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Abstract

Chemotaxis, the movement of an organism in response to a chemical stimulus, is a typical feature
of many microbiological systems. In particular, the social amoeba Disctyostelium discoideum is widely
used as a model organism, but it is not still clear how it behaves in heterogeneous environments. A
few models focused on mechanical features have already addressed the question; however, we propose
that phenomenological models focusing on the dynamics may provide new meaningful data. Conse-
quently, by means of a specific Multi-agent system model, we studied the dynamical features emerging
from complex social interactions among individuals belonging to amoeboids colonies.
After defining an appropriate metric to perform meaningful measurements, we found that: a) obstacles
play the role of local topological perturbation, as they alter the flux of chemical signals; b) that obstacle
that physically block the cellular motion as well as the chemicals elicit dynamical evolutions that are
not statistically distinguishable from the case where obstacles that do not interfere physically with said
motion; c) that fluctuations of the dynamics can lead to better exploration of the physical space, thus
preventing multiple stable aggregates.
From previous results, we may speculate about the fact that chemotactic cells, in many cases, can
avoid obstacles by simply following the altered chemical gradient: social interactions seem to be suf-
ficient to guarantee the aggregation of the whole colony past numerous obstacles. It is then unlikely
that cells have developed special mechanisms to cope with the presence of topological perturbation
sources. Nevertheless, we suggest that further studies can provide better understanding and that,
in order to gain deeper knowledge, mechanical models should be coupled with phenomenological,
system-oriented ones.

1 Background

The social amoeba Dictyostelium dicoideum, a model organism in biomedical research [1, 2], is a well-
studied example of chemotactic life-form [3–8]. Chemotaxis involves the detection of local gradients
of chemical signals (spatial detection), the polarization of the cell and the subsequent movement of the
cell up the gradient [9, 10]. In particular, starving cells of D. discoideum are able to send and to process
periodic stimuli of 3’,5’-cyclic adenosine monophosphate (cAMP) that acts as chemoattractor [11–14].
As a consequence, a scattered colony is able to self-coordinate towards an aggregate bulk [15, 16].
Since directed migration is a common feature in many cell systems, D. discoideum is widely studied [17]
and has inspired problems of decentralized gathering [18, 19]. Consequently, over the years, many
aspects of chemotactic behavior within amoebozoan colonies have been studied both from an experi-
mental [14, 20–22] and a theoretical [23–30] point of view. However, most of them only focus on ho-
mogeneous environments, while, on the contrary, heterogeneous environments are typical of in vivo
conditions. A few studies have already tackled such issue [31, 32]; however, what was analyzed with
individual-based models were the mechanical and rheological properties of the microbiological sys-
tem. As far as we know, the only attempt to simulate the behavior of a whole colony in a heteroge-
neous environment with discrete models at an appropriate scale makes use of the Cellular Automata
method [33, 34]. However, sometimes such work lacks the needed complexity level. By using a Multi-
agent system [35,36] model, the purpose of this article is to study the efficiency of chemotaxias in achiev-
ing controlled cell migration from a complex systems perspective [37, 38], thus focusing on dynamical
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features and self-organization [39].
This paper is structured as follows: first, we defend the model choice and highlight the point-of-view
shift occurring in phenomenological simulations like ours. Second, we define a quantitative variable
that is appropriate to measure a complex colony evolution without direct dependence on the environ-
mental topology. Third, we present the results: we study the obstacle-avoidance efficiency as a function
of the aggregation efficacy of the colony as a whole and of the type of obstacle. Obstacles can either
be “physical” (they block both cells and signals, for which they act as a sink) or “chemical” (they let
cells through, but block signals). Finally, we speculate about the effect of noise on the probability of
metastable clusters to appear by providing preliminary results. The to-be-presented approach can be
effective both in a single-obstacle and a multi-obstacle environment, thus helping researchers to explore
the entire space of configurations.

