
Privacy and Linkability of Mining in Zcash
Alex Biryukov

University of Luxembourg
alex.biryukov@uni.lu

Daniel Feher
University of Luxembourg

daniel.feher@uni.lu

Abstract—With the growth in popularity for cryptocurrencies
the need for privacy preserving blockchains is growing as
well. Zcash is such a blockchain, providing transaction privacy
through zero-knowledge proofs. In this paper we analyze
transaction linkability in Zcash based on the currency minting
transactions (mining). Using predictable usage patterns and
clustering heuristics on mining transactions an attacker can
link to publicly visible addresses over 84% of the volume
of the transactions that use a ZK-proof. Since majority of
Zcash transactions are not yet using ZK-proofs, we show that
overall 95.5% of the total number of Zcash transactions are
potentially linkable to public addresses by just observing the
mining activity.

Index Terms—blockchain, cryptocurrency, privacy, linkabil-
ity, Zcash, mining

I. INTRODUCTION

Since the birth of Bitcoin [1], the popularity of blockchain
research and technology has been growing at an almost
unmatched pace. A blockchain consists of blocks of valid
transactions, while the separate blocks are chained together
with a cryptographic hash function. The idea of providing a
currency without any central authority quickly grabbed the
attention of many people, including researchers.

Even though originally thought to be anonymous, due
to its use of a public key infrastructure as pseudonyms,
Bitcoin was shown to be a lot less private in practice, as
every transaction information becomes forever public, being
stored in the immutable blockchain. This led to some new
blockchains being designed, with their main focus being the
privacy of the users. The two most popular (and relevant
from research point of view) privacy-oriented blockchains
are Monero and Zcash. Monero provides privacy by cou-
pling several possible transactions with the actual spend-
ing transaction while also hiding the actual amounts using
cryptographic ring signatures. Zcash’s privacy is based on
practical zero-knowledge proofs called zk-SNARKs. Zcash’s
proofs are theoretically secure, providing safety as long as
the underlying Elliptic Curve Cryptography is not broken and
the initialization procedure (generating a common reference
string) has been performed in a secure and trusted way.
Zcash’s transactions that use a zero knowledge proof are
called shielded transactions.

On the other hand Zcash also has a public part which
mimics that of Bitcoin. There can be transactions which move
coins from a public address to a shielded one (hiding) and
vice versa (revealing). The main goal of this paper is to
make an in-depth study of linkability of hiding and revealing

shielded transactions, thus comparing the effect of the new
anonymity features of Zcash with those of Bitcoin.

As was shown in [2], the majority of shielded transactions
are connected to mining pools. Mining pools are collections
of miners looking for a solution of the respective proof
of work (a mathematical lottery based on finding partial
preimages for a cryptographic hash function), where they
mine together in order to reduce the variance of solving a
puzzle while keeping the expected returns in terms of earned
coins. These pools are usually managed by a single entity
who handles the payouts to the miners proportional to the
amount of work they provided for solving a puzzle. In Zcash
a miner can only claim its reward for solving a puzzle after it
moved it to a shielded address (hiding) in order to anonymize
the newly minted coins, however in this paper we show
that this approach does not work properly. We also point
at the shortcomings of the previous analysis [2] and provide
novel clustering heuristics that cover 88.2% of the mined
coins tracked through the shielded pool. Overall we increase
the coverage based on mining pools in terms of transaction
volume from 65.6% in [2] to 84.1% on the same dataset.

This work shows that even if a blockchain is theoretically
safe, bad use practices and an intermix of hidden and public
transactions can lead to considerable information leakage
defeating the very strong cryptographic privacy features of
Zcash. Moreover, since hidden transactions form only 13.4%
of the total number of transactions, 95.5% of all Zcash
transactions are currently potentially linkable, which is very
close to privacy level of the original Bitcoin. This situation
should be gradually improving with the recent ”sapling” up-
date which speeds up the processing of hidden transactions.
Nevertheless this study questions the whole concept of a
blockchain with mixed public and private transactions.

A. Related Work

There have been multiple studies focusing on deanonymiz-
ing blockchain transactions [3]–[5], some with a special focus
on the privacy preserving blockchains, mainly on Monero [6],
[7] and Dash [8].

