology presented in this Chapter this corre-
sponds to the training set. Underfitted models tend to have poor description of the main properties
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of the training set, which of course leads also to a lack of predicting power. Examples of underfitted
models can be polynomial models that do not have enough order to reproduce data that requires
higher order terms to be described. A good example in perovskties is the requirement of 8th or
12th order Landau potential models to describe monoclinic ferroelectric phases [65]; a model of this
family with less order will fail at describing the property of interest.

Overfitting is the opposite to underfitting. An overfitted model will tend to include more pa-
rameters than are necessary to describe the training set data. Usually overfitted models have an
extremely good accuracy towards the points of the sampled training set, but because it includes
parameters that are almost not relevant towards the fit itself, additional features may appear that
lead again to a lack of predicting power. An example of overfitting appears when one fits a model
to a TS that includes some degree of noise. If the model complexity keeps increasing, there will be
a point at which the model will begin to fit the noise, and thus include new parameters that are
not relevant and decrease the predictive power of the model.

Model validation methods are designed to avoid the difficulties posed by overfitting and under-
fitting, i.e., detecting when one has more interactions than needed, or helping to realize that the
complexity of the model has to be increased for it to reproduce the particular features that one
wants to study.

Cross-validation

A standard way of dealing with both overfitting and underfitting is through cross-validation [66].
It is a technique widely used in machine-learning, neural networks and statistics model fitting
in general. The method is useful to estimate accurately when a model is beginning to overfit the
data of the training set, although it is known that sometimes such procedure is difficult to apply [67].

Cross-validation is a general tool for model selection. Ideally it assumes that there are two sets
of data available: the training set and the validation set (VS). The model is generated by fitting the
data of the training set. Every time a new term is added the algorithm evaluates using the model
the GF by using the structures contained in the validation set. In general, the training set and
the validation set are slightly correlated (and thus the model can hold predictive power). Underfit-
ted models tend to improve the agreement towards the validation set at each step, and overfitted
models tend to worsen their goodnes at reproducing the validation set as the model complexity
increases. An example of overfitting signature can be found in Fig. 3.3. The deviation between the
curves indicate that the model fitted to the TS is no longer reproducing correctly the VS, and thus
the optimal model can be chosen using this criterion.

There are several ways of applying this method. I chose to create a variety of validation sets in
order to investigate the applicability of the cross-validation method for model selection purposes.
In particular I focused on two main ways of analyzing cross-validation:

• Validation set strongly correlated to the training sets.

• Validation set weakly correlated to the training set.

The first family consists on validation sets for which the data is qualitatively similar to that of
the training sets. Because of the strong correlation, it is a possibility that overfitting is not visible
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Figure 3.3: Sketch of the usual behavior of cross-validation studies when overfitting occurs. The black line represents
GF value computed with the model for the configurations of the TS, and the red line, the GF value when the
configurations are chosen from the VS. The arrow marks the point at which overfitting begins to occur.

through such sets, although it is still worth to investigate. I apply to this validation set the leave-
n-out method [66], which consists in the following: let us assume that the training set contains m
data points and n < m. The training set is randomly split in two new sets: what will become the
training set, with m − n random points from the original training set; and what will become the
validation set, with n points. Then, and using the context of this Chapter, one fits the models to
the training set and validate at each step using the validation set, which by default will be strongly
correlated to the training set. The way of validating is through measuring the main estimator in
use throughout all the process of model construction: the GF. It is the optimal estimator in this
case, because it is a measure of the error towards the data itself.

The second family correspond to validation sets that are less correlated. The idea is that, if
the model is presented with data to which the training set is qualitatively different, the validation
process will become naturally much more sensitive to overfitting. In other words, overfitting will
have stronger impact on data that lies way beyond the extrapolation point than close to it.

3.1.4 Boundedness
So far I have discussed in depth the formalism behind the model fitting and generation, and pre-
sented a scheme that is not only efficient but also reliable, solid and automatic. There is nonetheless
a remarkable obstacle in the model generation process: the unboundedness-from-below.

In mathematics, a set is called unbounded if one cannot find a bounding value for it. For
example, the model potentials within the SCALE-UP framework constitute a function of the type

E : R3N × R6 −→ R (3.1.25)
(u,η) 7−→ E = E(u,η) (3.1.26)

where u is understood as the vector of displacement vectors, which can be written in the form
of a succession of the type u := {ui}. Since E represents the potential energy of the system, it
is physically motivated that E must have a lower bound. This is equivalent to say that one can
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find a value b− ∈ R for which b− ≤ E(u,η) for any (u,η) ∈ R3N × R6. The motivation for that
bound to exist is simple: because of the minimum energy principle, the total energy of a system is
minimized at the equilibrium. Hence if there is no minimum, there is no equilibrium.

Studying formally the stability of a multivariate polynomial can be a hard task. In the case
of the models discussed here, the question is if E(u,η) is bounded from below, which is to say,
has a global minimum. I propose a simple method to find the minimum of the energy and study
the boundedness-from-below character of it: annealing through Metropolis Monte Carlo method.
This algorithm is designed specifically to minimize functions. One of its main characteristics is the
inclusion of a temperature parameter, that combined with an annealing factor provides an effective
method to find the global minimum of a function. The annealing parameter represents a ratio of
decrease in the temperature during the simulation.

For unbounded E(u,η), the simulated material will evolve to configurations for which the en-
ergy tends to −∞. I call this runaway solutions. If it is the case, then one can also study which
are the terms of the polynomial that are contributing the most to the runaway solution, usually
providing hints on how to correct the model unboundedness.

Confinement potential

Applying an effective and fair bound to a model potential represented a difficult task in the devel-
opment of the method. A frequent question that I asked myself is: given that T ∗p is unbounded,
how can one know if it is a model complete enough to reproduce the key features of the material
being modeled? Furthermore: can one find a function that would provide automatic and good
boundedness for the models?

The answer is not immediate. In practice, unbounded models allow for atomic configurations
that have no physical meaning. For example, a usual behavior of an unbounded model is to predict
massive distortions of the atoms and cell parameters leading to very low energies. The distortions
tend to be cooperative atomic movements that define a path in the potential energy surface that
eventually leads to the runaway solution of the model.

A practical way of preventing these solutions to appear is to apply a sort of cutoff to the model
by limiting how much the atoms can move, and how much the cell can be distorted. I propose

Econf(u,η) =
∑
i

θ(||ui|| − uci )
[
k1

(
s
||ui|| − uci

uci

)α ]
+

θ(||η|| − ηc)
[
k2

(
s
||η|| − ηc

ηc

)β ]
.

(3.1.27)

where

θ(x) =
{

1 x ≥ 0
0 x < 0

(3.1.28)

is the Heaviside step function, uci is the defined as the maximum absolute distortion of atom
i, k1 controls the hardness of the potential, α defines the order of the cutoff and s allows for fine
tuning of the slope of the potential. Similarily, ηc is the maximum absolute distortion of the strain
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of the cell, k2 controls the hardness of the potential, β defines the order of the cutoff for the strains
and s is a fine tuning parameter.

This function imposes a smooth spherical confinement potential around each atom. The po-
tential is activated when the atom displaces more than uci in norm. Then, by choosing α even and
higher than the order of the terms contained in the original model this energy contribution is going
to dominate in the highly distorted region, plus the different parameters allow to control the hard-
ness of the potential. The confinement for the strains behave in the same way: a six-dimensional
sphere is limiting the amount of distortion that the cell can undergo before the confinement be-
comes relevant enough to prevent further distortions. Moreover, by selecting uci and ηc so that they
are 5% bigger than the maximum observed in the training set it is ensured that the confinement
potential do not affect the area of validity of the model. This kind of confinement potential allows
to explore the potential usefulness of a model: for example, one can study if a model can reproduce
potentially the ground state of the material.

This method is however not ideal to bound a model for lattice-dynamical simulations. There
are two main reasons for this. The first is due to the perturbation they introduce in the points that
are beyond the maximum distortion of the training set: the slope will be massively affected by the
confinement, and thus the recovery forces lay much beyond what would be physically reasonable.
A second, more important problem, is at the effect of this potential over the PES: in my experience
it is somewhat frequent that additional secondary minima appear as a result. Secondary minima
represent additional, unphysical phases of the material. Thus any sort of temperature-dependent
simulation for such a model is automatically rendered useless: statistics will be biased due to both
problems. In the following I discuss a more solid method to bound models in practice.

A method to construct bounded models

I present here a method for constructing models for which the energy is bound from below. For
simplicity, let p(x) be a polynomial of the ring of real polynomials, R[x]. In the following paragraphs
I will make an analogy and refer to this polynomial as if it was the energy functional E(u,η). It is
possible to write

p(x) = a0 +
∑
i

aixi +
∑
ij

aijxixj + . . . . (3.1.29)

Let m be the order of the polynomial p(x). Let us define then a new polynomial p′(x) =
p(x) + q(x), where

q(x) =
∑
i

cix
n
i , ci ∈ R+ (3.1.30)

being n the smallest even integer such that m < n. Since for ||x|| � 1 one has |q(x)| � |p(x)|, then
p′(x) ≈ q(x) > −∞ and p′(x) is bounded from below.

In the particular case of the SCALE-UP model potentials the displacements that are occurring
in the modelled materials are usually relatively small. Hence, in the region of the PES at which
the models are fitted the impact of adding higher order terms is minimal. I show this result in
the applications of the methodology, as I studied the impact of applying this approach to produce
bounded-from-below model potentials.
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Note that, in principle, this recipe to apply boundedness to a model could generate additional
spureous minima as I am introducing higher orders of the polynomial expansion. However, in my
experience a key factor in avoiding this is precisely the fact that here one fits again all coefficients,
making this procedure superior to the application of the confinement potential.

Unfortunately, this process is complex to apply in practice. The optimal way to do so would
be the following: let us assume that, in the formulation that I have been using in this Section,
p(x) and q(x) are known. That is to say: the model potential p(x) has been generated, and one
knows what terms to use to obtain a bounded-from-below model, q(x). In my experience, however,
there is no way to ensure that fitting such a model will have as results parameters for q(x) that are
strictly positive, and it is seldom the case. It depends heavily on the anharmonic character of the
potential energy landscape that the training set is describing, on the completeness of the training
set, and the terms included in p(x) and their interaction with potential bounding terms in q(x).

Because this approach may fail at first attempt, I have designed a strategy to succesfully produce
a model with positive bounding parameters. I recover here the usual notation used previously in
the Chapter. Let us propose the following situation: one has succesfully generated T ∗p that:

• It is not bounded.

• It is complete enough to reproduce correctly the training set, by observing the convergence
of the GF value, for example.

• The necessary q polynomial terms, represented by the setQq, that would provide boundedness
given they are accompanied by corresponding positive parameters.

One option to proceed to fitting the parameters associated to the terms in Qp via what is known
as constrained optimization problem, which consists in studying the extrema of a function (the GF)
under a set of given constraints. Let Θ∗p be the set of parameters associated to T ∗p , and Θb

q the set
of parameters θbq associated to Qq. Then, the optimization problem can be written as{

minimize G[Θp ∪Θb
q, TS]

subject to θbq > 0
(3.1.31)

I have shown in this Chapter that solving the problem without any constraint is equivalent to
solving a linear system of equations, for which one can find an exact solution. In order to apply
the constraint, however, one has to add an additional set of inequalities to the system. This is not
a difficult task to tackle using a numerical minimization method for G, but unfortunately, makes
the problem not analytically solvable anymore.

Instead, I propose to apply an algorithm for the search of the positive parameters that satisfy
the constrained optimization problem in 3.1.31. In the first step, one fits the best model of p terms
found plus the bounding terms, T ∗p ∪ Qp. If the constraint is satisfied, then the solution is found.
If not, the recipe I propose is:

1) Fix the value of the negative bounding parameters to 0.

2) Fit T ∗p , assuming θbq constant. If the resulting model is bounded, the solution is found.

3) Fit Qp, assuming θ∗p constant. Iterate to Step 1).
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This process can be repeated as much as necessary until the exit condition in Step 2 is satisfied.
By doing so the core part of the model - which in this development I have referred to as p(x) - is
always properly fit to the training set, while the bounding parameters are self-consistently meeting
the best compromise towards both the constraint and the training set at each iteration.

3.2 Application of the method: a model for SrTiO3

In this Section I apply the model construction scheme to build a model for the chemical compound
SrTiO3. This material crystallizes in the form of a perovskite structure and has been widely used
and studied for a variety of reasons by the scientific community. The delicate lattice-dynamical
properties it exhibits make the material challenging to model, and so it is a perfect material to
demonstrate the method.

3.2.1 What is SrTiO3?

Strontium titanate crystallizes in the form of a perovskite. The system exhibits a perfect cubic
phase (with space group associated Pm3̄m) above TC ≈ 110 K [68], where the unit cell is a cube
(with lattice parameters a = b = c), the oxygens are positioned in the centers of the faces of the
cube, the strontium atoms are located at the vertices and the titaniums at the center of the cube.
The structure corresponds to the sketch a) in Figure 3.4. This property at room temperature makes
the material extensively used as a substrate for sample growth.

When the temperature drops below TC the material undergoes a phase transition to a tetragonal
phase (for which the space group transits to I4/mcm), that in this particular case is also known
as antiferrodistortive (AFD) structure. The distortion leading to this phase involves an anti-phase
rotation of the oxygen octahedra, accompanied by a strain of the cell. In Glazer’s notation [69],
this corresponds to a a0a0c− phase. Experimentally, the angle of rotation is observed to be about
2.1◦ at 4.2 K [70]. The phase is depicted in the right panel of Figure 3.4.

One of the key aspects that make SrTiO3 complicated to model is related to the stabilization
at low temperature of the AFD phase. It has been shown both experimentally [71] and theoret-
ically [72] that this material is prone to develop a polar instability additionally to the AFD one.
This led to a long discussion in the scientific community about the possible polar behavior of the
material at very low temperatures. It is widely accepted that quantum fluctuations are responsible
for compensating this instability, ultimately favoring the AFD phase. Hence, strontium titanate is
also known as a quantum paraelectric [72].

There are two main reasons for this. The first is related to the inherent competitivity between
the AFD and the polar instabilities: favoring the AFD mode makes the polar distortion to dis-
appear, and viceversa [73]. This experiment can be performed by applying external pressure or
straining the material (for a more detailed discussion on this subject, see Chapter 5).

The second reason is focused on the quantum fluctuations. These essentially prevent the weaker
instability, the polar, to condense. The presence of such quantum effects (which rely on the wavelike
character of the relatively heavy atoms in strontium titanate) has been shown in the literature [71].
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(a) (b)
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Figure 3.4: Atomic structure of Strontium Titanate. (a) Sketch of the the ideal cubic structure. (b) Displacement
of the atoms leading to the ground state of the material, describing an anti-phase rotation of the oxygen octahedra
along z.

Its signature is most visible in studies about the dielectric constant of the material at low temper-
atures, for which an anomalous behavior is found [74].

3.2.2 Details of the first-principles calculations
The data that I use to fit the models is generated using DFT. To do so I perform a series of
simulations for SrTiO3 using the Local Density Approximation (LDA) as implemented in the Vi-
enna Ab-initio Simulation Package (VASP). While it is true that LDA predicts stronger interaction
between atoms that lead to a volume that is usually between 1% and 2% smaller than the experi-
mental results, it is an energy functional that has been widely used to study the material. Hence
by using it one can better compare to previous results available in the literature, which is of most
importance for assessing the quality of the model generation process.

For the simulations using DFT I use the projector-augmented wave method (PAW) for the
ionic core treatment. I solve explicitly the calculation for electrons: Sr’s 3s, 3p, and 4s; Ti’s 3s,
3p, 4s, and 3d; and O’s 2s and 2p. The VASP code uses a plane-wave basis to solve the Schrödinger
equation, which I truncate at 500 eV. Also, the integrals in the Brillouin zone are computed in a
grid of 6× 6× 6 k points for the 5-atom cubic unit cell of the perovskite, or equivalent meshes for
bigger cells. I have checked that this is a sufficiently converged k point mesh for the integrals. As
for the minimizations of the energy to condense the phases of interest, the simulations are run until
the residual force components are converged with an error of 0.01 eV/Å.

An important part of the training set is generated using molecular dynamics, so that one can
explore and gather information of the potential energy surface in an automated way. The thermo-
stat is chosen to be a Langevin thermostat implemented using the Parinello-Rahman approach to
solve the equations of motion [75, 76]. This allows to simulate also the effect of temperature on the
cell parameters, so that the PES for configurations involving both displacements and strains can
be studied. The temperature-driven simulations are used to explore the PES rather than obtaining
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3.2. Application of the method: a model for SrTiO3

statistically relevant results. It is for this reason that I focus on the precision of the forces computed
rather than optimizing the Langevin thermostat parameters. I adjust these parameters to have a
a fast relaxation of the system to the targeted temperature. The starting point of the simulation
always corresponds to the RS, which I slightly distort in a random way so that the forces on the
atoms are not zero. The time steps for the molecular dynamics simulations are of 2 fs.