2 Methodology

Analytically speaking, obstacles are a source of topological perturbation: they alter the Euclidean plane
according to their size, shape and position. Consequently, they introduce local border conditions. In
particular, “physical” obstacles are represented by reflecting (local) boundary conditions, while “chemi-
cal” obstacles do not alter the physical plane. In plain English, it means that “physical” obstacles prevent
amoebas from crossing them, while “chemical” ones do not, albeit interfering with the signals. More-
over, environmental heterogeneity occurs on a scale comparable to that of individual cells [32]. As a
consequence, macroscopic continuum models (ODEs) of cell movement are not appropriate or have
great difficulties in tackling the problem of heterogeneous domains [40].
On the other hand, individual-based models that focus on single cells neglect the complexity of the
system: they effectively inquire what happens to the cell movement in response to chemical gradients
∇C = g ẑ (after having appropriately oriented the coordinates) around an obstacle, but they do not
consider the dynamical interactions among multiple cells behaving as a complex network [41–43]. In
fact, D. discoideum colonies consist of a population of simple agents interacting locally with one another
and with their environment. Although there is no centralized control structure dictating how individual
agents should behave, local interactions (even random ones, up to a certain degree) between such agents
may lead to the emergence of global complex behavior [44]. Consequently, another modeling approach
may better analyze those dynamical features, such as positive feedback loops or multi-stability [45], that
typically let behaviors such as collective choices and self-organization to emerge [46]. In the present
context, we may conjecture that mutual interactions among cells can lead to (or, at least, contribute to)
coordinated cell movement and obstacle avoidance.
Consequently, we may need a meso-scale approach, which involves discrete and individual-based mod-
eling and that focuses on the colony as a whole and not on a limited number of cells. Moreover, it should
be constructed so that we can analyze the dynamical properties of the system. What we believe to be
the best approach that adheres to the listed requirements is the Multi Agent System paradigm [35, 47].

2.1 The chosen MAS model

In order to perform simulations and analysis, we make use of an existing MAS-based computational
framework that was purposefully designed to address D. discoideum behavior and that has already been
tested and validated [48]. Recall that such model involves the generation of the desired dynamic after
stating individual behavioral rules and parameters. Four main agents types compose the model archi-
tecture: Environment Env (a squared closed dim× dim domain, composed by cells with associated food
sources b(t) possibly growing over time), Amoeba Am (proactive agents representing individual cells),
cAMP (vectorial packages of chemical signal) and Obstacles Obs. It has been shown [48] that the vec-
torial message-sharing approach generates results that are consistent to those obtained with the typical
diffusion of chemicals, as we can substitute a chemical gradient ∇C = g ẑ with one that is associated to
the flux of probability of sensing a discrete signal: P amoeba({IstarvingcAMP : Eg 7→ per}), that is, the probabil-
ity of a (starving) moving amoeba processing the information carried by an absorbed cAMP message.
At the same time, such strategy is cheaper in terms of computational cost than diffusive ones [49,50]. In
addition, stochastic perturbations and individual failures can be added easily and controlled by tuning
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the respective parameters.
The model was carefully examined and validated by identifying its scale-invariant region (with respect
to its microscopic variable N , number of amoebas, and the macroscopic one ρ, density of amoebas),
by quantifying its associated systematic errors and by comparing its results to those obtained by other
models and the biological literature. Although it only focuses on the first aggregating stages of the gath-
ering process, and it does not implement adhesion forces between neighbor cells, we believe that said
model could represent an appropriate tool to investigate the dynamical properties of a complex colony
while coping with topological perturbations due to obstacles.

Figure 1: Representation of a typical setting: a squared environment with constant food sources (orange)
contains agent Amoeba (green) that is able to reproduce the sending-sensing-orienting-moving behavior
that characterize chemotactical motion. Blue dots are cAMP agents, while gray objects are obstacles.

2.2 Defining quantitative measurements

In the present section, we suggest a “mean local gathering factor” metric in order to quantify the aggre-
gation stages of the colony. In particular, it should have the following properties: it has to be a mono-
tonically increasing function of time t if the colony is steadily aggregating and it must not be directly
dependent on the environmental topology. Thanks to those properties, it is suitable a) to quantitatively
assess the evolution of the dynamics over time (as a function of the aggregation rate of the whole colony)
and b) to cope with a heterogeneous environment. The metric is defined as follows:

1. We define a certain range (in turn defining a “neighborhood area”) under which two cells can
be said to be neighbors. The reason for defining a “range” is that, as adhesion cells are not im-
plemented in the model, cells are kept close by social interactions (message sharing) [48]. As a
consequence, two neighbor cells can vary their distance in time by oscillating around each other.
For each agent, said “ neighborhood range” RN ∈ R is defined as follows:

RN = R+ vA ·∆t− r

whereR is the agent radius, vA is the agent speed, ∆t is equal to 1 cycle; r is the mean distance from
the centers of two overlapping cells, that can be determined by studying the chosen simulations.
Agent parameters and exact values come from settings described in [48].

