
Deep dive into Interledger:
Understanding the Interledger ecosystem

– Part 2 –

Lucian Trestioreanu, Cyril Cassagnes, and Radu State

Ripple UBRI @ Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg

29, Avenue JF Kennedy, 1855 Luxembourg, Luxembourg

Abstract. At the technical level, the goal of Interledger is to provide an architecture
and a minimal set of protocols to enable interoperability for any value transfer system. The
Interledger protocol is literally a protocol for Interledger payments. To understand how is it
possible to achieve this goal, several aspects of the technology require a deeper analysis. For
this reason, in our journey to become knowledgeable and active contributor we decided to
create our own test-bed on our premises. By doing so, we noticed that some aspects are well
documented but we found that others might need more attention and clarification. Despite
a large community effort, the task to keep information on a fast evolving software ecosystem
is tedious and not always the priority for such a project. Therefore, the purpose of this
series of documents is to guide, through several hands-on activities, community members
who want to engage at different levels. The series of documents consolidate all the relevant
information from generating a simple payment to ultimately create a test-bed with the
Interledger protocol suite between Ripple and other distributed ledger technology.



Contents

1 What this document covers 3

2 Who this document is for 3

3 The Interledger ecosystem 3
3.1 The Interledger protocol suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 The Streaming Transport for the Realtime Exchange of Assets and Messages 3

4 The connectors 5

List of Figures

1 STREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Example 1: STREAM payment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 A connector holding two wallets on two different networks . . . . . . . . . . . . . 5
3 STREAM protocol: FSM diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 The protocol stack in the payment chain . . . . . . . . . . . . . . . . . . . . . . . 8
7 Example 2: Interledger payment . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8 Example 2: Interledger payment, advanced . . . . . . . . . . . . . . . . . . . . . 16
9 Perspective: connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2



1 What this document covers

In Part 2, we are going to discuss two other components of the Interledger protocol suite and
of the infrastructure suite, namely the STREAM protocol and, respectively, the Connectors.
We are also going to discuss some examples along the way. For easier orientation, we kept the
general chapter structure unmodified.

2 Who this document is for

No prerequisites regarding the Interledger ecosystem are expected from the reader. However,
developers, computer science students or people used to deal with computer programming chal-
lenges should be able to reproduce our setup without struggle.

3 The Interledger ecosystem

3.1 The Interledger protocol suite

The protocols suite comprises multiple protocols, of which the most important are BTP, ILP,
Streaming Transport for the Realtime Exchange of Assets and Messages (STREAM) and SPSP.
Below we are going to discuss the STREAM protocol.

3.1.1 The Streaming Transport for the Realtime Exchange of Assets and Messages

The Streaming Transport for the Realtime Exchange of Assets and Messages (STREAM)
is a Transport Protocol working with ILPV4. Application level protocols like SPSP make use of
the STREAM protocol to send money. STREAM splits payments into packets, sends them over
ILP, and reassembles them automatically. It can be used to stream micro-payments or larger
discrete payments and messages. It is a successor of the Pre-Shared Key V2 (PSK2) Transport
Protocol and is inspired by the QUIC Internet Transport Protocol.

Fig. 1: STREAM is a logical, bidirectional channel over ILP. [1]

The specification of the STREAM protocol is available on the online repository of In-
terledger1. As illustrated with green in Figure 1, a STREAM connection establishes a two-ways,
virtual channel of data and money between the payer and payee. Fields of STREAM packets are
encoded with the Octect Encoding Rules and STREAM packets are encrypted using AES-256.
Then, we will explain in the Part 3 of this document series when a STREAM packet is sent
in one of the following ILP Packet Type: ILP Prepare (type 12 ILP packet), Fulfill (type 13

1https://github.com/interledger/rfcs/blob/master/0029-stream/0029-stream.md, accessed June 2019

3

https://github.com/interledger/rfcs/blob/master/0029-stream/0029-stream.md


ILP packet), or Reject packets (type 14 ILP packet). The logical connection is used to send
authenticated ILP packets between the ”client” and ”server” (the blue connections in Figure 1).
Either the payer or the payee can be the server or the client. STREAM provides also authenti-
cation, flow control (i.e. ensure one party doesn’t send more than the other can process), and
congestion control (i.e. avoid flooding the network over its processing power).