In the following Sections I discuss exactly the data used from first-principles.

Reference Structure

The starting point of the modelling is the definition of the Reference Structure, i.e., the point at
which the Taylor expansion is performed (see Section 2.2.2 for a detailed description). It convenient
to chose a structure that

• Is of high symmetry. The higher the symmetry, the less independent polynomial terms appear
in the model, reducing the overall amount of parameters to be considered.

• Is a critical point of the potential energy surface. This means that ∇E = 0, and as a
consequence, the Taylor expansion first non-zero terms will appear at the harmonic order.

The structure selected is the high symmetry cubic perovskite structure Pm3̄m. This structure
is a saddle point of the potential energy surface, with its instabilities leading to the ground state
and other low energy phases of the material. The choice of this RS is common in previous works
in the literature as well for this and similar perovskite materials [8, 27, 48, 77, 78].

I use LDA to compute the relaxed lattice parameters of this structure for a unit cell of five
atoms, by minimizing the stress of the cell and the forces on the atoms for the cubic cell. The
results for the lattice vectors are (in Å):

a = (3.865, 0.00, 0.00)
b = (0.00, 3.865, 0.00)
c = (0.00, 0.00, 3.865)

(3.2.1)

In Table 3.1 there is a description of the resulting atomic positions, in fractional coordinates.

Elastic tensor

As discussed in Section 2.2.3 one of the main energy contributions in the model is the elastic
energy. This contribution can be computed using the elastic tensor of the material at the RS,

Table 3.1: Fractional atomic positions for the cubic structure of SrTiO3.

r′Sr 0 0 0
r′Ti 1/2 1/2 1/2
r′O1

0 1/2 1/2
r′O2

1/2 0 1/2
r′O3

1/2 1/2 0
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as I only consider the elastic energy at the harmonic order. Although the parameters could have
been fitted using the fitting scheme described previously in this Chapter, in this case it is much
more convenient to compute the elastic tensor using DFT and use the computed parameters in the
model. The results for this material, using LDA and for the reference structure, are described in
Table 3.2.

Table 3.2: Elastic tensor components as calculated using LDA for the cubic phase of SrTiO3. Results are in GPa.

xx yy zz yz zx xy
xx 388.3 111.4 111.4 0 0 0
yy 111.4 388.3 111.4 0 0 0
zz 111.4 111.4 388.3 0 0 0
yz 0 0 0 118.8 0 0
zx 0 0 0 0 118.8 0
xy 0 0 0 0 0 118.8

Dielectric tensor and born effective charges

The SCALE-UP model potentials use an expression for the calculation of the long-range dipole-dipole
interactions, as described in Chapter 2, which is up to harmonic order. This interaction is computed
using the so-called Born effective charges, which are tensors that represent the effective charges ac-
counting for the anisotropy that the atoms may have due to the electronic configurations, and the
dielectric constant ε∞ corresponding to the high frequency dielectric response of the material.

The calculations of both the Born effective charges and the ε∞ are calculated using LDA for
the phase Pm3̄m. The values for the tensors are:

Z∗Sr =


2.55 0 0

0 2.55 0
0 0 2.55

 , Z∗Ti =


7.33 0 0

0 7.33 0
0 0 7.33

 , Z∗O1 =


−5.77 0 0

0 −2.06 0
0 0 −2.06

 ,

Z∗O2 =


−2.06 0 0

0 −5.77 0
0 0 −2.06

 , Z∗O3 =


−2.06 0 0

0 −2.06 0
0 0 −5.77

 .
(3.2.2)

ε∞ = ε0


6.35 0.00 0.00
0.00 6.35 0.00
0.00 0.00 6.35

 (3.2.3)

3.2.3 Details of the model
Strontium titanate is a material for which the structure of the different phases do not differ too
much in magnitude of distortions. For example, the maximum change in bond between the cubic
phase and the tetragonal structure of the ground state as computed with first principles using LDA
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is of about 0.16 Å for the Sr-O pairs. Also, the energy difference between the high symmetry phase
and the ground state is of -0.012 eV/f.u., which means that the potential energy surface of the ma-
terial in the area of interest is remarkably flat. Therefore, one conclusion is that one does not need
to include an extensive anharmonic description. Since the harmonic order is unbounded due to the
instabilities of the RS I decided to use fourth-order polynomials to build the model, which is the
minimum anharmonic expansion that allows for a description of the ground state in these conditions.

Previous works in the literature show that the short-range interaction in this and similar ma-
terials decay quickly with distance [27, 79], and that a 2 × 2 × 2 repetition of the 5-atom unit
cell is enough for the short-range interactions to decay. I generated all the polynomial terms
compatible the 2 × 2 × 2 supercell of 40 atoms up to fourth order. Also, the harmonic terms
and anharmonic terms have as much as 3-body and 4-body order respectively (i.e., the number
of different atoms involved in the interaction). For the short-range interactions, then, I obtain:
45 symmetry-independent harmonic terms, 79 third-order terms and 275 fourth-order interactions.
Also, for the strain-phonon coupling (i.e., Esp) I obtain 161 terms. Note that the generation of
these terms is not restricted to the material, but to the structure. Hence, the interaction terms can
be used to generate models for any ABO3 perovskite whose reference structure is the Pm3̄m phase.

3.2.4 Model generation

In this Section I describe the process of the model construction in detail. In order to provide a
broad description of the process I generate a series of models to understand how different strategies
for the model construction affect their performance. I consider two families of models. The first
family, that I will call exact harmonic models (EHMs), have an exact description of the harmonic
order of the Taylor expansion. Then I add the anharmonic interactions and fit them independently
to different training sets. The second family, that I will refer to as free models (FMs), are models
for which all the different orders of the Taylor expansion are fitted at the same time. This allows
to explore minimalistic models that contain only the essential harmonic description of the PES.

After fitting the different families of models I analyze the cross-validation and select the best
approximative models for SrTiO3. Finally, I explain how to process the boundedness of the models,
and study the material’s phase transition using Monte Carlo simulations for the different models
generated.

Fitting the harmonic terms of the EHMs

The harmonic terms of the model are the first non-zero order of the Taylor expansion. These terms
are the responsible of the reproduction of the Hessian matrix at the RS. Because of the relationship
between the Hessian matrix and the Dynamical matrix, this order of the energy expansion describes
the phonons of the RS. In practice it is easy to independently fit the harmonic expansion of the
energy. The reason is that the harmonic contribution is the only relevant contribution for very
small distortions of the RS, and higher orders can be neglected.

There is a convenient way of obtaining training sets containing all the harmonic description.
When one calculates with DFT the Hessian matrix of a crystal using finite-differences, the first-
principles code finds the different distortions that are required by symmetry calculate the compo-
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Figure 3.5: Eigenvalues obtained from the diagonalization of the Hessian matrix as computed using the harmonic
part of the EHMs at two specific q points, Γ and R. The solid lines indicate how the eigenvalues evolve as the number
of terms included in the harmonic part increases. The dashed lines correspond to the values as computed using exact
DFT calculations.

nents of the force-constant matrix. By collecting these structures, and the forces on the atoms that
the DFT code computes, it is possible to obtain the most appropriate training set for the fitting
of the harmonic part. I compute the Hessian matrix using the VASP code for the RS, applying
displacements of 0.015 Åfor the calculation of the force-constant matrix. I use this TS to fit the
45 independent harmonic terms. Since the method is constructive the terms are added by their
relevance at describing the forces and the stresses of the TS.

I present the results of the fit in Figure 3.5. Here I show the eigenvalues of the Hessian matrix
and how do they converge to the DFT results throughout the model construction, which is adding
terms at each step to the model. The results are for two particular q-points that are relevant
to this study: the Γ-point (corresponding to qΓ = (0, 0, 0)) and the R-point (for which qR =
2π/a(1/2, 1/2, 1/2)), where a is the lattice constant of the cubic 5-atom cell. The main instability
is the antiferrodistortive, represented by a negative eigenvalue, three-fold degenerated, belonging
to the R-point. The ferroelectric mode, belonging to the Γ-point, has an eigenvalue that is very
close to zero but still positive when computing phonons using LDA for SrTiO3 (see Table 3.3).
Note that the convergence of the values happens very fast, and the addition of new terms beyond
25-30 terms model does not affect much the result - this is again due to the method of fitting,
which includes most important interactions first. The mean absolute error when comparing all the
eigenvalues of the Hessian matrix for the 2× 2× 2 supercell between the model potential and DFT
is of 0.003 eV/Å2. As a final remark, it is worth mentioning that the process of fitting the harmonic
part of the EHMs takes less than one minute.
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Fitting the anharmonic terms: training sets

For the anharmonic part of the models I use DFT molecular dynamics to produce the data of the
training sets. This simulation method is well suited to explore the potential energy surface in an
automatic way, and the temperature is the main property that one can use to select which region
of the PES is being sampled.

The collection of data is a rather simple process. From a molecular dynamics trajectory I select
steps in a random but evenly spaced way. Then I extract the atomic positions, strains of the cell,
forces on atoms, stresses and energy from this colection of steps. Since I define the origin of the
energy and the path is evenly spaced in the configurational space, by fitting the forces and stresses
one effectively fits an interpolated path between the origin and the equillibrium state. With this
strategy, even though the method does not explicitely fit the energies of the MD trajectory, the
energetics of the model have good agreement with DFT. I typically extract 100 configurations (ho-
mogeneously distributed) from a molecular dynamics run.

A key aspect is to have a good description of the configurations in the path between the reference
structure and the ground state of the material. Experimentally it is known that the phase transition
occurs around 110 K. The first training set considered, then, is a MD trajectory at 10 K, from which
I extract a training set that will be called TS@10 in the following. This training set is expected
to provide information of the path connecting the RS and the ground state of the material. The
reason is that the stabilization of the energy after the thermalization process has to be somewhat
close to the ground state.

I am also interested by the impact of fitting higher energy regions of the PES for the model’s
performance. In order to study this I generated a similar training set as the one described, but
with the MD simulation run at 300 K. I call the resulting training set TS@300. Through this data
the fitting process has access to higher energy structures. The motivation to do so is that, even
though this may have an impact in having worse description of the structure of the ground state
itself, the information of the phonons that are activated at higher temperature may have an impact
on how well the model potentials perform to simulate phase transitions or produce statistics for
higher temperatures.

Additionally, I generate trajectories at 200 K and 500 K as validation sets (VS@200 and
VS@500). Having this information is useful to study cross-validation for the models, because
it is information that is not present in any of the training sets. Also, it allows to study how good
the models can extrapolate.

In the Figure 3.6 I show an example of the trajectories that I obtain from the simulations per-
formed with DFT, in this case, for the 10 K run. Typically these simulations are run for 1500 fs.

Table 3.3: Comparison between the eigenvalues of the Hessian matrix for the antiferrodistortive (R-point) and polar
(Γ-point) modes predicted using EHMs and as computed using DFT. Values in eV/Å2.

Model potential DFT
R-point AFD mode eigenvalue -0.54 -0.54
Γ-point polar mode eigenvalue 0.22 0.23
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Figure 3.6: Energy as a function of time corresponding to a molecular dynamics simulation as performed with DFT
to extract the training set data. In particular, this case corresponds to a TS@10 energy trajectory. The beginning of
the run is at a point very close to the cubic structure, which is taken as zero energy in the plot. The end of the plot
is at a region that has the caracteristic structure of the ground state, thus the trajectory is enough to provide with
the required information of the path.

Initially the trajectory is observed to evolve around the cubic phase, and then the system’s energy
drops to energies close to the ground state.

Fitting the anharmonic terms: the model construction

I define three types of models to study the impact of using different training sets for the model
construction process, both in the FMs and the EHMs families (see Table 3.4 for a summary).

The first type is produced to have a good description of the ground state and is fitted to TS@10.
The second model type is designed to study what happens when information that is far from the
ground state is provided in the TS, and is fitted to the TS@300. Finally, I combine both training
sets to fit a third type of model that includes the two training sets, hopefully capturing the features

Table 3.4: List of the models generated for Strontium Titanate. The last column indicates the amount of terms
that each model contains. For the EHMs I also indicate that 45 harmonic couplings are retained, which define the
complete fit of the harmonic part of the Ep energy.

Number Model type TS Terms retained
1 FM TS@10 33
2 EHM TS@10 45+10
3 FM TS@300 37
4 EHM TS@300 45+17
5 FM TS@10+300 44
6 EHM TS@10+300 45+14
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Figure 3.7: GF value as a result of the fit for every step of the model construction process for the models considered.
Red and black lines correspond to FM and EHM models, respectively. Solid, dashed, and dotted lines correspond to
the models fitted to the TS@10, TS@300 and TS@10+300, respectively.

that are relevant in both training sets into the same model through the best compromise. I call
this training set TS@10+300.

Experience in the model construction process proved that even the TS@10 posed some prob-
lematics at fitting models that would have the correct ground state. Instead, my findings are that
those models were prone to show sometimes another phase as the ground state, namely the a0a0c+

phase in Glazer notation. This phase is structurally very similar to the ground state itself, which
is a0a0c−, but has an in-phase rotation instead in adjacent cells along the z direction. In fact, the
energies of both structures are surprisingly similar when computed using DFT. Because of this, I
decided to provide the fitting process of the models with accurate information about the Hessian
matrix of the a0a0c+ phase. This shows a very important fact of the model generation process:
sometimes the resulting model provides information of what data the TS may be lacking, and one
can always refine the training set to improve the resulting model by adding new information.

At this point the only reliable value to track the progress of the model construction is the GF
value. I observed that after 50 terms the GF value was not improving significantly, so I constructed
all models to have as many as this amount of terms. An example of the evolution of the GF value
can be found in Figure 3.7.

Model validation

The application of the leave-n-out method described in the formalism section of this Chapter was
adapted to be most suitable for the model potentials generated. In the Figure 3.7 I plot the value
of the GF as a function of the number of terms in the model for all the models produced. It is a
good example of how the process of fitting works in all cases: the drop of the GF is high at the
beginning of the fitting because of the construction method, and converges to a sufficiently low
error value. The error converges in all cases in values between 10−4 and 10−2 eV2 Å−2, which are
the units of the GF itself. The difference in the convergence value is due to the magnitude of the
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Figure 3.8: Application of different approaches of the leave-n-out cross-validation method to the FMs and EHMs.
The code for color and line types is the same of Figure 3.7 (a) Goal function evaluated using qualitatively similar
TS and VS. (b) Goal function evaluated using qualitatively different TS and VS.

forces that appear in the different training sets: naturally, forces are of higher magnitude in the
TS@300 than the TS@10. Also, EHMs always outperform FMs regarding the GF value, which
is to be expected. The reason is that the starting point of EHMs is already a perfect description
of the harmonic part of the energy, which is an advantageous point with respect the case of the FMs.

It is relatively easy to apply the cross-validation method. Once all the intermediate models
are known, it consists on using a particular validation set to evaluate the GF for the already fitted
model. As has been described in the Formalism section, this usually produces a divergence between
the evaluation using the TS and the VS indicating the point at which adding more terms to the
model lead to overfitting.

First, I apply this strategy using validation sets that are qualitatively similar to the training
sets used for the fit. For example, for EHM models fitted to TS@10, I use VS@10 that contains
50 configurations that were not used during the fitting process. The result is shown in panel (a)
of Figure 3.8. The curves are very similar to those obtained in Figure 3.7, both qualitatively and
quantitatively. The characteristic cross-validation feature of a minimum appearing in the curves
is not present in the plot. This means that overfitting is not happening, or that the VS used to
cross-validate is not providing enough information. In either case, the conclusion is that this way
of cross-validation is not sufficient to define an appropriate stopping criterium for the model con-
struction process.

Alternatively, I also used qualitatively different validation sets to check the cross-validation
approach (namely VS@200 and VS@500). The result can be found in panel (b) of Figure 3.8. In
this case the curves do behave very different to those of Figures 3.7 and panel (a) of Figure 3.8.
In particular, the curves corresponding to the models fitted to TS@10 show the most disagreement
at reproducing the VS. For these models the characteristic minimum indicating the point at which
overfitting starts to appear is present. Nonetheles, it is not unique and the trend of the curves
seems to indicate that still there is some improvement after that point, and hence the conclusion is
unclear. For the models fitted to TS@10+300 and TS@300 the reproduction of the validation sets
is good, without a minimum of the GF value, and thus as before the cross-validation method does
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3.2. Application of the method: a model for SrTiO3

not provide a stopping criterium.