There has been a short paper concerning Zcash by Ques-
nelle [9] focusing on just one of the predictable usage
patterns - the so-called round trip transactions. The paper
describes the linkage of equal hiding and revealing values,
where the time difference is short between them. Another
recent article about Zcash is by Kappos et al. [2], which
is in general more concerned about directly deanonymizing
specific entities, while our work is purely focused on mining

pools (which are the source of Zcash and produce majority
of the shielded transactions). In the rest of the paper we
will show the shortcomings and inconsistencies considering
mining pools in that paper by reproducing their results while
also providing novel clustering heuristics for mining pools
that perform significantly better. Our paper also covers 11
months more data, which is roughly 61% more blocks and
78% more transactions, as Zcash is still only 2 years old.

II. BACKGROUND

Zcash is a privacy preserving cryptocurrency launched
on 28 October, 2016. Compared to Monero, Zcash’s pri-
vacy is based on practical zero-knowledge proofs called
zk-SNARKs [10]–[12]. These proofs are common reference
string (CRS) based proofs, where the CRS was generated
with a multiparty protocol.

The structure of Zcash is similar to that of Bitcoin, as the
original version of Zcash was planned to be an extension of
the bitcoin protocol [13]. The blockchain itself is unspent
transaction output (UTXO) based, using 2.5 minute block
generation time and Equihash [14] as its proof-of-work
function. The current mining reward is 12.5 ZEC/block, 10
ZEC goes to the miner who found the block and 2.5 ZEC
goes to the Zcash developers as the ”Founder’s Reward”.
Such a transaction is called a ”Coinbase” transaction. After
the first 4 years, the Mining reward will be reduced to 6.25
ZEC, but all of it will go to the miner.

The currency in the blockchain is called ZEC, while the
smallest possible value is 1 Zatoshi, where 1 ZEC = 108

Zatoshi. The default transaction fee is 104 Zatoshi. The total
supply of ZEC will be slightly less than 21 million, which
is the same as in Bitcoin.

The mining is mostly done by mining pools, where the
average threshold for payouts is 106 Zatoshi, but some pools
also use 105 Zatoshi as the lower limit.

In general there are two types of transactions in Zcash.
The first are transparent transactions. These transactions work
the same way as Bitcoin transactions, with some previously
unspent outputs as the inputs, and the new unspent outputs
as the outputs of the transaction. The difference between the
overall value of inputs and outputs is the transaction fee.
They can only transfer coins between public or transparent
addresses, which in the rest of the paper we will refer to
as t-addresses, since in the blockchain they start with a ”t”.
Such transactions are also called t-to-t transactions and are
currently a default (this may change in the future).

The second type of transactions are the ones that send or
receive coins to or from a hidden address. These addresses
start with a ”z” and thus in the rest of the paper we will refer
to them as z-addresses. A transaction can use both t- and z-
addresses, but the z-address is not revealed on the chain, only
a proof that there is a valid z-address that sent or received
the unknown amount of coins. In the rest of the paper we
will refer to any transaction that involves a z-address as a
shielded transaction.

Shielded transactions can consist of several underlying
zero knowledge proofs called joinsplits, as a joinsplit only

supports 2 hidden inputs and 2 hidden outputs due to tech-
nical limitations of the first version of the ZK-cryptography
where the name joinsplit originates as well (the new ver-
sion called ”sapling” does not have this limitation). This
means that if somebody wants to send or receive coins
from more than 2 z-addresses, they will have to generate
multiple proofs. A joinsplit has two public parameters, the
amount of previously public coins, called ”vpub old” , and
similarly the amount of revealed new public coins, called
”vpub new”. There is a pair of these values for every
joinsplit in the transaction. If we sum up every ”vpub old”
value for every shielded transaction up to a block b (lets
call this sum hidingsumb), and then do the same for every
”vpub new” value as well (revealingsumb), then the differ-
ence hidingsumb − revealingsumb is exactly how many coins
are in hidden addresses at the time of block b.