STREAM servers are waiting for clients to connect over ILP. The servers connect to a spe-
cific plugin on the local machine and wait for the ILP packets. Usually, ilp-plugin is used to
connect to Moneyd. The server generates a unique ILP address and shared secret, which will
be used to encrypt data and generate fulfillments for ILP packets in relation to a specific client.
The request for the address and secret, and the response, are not handled by STREAM, but
for example by SPSP. After a client has the ILP address and secret (obtained with SPSP for
example), it can connect to the STREAM server by using these credentials [2, 3].

Example 1. We now provide a more advanced explanation regarding the same situation pre-
sented in Part 1, Example 1. We will refer to Figure 2, and extend the explanation from Part
1, Example 1.

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query SPSP server
SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer

5. Interledger payment

1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module ILP module

Fig. 2: Example 1: STREAM payment.

• Alice’s SPSP client:

– resolves the payment pointer ”$example.com/bob” to https://example.com/bob

4



– connects over HTTP to Bob’s SPSP server at address https://example.com/bob (2)

– queries the SPSP server for Bob’s ILP address and a unique secret (2). The SPSP
server forwards the request to the STREAM server module and fetches the answer

• Bob’s SPSP server sends Bob’s ILP address and the secret to Alice’s SPSP client (3)

• Alice’s SPSP client passes the credentials to the STREAM client module which initiates
a logical STREAM connection over ILP, using the ILP modules (4)

• Bob receives his payment over the Interledger (5).

Further details on the STREAM protocol are illustrated in the finite state machine diagram
of the STREAM protocol, presented in Figure 3. The black arrows point the normal flow rather
than the red arrows point the error flow. Notes are stating key elements of a packet or of
the connection at a specific moment in the interaction. Given the non-synchronicity in the
communication, there is no notion of time. The diagram shows the different states of a stream
session from its initialization to its termination. There is two boxes representing the two possible
roles for a connector, which is either client (endpoint initiating a STREAM connection) or server
(endpoint accepting incoming STREAM connections). Based on the textual specification, the
diagram shows the messages required to trigger a transition and consequently move from one
state to the other.

4 The connectors

Connectors are transaction ’intermediaries’ lying in-between the payer and the payee, connecting
them and facilitating the transaction. They are the ’market makers’ or ’liquidity providers’, and
their role is especially evident when the sender’s and receiver’s wallets hold different currencies,
as depicted in Figure 4.

Fig. 4: A connector (money maker) holding two wallets on two different networks.

A connector would take the sender’s money in the sender’s currency and pay the receiver
with the receiver’s currency while charging a small fee for the service. In order to be able to

5



Fig. 3: STREAM protocol: FSM diagram.

6



do this, a connector owns two wallets, one on each currency involved in the transaction. ’A
connector is a host holding a balance on two or more ledgers. Connectors trade a debit against
their balance on one ledger for a credit against their balance on another as a means of facilitating
the payment between the two ledgers.’ [4]

While providing their services, the connectors act as an internet service provider would. In
Interledger, the entities running the connectors are known as Interledger Service Providers or
ILSPs. For example, the ILP reference connector written in js2 can be run by an ILSP. An
ILSP can run one or more connectors. Moneyd is a stripped version of a connector which is not
sending or receiving routes, and is used as a ”home router”, by end-users or customers in order
to dial-up and connect to the ILSPs running a connector. As such, Moneyd3 or Switch API4

are examples of ’customer’ apps connecting to their preferred ILSP and sending requests.
’Connectors implement the Interledger protocol to forward payments between ledgers and

relay errors back along the path. Connectors implement (or include a module that implements)
the ledger protocol of the ledgers on which they hold accounts. Connectors also implement the
Connector to Connector Protocol (CCP) to coordinate routing and other Interledger control
information.’ [5]

Currently, the connectors rely on plugins to settle the transactions (new architectures are
currently being considered or implemented, e.g. the Rafiki connector).