The results of the cross-validation process, both for quantitatively similar and different VS,
shows to be not conclusive enough for the methodology and the models generated. Since it does
not allow to select optimal models, I decided to design a different scheme.

Best approximative models: a stopping criterium

I choose to inspect the key aspects that I required the models to reproduce as a stopping criterium.
First, models should predict a ground state for the material that is structurally correct with respect
to the DFT prediction. Also, the models have to reproduce well the energetics of the material. The
reason is that it has been shown in the literature that the depth of the energy minimum plays an
important role for phase transition studies and for the amplitude of the distortions involved [80].
I use a Metropolis Monte Carlo simulation to study the ground state properties of the models
through a simulated annealing. In this type of simulation the temperature is decreased at every
step, so the simulated atoms relax into their ground state positions. I apply the confinement po-
tential described in the Section 3.1.4 to avoid runaway solutions. This confinement potential is
designed to not affect the energetics at the region in which the TS is valid, which includes the
ground state.

These key properties of the models throughout the model construction process are summarized
in Figure 3.9. First, I present the performance of the models at reproducing the order parameter
of the phase transition, which is the rotation angle of the oxygen octahedra. I also plot the energy
of the ground state. Both quantities are contrasted with the black dashed line, which is the DFT
result. Then, I plot the energy predicted by the model for the configurations present in the training
set - the same that was used to generate each model, respectively - and the validation sets VS@200
and VS@500.

The results provide information on the predictive power of the model potentials. First, it is
clear that the EHM fitted to TS@10 clearily have the most disagreement towards the energies of
the validation set obtained at 500 K. It is a result that could be expected, since the extrapolation
range is wide - the same model performs much better at the range of energies of the VS@200. On
the other hand, the rest of curves for the EHMs have a monotonic character, and thus do not allow
for model selection - even though in general accuracy improves drastically after around 10 terms
in most cases. FMs tend to have a more erratic character. The error with respect to the energies
varies strongly throughout the process and is higher than in the EHMs. After around 10 terms the
model potentials fitted to TS@10 tend to have a good agreement with the energy of the ground
state. Note also that the red lines, which correspond to the models fitted to TS@10+300, have an
overall good behavior at extrapolating the energies, suggesting that indeed using information from
both high and low energy structures provides models with good predicting power.

Second, the information included in the analysis of the ground state properties provides more
information than the study of the cross-validation. For the EHMs, it is clear that the model poten-
tial fitted to TS@10 performs very well at both describing the rotation angle predicted by LDA and
the energy difference between the cubic phase and the ground state in around 10 terms. However,
for the case of the EHMs fitted to TS@10+300 and TS@300 the convergence of the results to the
correct ground state properties is much slower. Not only the stabilization of the rotation angle
requires more terms, but the energy depth of the minima varies much more and converges to a
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Figure 3.9: Reproduction of the six model potentials of both ground state [(a)-(d)] and MD [(e)-(j)] key quantities.
The data for panels (e)-(j) was obtained by using the model potentials to compute the energy of the configurations
visited during the several MD-DFT at the different temperatures discussed in the text. The average difference between
the DFT calculation of the energy and the value obtained using the model is presented in these panels. Note that
the exact harmonic models have already the 45 harmonic terms.

value that differs with the DFT result by the order of 10 to 20 meV/f.u., which is significant in
comparison to the performance of the model fitted to TS@10. Also, the convergence happens even
later for the model fitted to TS@300. I expected some inaccuracy in these models at describing the
ground state due to the data included in the training sets, but this fact was not observable in the
cross-validation Figure 3.7 and in the panels of Figure 3.8.

Finally, the FM case shows to be always somewhat more complicated than that of the EHMs.
Again, the convergence is faster for models fitted to TS@10 although it is less stable and appears
later than for EHMs fitted to the same TS. In the case of the models fitted to higher energies the
convergence is even slower, the models requiring a large pool of terms to begin reproducing properly
the ground state. It is not surprising, though; one has to take into account that still, these models
need to find both the harmonic and the anharmonic relevant terms leading to the model able to
reproduce the main features of the TS, and thus these are models with less terms than the case of
the respective EHMs.

With this information at hand Figure 3.9 provides with enough information to use as stopping
criterium for the model potential generation process. Through the analysis of it I have selected
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Figure 3.10: Evaluation of the various molecular dynamics trajectories computed using DFT by using the best
approximative models generated

the number of terms that each model will retain in order to be minimalistic but still having good
performance. This information can be found in Table 3.4.

Applying boundedness

In the Formalism section of this Chapter I already discussed the two most relevant methods to
bound models. Namely, one is based on defining a spherical confinement potential for the atoms,
which is extremely useful to analyze which is the ground state that the model would have if it
was bounded. This approach was used to produce the data of Figure 3.9. The second is based on
identifying high-and-even order terms with positive parameters, ensuring the boundedness-from-
below of the polynomial. It is the approach that I use to produce the final models.

I studied the runaway solutions to find which were the most appropriate sixth-order terms to
use to bound the model. This can be depicted through an example. The model FM fitted to TS@10
is a case of an unbounded model at this point. Through annealed Monte Carlo simulations I found
that the leading interaction to the runaway solution was driven by the third-order interaction pair
(Tix−O1x)3 (this simplified notation is explained in the example of Eq. 3.1.19). Since this interac-
tion is of third-order character it will always be unbounded, regardless of the sign of the parameter
associated. One can bound that interaction easily: by simply using (Tix − O1x)6, with a positive
associated parameter, it is ensured that the collective motion that this term represents is no longer

Table 3.5: Mean absolute error between the energies as predicted by the models and the DFT energy, for the
configurations of the several MD trajectories of Figure 3.10. Units are meV/f.u.

EHM TS@10 EHM TS@10+300 FM TS@10 FM TS@10+300
|∆E| TS@10 0.4 2.1 0.7 4.4
|∆E| VS@200 4.0 2.0 2.6 8.6
|∆E| TS@300 10.4 1.1 5.6 8.3
|∆E| VS@500 20.9 1.3 7.0 8.9
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a runaway solution. Then, it is just a matter of refitting the rest of the terms of the model, by
leaving this parameter unchanged, to obtain a model that cannot have that type of unboundedness.
By iterating this process for all the runaway solutions it is a rather quick process to eliminate all
the runaway solutions and obtain a model that is bounded.

This strategy eventually evolved into a slightly more automated, generic method to obtain
bounded models. It is formally explained in Section 3.1.4.

3.2.5 Analysis of the best approximative models and their interactions

In this Section I will analyze the selected approximative models and their interactions to better
understand their features and the physics behind the couplings that they contain.

Performance of the best approximative models

I study the performance of the bounded models from two different perspectives. I consider only
models fitted to TS@10 and TS@10+300, because the models fitted to TS@300 have a poor de-
scription of the ground state and I decided that for the context of the example of the method they
fall out of the scope.

The first performance test is a direct comparison with DFT regarding the molecular dynam-
ics trajectories computed at the quantum mechanical level used to extract the TS and VS data.
Figure 3.10 consists in a simple evaluation of all the configurations of the trajectories, so that one
can have a direct comparison with respect the DFT energies. I would like to highlight the fact
that in the training set related trajectories the best approximative models perform extremely well
with respect to DFT. In fact, the energies lie so close to the DFT line that it becomes complicated
distinguishing the difference.

In Table 3.5 I give the numerical error in the evaluation of the MD trajectories by the model.
Note that the models fitted to TS@10 tend to have an almost perfect description of the energy
of their training sets. On the other hand, models fitted to TS@10+300 have an overall good de-
scription of the energetics even for the trajectory of VS@500. This is due to the selection of the
training set, which contains information of a wider range of energies and their associated struc-
tures. The reproduction of the energies of VS@200 is good for both the models fitted to TS@10
and TS@10+300. Note that in the first case this indicates a good predictive power. The biggest
difference appears for the high temperature trajectory, for which one can see that the models fitted
to TS@10 begin to fail to properly predict the energy. However, the result coming from the models

Table 3.6: Key features of the best approximative models selected for Strontium Titanate. The data is computed
with the models after ensuring boundedness-from-below. The values for the original models (unbounded) are shown
in parenthesis. In the last row, ∆E represents the average energy difference between the model’s prediction and the
DFT results.

FM TS@10 EHM TS@10 FM TS@10+300 EHM TS@10+300 LDA
O6 rotation (degrees) 6.5 (6.5) 6.5 (6.5) 9.9 (8.7) 8.3 (8.1) 6.5

Ground state energy (meV/f.u.) −11.1 (−11.1) −13.2 (−13.1) −13.2 (−11.9) −22.9 (−20.5) −11.7
Goal function (eV2Å−2 × 10−3) 0.14 (0.14) 0.18 (0.19) 2.79 (2.81) 4.94 (5.04)

∆E (meV/f.u.) 0.6 (1.5) 0.3 (0.3) 4.7 (4.8) 2.3 (2.6)
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Figure 3.11: Values of the three parameters that the fitting procedure selects as most relevant to construct the
EHM fitted to TS@10. The three terms are linear in strain and quadratic in the atomic distortions; hence, they all
have the same units, as indicated in the figure.

fitted to TS@10+300 is indeed good. This is in agreement with the discussion related to Figure 3.9.

In the Table 3.6 I have summarized the main features of the different models that I use to study
the phase transition temperature of SrTiO3. As one can see, applying the boundedness condition
to the models does not affect the overall accuracy of the models. The reasoning behind this is that,
since the distortions of the material at the ground state are quantitatively small, adding higher
polynomial orders does not have a big impact on the performance of the model. Also, it is clear
from the table that the ground state properties are quantitatively very close to the LDA results for
the models fitted to TS@10. The models fitted to TS@10+300 show an important deviation both
in the energy depth of the minimum and the rotation of the oxygen octahedra. The GF value after
the fitting process is quite low, and the average energy deviation with respect the TS structures
is below 5 meV/f.u. in all cases. However, the FMs tend to perform slightly worse in this sense
compared to the EHMs, with the exception of FM fitted to TS@10. The explanation that I find
most suitable for this is that free models have less restrictions towards tuning slightly the harmonic
part to fit better the overall derivatives of the energy in the trajectory.

The physical picture of the interactions

The models that I have produced have, by construction, the most important interactions out of
a pool that contains essentially all available couplings within the proposed 40-atom supercell. I
retain about 10% of the original available terms in the final models, and because of this one can
extract conclusions about which are the driving interactions in Strontium Titanate.

As the model construction process takes place, at every step all the couplings are refitted. This
means that there can be couplings that cover relatively similar aspects of the dynamics of the
system, and this has an impact in the value obtained for the parameters associated. I propose as
an example the case of the values of the parameters related to the three most important anharmonic
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Figure 3.12: Values of the parameters obtained for the FM fitted to TS@10 and ordered as a function of the longest
interatomic separation associated to the corresponding coupling. Note that this figure includes information about
the parameters corresponding to different order of the Taylor series, which thus have different units; hence, I indicate
arbitrary units (a.u.) and stress that this figure is to be taken only as a qualitative illustration of the spatial decay
of the interactions.

interactions of the EHM fitted to TS@10. The evolution of the parameters is shown in Figure 3.11,
and the associated couplings can be found in Table 3.7.

In this example, the second most important interaction remains somewhat constant throughout
the process of the model construction. The case of the first and third most important interactions
is different, as they show important variations in their parameter values. Notably for the first
interaction, around the addition of the 9th and 22nd terms, the sign of the parameter changes.
This coupling describes how the strains of the cell interact with the nearest-neighboring oxygens.
The reason behind this changes can be understood by observing the interactions that are added
in 9th and 22nd place, also displayed in Table 3.7. The couplings added at these steps correspond
to interactions that resemble much to that of the most important interaction. The three terms
represent relatively similar interatomic forces and cell stresses appearing in the TS data. Hence,
the weight of the interaction is distributed amongst them, leading to the strong changes in the
parameter value of the most important interaction of the model. In order to make explicit this
resemblance I have also explicited the value of the GF when these three parameters are fitted sep-
arately, and one can observe that the GF value that they achieve is actually very similar. Thus the
selection of one instead of the others is most likely due to particular details in the training sets.

Table 3.7: Each row corresponds to one of the three parameters identified to be the most relevant ones for the
EHM model fitted to TS@10, indicated by #1, #2, and #3, respectively. I indicate the corresponding interaction
and, in parenthesis, the value of the GF corresponding to the best models, respectively. Further, I indicate the terms
that are related with these most important ones and whose inclusion in the model causes the discontinuities in their
values shown in Fig. 3.11. Thus, for parameter #1, I also include parameters #9 and #22. In such cases, I give in
parenthesis the value of the GF that corresponds to considering a best 1-model composed of parameter #9 or #22.
All GF values are given in eV2Å−2.

#1: η2(O1x −O2x)(O1y −O2y) (0.00320) #9: η1(Tix −O3x)2 (0.00328) #22: η3(O2y −O3y)2 (0.00324)
#2: η1(O2z −O3z)2 (0.00185)
#3: η4(Srz −O1z)(Sry −O1y) (0.00101) #32: η4(O1y −O3y)(O1x −O3x) (0.00102)
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Figure 3.13: Sketch of the most important interactions identified by the automatic fitting procedure. Strains are
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At this point it is relevant to comment on the initial assumption of the decay of the important
interactions with distance - i.e., the short-range character of the couplings. For this reason I show
in Figure 3.12 the parameter value as a function of the distance between the atoms that are present
in the coupling. The magnitude of the interactions strongly decrease in distance, and there are no
interactions acting upon distances bigger than 5.5 Å for the FM model fitted to TS@10, which I
took as example. This also confirms that the choice of a 40-atom supercell to produce the DFT
data to fit the short-range part of the models was sufficient.

I have also identified by inspection the interactions that seem to be most relevant both at the
harmonic and the anharmonic level, and sketched them in Figure 3.13. Also, in Table 3.8 I sum-
marized the best ranked interactions of the different best approximative models generated.

According to these results, the most relevant interactions identified by the model construction
process are not depending on the training set used to generate the model. Interestingly, the type
of the harmonic part provided - exact or limited - seems not to have a big impact on the selection
of the most important anharmonic terms. Also, the leading interactions tend to reflect the oxy-
gen octahedra distortion that leads to the AFD ground state and the polar distortion (involving
displacements of cations opposed to anions) that competes with it. The three most important
interaction describe the motion of the titanium with respect the oxygens, which when displaced in
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opposed motion leads to the creation of dipoles in the cell. From Table 3.8 it is clear the coupling
between the strains and oxygens appear to be most relevant at the anharmonic level, allowing for
the stabilization of the low energy phase in the material.

Table 3.8: List of most important interactions, as selected by the automatic fitting procedure, for the FM and
EHM models fitted to TS@10 and TS@10+300. The harmonic part is common to both EHM models. The numbers
indicate the order in which the interactions appeared in the corresponding automatic selection process. I tag using
an asterisk the couplings sketched in Fig. 3.13.

Free models
TS@10 TS@10+300
Harmonic part of Ep

#1*: (Tiy −O2y)2 #1*: (Tiy −O2y)2

#2*: (O3y − Tiy[010])(Tiy −O3y) #2*: (O3y − Tiy[010])(Tiy −O3y)
#6: (Srx −O1x)(Srz −O3z) #4: (Srx −O1x)(Srz −O3z)
Anharmonic part of Ep

#13: (Srx −O2x)2(Srz −O3z) #8: (Tiy −O2y)3

#14: (Tiz[010]−O2z[010])(Tiz −O2z[010])(Tiy −O2y[010]) #14: (Tiz[010]−O2z[010])(Tiz −O2z[010])(Tiy −O2y[010])
#18: (Srx −O2x)2(O2x − Srx[001])2 #16: (Srz −O1z)(Sry −O1y)2

Strain-phonon coupling Esp

#3*: η2(O1x −O2x)(O1y −O2y) #3*: η3(Tiz −O3z)2

#4*: η2(Srx −O3x)2 #9*: η2(O1x −O2x)(O1y −O2y)
#5: η6(Sry −O3y[001])(Srx −O3x[001]) #10*: η2(Srx −O3x)2

Exact harmonic models
Harmonic part of Ep

#1*: (Tiy −O2y)2

#2*: (Tix −O2x)(Tix −O1x)
#3*: (O3y − Tiy[010])(Tiy −O3y)

TS@10 TS@10+300
Anharmonic part of Ep

#4: (Tix −O2x)2(O1y −O3y)2 #2: (Tiy −O2y)3

#5: (Tiz[010]−O2z[010])(Tiz −O2z[010])(Tiy −O2y[010]) #5: (Tiz −O1z)(Tiz −O3z[001])2(Tiz −O3z)
#6: (Srx −O2x)2(Srz −O3z) #7: (Tiz[010]−O2z[010])(Tiz −O2z[010])(Tiy −O2y[010])
Strain-phonon coupling Esp

#1*: η2(O1x −O2x)(O1y −O2y) #1*: η3(Tiz −O3z)2

#2: η1(O2z −O3z[100])2 #3*: η2(Srx −O3x)2

#3*: η4(Srz −O1z)(Sry −O1y) #4: η1(O3y −O1y[010])2

This is also reflected in the sketch of Figure 3.13, showing also that important couplings involve
usually both displacements and strains, i.e., the strain-phonon couplings. This is consistent with
the known sensitivity of SrTiO3 to strain deformations.
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Figure 3.14: Computed evolution of the AFD order parameter, as a function of temperature, for the TS@10 and
TS@10+300 models, and for the model fitted to TS@10 for which I applied an external negative pressure to correct
LDA’s overbinding character. Experimentally the transition is observed to occur at 105 K.