There can be 4 general different shielded transactions:
• z-to-z transactions: the simplest case is where there is no

public input or output, which means the transfer is only
between z-addresses. The only revealed new amount in
the ”vpub new” field is the transaction fee.

• z-to-t transactions: in these transactions there is no
public input, but there is at least one public output,
where the sum of the outputs has to be less than or
equal to the revealed new coins, while the remainder is
the transaction fee.

• t-to-z transactions: in this case, there are no public
outputs in a transaction, only public inputs. The sum
of the inputs has to be larger than or equal to the
amount of newly hidden coins, while the remainder is
the transaction fee.

• tz-to-tz transactions: the last case, where zk-SNARKs
are involved, but there are public inputs and outputs as
well in the transaction. In this case the transaction fee is
the difference between the newly revealed coins of the
zk-SNARKs and the sum of public outputs.

t-out Yes No Yes
t-in z-in/out No Yes Yes
Yes No t-to-t t-to-z tz-to-tz
No Yes z-to-t z-to-z z-to-t
Yes Yes tz-to-tz t-to-z tz-to-tz

TABLE I: Every type of transaction based on the type of
input and output addresses, and how they are identified. Note
that we can distinguish only 5 types (only 4 that are shielded)
out of the 9 possible, as we do not know whether there was
a z-address as input or output, when there is a t-address as
input or output.

A. Notation

Let us describe in detail the notation that we will use in the
rest of the paper. The chain of blocks itself is noted with a C.
The n-th block of the chain is noted with Cn. The notation
C[n] means the first n blocks of the chain, C[−n] means the
last n blocks of a chain, while C[k,n] is the range of blocks
from block k to block n.

The set of transactions in the block n is noted as Xn, while
X[n], X[−n] and X[k,n] are the same as before, but in this
case containing all the transactions in these blocks in their
order. Shielded transactions are noted as Xsh. This means,
that to list every shielded transaction in a range of blocks
from block k to n would be denoted as Xsh

[k,n].
The inputs and outputs of a transaction x ∈ X are simply

noted as inputs(x) and outputs(x). To denote the input or
output addresses of a transaction, we write inputsadr(x) and
outputsadr(x). For the values of these addresses, we write
inputsval(x) and outputsval(x). A single shielded transaction
is noted as xsh. The value vpub old and vpub new of the
transaction is noted as xsh

vo and xsh
vn.

B. Tools used

An important aspect of blockchains is that, in order to
verify any transaction, a full node has to keep a database
of every transaction that has ever happened. This data can
become quite large: the Bitcoin chain is currently more than
190GB, while the Zcash chain is 20 GB. Because of the
size of the database, the tools used for the analysis become
an important aspect on its own, since efficiency of the tool
determines the number of different experiments we can run
on the database.

We have created a tool specific for Zcash as a fork
of the recently released tool BlockSci [8], specialized for
Bitcoin [1] and its hard forks. It is reported to be multiple
times faster than any previous tool. The tool is available at
https://github.com/cryptolu/BlockSci/.

Zcash [15] is based on Zerocash [13] and was originally
a hard fork of Bitcoin. The current commercial release
is similar to Bitcoin in its main structure, and the RPC
interface of the official wallet is an extension of the official
Bitcoin interface. Using this, we could modify the BlockSci
code to parse Zcash as well, as the tool supports parsing
information from an RPC interface. We have extended the
original database with the new attributes that only appear in
a Zcash transaction. Let us explain below what these are.

We defined an attribute signifying that a transaction is a
shielded transaction, which means it involves a zk-SNARK.
If it is, then we add as extra attributes the number of joinsplits
in the transaction, and their public values. Just to simplify,
we can also request the sum of all of the public inputs and
outputs of the joinsplits.

In our tests1 we used the Python interface of the library,
as Zcash is still fairly small in size compared to Bitcoin, and
the efficiency of our functions were still manageable. As an
example for the efficiency, we ran a quick test, where we
cycled through every single transaction whether they involve
a zk-SNARK, and if they do, we keep track of how much
value was hidden and revealed overall, while also keeping
track of the different kind of shielded transactions (Table I).
This script finished in 6.5 seconds without any parallelization
in the code (for 416,062 blocks and 3,993,633 transactions).