Making the analogy to a real-life example, swiping a credit card at a cashier’s desk is con-
sidered a payment. The settlement occurs when the money is debited from the card holder’s
bank and credited to the merchant’s bank. When you swipe the credit card and introduce your
PIN you create and sign an irrevocable obligation for payment. On an Interledger paychan, this
signed obligation for payment is known as a ”claim”. A redeemed claim would translate to a
bank transaction which has been ”cleared” or ”went through” (the money completely left the
payer’s bank account, and are visible and available in the payee’s account; or analogously, the
money completely left the sender’s wallet/ledger and have shown up on the receiver’s wallet,
ledger and currency).

Concerning the plugins, they are installed on the same machine with the connector and con-
figured according to purpose. This architecture is illustrated in Figure 5.

Fig. 5: Architecture overview. [6]

2https://github.com/interledgerjs/ilp-connector, accessed June 2019
3https://github.com/interledgerjs/moneyd, accessed June 2019
4https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md, accessed June 2019

7

https://github.com/interledgerjs/ilp-connector
https://github.com/interledgerjs/moneyd
https://github.com/Kava-Labs/ilp-sdk/blob/master/README.md


Some plugin examples would be:

• ilp-plugin-xrp-paychan5 creates a direct peer relation with other connectors. It is an Un-
conditional Payment Channel plugin, where one has to trust his peer for the in-flight XRP
amounts.

• ilp-plugin-xrp-asym server6 enables the ILSP server to accept new client connections and
creates an internal ILP account for each of them. It is the plugin appropriate for provider -
customer relationships. This service will be exposed publicly and ’customers’ will connect to
it.

• ilp-plugin-xrp-asym-client7 will be used by a ’customer’ to connect to his provider’s plugin,
i.e the ilp-plugin-xrp-asym-server above.

• moneyd’s uplink-xrp plugin8 makes use of ilp-plugin-xrp-asym-client.
• ilp-plugin-mini-accounts9 can be used to connect Moneyd-GUI to Moneyd or to the refer-

ence ILSP connector, for example.
• Kava Labs has been involved in the development of @kava-labs/ilp-plugin-xrp-paychan10

and ilp-plugin-ethereum11. Both can be used in conjunction with Switch API. Ilp-plugin-
ethereum settles Interledger payments with ether and is powered by Machinomy smart con-
tracts for unidirectional payment channel.

Another way to illustrate a payment chain forwarding the transactions through the con-
nectors with the use of SPSP, the ILP protocol, some of the plugins above and the validating
servers forming the XRP ledger (to be discussed in Part 3 ) is provided in Figure 6. Some other
ledger examples could be the ETH or Lightning server networks. It is worth being noted that
PSK was upgraded to STREAM. As such, the sender can pay in XRP and the receiver can get
his money in BTC.

Fig. 6: The protocol stack in the payment chain.

Below we reproduce a nice explanation on payment channels that we found worth adding:
’In order to avoid having to go through the consensus process for each and every transaction,

5https://github.com/interledgerjs/ilp-plugin-xrp-paychan, accessed June 2019
6https://github.com/interledgerjs/ilp-plugin-xrp-asym-server, accessed June 2019
7https://github.com/interledgerjs/ilp-plugin-xrp-asym-client/, accessed June 2019
8https://github.com/interledgerjs/moneyd-uplink-xrp, accessed June 2019
9https://github.com/interledgerjs/ilp-plugin-mini-accounts, accessed June 2019

10https://github.com/Kava-Labs/ilp-plugin-xrp-paychan, accessed June 2019
11https://github.com/interledgerjs/ilp-plugin-ethereum, accessed June 2019