3.2.6 Simulation of SrTiO3’s structural phase transition

One possible application of the models within the SCALE-UP framework is the study of the transition
temperature of materials. In particular, since the models are fit to represent DFT data the results
obtained are an approximation of the transition temperature that DFT would provide.

In this case I apply Metropolis Monte Carlo simulations to study in temperature a supercell of
size 12×12×12 containing 8640 atoms, with which one can produce good statistics for the analysis
of the transition. Close to the transition I also increase the size of the cell to a repeated 16×16×16
supercell containing 20480 atoms so that finite-size errors are reduced.

The MC simulations start from a quasi-thermalized configuration obtained through a 20 000
MC sweeps at a fixed temperature. Then, I add 40 000 MC sweeps to compute the statistical
averages. I analyzed the results of the simulations to compute the expected value of the main order
parameter, that in this case is the oxygen rotation angle. The results are shown in Figure 3.14.

The main feature indicating a phase transition is displayed in all the different models proposed,
which coincides with the experimental observations. The rotation of the oxygen octahedra with
respect one of the main axis of the cell decreases with temperature, reaching a zero angle at the
transition point. After the transition, the order parameter is zero and the material’s structure is
that of the cubic cell (in average). The qualitative behavior of SrTiO3 phase transition is well
reproduced by all of the model potentials.

Discussing more in detail the results, one can connect the origin point of the curves to Table 3.6.
This represents, at 0 K, the angle rotation predicted by the models, that as has been already dis-
cussed, is in almost perfect agreement for the case of models fitted to TS@10 with respect DFT.
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The transition temperature varies greatly nonetheless amongst the different models. For ex-
ample, for the models fitted to TS@10 the transition temperature is relatively low, in a range of
temperatures between 260 K to 310 K, which is also the case for the FM model fitted to TS@10+300.
It is however rather surprising to see that the EHM model fitted to TS10+300 displays a much
higher phase transition temperature, close to 400 K. This is then a clear example that the am-
plitude of the distortions involved in the ground state does not necessarily lead to a particularly
higher or lower phase transition temperature (as has been claimed in the past [81]). Instead, by
inspecting the depth of the potential well, one finds that there may be a correlation between that
energy difference and the transition. The deepest minimum appears for the EHM model fitted to
TS@10+300, and the transition temperature is accordingly higher than in other cases. This rule
has been claimed before in the literature [80] and is in agreement with the presented results.

Nevertheless, the predicted temperature for the structural transition of the material is consider-
ably higher than the experimental result for all models presented. The lowest transition temperature
predicted by the models (FM TS@10, 260 K) is much higher than the experimental result, which
is about 110 K. Also, the rotation angle is highly overestimated (both from the models and from
DFT) when compared to the experimental observation, which is around 2.1◦ at 4.2 K.

In order to see the impact of this, I used a common technique to prevent the problem of the
overbinding character of LDA, which consists on defining a negative hydrostatic presure for the
simulated cell that corrects, for the case of the cubic cell (i.e., the reference structure), the lattice
parameters so that they match the experimental ones. In this case I applied -4.0 GPa, which is the
highest negative pressure that I could apply mantaining the correct ground state of the material.
By applying this negative pressure the angle in the ground state turned to be of 5.8◦ at 0 K, still
considerably overestimating the experimental value. The computed phase transition temperature
for this case is of 210 K, 50 K lower than that of the simulation without pressure. Hence applying
this correction provides a better agreement towards the experimental observations.

This method is however not enough to reach the experimental values. It is natural then to
conclude that there are further reasons for this to happen. An argument that is sound is that
in the simulations performed I am not taking into account the lattice quantum effects. It is well
accepted that such quantum fluctuations have a big impact in the phase transition temperature
for materials like Strontium Titanate. The effect of including these usually result in a reduction
of the transition temperatures and the distortion amplitudes [73, 82], because the material can
accomodate the disorder in different ways. However, the estimated effects of quantum fluctuations
are of about 15%, which would lead to a transition temperature of about 175 K, still quite above
the experimental transition temperature.

3.2.7 Conclusions

Regarding the results presented the model FM fitted to TS@10 is the most reliable model, both
at reproducing the DFT data and with respect the experimental results. The model EHM fitted
to TS@10 has an almost equivalent behavior, with the addition of having better description of the
phonons of the RS. Because of its completeness the EHM fitted to TS@10 is the model that I will
use for STO studies later in the Manuscript.

Overall, the models comparison with experimental results is far from perfect. This could be
improved by studying the addition of quantum fluctuations in the model. Also, exploring higher
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order models could refine the reproduction of the PES, providing better performing models.

It is worth mentioning that, overall, the results obtained are clear: the models are reproducing
well the DFT data. The error in the energies and the precision at the structure description are
clear, particularily for the models fitted to TS@10. Thus it is possible that in order to obtain
better models one would have to investigate different flavors of DFT potentials having better
agreement with structures observed experimentally. An example would be to use of PBEsol within
the Generalized Gradient Approximation (GGA) to produce the TS data, which is known to improve
the overbinding occurring in LDA, to investigate the predicted transition temperature.
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Chapter 4

Second-principles models of
chemically-inhomogeneous materials

The formalism of SCALE-UP, summarized in Section 2.2, is a general theory applicable to any crys-
talline structure. So far in this Thesis I have explored the methodology behind model construction
within this formalism, applied in practice to simple perovskite systems of the type ABO3. The
methodology is however general as well, and one can in principle apply it to generate a model for
any kind of crystalline material provided two premises: i) one has the available training set data,
and ii) the unit cell of the structural phase of the material used as reference structure is relatively
small. The first constraint arises from the method itself, which uses DFT data to train and fit the
model, and so one should be able to perform such simulations. As for the latter constraint, even
though it is in principle possible to generate all possible terms of any order in any size of supercell,
in practice the amount of terms scale with the size of the supercell in a way it quickly becomes
computationally heavy to produce all terms of a big supercell. This strategy is condensed in panel
(a) of Figure 4.1.

The generality of the formulation of SCALE-UP, combined with the model construction method-
ology developed in this Thesis, makes studying complex systems an enticing perspective. In partic-
ular I am interested in studying the applicability of the methods to chemically inhomogeneous per-
ovskite compounds, in which either the A or B site may have different chemical elements throughout
the supercell. I focus on the case of having chemical substitution at the crystallographic sites A.
Hence, in general, I will refer to the system as A′1−xA′′xBO3 perovskite, indicating the composition
variable x, or simply A′A′′BO3 to ease the notation.

This Chapter is organized as follows. First, in Section 4.1 I propose a general formalism that,
in principle, allows to tackle the problematic of formulating a model for any type of chemically
disordered perovskite. In particular, I present an approximative method to combine models of
single perovskites into chemically inhomogeneous compounds. In Section 4.2 I present a general
discussion on the method based on the application to different solid solutions of lead titanate and
strontium titanate.

70



4.1. Formalism

1
0

 n
m ~12.000

atoms

DFT
data

Specific
model

Specific
(dis)order

Usual fit

DFT
data

General
model

Any
(dis)order

New fit

General
model

Any
(dis)order

Heuristics

(a)

(b)

(c)

Figure 4.1: Sketch of different strategies to construct models for chemically inhomogeneous systems. (a) Apply the
methodology described in Chapter 3 to fit a model of the chemically inhomogeneous compound. (b) Study different
realizations of chemical disorder to construct a database of interactions depending on the chemical environment. c)
Heuristically approximate the model of the chemically inhomogeneous system using models of the constituents as the
starting point.

4.1 Formalism

4.1.1 Composition variables

Following the examples in the effective Hamiltonians literature [13] I will define a set of composi-
tional variables that allows to describe a system with arbitrary chemical order. Also, I will elaborate
on the formalism presented in Section 2.2.

In a cubic perovskite of the type ABO3 the reference structure is chosen to be a cubic 5-atom
cell, repeated periodically in space. For the atomic positions, τκ, the index κ runs from 1 to the
number of atoms in the unit cell, Ncell. In a chemically disordered system of the type A′A′′BO3
the A sites of the lattice may be occupied either by A′ or A′′ cations. The chemical order can be
described using an Ising-like variable µlκ, which defines which atom occupies the site Rl + τκ. The
index κ runs only in the sites at which chemical disordered may appear, thus in the example, it
runs over the A sites. The number of substitutional sites in the lattice will be referred to as Ncomp
in the following development. Note that µlκ := 1 if at site Rl + τκ there is an A′ atom; if the site
is occupied by an A′′ cation, then µlκ := 2. The index notation will be simplified by using the
bijective map i↔ lκ in the following paragraphs.

4.1.2 General energy function

Compositional variables allow to distinguish the type of cation occupying the chemical disordered
site. In particular, the Ising-like variable is a discrete function of the site and permits to rewrite
the energy function as a functional of the sites.

The energy in SCALE-UP model potentials depends on the composition functionally:

E[µ](u,η) = ERS[µ] + Ep[µ](u) + Es[µ](η) + Esp[µ](u,η). (4.1.1)
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x

y

Figure 4.2: Depiction of four cells in the xy plane. The red atoms are of A′ type and the blue central atom is of
A′′ type. The green atoms represent the oxygens coplanar to the A sites. The arrows indicate the forces that may
apply on the oxygens if they have more chemical affinity with A′′ species than A′ species.

Here, the label of the energy contributions remains the same as in 2.2, and µ = {µi}. The
dependency is made explicit through the formulation of the different energy contributions, where
the coefficients of the terms are rewritten to have a tensorial form. For Ep the energy is written as

Ep[µ](u) =
∑
ijα

K(1)
ijα[µ](uiα − ujα) + 1

2
∑

ijαkhβ

K(2)
ijαkhβ [µ](uiα − ujα)(ukβ − uhβ) + . . . (4.1.2)

Note that K(n)[µ] depends now on the chemical order. That is to say, the form of K̃(n) in 2.2.14
is now rewritten, so that it depends on the chemical species occupying the lattice, which are de-
scribed in the equation above using latin the labels i, j, ....

The rest of the energy terms are similarily adapted. The elastic part of the energy is written
as

Es[µ](η) = N
∑
a

C(1)
a [µ]ηa + N

2
∑
ab

C
(2)
ab [µ]ηaηb + . . . (4.1.3)

Finally, for the strain-phonon coupling terms one can write

Esp[µ](u,η) =
∑
a

∑
ijα

L(1,1)
aijα [µ]ηa(uiα− ujα) + 1

2
∑
a

∑
ijαkhβ

L(1,2)
aijαkhβ [µ]ηa(uiα− ujα)(ukβ − uhβ) + . . .

(4.1.4)
The most notorius difference between the original SCALE-UP formulation and its adaptation

to chemically inhomogeneous systems is the appearence in the latter of linear terms. The reason
is that, in contrast to the case of single ABO3 perovskite systems, the cubic phase of the RS is no
longer a critical point of the potential energy surface. The reason is that due to chemical disorder
the reference structure may not be compliant with the cubic symmetry; an example is sketched in
Figure 4.2.

In the sketch, the change in the chemistry induced by the substitution of the central cation of
the layer induces a force in the oxygen atoms, which without loss of generality have been chosen to
have more affinity towards the central atom. Similarily, the chemical order has an impact on the
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4.1. Formalism

strains of the cell, that may relax to provide a different volume of the cell. This indicates a residual
stress, arising from linear terms in the elastic energy.

As well as with the short-range and elastic energy terms described above, the dipole-dipole
interactions appearing in insulator or semiconductor materials may be adapted to chemically dis-
ordered systems. In general, the tensorial character arises in this case at the definition of the Born
effective charges Z∗iαβ[µ] and the effect on the global dielectric tensor ε∞. The treatment of this
part of the energy will be described further in the text.

As a final remark, the formulation presented here suggests already a way to proceed in model
creation. It would be in principle possible to create a database of tensors K(n)[µd],L(n)[µd], where
d labels different realizations of chemical order (this is summarized in panel (b) of Figure 4.1).

4.1.3 Model mixing

Instead of tackling the problem as described in the paragraph above I present a much lighter,
physically-motivated approach, in which I assume that the constituents of the chemically inhomo-
geneous perovskite (A′BO3 and A′′BO3) exist separately [20, 21]. The premise of it is that one has
the models of the systems A′BO3 and A′′BO3, that I will refer to as pure models in the following
paragraphs (see panel (c) of Figure 4.1). Using the information already available in the models,
and assuming that the chemical properties of the atoms involved in both compounds are relatively
similar, I propose an approximative method to heuristically obtain the interactions appearing in
the (A′A′′)BO3 perovskite system. The recipe may be applied to an arbitrary realization of the
chemical order µ.

The idea behind this approach is the perspective on materials design, which can range from the
study of superlattices to the analysis of the behavior of clustered materials or nanocomposites. In
these examples one investigates a superstructure of materials for which the constituents exist as
pure materials, but allowing to tune its properties or engineer new applications for device design.
It is observed that the lattice-dynamical properties of such complex structures depend essentially
on the electric and elastic constraints that the constituents exert on each other, the details of the
interface being secondary [83–85]. Since the technology developed in this Manuscript allows for the
construction of pure models, it is then natural to attempt to study chemically disordered systems
from this perspective.

The description of the chemical environment

The chemical order variable µ describes the superlattice atomic arrangement of the system. In
order to write specific forms of the K(n)[µ],L(n)[µ] and C(n)[µ] tensors as a function of the orig-
inal terms of the pure models one has to be able to describe the chemical environment of the atoms.

Let Ni denote the set of nearest neighbors of atom i in the lattice. The chemical environment
of the atom can be then quantified through

ni,c =
∑
i∈Ni

δµi,c. (4.1.5)
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Chapter 4. Second-principles models of chemically-inhomogeneous materials

Note that the sum runs only for the nearest-neighboring A sites (in general, any neighboring
site susceptible of chemical substitution). The label c can take the same values as the compositional
variables, thus either 1 or 2. Thus the value ni,c is the number of atoms of type c neighboring the
atom i. The total number of neighboring substitutional atoms to atom i can then be straightfor-
wardly computed by

ni =
∑
c

ni,c, (4.1.6)

which allows to define the chemical character of the environment of atom i through

pi,c = ni,c
ni
. (4.1.7)

The values of pi,c indicate the c character of the environment. For the case of the A′A′′BO3
perovskite, pi,1 tells how similar is the local environment to that of A′BO3, analogously for c = 2.
Also, in this case

pi,1 = 1− pi,2. (4.1.8)
The nearest neighboring atoms are the nearest neighbors up to the substitutional sites. The

B cations have as first neighbors the 6 oxygen octahedra, and as second neighbors the 8 A cation
sites. Hence, ni,c runs only up to the first neighboring A cation sites, and thus this is the only
contribution for the calculation of pi,c. On the other hand, oxygens have 4 A cation sites as first
neighbors, which describe the chemical environment of each oxygen. As for the nearest neighbors of
A cations one can account for 8 cations of type B and a cage of 12 oxygens, leaving pi,c ill defined.
For this particular case I chose pi,c = δc,µi . In other words, in the approximation the cations A′ are
understood to have a chemical environment of the pure A′BO3 type.

Approximations for Ep

The chemical environmental variables allows to describe now an approximation for the values of
the tensor K(n)[µ]. I will refer in the following to K̃(n),c as the parameters of the Ep energy part
of the pure model type c.

Let us first consider the interactions between atoms not affected by chemical substitution (i.e.,
B and O in the example). The coupling terms can then be written as

K(n)
ijαkhβ... ≈

1
2n
∑
c

K̃
(n),c
ijαkhβ...(pi,c + pj,c + pk,c + ph,c + . . . ), (4.1.9)

where the normalization factor (2n)−1 accounts for the number of bodies involved in the calculation
of the parameter.