1Computer Specs: AMD Ryzen 5 2400g, 32 GB RAM, Running Ubuntu
18.04

III. DEANONYMIZING THE MINERS

In Zcash block rewards are always claimed by sending the
coins to a z-address first. After that, the owner of the coin can
use it freely. This led us to investigate how miners and mining
pools use their rewards: do they convert it back to public
addresses, and if yes, could a connection be found between
these two transactions? Another aspect is that currently no
mining pool (that we know of) supports payouts to a hidden
address. This means that these miner payouts have to be
visible somewhere on the blockchain (as they are paid to
public addresses), which means the mining pool has to reveal
the mined coins.

There are two general patterns for payouts. The first one
is converting the mined coins back to a public address
controlled by the pool, and then paying the miners in public
transactions (we will call it pattern T). The second pattern
is paying the miners directly from a hidden address to the
public addresses (pattern Z). This means that the transaction
on the blockchain appears as having no inputs (since the coins
are sent from a hidden address) but having tens, hundreds,
or sometimes even thousands of outputs. For both cases the
single payment per address is usually in the range of 0.001-
0.1 ZEC. Since this is a very specific transaction structure,
it is easy to recognize.

To link transactions to mining pools, the simplest method
is checking the website of the mining pool, whether they have
a top miner section with the miner’s public Zcash address. If
this information is available, we can scan for these addresses
and their latest received transactions, mapping them to the
previously identified payment structures. This way we can
identify which pattern the specific mining pool is using.

A. Pattern T Mining Pools

In the case of pattern T, after a constant public ad-
dress is found, the rewards are transferred directly to a set
of addresses controlled by the same entity a (signed as
controlled(a)). By summing up the total amount of received
coins, they become linkable to the specific input of the
mining pool and the direct connection between the hiding
and revealing transactions can be made (Heuristic 1).

Heuristic 1: Pattern T Heuristic, with a starting address a

procedure PATTERNTPOOL(a)
PoolAddrs ← controlled(a)
PoolTxs = ∅
for x ∈ Xsh

[k,n] do
if ∃ outputsadr(x) ∈ PoolAddrs then

PoolTxs ← x
end if

end for
return PoolTxs

end procedure

Even if the information on top miners is not available, the
payout transactions of a mining pool can be still found. To
find pools using pattern T, first scan through every shielded

transaction disregarding the ones that are already identified.
Calculate how much ZEC any public address received from
a hidden address in the same range of blocks as before, and
then compare and correlate these values to how many blocks
different mining pools mined. If one extends this approach
to multiple scanned block intervals, the link becomes even
stronger. We used this approach to find the corresponding
addresses and will describe the results in more detail in
section III-C.

We have tested this approach with a varying set of block
ranges and accuracy requirements. The block ranges we used
were 500, 1000, 2000, 4000, 8000 and 10000. In terms of
accuracy of a match we used 10%, 5% and 1%. In our
tests there was no overall block range that worked for all of
the pools. The reason for that is that mining pools transfer
their received coins through a shielded address on a different
schedule. Some pools shield their coins instantly, while others
might wait to accumulate thousands of coins to hide and then
later reveal them. The later would give reason to using larger
block ranges (e.g. more than 4000). On the other hand if
a pool changes its address often, the long range might not
provide enough matches, while a shorter range would work
better.

The biggest drawback of this method is that it is difficult
to link small mining pools that have only mined a handful of
blocks, as in those cases there are always multiple matches
for amount of revealed values. In statistical terms this is not
a huge problem, as these are only marginal pools and they
provide less than 1% of the mining power (number of blocks
mined). If higher precision is necessary one could mine in
these smaller pools, to identify the relevant addresses.