8

https://github.com/interledgerjs/ilp-plugin-xrp-paychan
https://github.com/interledgerjs/ilp-plugin-xrp-asym-server
https://github.com/interledgerjs/ilp-plugin-xrp-asym-client/
https://github.com/interledgerjs/moneyd-uplink-xrp
https://github.com/interledgerjs/ilp-plugin-mini-accounts
https://github.com/Kava-Labs/ilp-plugin-xrp-paychan
https://github.com/interledgerjs/ilp-plugin-ethereum


only the summary of several transactions is validated on the blockchain. The intermediate trans-
actions are conducted outside of the Ripple Ledger, off-chain. Ripple Labs has said that with
Payment Channels (introduced in summer 2017), several thousand transactions per second can
be processed. This number is approaching the transaction capacity of the VISA network. Because
of the increased efficiency, Payment Channels are a feasible micro-payment alternative.’ [7]

Also, payment channels are worth being used with expensive or slow ledgers. The two par-
ties’ transactions are being performed on the paychan under the limits established. Sometimes
they offset each other. When the conditions for settlement are met, the settlement can occur.
This lowers the cost and time involved by the overall process.

In regards to installation and set-up of connectors, a new guide12,13 from Strata Labs has just
been released, so you can try the bundle they propose if you want to hit the ground running.

The tutorial14 provided by Adrian Hope-Bailie is a very good and thorough step-by-step
guide. Inspired from his guide on installing the reference connector, a faster and easier minimal
set-up and a few tips are provided below. This procedure will miss some features in the original
guide. For the advanced set-up, the original post can be followed. For convenience, the Step #
has been kept the same as in the original tutorial.

• Step 5: install node

- curl -o-

https://raw.githubusercontent.com/creationix/nvm/v0.34.0/install.sh | bash

- Restart terminal

- nvm install v10.15.3

• Step 7: install ”redis”15

• Step 8: install pm2

• Step 10: get and fund an XRP Ledger address. Alternative to ’ripple-wallet-cli’, it is also
possible to generate a wallet directly, using the ’wallet propose’ method:
’user@saintmalo: /rippled/ccabuild$ ./rippled –conf /home/user/rippled/cfg/rippled-example.cfg
wallet propose’.

• Step 12: pick an ILP Address. The format should be ’g.somethingunique’. For an inde-
pendent private network, we also used the ’production’ settings and ’g’ as address prefix.
Any of the others (private, local, ..) did not seem to work right.

• Step 13: create your config file using ’pm2 init’. A file named ’ecosystem.config.js’ will be
created, possibly in the folder ’home/user’. Check it, update as needed, and move it to
’/home/user/ilp-connector/’.

• Step 14: start it with:
’cd /home/user/ilp-connector: $ pm2 start ecosystem.config.js’
Use ’pm2 stop ecosystem.config.js’ to stop it, ’pm2 restart ecosystem.config.js –update-
env’ for restart, and ’pm2 logs connector’ to see the logs. The log files are located in
’/home/user/.pm2/logs/connector-out.log’.

12https://www.stratalabs.io/mainnet, accessed June 2019
13https://github.com/d1no007/easy-connector-bundle, accessed June 2019
14https://medium.com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a, accessed June 2019
15https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-redis-on-ubuntu-18-04, ac-

cessed June 2019

9

https://www.stratalabs.io/mainnet
https://github.com/d1no007/easy-connector-bundle
https://medium.com/interledger-blog/running-your-own-ilp-connector-c296a6dcf39a
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-redis-on-ubuntu-18-04


How to setup a connector:
First of all the following example is deployed in Ubuntu bionic (kernel 4.15 but not important).

sudo apt-cache madison npm - at the time of writing 3.5.2.
sudo apt-cache madison nodejs - at the time of writing version 8.10.
sudo apt-get install nodejs npm build-essential
npm config get prefix This will return the path for packages installed with -g. In our case,

we will install the packages locally in the folder jsilp.
npm install memdown. We will use memdown for this example but for production, you

should use another type of databases.
pm2 restart launch.config.js

The connector will be much easier to admin and understand using an interface, at this
moment Moneyd-GUI. Installed on the same machine as the connector, it will provide UI access
in a browser at http://127.0.0.1/7770. For the graphical interface, Moneyd-GUI loads some
resources from online.