This approximation is particularily adequate to describe clustering in materials, as for locally
homogeneous chemical compositions the pure model couplings are recovered. For regions with local
inhomogeneity, the expression will in a way interpolate the interactions of the pure models. As in
perovskites the short-range interactions do not depend strongly on the chemical environment [23]
a simple weighted averaging method is justified.

It is possible that particular interactions appear in one of the pure models, but not in the other.
In this case I have chosen to set the parameter of the model that does not have the interaction to
zero, and so the interaction will still appear in the mixed system, however weakened.
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The interactions involving i atoms have been chosen to retain the original coefficient of the pure
models without any modification.

As a final remark, note that the formulation proposed is written in terms of differences of dis-
placements. It is then also explicitely compliant with the acoustic sum rule, allowing to manage
the averaging of the coefficients without requiring any correction. This is a major advantage of the
formulation.

Approximations for Esp

The approach for obtaining the tensors L(m,n) is equivalent as the described in the paragraphs
above. The information available in the pure models allows to write to write

L(m,n)
ab...ijαkhβ... ≈

1
2n
∑
c

Λ̃(m,n),c
ab...ijαkhβ...(pi,c + pj,c + pk,c + ph,c + . . . ) (4.1.10)

for interactions involving atoms not affected by chemical substitution.

Similarily to the approximations for Ep interactions involving i atoms retain their respective
coefficients, and interactions A′ −A′′ are not considered.

Approximations for Es

The macroscopic elastic constants C(m)[µ] depend on the chemical composition. For example, in
a superlattice geometry, in general the stiffness along the stacking axis will depend on the softer
compound, whereas the stiffness of the in-plane axes will be controlled by the harder compound.
In contrast, in a solid solution the elastic constants will likely tend to the average of the elastic
constants of the isolated compounds.

The elastic constants Es can be derived in principle from interatomic couplings in Ep by in-
specting the energetics of long wavelength acoustic modes. However, tests I performed using DFT
reveal that the convergence is slow in space. In order to obtain accurate values for the elastic con-
stants the DFT calculations suggest that one needs a good description of short-range interactions
well beyond the interaction distance cutoff typically described in the SCALE-UP model potentials.
As a consequence I will not implement this calculation here, but instead use the developed theory
tackling the mecanical properties of alloys to introduce a simple but effective approximation [86, 87].

Let us define the chemical c-character of cell l through

nl,c =
∑
κ

δµlκ,c. (4.1.11)

Then, similarily to the definition of the chemical environmental fractional character, one can
define

pl,c = nl,c
Ncomp

. (4.1.12)

The elastic constants of cell l can be defined then as

C
(m)
αβγλ...(l) =

∑
c

pl,cC
(m),c
αβγλ..., (4.1.13)
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where C(m),c denote the elastic tensors of the constituent c pure model. As a note, the notation
of the elastic constants here described is in a Cartesian form, opposed to the usual Voigt notation
used in this Manuscript.This will be convenient in the following paragraphs.

Let us begin the discussion on the calculation of the elastic tensor by focusing on C
(2)
αααα[µ].

This coefficient describes the quadratic response of the strain applied in the α direction, ηαα. The
cells of a given plane orthogonal to α are clamped, and thus have a shared response to any applied
strain. It is then sound to assume that the elastic response of the layer will be that of the average
of its constituent cells,

C(2)
αααα(lα) ≈ Nα

N

∑
l/lα

C(2)
αααα(l). (4.1.14)

The average elastic constants are then computed for all α-planes, which are indexed by lα. The
sum runs over l cells within the lα-th α-plane. Note that N/Nα is the number of cells contained in
each α-plane, i.e., the total number of cells divided by the total number of planes.

In order to calculate the the global C(2)
αααα response one can imagine that the different planes

discussed above are linked in series, each plane representing a string. Then, one can use the inverse
sum rule to calculate the overall response,

1
C

(2)
αααα

≈ 1
Nα

∑
lα

1
C

(2)
αααα(lα)

, (4.1.15)

properly accounting for the number of planes Nα. This expression gives importance to the poten-
tial difference of elasticity between layers, in which the overall response will be necessarily more
dependent on the behavior of the softer planes.

Using an equivalent logic one can derive the rest of the elastic tensor coefficients approxima-
tions. I discuss here the cases of the coefficients that are independent and non-zero for the cubic
reference structure symmetry. These coefficients, appart from the one discussed already above, are
C

(2)
ααββ and C

(2)
αβαβ , for α 6= β.

For C(2)
ααββ I consider the intersection between the α and β planes and apply a similar approach

to that of Eq. 4.1.14:
C

(2)
ααββ(lα, lβ) ≈ NαNβ

N

∑
l/(lα,lβ)

C
(2)
ααββ(l). (4.1.16)

The inverse sum rule is then applied to the collection of values for the different intersections of
α and β planes,

1
C

(2)
ααββ

≈ 1
NαNβ

∑
lαlβ

1
C

(2)
ααββ(lα, lβ)

. (4.1.17)

The shear elastic constants are computed similarily. First,

C
(2)
αβαβ(lα, lβ) ≈ NαNβ

N

∑
l/(lα,lβ)

C
(2)
αβαβ . (4.1.18)

Then the inverse sum rule over the α and β planes intersection provides the final form of the
elastic components,

1
C

(2)
αβαβ

≈ 1
NαNβ

∑
lαlβ

1
C

(2)
αβαβ(lαlβ)

. (4.1.19)
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In the SCALE-UP model potentials typically the elastic energy is expanded up to harmonic
order. The adaptations of the expressions above to higher orders is not trivial, but because of the
choice of the expansion cutoff, this has no impact in the present work.

Approximations for the electrostatic interaction

In the formulation of SCALE-UP model potentials the Ep energy contribution is divided into the
short-range interaction contribution and the long-range electrostatic energy. The latter, which has
a major role when describing the energetics of insulator or semiconductor materials, is in nature
of infinite range. In the formulation of the models this interaction is described up to harmonic
order, and I present in the following paragraphs a simple approach to obtain an approximative
electrostatic interaction suitable for mixing models.

Let us first start by writing the equations in Section 2.2 using the compositional variables
introduced at the beginning of this Chapter. The dipole-dipole harmonic interaction is written

Elr
p [µ] = 1

2
∑
iαjβ

K(2),lr
iαjβ [µ]uiαujβ (4.1.20)

where the dependence on the contribution is made explicit through the electrostatic harmonic
interaction describing the couplings,

K(2),lr =
∑
γδ

Z∗iαγ [µ]Z∗jβδ[µ]
(

((ε∞)−1)γδ
(D[µ])3 − 3∆γ [µ]∆δ[µ]

(D[µ])5

)
(det ε∞[µ])−1/2. (4.1.21)

where the effective Born charges and the dielectric permittivity tensor, as well as the derived
quantities D and ∆ (for which the definion can be found in Eqs. 2.2.21) depend now on the com-
positional variables of the material.

The task of approximating Z∗i [µ] and ε∞ is very difficult, and likely, the origin of quantitative
inaccuracy in the model mixing. One could attempt to approximate this interaction in a similar way
as the one proposed for the approximation of the elastic energy, which would capture anisotropy in
the atomic arrangement and related effects. However, the electrostatic problem is actually much
more challenging, as ultimately the goal is to describe the screened interactions between dipoles in
an inhomogeneous (or nanostructured) medium, where the atomic details can play a role.

For the moment, here I ignore these complexities, and I apply a scheme that has been applied
in the literature in the study of PbTiO3/SrTiO3 superlattices, showing good reproduction of the
basic electrostatic effects occurring in such materials, and which is also following the spirit of similar
approximations in the effective Hamiltonians literature [13].

Let us begin by approximating the dielectric permitivitty tensor as the average quantity

ε∞ ≈
∑
c

pcε
c
∞, (4.1.22)

where εc∞ is the dielectric permitivity tensor associated with the compound c and pc is the ratio
of the compound c in the mixture, with ∑c pc = 1. This expression for the dielectric permittiv-
ity tensor follows the assumption that the way in which distant dipoles interact in the compound
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depends on the global composition and not on how the substitutional atoms are arranged in the cell.

Going back to Eq. 4.1.21, the role of locally describing the richness of the electrostatic interaction
can be given to the effective charges. Let us assume that ε∞ is isotropic, which is the case in the
cubic reference structures used for the pure models - then, the dielectric permittivity tensor can be
described using one number, that I will refer to as εc∞. Since εc∞ is isotropic, so it will be ε∞; then
one can write ε∞ = ε∞Id3. I define

Z∗i ≈
∑
c

pi,c

√
ε∞
εc∞

Z∗,ci , (4.1.23)

where Z∗,ci is the effective charge of atom i of the pure compound c. By reintroducing this into
Eq. 4.1.21 it is trivial to prove that the pure model electrostatic is recovered due to the factor pi,c,
which measures the chemical environment. Although it is true that this may affect the interaction
of distant dipoles, in the studies performed using this approach this has not had a significant impact.

The chosen approximation for the effective charges is compliant with the neutrality of the cell
and the acoustic sum rule, meaning that a rigid displacement does not create electrical dipoles. In
the pure materials this rule can be written as∑

i

Z∗,ciαβ =
∑
l

∑
κ

Z∗,cκαβ = 0 ∀α, β. (4.1.24)

When using the average effective charges one can then write

∑
i

Z∗i =
∑
c

√
ε∞
εc∞

∑
i

pi,cZ∗,ci , (4.1.25)

where ∑
i

pi,cZ∗,ci =
∑
i

∑
i∈Ni

δi,c
ni

Z∗,ci =
∑
i

δi,c
∑
i∈Ni

1
ni

Z∗,ci . (4.1.26)

Here, Ni is the set of neighbors of atom i that are affected by its presence. One then has

∑
i∈Ni

1
ni

Z∗,ci =
∑
lκ∈Ni

1
nκ

Z∗,cκ =
∑
κ

Z∗,cκ = 0. (4.1.27)

As an observation, every κ-atom appears exactly nκ times in the sum over i↔ lκ, which leads
to the final result.

The approximative Reference Structure

The calculation of the dipole-dipole interactions in the SCALE-UP model potentials takes explicitly
into account the definition not only of the atomic positions but also the lattice vectors, as can be
seen from Equation 4.1.21. For this reason, it is necessary to provide an explicit form of the RS.

The RS of the mixed models is chosen to be a weighted average of the RS’s of the models mixed.
This correspond to a cubic homogeneous lattice, defined by a periodically-repeated cell of 5 atoms,
and characterized by a single lattice parameter that we can compute as the weighted average of
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the corresponding RS lattice constants of the constituent compounds. For example, for the case of
a cubic lattice we can estimate an average elastic constant aavg by minimizing the energy

E = p1C1
2

(
aavg − a1

a1

)2
+ p2C2

2

(
aavg − a2

a2

)2
(4.1.28)

where ac and Cs are the cell parameter of the cubic RS and the diagonal elastic constant
(C11 = C22 = C33 in Voigt notation) of the c-compound, respectively; also, pc is the ration of
c-compound in the mixture. By solving for aavg, one obtains

aavg = a1a2
ma1 + a2
ma2

1 + a2
2

(4.1.29)

with
m = p2C2

p1C1
. (4.1.30)

This way of averaging takes into account the stiffness of the materials. For example, for very
stiff materials in which C2 � C1 it follows that aavg ≈ a2.

Note also that, with my choices of reference structure and mixing of model parameters, I am
effectively assuming that the RS of the mixed model somehow includes composition-dependant
relaxations, so that it is a singular point of the PES. Indeed, the pure models do not have linear
terms nor the mixed models. This may be an impactful approximation; in order to improve on this
aspect one would need to develop a scheme of the type of panel (b) in Figure 4.1.

4.2 Example of application: mixtures of lead titanate and stron-
tium titanate

In this Section I explore the impact of the approximations proposed in the formalism and the re-
sults that one can obtain with this simple approach. The models used for this application are the
EHM@10 produced in Chapter 3 for strontium titanate and a model for lead titanate constructed
in the same way. Both models are built using DFT data calculated using LDA.

I also examine the case of (PTO)n/(STO)n superlattices. To improve the reproducibility of
experimental and theoretical results in the literature I have chosen to generate also models using
the Generalized Gradients Approximation (GGA), in particular using pseudopotentials generated
using the theory of Perdew-Burke-Ernzerhof for solids (also known as PBEsol). This theory provides
a better description of the lattice parameters, which for the particular materials STO and PTO
matches remarkably the experimental observations.

Several choices of mixtures are proposed for the studies, sketched in Figure 4.3. In the different
sketches only the A cations are depicted, and the dashed lines are only a guideline for the eye. Each
A cation is in practice representing a 5-atom unit cell, although the oxygen and titanium atoms
have been left out of the sketch for clarity.

The structures proposed vary in % of composition and the labels assigned are explicative of the
way in which this happens. For example, I consider cases that are similar to the pure compounds
except for one defect (7Pb1Sr, which is compositionally close to PTO, and 1Pb7Sr, which is close
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(PTO)1/(STO)1

Rocksalt 1Pb7Sr7Pb1Sr

(PTO)1/(STO)3 (PTO)3/(STO)1
Figure 4.3: Depiction of the different mixtures considered of SrTiO3 and PbTiO3. In the sketches, red circles
represent Pb atoms and blue circles refer to Sr cations (see text for further description of the cases).

to STO), and heavily mixed cases like the Rocksalt mix type. I also consider layered composi-
tions of different kinds: the cases of (PTO)3/(STO)1 and (PTO)1/(STO)3 represent superlattices
in which one of the pure materials is predominant, while the superlattices (PTO)1/(STO)1 and
(PTO)2/(STO)2 are limit cases of a 50/50 mixture in which the chemistry is different at each
layer. A different realization of the 50/50 mixture is the case of the Rocksalt, for which the atomic
species is changed for every first neighbor of a cation A. Rocksalt and (PTO)1/(STO)1 represent
the critical cases in which the approximation may have larger impact. The sketched cells represent
the supercell simulated, and thus the structures are repeated by means of periodical boundary
conditions throughout space.

4.2.1 Study of the force constant matrices
The first comparative study I perform on the samples is regarding the character of the eigenvalues
and eigenvectors of the force-constant matrix at the RS of the different mixtures. This is equivalent
(by a factor of the mass of the atoms) to a study of the phonons of the material, in this case, on
the reference structure. By observing this one can study the main structural instabilities that the
material may display. With this one can measure the quality of the approximations for the Ep
energy contribution up to the harmonic order.

The force-constant matrices are obtained using finite displacements for the second derivatives,
both using the mixed models and DFT. For the DFT calculations I first calculate the relaxed atomic
positions of the structures using the cubic-like perovskite structure as the starting configuration.
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Figure 4.4: Eigenvalues of the force-constant matrices of the different mixtures considered (see Figure 4.3). Only the
eigenvalues corresponding to the FE mode (black symbols) and oxygen octahedra rotation modes (AFD in anti-phase
in red; AFD in-phase in blue) are displayed.

By doing so the linear terms of the energy arising from chemical symmetry breaking vanish. In the
case of the mixed models I use the cubic-like structure, following the assumptions of Section 4.1.3.

The results are shown in Figure 4.4. At first glance, the reproduction of the eigenvalues corre-
sponding to either anti-phase or in-phase rotation modes of the oxygen octahedra are overall both
qualitatively and semi-quantitatively accurate. The impact of the averaging of the short-range
interactions between the two pure models can be observed: the structures have been ordered from
left to right from PTO-like to STO-like, and in a way, the mixed models interpolate the pure model
results.

Both the AFD and polar distortions are overall well behaved, with some exceptions in the su-
perlattice cases. For the cases of (PTO)3/(STO)1 and (PTO)1/(STO)3 are the ones that deviate
the most with respect the DFT calculated values. For the (PTO)1/(STO)1 superlattice I observe
as well that the character of the instabilities is not respected. Let us call λPα the eigenvalue of
the mode corresponding to a polar distortion in the α Cartesian direction. For the predicted force-
constant matrix eigenvalues by the model one has λPz < λPx = λPy , while the results from DFT
are the opposite.

I have further researched the origin of this surprising result. First, I observe that when comput-
ing the eigenvalues of the force-constant matrics of larger superlattices, for example (PTO)2/(STO)2,
the correct behavior is recovered, obtaining λPx = λPy = −2.2 eV/Å2 and λPz = −1.2 eV/Å2 (see
panel (a) of Figure 4.5). The main difference in this calculation is that within the layers the short-
range interactions of the original models are recovered, as opposed to the cases presented before.
Hence, the case of (PTO)1/(STO)1 is a more challenging case.