2. In the position space, the “neighborhood area” of the i-th cell is given by:

A∗i = {(x′, y′) s.t. (xi − x′)2 + (yi − y′)2 ≤ R2
N}. (1)

where (xi, yi) are the cell center coordinates. At the same time, the physical space occupied by the
j-th agent is given by:

Aj = {(x′′, y′′) s.t. (xj − x′′)2 + (yj − y′)2 ≤ R2}. (2)

3. Given the i-th agent, the set in(t)i of j-amoebas that can be considered i-th neighbors (at time t) is
the set of j-agents whose physical area intersects the i-th “neighbor area” at time t, that is:

in(t)i = {{Amj}, j = 1 . . . n s.t. [Amj ∩Am∗i ]t 6= ∅} (3)
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4. The number of neighbor cell to the i-th amoeba is thus given by:

nin(t)i = dim(in(t)i) (4)

and it represents the local gathering factor, as it increases the deeper the i-th amoeba is in the gath-
ering patter and/or in the final aggregate.

5. To obtain a mean local gathering factor, we average nin(t)i over the number of amoebas N :

ℵ(t) =
1

N

N∑
i=1

nin(t)i (5)

Note that ℵ will not be normalized, since the maximum value it can reach at the end of the simulation
time tmax is itself something informative about the “strength” of the gathering process. ℵ is similar to
an entropy-based function [51] and should be a

2.3 Simulation protocol and remarks

The analysis is based on the following protocol.

1. Formulate a hypothesis about what phenomenon is going to be inquired and what to expect. In the
case of the present project, it will be focusing on the effect of obstacles placed into the environment:
are their effect local or do they influence the whole system? How does their nature change the
dynamics?

2. Set the simulations in a meaningful position in the parameter space SP. The main aim is not to
completely investigate such space, defined by the number, shape, location and nature of obsta-
cles (SP = {nobs × ˆdim × x̄0 × natobs}), but to verify whether a certain configuration elicits local
adaptations of the dynamics. Therefore, such configuration is randomly chosen among those that
respect the following requirement: that the location of the obstacles would be in a limited sub-
space SubEnv ⊂ Env of the domain. This way we can compare what happens when obstacles
are placed locally and whether the obstacle-free subspace elicits the same aggregation pattern as
when nobs = 0. Consequently, after having set the colony parameters according to those that were
validated in paper [48], a point in SP′ = {nobs × ˆdim× x̄0′ ∈ SubEnv × natobs} is chosen.

3. Set external noise sources to zero, since the main focus is on perturbation caused by obstacles.

4. Run repeated simulations of early aggregation in order to increase statistic relevance while mea-
suring the defined variable ℵ(t). Meaningful parameters and variables are set according to those
validated in paper [48] (see Table 1). As the simulations described in [48] are specific for the pre-
aggregation stages of the gathering process, we remain consistent in considering the same time
interval for the analysis.

Table 1: Meaningful parameters and variables for simulations (set to be biologically consistent) [48].

ρ[ cell
mm2 ] N vA[units ] vc[

unit
s ] tS [s] PA

563 2640 1.4 4.7 10 0.001

5. Study the influence of natobs.

3 Obstacles as local source of perturbation

By following the aforementioned protocol, we first inquired whether obstacles represent local sources
of perturbation. We run repeated simulations of the same setting, which was randomly chosen among
SP, thus measuring (ℵ ± σℵ) and, at the same time, looking at simulated animations. natobs was varied
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from “physical” to “chemical”.
In fact, obstacles perturb the colony dynamics, but only locally: as it can be seen in Fig. 2, they cir-
cumscribe different subspaces with different concentrations of cells, thus eliciting metastable clusters,
but, where they are absent, it can be seen the usual (namely, the same as registered in other modeling
papers [24, 26, 48]) behavior towards the aggregate. Moreover, as we can notice in Fig. 3, the measure ℵ
is indeed monotonically increasing, as we would expect in case of a steadily aggregating colony.