Below we provide an example configuration for the Connector trading only in XRP, which
we named ILSP1. For our use-case we used ws, but in a real scenario wss is used.

’use strict’

const path = require(’path’)

const address = ’rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj’ // <YOUR RIPPLE ADDRESS>

const secret = ’shjZQ2E3mYzxHf1VzYBJCQHqLvt7Y’ // <YOUR RIPPLE SECRET>

const peer1 = {

relation: ’peer’, // establish a ’peer’ relationship.

plugin: ’ilp-plugin-xrp-paychan’, //peer with another ILSP connector over XRP

assetCode: ’XRP’,

assetScale: 9, //"Interledger amounts are integers, but most currencies are

typically represented as fractional units, e.g. cents. This property defines

how many Interledger units make up one regular units. For dollars, this would

usually be set to 9, so that Interledger amounts are expressed in nanodollars."

balance: {

maximum: ’1000000000’,

settleThreshold: ’-5000000000’,

settleTo: ’0’

},

options: {

listener: { //If you want your peer to connect to you as a ws client (which

doesn’t change the nature of the liquidity relationship) set the

‘listener‘ argument in the constructor.

port: 10666, //this ws server listens for ws clients on port 10666

secret: ’2afe5e6cece84ed0027f9a2463edfa6358901bd6f1c9f3e1b0e43c13ff1ae2eb’ //

this is the token that your peer must authenticate with.

},

//server: ’btp+ws://:its_a_secret@192.168.1.146:10666’, //this connector would

be a ws client connecting to its peer ws server at port 10666

//It should be possible to use it without credentials like this, also: server:

’btp+ws://:@192.168.1.146:10666’

// You may specify both the server and client options; in that case it is not

deterministic which peer will end up as the ws client.

10



rippledServer: ’ws://192.168.1.98:51233’, //the server that you submit

XRP transactions to //MAINNET - wss://s2.ripple.com

peerAddress: ’rLR52VSZG3wqSrkcpfkSnaKnYoYyPoJJgy’, //<PEER RIPPLE ADDRESS>

address,

secret

}

}

const ilspServer = { //MoneyD XRP clients

relation: ’child’, //Moneyd apps will be ’children’

plugin: ’ilp-plugin-xrp-asym-server’, //plugin that exposes the ILSP server

to downstream clients

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7443, //port on which to listen to client

apps

xrpServer: ’ws://192.168.1.98:51233’, //MAINNET - wss://s2.ripple.com

address,

secret

}

}

const SwitchAPIServer = {

relation: ’child’, //Switch API connects as a ’child’

plugin: ’@kava-labs/ilp-plugin-xrp-paychan’,

assetCode: ’XRP’,

assetScale: 6,

options: {

role: ’server’,

port: 7444, //Switch API will connect on this port

xrpSecret: ’shjZQ2E3mYzxHf1VzYBJCQHqLvt7Y’, //this connector’s secret

xrpServer: ’ws://192.168.1.98:51233’,

// Very asymmetric... you fund a channel for $0.50 in XRP, we’ll open one to

you for $10!

outgoingChannelAmount: ’32658000’, // ~= 10$ in XRP drops

minIncomingChannelAmount: ’1632900’, // ~= 0.5$ in XRP drops

// Use plugin maxPacketAmount (and not connector middleware) so F08s occur

before T04s

maxPacketAmount: ’653200’ // ~= 0.2$ in XRP drops

}

}

const moneydGui = { //MoneyD GUI for this connector

relation: ’child’,

plugin: ’ilp-plugin-mini-accounts’,

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7768 //MoneyD GUI will connect on this port