Also, when looking at the electrostatics there is a noticeable difference between the mixed
models and the DFT calculations: for superlattice-like structures, the dielectric permittivity of the
material is not isotropic, as a contrast with the dielectric permittivity used in the models which
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Figure 4.5: Study of the eigenvalues of the polar distortion of the (PTO)n/(STO)n superlattices. (a) Eigenvalues
of (PTO)1/(STO)1 and (PTO)2/(STO)2, showing that the correct behavior is recovered for thicker layers. (b) Study
of the impact of the values of ε∞ on the ferroelectric instabilities of (PTO)1/(STO)1. The legend for both panels is
the same.

results from a simple averaging. Let us focus on the case of the (PTO)1/(STO)1 superlattice. The
dielectric permittivities of the model and the calculation using DFT reads

εmodel
∞ = ε0


7.6 0 0
0 7.6 0
0 0 7.6

 εDFT
∞ = ε0


7.2 0 0
0 7.2 0
0 0 7.0

 (4.2.1)

The anisotropy of the dielectric tensor as computed using DFT is a clear candidate of being
responsible for the behavior observed in the study of the force-constant matrix eigenvalues. In
order to investigate this, I have used the results of εDFT

∞ in the model, which leads to the correct
(however exagerated) behavior of the eigenvalues.

In panel (b) of Figure 4.5 I show the evolution of the eigenvalues when varying the dielectric
tensor using a standard interpolation of the kind

ε∞ = εmodel
∞ + k(εDFT

∞ − εmodel
∞ ), (4.2.2)

to calculate the dielectric permittivity of the model. As can be seen, the character changes through-
out the interpolation. The crossover occurs for k ≈ 0.206.

This result supports the idea that further development in the electrostatic approximations could
lead to a better agreement between the mixed models and DFT calculations.

4.2.2 Comparison of the elastic properties
The results of the approximation of the elastic constants is displayed in Table 4.1. The elastic
constants of lead titanate and strontium titanate are relatively similar, and numerically one could
not expect a major deviation in the calculation of the averages.

The introduction of potential anisotropies in the elastic coefficients by the approach described
in the formulation appears in several of the cases studied, although the difference is tiny due to
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4.2. Example of application: mixtures of lead titanate and strontium titanate

the numerical proximity of values and in most cases is beyond the significative figures shown, with
the exception of the superlattice (PTO)1/(STO)1 and (PTO)1/(STO)3. Notably, the coefficients
predicted are both qualitative and quantitatively close to the DFT results.

Thus one can conclude that the approximation is a good choice in most cases, and up to the
harmonic order, the proposed mixed models have a good description of the elastic properties of the
mixtures.

4.2.3 Model ground state structures
The models for the different mixtures studied offer the possibility of inspecting the ground state
structures. As with any SCALE-UP model potentials one can use Monte Carlo simulations through
the Metropolis algorithm to minimize the energy with respect the atomic displacements and the
strains of the cell.

In this Section I propose a comparison between the models and DFT. First, I obtain the ground-
state structure predicted by SCALE-UP. Then, I relax this structure using DFT. By doing so one
can study the reproduction of the energetics of low energy phases. However, it should be underlined
that this is not necessarily leading to the global minimum of the energy in DFT, and rather to a
low energy phase.

In Table 4.2 I have summarized the results of the ground state structures predicted by both
the mixed models and DFT, and characterized the structure by observing which distortions are
occuring in the cell.

Note that the relaxation process using DFT confirms that the phases found using the models
are critical points of the PES and have a lower energy than the references considered, which in
the case of DFT, is the relaxed cubic-like structure. Also, in many of the cases considered the
agreement in terms of both energies and distortions is qualitatively and quasi-quantitatively good.
However, there are obvious deviations that I discuss in the following.

Table 4.1: Comparative table of the elastic tensors as produced with DFT calculations and by using the approxi-
mative scheme proposed for averaging. The predicted values are given in parenthesis. The units of the elastic tensor
are given in Hartree.

Case C11 = C22 C33 C12 C13 = C23 C44 = C55 C66

PbTiO3 38.3 38.3 14.6 14.6 11.3 11.3
7Pb1Sr 38.5 (38.6) 38.5 (38.6) 14.2 (14.2) 14.2 (14.2) 11.5 (11.5) 11.5 (11.5)

(PTO)3/(STO)1 38.9 (39.0) 38.9 (39.0) 13.9 (13.9) 13.9 (13.7) 11.5 (11.6) 11.7 (11.6)
Rocksalt 39.4 (39.7) 39.4 (39.7) 13.3 (13.2) 13.3 (13.2) 12.0 (12.0) 12.0 (12.0)

(PTO)1/(STO)1 39.6 (39.7) 39.4 (39.7) 13.2 (13.2) 13.2 (13.0) 11.9 (11.9) 12.0 (12.0)
(PTO)2/(STO)2 39.6 (39.7) 39.5 (39.7) 13.1 (13.2) 13.2 (13.0) 11.9 (11.9) 12.0 (12.0)
(PTO)1/(STO)3 40.3 (40.4) 40.2 (40.4) 12.4 (12.5) 12.5 (12.4) 12.2 (12.2) 12.3 (12.3)

1Pb7Sr 40.7 (40.8) 40.7 (40.8) 12.1 (12.1) 12.1 (12.1) 12.4 (12.4) 12.4 (12.4)
SrTiO3 41.1 41.1 11.8 11.8 12.6 12.6
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Case Mixed models DFT Order parameters (model) Order parameters (DFT)
PbTiO3 -50 -57 Pz Pz

7Pb1Sr -40 -43 Pz Pz

(PTO)3/(STO)1 -44 -15 Pz Pz

Rocksalt -17 -12 Pzφ
−
z φ
−
y Pzφ

−
z φ
−
y

(PTO)1/(STO)1 -22 -16 Pzφ
−
z φ
−
y φ
−
x Pyφ

−
z φ
−
y φ
−
x

(PTO)2/(STO)2 -38 -11 Pz Pz

(PTO)1/(STO)3 -13 0 Pz Pz → 0
(PTO)1/(STO)3 -8 -5 Py Py

1Pb7Sr -13 -10 φ−z φ−z
SrTiO3 -13 -12 φ−z φ−z

Table 4.2: Energies of the ground state structures as computed using the mixed models and DFT. The main
distortions occurring in the cell are also displayed, with Pα symbolizing the polarization and φ−α being an anti-phase
rotation, where α labels the cartesian direction. The reference of the energy is set as zero for the RS in the mixed
models, and the relaxed cubic-like structure of each case for the DFT calculations. Energies are given in meV per 5
atoms.

In the cases of (PTO)1/(STO)1 and (PTO)1/(STO)3 the relaxed structure using DFT has dif-
ferent distortions than the predicted by the models. In both cases it is clear that the models favor
a polarization along the z direction, while DFT shows that Py is preferred. In particular, the
superlattice (PTO)1/(STO)3 has no stable phase with a polarization along z. The same kind of
problem is visible in the cases (PTO)2/(STO)2 and (PTO)3/(STO)1, where the model predicts
energies much lower than those of DFT.

Qualitatively, the models have notable disagreements in the energy prediction of the phases.
The energy predicted for the phase with polarization Pz in (PTO)3/(STO)1 is considerably lower
when computed using the model. This occurs also for the (PTO)2/(STO)2 superlattice. The en-
ergies of the ground states predicted for the superlattices (PTO)1/(STO)1 and (PTO)1/(STO)3 is
also strongly deviated from the energies calculated using DFT. This is consistent with the discus-
sion in Section 4.2.1 where we see that, because of the choice of ε∞, the models tend to exaggerate
the tendency to develop a polar distortion along z.

4.2.4 Application: (PTO)n/(STO)n superlattices and PTO nanowires in an
STO matrix

I have chosen to apply first the method to study (PTO)n/(STO)n superlattices, for which the
results can be compared with available literature for both experimental and theoretical results [20,
21]. The interest of this type of superlattices is the observed chiral structures appearing in the
PTO layer, resembling that of vortices of polarization (see Figure 1.8). For this particular example
the models have been generated using PBEsol potentials.

The model for the superlattice is built using the approximative approach described in this Chap-
ter. I use Monte Carlo simulations through the Metropolis algorithm to obtain the structure of the
ground state predicted by the model, for which I calculate the electrical dipoles of the 5-atom cells
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Figure 4.6: Study of the ground state of (PTO)6/(STO)6 superlattices, displaying the electric dipoles appearing
in the PTO layer in the yz plane. (a) Full relaxation of the superlattice. (b) Relaxation under fixed -1% strain
in-plane. (c) Relaxation under fixed -2.5% strain in-plane. (d) Relaxation under fixed -5% strain in-plane.

of the composite at the center cation, in this case, the titanium atoms.

Figure 4.6 shows the result of this for relaxations under a fixed in-plane strain, where I apply
also the constraint η1 = η2. The strain is applied directly on the RS of the mixed model, being
the rest of the strain variables unconstrained. In panel (a) a full relaxation is performed, provid-
ing a structure that reminds of the experimental observed structure (see panel (a) of Figure 1.8).
Nonetheless, the structure displays a strong polarization in the plane.

In panels (b), (c) and (d) I show the result of the relaxations for different applied in-plane
negative strains (compressive character). The calculations provide a much better agreement with
both the experimental and the theoretical results, as the applied strain leads to a reduced in-plane
polarization. This leads to much better defined vortices of polarization (see panels (b) and (c)).
With increasing compressive strain the polarization along the x direction also diminishes, becom-
ing absent for the case of −2.5% epitaxial strain. For even higher strains, the results suggest that
within the PTO layer anti-phase 180º domain walls appear, with domains alternating polarization
in the superlattice.

Additionally to the work performed on the (STO)/(PTO) superlattices, I have also looked into
the ground state structure of a PTO nanowire in an STO matrix (analogous to the example avail-
able in the literature for the prediction of electrical skyrmions in barium titanate nanowires [88]).
The structure is built in the following way: I define a chemical order of STO in an 8×8×1 super-
cell, and I inscribe in the 8×8 plane a 4 × 4 square PTO region. Due to the periodic boundary
conditions, the system simulated is that of a nanowire within an STO matrix.

In Figure 4.7 I show the polarization of the ground state predicted by the model. As can be
seen, the sample displays a polarization vortex-like structure in the plane at the PTO region. This
is accompanied by an out-of-plane polarization display. The behavior observed is similar then to
the result in Ref. [88].
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y

z
PTO

STO

Figure 4.7: Polarization map of the ground state of a PTO nanowire within an STO matrix as predicted by the
mixed model potentials. The arrows indicate the polarization in-plane, while the color scale indicates the polarization
out-of-plane.

4.3 Outlook
The mixing models approximation presented in this Chapter has been shown to provide with a tool
for obtaining models able to simulate chemically inhomogeneous compounds. The model generation
itself occurs in matters of seconds in a computer, making the process an efficient way of studying
this family of materials.

The overall behavior of the mixed models created show good agreement with DFT results. The
different approximations discussed have been shown to be reasonable. Particularily for the Ep and
Es energy contributions, the results on the different compositions studied show that the method is
qualitative and quantitative correct in most cases.

The discrepancies observed in the study of limit cases, such as (PTO)1/(STO)1, has shown that
the approximation of the electrostatics has room for improvement. More precisely, a refinement in
the calculation ε∞ to account for the anisotropy induced by the chemical order is a clear perspective
to improve the overall behavior of the models.

Due to the choice of the RS, and particularily for systems like superlattices, it is also reasonable
to explore a correction of local strains. The reason is that the choice of RS has in practice no
impact on the non-electrostatic short-range interactions, as these type of coupling only depends on
the displacement of the atoms and not their absolute position. Hence, effectively in the layers these
interactions are behaving as if locally the system was equivalent to the pure system, not accounting
for the strain induced by the choice of the averaged new lattice parameters with respect the pure
system.

Finally, it is also of future work to develop a model generation method as depicted in panel (b)
of Figure 4.1. A strategy which involves studying the different realizations of chemical disorder,
accompanied by the fact that non-electrostatic short-range interactions decay fast in distance, would
provide better description of the chemically disordered system.
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Chapter 5

Examples of application

In this Chapter I review some studies on perovskites performed during the Ph. D. using the pre-
sented model potentials. First, in Section 5.1 I present a discussion on the character of the 180º
antiphase domain walls in SrTiO3. I describe the state-of-the-art to contextualize the problem and
explain the approach selected to study this characteristic large-scale phenomena using atomistic
simulations. Then, in Section 5.2 I briefly present two collaborative works that have led to recent
scientific publications: the study of thermal conductivity accross domain walls in PbTiO3, and the
novel finding of electric analog of magnetic skyrmions in homogeneous media.

5.1 Ferroelectricity in 180º antiphase domain walls of SrTiO3

5.1.1 Motivation
As has been discussed already in this Thesis, the case of SrTiO3 is complex even for bulk studies.
The most intrincate aspect of the compound is the underlying competition between the AFD and
FE distortions. It is nowadays accepted that the stabilization of the AFD ground-state at very low
temperatures is due to the quantum fluctuations [71], but it still displays large anisotropic dielectric
constants (εxx = εyy = 40.000, εzz = 10.000) signaling a ferroelectric instability [74, 89–91].

In study the effect of negative pressure on STO in the following way. As a function of vary-
ing negative pressure I perform relaxations of the structure using Monte Carlo simulations (to see
examples on the literature, see Ref. [73]; also, I use the EHM fitted to TS@10 in this work). The
results are shown in Figure 5.1. First, I calculate the result of an unconstrained relaxation, corre-
sponding to the ground state (black line of panel (a). Also, I perform constrained relaxations to
calculate the energy of a phase with FE distortion and a phase with AFD distortion as a function
of varying external pressure, as these are the two distortions that are competing (red and blue lines
respectively). As can be seen, the ground state distortion shifts from AFD to FE for increasing
negative pressure.

Panel (b) displays the order parameters (P and R) values of the ground state at 0K. At zero ap-
plied external pressure the ground state is that of experimental SrTiO3, with an anti-phase rotation
pattern in which the rotation vector of the oxygen octahedra is parallel to the [001] crystallographic
axis. Then, the model predicts a transition to a ferroelectric phase with the polarization parallel as
well to the [001] axis. The transition occurs between -4.7 and -3.7 GPa, where the two distortions
may coexist according to the prediction of the model. Negative external pressure on SrTiO3 has
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Figure 5.1: Study of the ground state of SrTiO3 for varying hydrostatic pressure. (a) Energy of the relaxed phases
with respect to the RS. The black line corresponds to the ground state. (b) Order parameter of the fully relaxed
system under constant hydrostatic pressure. Blue line corresponds to the rotation of the oxygen octahedra, while the
red line represents the total polarization of the unit cell.

two effects: first, it weakens the AFD distortion; second, it favors the FE distortion, which in
presence of a weakened AFD distortion eventually becomes the only ground state distortion.

The scientific community has devoted a notable effort to attempt to exploit this competition
and to find the fingerprints of a ferroelectric character in SrTiO3. One of the aspects in which
research has focused on are the so-called domain walls (DWs). A domain wall is the interface
that occur between domains within the material. The domains are equivalent phases with different
orientation. This idea can be illustrated with an example. Let us assume that a domain order
parameter is the rotation Rα, where α labels the cartesian direction. Now let us consider a second
domain, adjacent to the first, with an order parameter −Rα. The domain wall would then be the
interface between the two domains, and it describes how Rα becomes −Rα. For a depiction of this,
see the Rz curve in Figure 5.2.

In the specific case of the DWs I am investigating the rotations occur along one axis, R||[001].
Also, the DWs are oriented by having the normal vector of the domain wall orthogonal to the rota-
tion axis. Since the rotation of Domain I is the opposite to that of Domain II the order parameter
must vanish at the DW. It is precisely in this antiphase DW that the competition between FE and
AFD distortions in SrTiO3 gains relevance: if structurally the AFD distortion vanishes, would that
mean that a FE distortion may occur as in the example with the hydrostatic pressure?

This type of domain walls have been object of study in the past [92], as well for the particular
case of SrTiO3 [93]. The work in Ref. [92] uses a Ginzburg-Landau potential to study the behavior
of the order parameter. For SrTiO3 let us consider the order parameters Rz and Pz, referring to the
rotation of the oxygen octahedra and the ferroelectric polar distortion respectively, both parallel
to the [001] crystallographic axis. The Gibbs free energy is then written as

G = 1
2γ1(∇Rz)2 + 1

2γ2(∇Pz)2 + 1
2A1R

2
z + 1

4B1R
4
z + 1

2A2P
2
z + 1

4B2P
4
z + λR2P 2

z , (5.1.1)

where γ, γi, Ai and Bi are parameters (for i = 1, 2). This is the form of the fourth-order
Landau potential for the two order parameters, but adding both a coupling between Rz and Pz
and gradient-based terms required to model accurately the behavior of the order parameters in the
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Figure 5.2: Evolution of the (normalized) order parameters across a domain wall at which the primary order
parameter, Rz, vanishes. As Rz goes to zero, the secondary order parameter Pz arises and achieves its maximum at
the center of the domain wall. The Figure has been extracted from Ref. [92].

domain wall.