Figure 2: Evolution of the colony from animation. It refers to the same experiment whose measurement
is in Fig. 3. (a) setting; (b) t =400, right after the (conventional) transient threshold; (c) t = 700, we
can see different areas with different cell density; (d) t = 1000, multiple density peaks are quite clear
within SubEnv , while the half environment without obstacles, although its shape is different (rectangular
instead of squared) from the “usual” one, the colony here is streaming and gathering; (e) t = 1300 the
metastable clusters are even more recognizable. Note that, during the evolution, all bacteria have been
eaten.

Figure 3: Evolution during early aggregation with chemical and physical obstacles. The time interval
is consistent with that validated in [48]. (ℵ ± σaleph) is indeed monotonically increasing in time, as we
would expect in case of a steadily aggregating colony (curve fit are not shown for clarity reasons). Many
different simulations with different obstacle configurations ∈ SP gave the very same qualitative result.
Moreover, a Z test confirms that the two experiments are not statistically separate.

4 Emerging choices for obstacle avoidance

From a computational point of view, interpreting an obstacle as “physical” or “chemical” is equal to
saying that a single cell has or has not, respectively, a special obstacle-sensing mechanism. In fact, phys-
ical obstacles are such if cells are able to sense their presence and to steer away from them. On the
contrary, in settings with chemical obstacles that perturb the chemical flux, cells are not required to own
particular sensing mechanisms, as they can in many cases avoid the obstacle by simply following the
perturbed chemical gradient in its vicinity. Such hypothesis was already tested with round obstacles and
single-individual-based models [31,32]. However, we suggest that similar results can be obtained when
considering the whole complex system: nonlinear interactions among cells lead to collective choices,
such as obstacle avoidance from one side or the other, through bifurcations that qualitatively change the
dynamics and lead to new attractors. The simplest way to model said phenomenon would therefore be
by using positive feedback loops: the more cells choose a certain avoiding path, the more the probability
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flux of signals increase, thus the more other cells will choose the very same path.
The very same phenomenon can be observed in MAS simulations, where the complexity of the system
is better taken into account and where multiple obstacles with relaxed conditions can be placed and
tested. Fig. 3 already showed how “physical” and “chemical” obstacles perturb the dynamics in a way
that is statistically indistinguishable. Other settings in the parameter space SP give the very same qual-
itative result. Then, it seems that it is not necessary for a cell to develop specific mechanism for obstacle
avoidance: it is guided by chemical messages that, once being been absorbed by obstacles, highlight the
best paths for chemotactical migration through social interactions. It means that the self-aggregating
patterns of the colony as a whole not only guide single cells towards stable clusters (attractors), but they
also elicit bifurcation and collective choices in order to avoid obstacles.

400 500 600 700 800 900 1000 1100 1200 1300

t [cycle]

1.0

1.2

1.4

1.6

1.8

2.0

ℵ

Zmean = 0. 47

Linear Fit

Chem: ℵ= (983. 4± 1. 3)10−3 + (743. 1± 1. 7)10−6 · t
χ2
red_chem = 0. 44

Phys: ℵ= (1015. 5± 1. 4)10−3 + (700. 3± 2. 1)10−6 · t
χ2
red_phys = 0. 41

Chem

Phys

Figure 4: Evolution of (ℵ±σℵ) for both chemical and physical obstacles. Although not shown (for clarity
reasons) a linear fit was performed guaranteeing the increasing trend; χ2

red values are shown. A test Z,
evaluating the mean distance between the two data set, was also performed and its mean value shown
in the chart.

Figure 5: Several snapshots during the evolution of a colony. In order to magnify the multistable clusters,
simulations were let run even after the aggregation interval. Obstacles were inserted into the domain.
Snapshots refer to the experimental set whose measurements are shown in Fig. 3. (a) Experimental set-
ting; (b) After an initial transient, streams appear; (c) Early aggregation is almost completed. Amoebas
go on migrating; (d) Multistability is clear: there are three main attractors around which amoebas are
gathering. Note that cells have explored almost all the physical space (they ate all bacteria that were
deployed initially.)