B. Pattern Z Mining Pools

For pattern Z, the connection between the hiding and
revealing transactions is not trivial, as there is no single
constant address, instead hundreds - or sometimes thousands
- of addresses. However the actual miner addresses will reap-
pear regularly in the pool reward transactions with frequency
depending on the power of their mining hardware and on the
frequency of the pool payouts. Thus we scan every shielded
transaction and find the ones with the pool-payout structure
(i.e. lots of outputs). Once a pattern Z transaction is found
we check its outputs, and look for overlapping addresses with
the already existing set of miner addresses. If the number of
overlaps exceeds a certain threshold (e.g. ≥40), we consider
that transaction to be sent by the same mining pool, and also
expand our set of miners with the new addresses. Scanning
iteratively through a range of blocks until a new transactions
and miners can be added to the existing sets, it is possible
to find most of the transactions connected to a pool (2).

The drawback of this approach is, that it is only usable for
shorter periods of time, e.g. 2,000 blocks (∼4 days), as we
have observed that miners sometimes change their mining
pools. If the range of blocks is too large, because of the
migrating miners one might consider a transaction from a
different pool to be the same as the currently investigated one,
since the number of overlapping addresses would become too

Heuristic 2: Pattern Z Heuristic, with an sx as a starting
transaction

procedure PATTERNZPOOL(sx,Xsh
[k,n])

Miners ← outputsadr(sx)
PoolTxs ← sx
OldMiners = ∅
while OldMiners 6= Miners do . Execute, until the

miner set cannot be updated anymore
OldMiners = Miners
for x ∈ Xsh

[k,n] do
if |outputsadr(x) ∩ Miners | ≥ 40 then

Miners ← outputsadr(x)
PoolTxs ← x

end if
end for

end while
return PoolTxs

end procedure

high. If that happens even for one transaction, from that point
on the heuristic might identify even more transactions from
the different pool, creating a very large set of transactions
and miners of multiple mining pools.

The accuracy of the identified transaction can be verified
by adding up the overall value of the payouts and the
number of blocks the mining pool actually mined, and then
comparing these two values whether they are close to each
other. The algorithm accepts if the difference is small (≤5%).

Let us call the set of remaining not-yet-linked mining
power from block k to n UnknownPower(k,n). To find a
pool using pattern Z that does not have a top miners section
on their website we use the following approach. First we
disregard every shielded transaction that has been already
identified. Then we look for transactions that have tens
of outputs. For every such transaction we check with the
previous method (2) for overlapping addresses in them, add
up the overall received value and compare it with the number
of mined blocks per mining pool (3).

Choosing the correct threshold values is a non trivial task,
and because of that we have tested the heuristic with a wide
selection of them. We ran the algorithm with differing block
ranges (the same ones as for pattern T), while we have
also used different number of overlapping miners (10, 20,
40, 80). Our experiments show that using smaller overlap
sizes (10) causes over-identification of transactions because
of miners who either mine for multiple pools, or switch
pools in-between, while a too large threshold value will not
identify enough transactions. This problem becomes worse
with increase in the block range, as it is more likely that
more miners will switch a mining pool in a larger timespan.

C. Results of the Heuristics

If we consider the entire chain, then our heuristics linked
88.4% of the mining reward movement in the shielded
addresses. In the following table (Table II) we show the exact

Heuristic 3: Heuristic for finding a pattern Z style mining
pool without a base tx

The set of uncovered miner transactions are used as
MinerTxs
UnknownTxs = Xsh

[k,n] \ MinerTxs
NewPools = ∅
for x ∈ UnknownTxs do

NewPools ← PatternZPool(x,UncoveredTxs)
end for
for p ∈ NewPools do

if
∑

x∈p outputsval(x) ∈ UnknownPower(k,n) then
p is the set of payout transactions for the pool with

the matching mining power
end if

end for

results per mining pool, where we also provide the amount
of value mined by the pool to show that our linking was
unique. Overall our heuristics linked 84% of the volume of
z-to-t transactions, if we add the simple Founder Heuristic
from [2]. Without those large valued transactions we cover
70.3% of the volume.