The authors apply this model to study several types of domain walls and order parameters.
In particular, the work presents a study of the transition (−Rz, 0) → (0, Pz) → (Rz, 0) (see Fig-
ure 5.2), showing evidence that if there is a competition between the order parameters (for which
λ > 0 in 5.1.1) then in the absence of the primary order parameter the secondary order parameter
may arise in the domain wall.

In the specific case of this type of DWs occuring in SrTiO3, Ref. [93] presents a study predicting
the ferroelectric instability to occur. The result is obtained by using a more complex expression for
the Gibbs free energy, which accounts for rotations occurring in all cartesian directions and takes
into account the elastic part of the energy. Additionally, the model is completed by assuming the
FE instability to be present and thus writing the corresponding Pα-related terms. The description
of the gradients of rotations is much more complete than in the previous work.

The calculations of Ref. [93] show two remarkable results. First, for DWs in which the rotation
axis is perpendicular to that of the normal vector of the DW they predict that it is favorable for
a secondary rotation to appear, with the rotation axis parallel to that of the normal vector of the
DW. Second, their model shows that in these conditions there is an elongation of the cells within
the DW parallel to that of the rotation vector in the domains, enhancing the ferroelectric instability
of the material which then arises within the domain wall.

In the works discussed the authors use a continuum, heavily coarse-grained theory to study the
DWs of SrTiO3. Instead, SCALE-UP allows for atomistic simulations of this DW. One can then
study the atomic structure of the material and observe how the predictions fit in the simulated
system.

5.1.2 Atomistic simulations
The study I present in this Manuscript of the DW in SrTiO3 is carried out using the EHM fitted
to TS@10 presented in Chapter 3. The simulation box contains 1600 atoms. In particular I use
an 80x2x2 repetition of the unit cell, and thus the elongated axis for this study is the x cartesian
direction. This corresponds to a length of 30.9 nm. The rotation axis is chosen to be along the z
direction.
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Domain I Domain II

DW DW

Figure 5.3: Sketch of the initial preparation of the DW simulated samples. The arrows represent the rotation axes,
with each arrow representing the anti-phase rotation character of 2x2 repetition of the perovskite unit cell in the yz
plane. Because of the perovskite structure adjacent arrows are necessarily opposed. The blue arrows are the last
rotation vector of the domain and pink arrows are the first, showing the break of translational symmetry. The ∅
symbols represent the cells left undistorted for the domain wall to arise from an atomic relaxation simulation.

The DW simulated samples are prepared as follows (see the sketch in Figure 5.3). I divide the
elongated axis in two. Domain I (0 < x < 40) is prepared with the AFD distortion pattern of the
ground state of SrTiO3. Domain II (40 < x < 80) is prepared exactly in the same way, but with
the opposite rotations as those of domain I. Cells with x = 40 and x = 0 are then left undistorted;
also, because of periodic boundary conditions, x = 0 and x = 80 are the same cell. The domain
wall arises from relaxing the structure, as the domains have opposed orientations of the rotation
order parameter.

The loswet-energy structure of the multidomain configuration is obtained through Monte Carlo
simulations of the neutral sample described, for which I use an annealing parameter to relax the
structure to 0 K. I apply 10.000 MC sweeps for the simulated annealing, starting typically at
T=0.01 K. Similarily, to study the effect of applied external electric fields I apply an homogeneous
field Ez and relax the sample following the same procedure.

Structure of the DW

In Figure 5.4 I describe graphically the structure of the domain wall. In the depicted plane, it is
observable how the rotations along the z axis vanish through the domain wall, and appear again
afterwards. Within the domain wall a rotation along the x axis appears. This rotation can be
observed at the displacement of the oxygens along the y direction in antiphase, which appear much
clearer at the center of the domain wall.

The order parameters extracted from the whole sample are shown in Figure 5.5. I have calcu-
lated the rotations in the following way: I define the first cell as having a positive Rα rotation if it
occurs anticlockwise (following the usual notion of positively-defined bases). Since the rotation is
in antiphase, the rotation of the cell lx, where lx is the integer labelling the cells in the x direction,
is given by

Rα(lx) = Rαe
iπlx . (5.1.2)

This provides a uniform sign for the rotation within the domains. As can be seen in panel (a)
of the Figure, the calculated Rz rotations change sign throughout the domain wall. The rotation
in the x direction appears only within the domain wall, having its maximum at the center. The
value of the rotation Rx at this point is of 5.55 º, about 15% smaller than Rz in the domains, of
6.5 º. As a first result, this shows that the rotation changes in a quasi-continuous way instead of a
sharp change of sign. This supports the predictions in [92, 93] of this DW being of Néel type, with
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Domain Wallxz

y

RxRz Rz

Figure 5.4: Graphical representation using VESTA of the relaxed DW structure. Here, green atoms represent Sr,
blue atoms represent Ti and red atoms represent oxygen sites. I show the xy plane, for which the two y planes appear
superimposed.

a thickness of about 39 Åaccording to the simulations performed in this work.

In panel (b) I have calculated the polarization along z of the cells in x, by computing the total
electric dipole of the cell centered in the titanium atoms. The calculated polarization displays two
maxima, being zero at the center of the DW, attaining a value of 0.044 C/m2.

Atomic relaxations under applied external electric field

The appearence of a polarization in the results shown in Figure 5.5 suggest the interest of studying
the DW under applied external electric field. To do so, I have annealed the same structure pre-
sented in Figure 5.3 in the presence of external electric fields, Ez and −Ez. The results are shown
in Figure 5.6.

In panel (a) the field applied is positive, of 10−4 V/m. This leads to a polarization Pz of positive
character, aligned with the electric field. The rotation in x is negative in this case. Opposedly,
in panel (b) I reverse the electric field and the polarization becomes −Pz. Notably, the rotation
within the DW along the x axis also has the opposite sign. Thus the model predicts that, under a
reversed electric field, the character of the DW rotations is also reversed.

The result is in this case two-fold. First, the model predicts that the domain wall is ferroelectric,
as the polarization can be switched using an external electric field. Second, the change in the sign
of the rotations suggests that there is a coupling between Pz and Rx.

Interpretation of the results

Recently A. Schiaffino and M. Stengel have proposed a Ginzburg-Landau model to study the
character of 90º domain walls in SrTiO3 [94]. In their study, they find that this DWs display as
well a polar distortion and that they key aspect for it to develop is to consider couplings of the
form

PzRz
∂Rx
∂x

; PzRz
∂Rx
∂x

. (5.1.3)

The first coupling describes the interplay between the rotation Rz and the derivative of the ro-
tation Rx. In panel (a) of Figure 5.7 I have represented the value of this coupling across the sample.
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Figure 5.5: Calculated order parameters (R and P ) along the x direction of the sample. (a) Rotation along the
three cartesian directions. (b) Polarization along the z axis.
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Figure 5.6: Study of the order parameters of the sample containing two DWs under an applied external electric
field. (a) The applied electric field is positive along the z direction, to which the polarization aligns. (b) In this case
the electric field is reversed, leading to a polarization −Pz within the DW.

Due to the simultaneous change of sign of Rz and the derivative of Rx the sign of the coupling is
positive always, displaying two peaks. These two peaks coincide with the peaks of polarization in
Figure 5.6, both in position and sign. This suggests that the polarization arises from the coupling
term - and thus it is an improper order parameter.

The term also explains how switching Pz has as a result the switching of Rx. Since the sign of
the polarization changes, preserving the sign of Rx would have an impact in the energetics of the
system. In order for the two states to be equivalent in energy, since the gradient and the sign of
Rz is the same in both cases the gradient of the rotation Rx has to change.

In panel (b) of Figure 5.7 I show the value of the second coupling term, which acquires an
absolute maximum value at the center of the domain wall. The polarization is proportional to this
coupling term as well, which describes the polarization at the center of the DW. Note that P is not
zero at the center of the DW, the bias being explained through this second coupling term.

The atomistic simulations I perform result in agreement with the previous theoretical studies
of the antiphase DWs in SrTiO3. The ferroelectric distortion is appearing at the domain wall,
accompanied by the vanishing of the rotation order parameter of the domains as suggested in
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Figure 5.7: Calculation of the value of the gradients and the coupling terms.In order to reduce the noise due to
discretization in the calculation of the derivative I have interpolated the curves for the rotations Rx and Rz from
panel (a) in Figure 5.6, and I have used the interpolation to numerically differentiate the curves. (a) Value of Rz

∂Rx
∂x

and ∂Rx
∂x

across the sample. (b) Value of Rx
∂Rz
∂z

and ∂Rz
∂x

across the sample.

Ref. [92]. I want to remark that the model used in this study has in fact no FE instability, although
it is a quite soft mode (see Figure 3.5).

The simulations show as well that a rotation appears within the domain wall as a proper. The
thickness of the wall and the appearence of Rx are in good agreement with the research presented
in Ref. [93]. Also, the rotations and the polarization within the DW are well described by the
formulation presented in Ref. [94].

Future perspectives

In this research I have studied structurally the DW in SrTiO3, although further investigations
could provide more insight and understanding of its nature. In particular, an adaptation of the
work presented in Ref. [94] in the form of a Ginzburg-Landau model adapted to the anti-phase
DWs would be an adequate perspective to support the presented results, as the explicit description
of the couplings involved is a direct way of understanding the energetics of the DW.

It is also enticing to observe this problem from a more complete theory perspective. For this, a
collaboration with N. Bristowe (University of Kent, U.K.) is also engaged, in which he is studying
these DWs using DFT simulations. This potentially provides support and validation to the re-
search, confirming the fingerprints of the phenomena observed using the second-principles models.

I focused on studying the character of the order parameters in this work. However, there are
interesting angles yet to be explored. The polarization observed in the DWs is accompanied by a
displacement of the Ti and Sr cations, suggesting that the study local strains may provide further
insight to the problem.
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(a)

(b)

Figure 5.8: (a) Graphical representation of the 180º domain walls in PbTiO3. The displayed plane is the xz, and
the domains are polarized along the z direction. (b) Profile of the polarization across the sample. The DWs are
characterized by displaying zero polarization along z and non-zero polarization along y.

5.2 Examples of collaborative works
5.2.1 Control of thermal conductivity in PbTiO3 using domain walls
We have collaborated with M. Royo, J. Íñiguez and R. Rurali [30] to develop a study on how ther-
mal conductivity is affected by the existence of DWs in PbTiO3.

Domain walls in Lead Titanate can be of different types. We focus here on the 180º DWs as
described in panel (a) of Figure 5.8. The global order parameter describing the ground-state phase
of PbTiO3 is the polarization. The domains in this material are polar and are arranged in an an-
tiparallel way. From the difference in orientation of the polarization arises the symmetry break that
leads to the creation of the domain wall. One of the peculiarities of the domain walls in PbTiO3
is the occurrence of a rotation of the polarization in the domain wall, with a component appearing
orthogonal to that of the domains (for an example of this result, see Wojde l and Íñiguez [28]). The
domain wall itself is very thin, and the rotation of the polarization occur in the span of one unit cell.

In the work of studying the thermal transport M. Royo and R. Rurali used a method based on
non-equillibrium Green functions to calculate the harmonic propagation of phonons throughout the
material, which is the mechanism behind thermal transport in crystals. My role in the collaboration
consisted on desigining the samples, with different sizes and different number of DWs, and providing
the force-constant matrices associated to the systems. Then, M. Royo computed the probability of
transmission of the phonons accross the sample.

The results show that the probability of the phonons to propagate through the DW depends
on the character of the vibrations. Phonons that have transversal character propagate less than
longitudinal ones. The explanation for this is that phonons that are sensitive to the symmetry
break occuring within the DW are more prone to be affected, effectively blocking the vibrations.
On the other hand, phonons that are compliant with the symmetry subset compatible with the
domains and the domain wall, such as in this case the longitudinal phonons, can transmit without
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0DW

1DW

2DW

3DW

Figure 5.9: Conductance as a function of temperature for different number of domain walls in the sample. In the
subplot, percentual conductance reduction as a function of temperature.

“seeing” the domain wall. This explains as well why the effect of increasing the amount of DWs
is minimal. The results suggest that the domain wall may reduce approximately 40% the thermal
conductivity at room temperature by including a single DW (see Figure 5.9).

5.2.2 Electric analog of magnetic skyrmions
In collaboration with M.A.P. Gonçalves, P. Garćıa-Fernández, J. Junquera and J. Íñiguez we have
presented a study of electrical analog of magnetic skyrmions in an homogeneous material [31].

This study arises from the recent effort by researchers to find an analog of magnetic skyrmions
using dipolar electric moments. In the study we use nanostructured domain walls of PbTiO3 com-
posed in a closed circuit to create the skyrmion.

The way we proceed is as follows. Two domains are defined with antiparallel polarization, inside
and outside the closed-circuit DW, as depicted in Figure 5.10. Because of the in-plane polarization
arising at 180º DWs in PbTiO3 this leads to a chiral dipolar arrangement (see panel (a) of Fig-
ure 5.10). In the study we prove that the topological charge of this structure is 1, which indicates
that it is a skyrmion. The total size of the sample simulated is of 2.32 nm2.

We analyze the stability of the structure from different perspectives. First, by applying external
electric fields we observe a transition from the nanodomain-skyrmion (ND-ESK) to a nano domain
wall which is polar (NDW-polar, panel (b) in Figure 5.10). This can be observed in the transition
of Figure 5.10. Interestingly, we observe that the center of the skyrmion is displaced by the applied
electric field in a perpendicular fashion. After the transition, the domain wall displays a metastable
state with a net polarization aligned with the electric field.

Then we study the effects of strain on the sample. As a function of strain the ND-ESK evolves
from high symmetry to a low symmetry configuration. Then, for asub > 3.98 Åthe ground sate
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(a) (b)

Figure 5.10: Polarization of a closed-circuit domain wall in PTO. The domains are constructed as follows: in the
plots, pink corresponds to out-of-plane negative polarization, while green is out-of-plane positive polarization. The
DW thus arises between the domains, with a polarization in-plane. (a) ND-ESK state. The polarization outside
and inside the DW are antiparallel along z. (b) Stabilization of the NDW-polar state by means of applied external
electric field of sufficient magnitude.

becomes the NDW-polar state. Hence, the stabilization of the polar state can be achieved both by
applying external electric field or by applying epitaxial strain.
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Chapter 6

Conclusions

The first result presented in this Thesis is a novel method to construct second-principles model
potentials, which I apply to construct a model for strontium titanate

On one hand, the fitting of the models is extremely efficient. The reason is that the fitting
procedure is analytical, which is both faster than any numerical method and exact. Due to this,
the fitting itself is a very fast process that allows to design a method to construct models which is
both systematically improvable and automatic. It is worth mentioning that the implementation of
this method allows the user to build a model in a regular desktop computer in some hours. The
most heavy computational work lies in the DFT calculations necessary to produce the training sets,
which typically takes two to three days to produce in a cluster.

On the other hand, the models produced are of high accuracy when compared with the DFT
data used to generate them. The accuracy is shown in different aspects. First, I have shown that
the models generated for STO have an essentially perfect description of the phonon modes of the
Reference Structure. This proves that the fitting procedure is solid. Second, I have also shown that
the energetics of the training set data are correctly reproduced. Finally, the structural features of
the modeled material are also well described, as the models discussed show an overall qualitatively
and quantitatively good description of the structure of the ground state.

I have also proved the applicability of the methodology. Using the generated models of STO I
have studied two different problems. First, I have studied the transition temperature of STO, for
which the result is qualitatively good although, as discussed in the text, the Tc found is notably
higher than the experimental result. This bias originates partially from the simulation technique,
in which I do not take into account quantum fluctuations, and party in the limitations that DFT
can have at reproducing experimental results, which limits the accuracy that the models can have.
Second, I have investigated the properties of the STO 180º anti-phase domain walls. The results
obtained show a ferroelectric domain wall occurring. I have contrasted the findings with previous
scientific results, showing that our models predict both a gradient of rotations from which the po-
larization can be explained and an additional rotation occurring in the center of the domain wall,
parallel to the DW plane vector, both in agreement with previous literature.