4.1 Fluctuations in the dynamics

Fluctuations around a mean behavior are known to elicit better explorations of the state space [45, 52].
Moreover, chemotactically-driven dynamics tend to make cells tighter with the initial cluster, while
noise-drive dynamics allow cells to move in areas with prior lower cell density and, possibly, to guide
streams and migrations by means of positive feedback loops. In fact, if setting other simulations on
off-scale (noisy) configurations (for instance, ρ = 200

1002 , but N = 200 [48]), it is less likely to observe the
formation of multiple stable clusters (see Table 2).
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Table 2: Chances [%] to get multiple stable clusters (at least 2). Data from multiple (100) simulations
with different obstacles configurations.

on-scale off-scale

1 obstacle 15 3

multiple obs 70 30

Instead of being stable, little clusters are metastable: they last as long as fluctuations do not drive single
cells toward the cAMP flux that comes from the biggest cluster. After that, slowly but steadily, all the
small clusters stream towards the biggest one after being guided by interactions with other migrating
cells. Collective behavior towards bifurcation, then, seems to result from a delicate trade-off between
robust chemotaxis and random fluctuations as suggested by previous experimental works [53].

5 Conclusions

The main aim of this project was to investigate how colonies of chemotactical cells behave when obsta-
cles are present in their environment, as often happens in vivo. To do so, we chose a model organism,
the social amoeba Dictyostelium discoideum and we studied its evolution during the aggregation process.
Since we decided to focus on dynamical features elicited by nonlinear social interactions rather than
on individual mechanical properties, we exploited a phenomenological Multi Agent System model that
had been purposefully designed, implemented and validated. A suitable metric (the local clustering factor
ℵ) was also suggested in order to measure the aggregation progresses without being directly dependent
on the environmental topology.
The presence of obstacles perturbs the chemical flux. A group of cells in collision with an obstacle can
in many cases avoid it by simply following signals coming from other directions. In fact, as far as the
present model is concerned, whether agents Amoeba possess specific behaviors to avoid obstacles or
not, they manage to self-aggregate without differences in the dynamics that are statistically relevant.
A similar result suggests that, from a population point of view, social interactions are more effective
than individual capabilities to detect and avoid obstacles. In fact, large and complex colonies are only
locally perturbed by the presence of topological perturbation and seem to be able to cope with them
thanks to the same behaviors that lead to aggregation in homogeneous environments: it was experi-
mentally shown that the “usual” social interactions elicit collective choices, in order to avoid obstacles
and stream towards the main aggregate.
Moreover, preliminary results suggest that a system whose dynamic is noisy can better explore the state
space and overcome obstacles without (or with less probability) forming multiple stable clusters. On the
other hand, of course, perturbed colonies are less likely to follow the chemical gradient, so an efficient
gathering process should present a trade-off between chemotactical stability and random exploration as
already suggested in the field of system control [54].
Often, organisms that live in swarms have little concern for an individual fate, whereas they are evo-
lutionary competitive as a whole population [18]. Therefore, focusing on the entire colony instead of
single individuals can provide additional information in order to understand specific behaviors. We
believe that individual-based, although holistic MAS models can be useful when addressing complex
microbiological systems in heterogeneous environments. In the present context, we were able to get
interesting preliminary results from our phenomenological simulations that can be coupled with those
from mechanical models; furthermore, we would suggest further studies in order to better explore the
configuration space SP and to inquire the dependencies of the dynamics on the ratio between obstacle
and cell (or population) size.
To summarize, it was shown that, as far as colonies of D. discoideum are concerned, emergent dynamical
features are sufficient, from the whole colony point of view, to avoid obstacles placed in the domain.
Additional individual abilities might elicit better efficiency, but such is not the case observed in the
present simulations. This may explain why specialized biological mechanisms for avoiding obstacles
are only known for a few cells and organisms [32]. Further in vivo and in vitro studies are recommended
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to improve our knowledge on behavior of cellular motility in heterogeneous environments.
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