Name Pattern T Pattern Z Mined
Value

Linked
Portion

Flypool 14,435 94,277 1.79M ZEC 0.995
F2pool 1,075 0 1.35M ZEC 0.994

Nanopool 0 40,083 338K ZEC 0.981
Poolin 126 0 138K ZEC 0.996

Suprnova 12,920 0 167K ZEC 0.961
Coinmine.pl 0 7,204 78K ZEC 0.925

MiningPoolHub 7,5982 0 156K ZEC 0.999
BitClub Pool 672 0 1.9K ZEC 0.969
DwarfPool 2,953 0 27K ZEC 1.0
Slushpool 3,027 0 49K ZEC 0.999
Antpool 378 0 93.8K ZEC 0.999

Zpool.Guru 88 0 824 ZEC 1.0
Nicehash 203 0 429 ZEC 0.999

Luxor 185 0 6K ZEC 1.0
Solo Miners 3,698 0 43.8K ZEC 1.0

TABLE II: Results from our heuristic per mining pools, only
for pools and miners where the linked transactions by our
heuristics were verified by the overall mined values

Below we show how many transactions our heuristics
linked this way and how many transaction were in the
different categories before and after this process.
• Remaining shielded transactions: 179,057 (originally

534,944, 66.5% have been linked)
• t-to-z: 58,557 (originally 222,306, 73.6% linked)
• z-to-t and maybe to-z: 88,616 (originally 280,754,

68.4% linked)
• z-to-z: 14,431 (8% of the remaining transactions)
• tz-to-tz: 17,453 (9.7% of the remaining transactions)
In terms of thresholds, as we have mentioned earlier we

have experimented with many of them, and for Pattern Z we

2We could only verify MiningPoolHub’s payouts from block 193,000 and
BitClub Pool’s payouts from block 120,000

achieved the best results for a range of blocks of 2,000 and an
overlap of 80 for Flypool and Nanopool, while if we remove
those transactions from our set, then for Coinmine.pl the best
results were achieved by an overlap of 20 miners and a block
range of 10,000. Choosing a too small overlap and/or too
large block range results in marking too many transactions
because of miner migration and mining for multiple pools,
while too large overlap and too small block range will result
in marking not enough transactions.

D. Accuracy of the Heuristics

In case of pattern T payouts, the transaction linkage is
sound and verifiable by comparing the number of blocks
mined by an entity and the amount of ZEC the suspected
address received in the same period. Indeed, these two values
only differ by a small amount (5%), and there is no other
entity with a similar mining power in the inspected interval
(more than 10% difference).

In case of pattern Z payouts, the verification is done
similarly, but in this case it can not be decided whether every
single transaction was found, as a statistically negligible
number of payout transactions could be missed. On the other
hand, if an attacker starts with a payout transaction from a
different mining pool, the resulting set of transactions will
be disjoint, if the parameters are set correctly and the overall
payed out value will match the number of mined blocks as
well. Both of our heuristics are verified with the results in
Table II.

IV. COMPARISON OF RESULTS TO PREVIOUS WORK

Below we attempted to reproduce the results (Table III)
of the paper by Kappos et al. [2], where we followed the
instructions step-by-step provided by their paper. We also
compare our verified results to theirs on the same dataset.

Name Kappos et. al. [2] Reproduction Our Work
Flypool 3 3 67,985
F2pool 720 717 717

Nanopool 4,107 3,568 19,984
Suprnova 0 0 11,185

Coinmine.pl 0 0 6,678
Waterhole 5 5 0

BitClub Pool 1,516 1,210 101
MiningPoolHub 0 0 1,335

DwarfPool 1 1 2,833
Slushpool 0 0 941
Coinotron 0 0 0
Nicehash 0 0 203

MinerGate 0 0 0
Zecmine.pro 0 0 0

TABLE III: Comparison of results with [2] in terms of
number of linked z-to-t transactions, reproduction of their
and our Pattern T (1) and Pattern Z (2) heuristics on the
same dataset

In their paper they claim to uncover 120,629 of the z-
to-t transaction that are connected to miners, but based on
the paper and the data they report one can only count
their Founder transactions (1,953) and the ones in Table
III, which overall sums up to 8,305. On the other hand

we have implemented their heuristics, and the heuristic did
return 98,274 miner transactions accounting for 62.8% of
the overall value (which is more than their reported 52.1%).
If we remove the restriction of at least 100 outputs in the
transaction, we uncover ∼122,000 transactions accounting
for 69.4% of the overall value. We could not find out what
causes these discrepancies.