As an important remark, the process of model generation is still not fully automatic. It is still
a complicated task to obtain a model which is bounded from below, as there are no mathematical
guidelines to ensure this property of the models. The complexity lies in the multivariate character
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of the Taylor expansion, which makes the models prone to be unbounded from below. Nonetheless,
the manual scheme proposed in this Manuscript provides a good strategy to overcome this difficulty.

The second result that I presented in this Thesis is the adaptation of the SCALE-UP model
potentials formulation to describe chemically inhomogeneous systems. Here, I take advantage of
compositional variables and redefine the coefficients of the models to include a dependency on the
chemical environment. Then, I describe an heuristic procedure to obtain a model for a chemically
inhomogeneous system from previously built models of the constituents of the system.

The heuristics procedure consists on a set of approximations: an averaged calculation of short-
range interactions based on the local chemical environment; an averaged calculation of the elastic
properties of the material by applying approximations typically used in engineering; and an aver-
aged calculation of the dielectric properties and effective charges.

I applied the method to study chemical mixtures of STO and PTO, with which I could measure
the impact of the approximations performed. In the Manuscript I have shown that the approxima-
tion of short-range interactions is sound. The reproduction of the phonon modes of the different
compounds studied is overall qualitatively good, and in most cases, also quantitatively good. Be-
cause of the relative similarity of the studied compounds the treatment of the elastic properties is
also a success, with minimal errors when compared to DFT calculations; however, I believe that
it would be sound to study this approximation for more challenging mixtures. The calculation
of the dielectric properties of the material is shown to be the most impactful approximation. As
a consequence some of the deviations observed in the calculation of the phonons arise from an
inaccurate description of the dipole-dipole long-range interaction, as the approximation does not
take into account the anisotropy arising from the chemical order in the calculation of the dielectric
tensor. Also, possible inhomogeneities in the electronic screening are not considered in the present
scheme.

Nonetheless, one of the key aspects of the heuristics presented is that they preserve locally
the description of the original models when the material is chemically clustered or consists of big
homogeneous regions, like in the case of superlattices. Because of this I was able to reproduce cor-
rectly the vortex-like polarization structures observed in previous works for the (PTO)n/(STO)n
superlattices. Also, I show that nanowires of PTO in STO matrices are predicted by the model to
have a similar behavior than that of previously studied BTO nanowires in STO matrices.

The design of materials was projected originally to be explored within the chemically inhomoge-
neous system modelization. The idea was to apply the method of Inverse Monte Carlo simulations
to optimize the material’s properties as a function of the composition and atomic arrangement,
if time allowed to do so, following previous demonstrations in the literature [32, 33]. However,
the development of the methodologies presented in this Thesis turned into a very time demanding
research and we decided to leave this for a future work. Additionally, I decided to spend some time
working in collaborative projects where my methods for pure systems could be applied. As a result
of this, I have collaborated in the study of thermal transport accross the 180º ferroelectric domain
wall of PTO and the characterization of the first observed electric skyrmion in an homogeneous
material.
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6.1 Future perspectives
I would like to discuss here potential developments and future work regarding the methodologies
presented.

First, there are two aspects of the model fitting procedure that I believe is worth investigating.
One is regarding the expansion order used. In this work I have fitted models up to fourth-order
in the displacements. I have observed, however, that the more distorted is the GS with respect
the RS, the less accurate is the energy description. In order to overcome this, I think it is worth
exploring higher order models; because of the exponential growth of number of terms as the order
of the polynomial increases, a strategy would need to be developed in order to obtain efficiently
high-order model potentials. Also, the only reason the process is not fully automatic is that the
boundedness-from-below cannot be ensured currently. I believe that further development in this
direction would lead to a more solid method, facilitating the model construction process. A method
like this would allow to construct a database of high-performance models for large-scale materials
simulations.

Second, the heuristic scheme presented for the construction of chemically inhomogeneous sys-
tems is sound but improvable. On one hand, I think that it would be worth exploring the idea
of creating models by defining libraries of interactions as a function of the chemical environment.
This would provide a better description of the short-range interactions. On the other hand, there
is room for improvement in the approximation of the long-range interactions. A key limiting factor
here is that the available theory used typically in DFT and within the formulation of SCALE-UP
model potentials assumes that the dielectric tensor ε∞ is homogeneous throughout the material. A
local description of the electronic screening in a way that allows to describe long-range interactions
would be a better way of approaching the problem. This is however a challenging task. Also, I
found that the regular averaging of the dielectric tensor I apply in the approximation lacks the
anisotropy inherent to the chemically inhomogeneous systems. Hence, studying a similar approach
than that of the elastic properties of the material could be potentially helpful.

Finally, I believe that the Reference Structure of the model for the chemically inhomogeneous
systems could be also improved. The reason is that in the formulation development I am not taking
into account explicitely the impact of one material applying locally a strain difference to the other.
In other words: the RS is averaged from the original pure systems, but the models used are not
strain-corrected and are included as if their respective RS conditions were that of the original model
(with the exception of the long-range interactions, for which the size of the cell accounts in the
calculation). I believe that a sound correction for the method would be to add a description of
local strain deformations with respect the ideal RS. I think that this correction may have a strong
impact, particularily for materials in which the phonon soft modes are substantially impacted by
strain conditions, as in the case of STO.
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Appendix A

Implementation and procedural
scheme

The mathematical treatment of the method described in Section 3.1 was implemented in the form of
a package with name ModelMaker Lattice for SCALE-UP. The implementation of SCALE-UP model
potentials is written in FORTRAN 90. The package includes an extension to Python 2 that allows to
interactively initialize the models and perform calculations and manipulations. We took advantage
of this feature and developed an interface, also written in Python 2, that allows for the treatment of
the models and the manipulation of the parameters to perform the fitting of the model potentials
with the proposed scheme. We also developed a variety of tools written in the same language
that allow us to extract the training set data in an automatic way from the VASP calculations, the
different structural parameters of the RS, dielectric properties and elastic properties. Finally, we
took advantadge of the flexibility of the platform to write scripts that ease the process of analyzing
the eigenvectors and eigenvalues of the Hessian matrix of the system, prepare the standard set of
calculations needed from DFT to begin the fitting process, and so on.

A.1 Implementation details
The base code of the ModelMaker Lattice consists in two main libraries that interact during the
process of fitting a model. First, we developed a library that handles the process of fitting a given
model. In the notation of Section 3.1, given a Tp set of couplings with Θp associated parameter
space, a TS collection of data and the structural, dielectric and elastic properties of the RS, this
library allows the user to create a simple script to fit any desired subset Tp′ ⊆ Tp with parameters
Θp′ ⊆ Θp.

In order to do so, the code constructs all the elements of the linear system of equations rep-
resented in 3.1.15. Then, we solve the system using the NumPy package, which provides us with
an analytical solver for linear systems of equations. After the fitting is performed, the code au-
tomatically evaluates several key quantities such as the Goal Function value, the energy of the
configurations within the training set, the average energy deviations and outputs as well a com-
prehensive description of the couplings fitted. Of course, the output also contains the set of fitted
parameters, so that the user can readily use them to perform any sort of analysis on the fitted model.

The second library included in the package is the responsible for the handling of the stepwise
forward selection method described in Section 3.1.2. Technically, this library uses the fitting library
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described above to fit in an automatic way all the models that are necessary to follow with the
stepwise forward selection method. We coded also a simple way of analyzing the Hessian matrix
during the model construction process, so that figures like Figure 3.5 can be readily produced to
observe the performance of the model towards known data (which we consider a useful tool when
building the harmonic part of the models). It also outputs information on the evolution of the Goal
Function throughout the process, a detailed comprehensive list of the terms that are being added
at each step of the procedure and performs an analysis of the energetics behavior. It is important
to note that this library takes advantage on the fact that, given a particular set Tp and a TS, one
can construct the elements of the matrix in 3.1.15 and fitting different flavors of models is then but
a simple re-selection of the rows and columns of the matrix, so that the calculation of the matrix
is dramatically eased. Also, the implementation automatically handles the different contributions
of the system of equations, which means that automatically detects and asigns the contributions of
Efixed and retains in the LHS the actual representation of the terms that have to be fit.

Finally, we also wrote a script that uses the model generation library to inspect a proposed set
of terms, Qq, that the user may want to use to attempt to bound the models using the scheme
presented in Section 3.1.4.
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A.2 Flowcharts
In the following we present the flowcharts of the fitting and model construction libraries.

Figure A.1: Flowchart of the library responsible for the fitting of a given set of p terms Tp.
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Figure A.2: Flowchart of the library responsible for the model generation process of a given set of p terms Tp.

A.3 Schematics of the method
We conclude this Chapter by giving a short summary of the method of the overall model construc-
tion process, as we believe that such practical information will help the reader to understand the
overall process and, potentially, any future user of the package could benefit from it.

The overall model construction process can be regarded as a tree schematics.

1) Gathering the training set data. In the example, using Density Functional Theory to
produce it. It is recommended to have some knowledge on the material, such as the decay
length of short-range interactions, the metallic/insulator character, etc. The knowledge of the
ground state unit cell may provide critical information about the cell size requirements, also.

a) Calculation of the Reference Structure parameters, which we recommend to be a high-
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symmetry phase.
b) Calculation of the harmonic TS, for example, by computing the Hessian matrix of the Ref-

erence Structure.
c) Calculation of the Dielectric tensor and Born effective charges (if the material is an insulator)

and the elastic properties of the Reference Structure.
d) Performing Molecular Dynamics simulations at target temperatures that allows for the in-

spection of the PES at the region of interest.

2) Prepare the model construction process.

a) Extraction of the data generated in Step 1). It is sensible also to devote some time into
generating the various training sets that can be of use. We recommend to have, at least,
two training sets available: the TS responsible for the harmonic fit (described in 3.2.4), and
the TS@, that can be built from a Molecular Dynamics trajectory, for example. Also, for
materials similar to the application explained in this Chapter we recommend training sets
containing between 50 and 100 different configurations. The amount of configurations has
an impact in the efficiency of the code.

b) Definition and generation of the target term set Tp, that contains ideally all interactions used
for in the stepwise forward selection procedure. The symmetry of the Reference Structure is
of crucial knowledge to generate all the available SATs. For this, we recommend:

• Identify the harmonic couplings that can occur in the supercell that is being used for
the model generation. In the application for SrTiO3 this corresponded to a 2 × 2 × 2
40-atom supercell, for example.

• Selecting the level of anharmonicity that the material may require. This can be corrected
later in the process.

• Defining the minimal term set, Qq, that is going to be used to apply boundedness-from-
below. In order to do so, we recommend to consider terms describing simple two-body
interactions and strain-phonon couplings enabling the user to cap all possible directions
in the configurational space. However, using as few interactions as possible is important,
as the automatic inspection tool developed for this purpose searches for all combinations
of the proposed terms, and this number scales incredibly fast with |Qq|.
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3) Generate the model. We propose the following basic scheme, that can be adapted if necessary.

a) Fit through stepwise forward selection the harmonic part of the model. Then, observe the
convergence of the different modes occuring within the supercell by comparing the Hessian
matrix analysis of the model potential and the source of data obtained in Step 1). This
is usually providing useful information, both about the system and about problems or bad
approaches that the user may be putting in place.

b) Fit through stepwise forward selection the anharmonic part of the model. Note that the
50 models that result of this process will most likely be still unbounded-from-below. For
materials similar to the application presented in this Chapter, we recommend that the user
produces models with as many as 50 terms.

c) Define and apply a stopping criterium such as the one described in Section 3.2.4. For example,
the user can attempt to apply a confinement potential to study the properties of the ground
state that the model is predicting.

d) Apply the ensuring boundedness approach. This is the less automatic, and potentially most
difficult part of the process. We implemented a tool that eases the process through inspecting
the proposed Qq, but sometimes this process requires:

• Manually applying a self-consistent cycle to obtain positive parameters for the terms in
Qq (see Section 3.1.4).

• Adding new data to the Training Set, i.e., revisiting Step 1.d) or calculating 1.b) for
particular problematic or polymorph structures. As an example: for the generation of a
good SrTiO3 model we required to have information of an unrelated structure. Another
example can be the case of Lead Titanate. This material exhibits in the ground state a
phase that is polarized along one of the main axis (P ||[100]), but in order to properly
construct a model we found that it is relevant to add information of phases with P ||[110]
and P ||[111].

• Run Monte Carlo annealed simulations to find runaway solutions in unbounded mod-
els. Sometimes through inspection of the different contributions to the energy in such
structures one can realize how apply an adequate bound.

• Consider re-visiting Step 2.b). We find that, in some cases, it is useful to redefine the
order of anharmonicity that the model has.

• Reconsider that, maybe, Qq is not complete enough. Since it is a very restricted set
of terms it is possible that we added a particular choice of a term that, because of the
details of the dynamics of the system, is not covering properly the unboundedness. We
find that sometimes modifying this set can help find out a better solution.

e) As the final test to perform on the model, we strongly suggest to run high temperature
annealings for large supercells. Sometimes finite-size effects cover runaway directions in the
configurational space, but they become easier to access as we increase the dimension of Ω.
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In the following there is the list of publications produced during this Thesis:

• C. Escorihuela-Sayalero, J. C. Wojde l, and J. Íñiguez
Efficient systematic scheme to construct second-principles lattice dynamical models
Phys. Rev. B, vol. 95, p. 094115, March 2017

• J. A. Seijas-Bellido, C. Escorihuela-Sayalero, M. Royo, M. P. Ljungberg, J. C. Wojde l, J.
Íñiguez, and R. Rurali
A phononic switch based on ferroelectric domain walls
Phys. Rev. B, vol. 96, p. 140101, October 2017

• M. Royo, C. Escorihuela-Sayalero, J. Íñiguez, and R. Rurali
Ferroelectric domain wall phonon polarizer
Phys. Rev. Materials, vol. 1, p. 051402, October 2017

• Hong Jian Zhao, A. Filippetti, C. Escorihuela-Sayalero, P. Delugas, E. Canadell, L. Bellaiche,
V. Fiorentini, and J. Íñiguez
Meta-screening and permanence of polar distortion in metallized ferroelectrics
Pys. Rev. B, vol. 97, p. 054107, 2018

• M. A. Pereira Gonçalves, C. Escorihuela-Sayalero, P. Garca-Fernández, J. Junquera, and J.
Íñiguez
Theoretical guidelines to create and tune electric skyrmion bubbles
Science Advances, vol. 5, no. 2, 2019

• P. Torres, J. A. Seijas-Bellido, C. Escorihuela-Sayalero, J. Íñiguez, and R. Rurali
Theoretical investigation of lattice thermal conductivity and electrophononic effects in SrTiO3
Phys. Rev. Materials, vol. 3, March 2019)
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32. George, A. M., Íñiguez, J. & Bellaiche, L. Anomalous properties in ferroelectrics induced by
atomic ordering. Nature 413, 54–57. issn: 0028-0836, 1476-4687 (Sept. 2001).

109

http://arxiv.org/abs/cond-mat/0211443
http://arxiv.org/abs/cond-mat/0211443
https://link.aps.org/doi/10.1103/PhysRevB.85.184105
http://advances.sciencemag.org/content/5/2/eaau7023.full.pdf
http://advances.sciencemag.org/content/5/2/eaau7023


Bibliography
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Abstract

The application of Condensed Matter theory via simulation has been over the last decades a solid
approach to research in Materials Science. In particular for the case of Perovskite materials the
research has been extensive, and customarily (but not only) performed using Density Functional
Theory. The collective effort to develop lighter simulation techniques and exploring different theo-
retical approaches to computationally study materials has provided the scientific community with
the possibility to strengthen the interaction between experimental and theoretical research. How-
ever, the access to large-scale simulations is still nowadays limited due to the high computational
cost of such simulations. In 2013 J. C. Wojde l et al. presented a theory of modelization of crystals
known as second-principles models, and which are the central point of the development of my work.

In this Thesis I develop in depth a novel methodology to produce second-principles models effi-
ciently and in a quasi-automatic way from Density Functional Theory data. The scheme presented
here identifies, given a set of reliable data to be fit, the most relevant atomic couplings of a system.
The fitting process that I present is also analytical, which translates into a fast and accurate model
production. I also explore the modelization of chemically inhomogeneous or nanostructured sys-
tems using second-principles models. Moreover, I present a heuristic procedure to produce models
of the inhomogeneous material which is efficient and sound. Finally, I also show examples of com-
plex problems that can be tackled thanks to the second-principles models, such as the character of
180º anti-phase domain walls in SrTiO3, thermodynamical studies of heat transport accross 180º
domain walls in PbTiO3 and the reproduction of experimentally-observed polarization vortices in
(PbTiO3)n/(SrTiO3)n superlattices.
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