We uncovered these results using every address that ever
mined a block. When we reduced the addresses to only ones
controlled by a mining pool, the results reduced to 6,853
transactions and 26.9% of the revealed value. This harsh
reduce in results was caused by the following. There were
3 addresses that mined a single (or very few) block that are
controlled by a large exchange. If we include all transactions
where the receiver addresses are controlled by someone who
mined a block, we include all the addresses that are controlled
by the exchange, which results in thousands of addresses.
As a lot of miners mine directly to an exchange address,
most of these transaction are actually payouts but they are
not found based on the logic presented in the paper. This is
reinforced by the discrepancy between their reported number
of uncovered transactions (120,629) and the number of z-to-t
transactions linked in Table III.

Our opinion is that the authors did not consider the
difference between how many blocks somebody mined and
how much value was comparatively payed out. With our
implementation of their heuristic there are cases where a
miner mined only 1 block in the history of the chain,
but are somehow responsible for the payouts of thousands
of transactions. Otherwise we might have misunderstood
something based in the paper, but we tried to implement the
heuristics literally.

A. Inflation of results

The results of [2] in terms of % is inflated by the behavior
of F2pool. F2pool is one of the largest mining pools that
used a payout structure that was a mixture of pattern-T and
pattern-Z payouts which we describe in detail.

First, let us refer to the address corresponding to F2Pool
that received the minted coins in a coinbase transaction as
TF2. As we have described earlier, in order for a miner to use
the newly minted coins, it has to spend it first to a shielded
address. In case of F2Pool this happened on average 1.6 times
a day. Then in a single revealing transaction the pool paid out
all of its miners, where the value of the revealing transaction
was the same as the value of the hiding transaction minus the
transaction fee. Among the output addresses one address that
also receives coins is TF2. Then later the next time F2Pool is
hiding its minted coins among the inputs of that transaction
is the output of the previous revealing transaction.

This constant loop of coins inflates the revealed amount
of coins from a shielded address. After calculating it exactly,
we have found that this single loop is responsible for 492
thousand coins of the overall 3.788 million coins (13.1%)
revealed during the timespan of [2]. If we remove the
loop and only consider coins that were not part of it their
original 65.6% result is reduced to 60.5%, while our approach

decreases from 84.1% only to 82% (considering only mining
and founder transactions in both cases).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An Empirical

Analysis of Anonymity in Zcash,” ArXiv e-prints, May 2018.
[3] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin trans-

action graph,” in International Conference on Financial Cryptography
and Data Security. Springer, 2013, pp. 6–24.

[4] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: characterizing
payments among men with no names,” in Proceedings of the 2013
conference on Internet measurement conference. ACM, 2013, pp.
127–140.

[5] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation
of clients in bitcoin p2p network,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 15–29.

[6] A. Miller, M. Möser, K. Lee, and A. Narayanan, “An empirical
analysis of linkability in the monero blockchain,” arXiv preprint
arXiv:1704.04299, 2017.

[7] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis
of moneros blockchain,” in European Symposium on Research in
Computer Security. Springer, 2017, pp. 153–173.

[8] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan,
“Blocksci: Design and applications of a blockchain analysis platform,”
arXiv preprint arXiv:1709.02489, 2017.

[9] J. Quesnelle, “On the linkability of zcash transactions,” arXiv preprint
arXiv:1712.01210, 2017.

[10] J. Groth and A. Sahai, “Efficient non-interactive proof systems for
bilinear groups,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2008, pp.
415–432.

[11] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky,
“Succinct non-interactive arguments via linear interactive proofs,” in
Theory of Cryptography. Springer, 2013, pp. 315–333.

[12] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013, pp. 238–252.

[13] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Security and Privacy (SP), 2014 IEEE Symposium on.
IEEE, 2014, pp. 459–474.

[14] A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-
work based on the generalized birthday problem,” Ledger, vol. 2, pp.
1–30, 2017.

[15] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” Tech. rep. 2016-1.10. Zerocoin Electric Coin Company,
Tech. Rep., 2016.