}

}

const connectorApp = {

11



name: ’connector’,

env: {

DEBUG: ’ilp*,connector*’,

CONNECTOR_ENV: ’production’,

CONNECTOR_ADMIN_API: true,

CONNECTOR_ADMIN_API_PORT: 7769, //this should not conflict with

moneydGUI, set here on 7768

CONNECTOR_ILP_ADDRESS: ’g.conn1’, //<YOUR ILP ADDRESS>

CONNECTOR_BACKEND: ’one-to-one’,

CONNECTOR_SPREAD: ’0’,

CONNECTOR_STORE: ’memdown’, //comment this if using the store below

//CONNECTOR_STORE: ’ilp-store-redis’, //if using a store

//CONNECTOR_STORE_CONFIG: JSON.stringify({

// prefix: ’connector’,

// port: 6379

//}),

CONNECTOR_ACCOUNTS: JSON.stringify({

conn2: peer1, //arbitrary names easy to remember

ilsp_clients: ilspServer,

moneyd_GUI: moneydGui,

switchXRP: SwitchAPIServer

})

},

script: path.resolve(__dirname, ’src/index.js’)

}

module.exports = { apps: [ connectorApp ] }

Further, we reproduce an example configuration for the ILSP2 Connector which is peered
with the ILSP1 Connector. This connector has two wallets, one in XRP and one in ETH, so it
is able to provide cross payments between XRP and ETH. This use case fits the architecture
illustrated in Figure 5. It is also equipped with Moneyd-GUI for easier administration through
a Chrome browser (recommended), and can as well perform SPSP payments given SPSP is
installed. SPSP was discussed in more detail in Part 1, Section 4.0.1.

’use strict’

const path = require(’path’)

const address = ’rLR52VSZG3wqSrkcpfkSnaKnYoYyPoJJgy’ // <YOUR RIPPLE ADDRESS>

const secret = ’ssrnzXKsJKWDh9cFpmZSLWHN3D5HM’ // <YOUR RIPPLE SECRET>

//to get the gas price

const { convert, usd, gwei } = require(’@kava-labs/crypto-rate-utils’)

const axios = require(’axios’)

const getGasPrice = async () => {

const { data } = await axios.get(

’https://ethgasstation.info/json/ethgasAPI.json’

)

return convert(gwei(data.fast / 10), wei())

}

//

const peer1 = {

12



relation: ’peer’,

plugin: ’ilp-plugin-xrp-paychan’, //peer with other connector/node over XRP

assetCode: ’XRP’,

assetScale: 9,

balance: {

maximum: ’1000000000’,

settleThreshold: ’-5000000000’,

settleTo: ’0’

},

options: {

//listener: { //this connector would be a server listening on port 10666

//port: 10666,

//secret: ’2afe5e6cece84ed0027f9a2463edfa6358901bd6f1c9f3e1b0e43c13ff1ae2ea’

// this is the token that your peer must authenticate with.

//},

server:

’btp+ws://yourcustomsequence:2afe5e6cece84ed0027f9a2463edfa6358901bd6f1c9f3e1b0e43c13ff1ae2eb@192.168.1.146:10666’,

//this connector is a ws client connecting to its ws server at port 10666

rippledServer: ’ws://192.168.1.98:51233’, //PORT? //wss://s2.ripple.com //

?Specify the server that you submit XRP transactions to?

peerAddress: ’rMqUT7uGs6Sz1m9vFr7o85XJ3WDAvgzWmj’, //<PEER RIPPLE ADDRESS>

address,

secret

}

}

const peerETH = {

relation: ’child’,

plugin: ’ilp-plugin-ethereum’,

assetCode: ’ETH’,

assetScale: 9,

options: {

role: ’server’,

port: 7442,

ethereumPrivateKey:

’0x43c50a578883922df30a33eb74418fb568c0081c40256e4675df02dcc28b6ef6’,

//this connector’s ETH address; different from machinomy contract address

ethereumProvider: ’kovan’, //goes to ETH plugin as identifier

getGasPrice: getGasPrice, //’20000000000’,

outgoingChannelAmount: ’71440000’, //10 usd

minIncomingChannelAmount: ’3570000’, // 0.5usd

// In plugin (and not connector middleware) so F08s occur before T04s

maxPacketAmount: ’1430000’ // 0.2USD

}

}

const ilspServer = {

relation: ’child’,

plugin: ’ilp-plugin-xrp-asym-server’, // ILSP server for downstream clients

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7443, //port on which to listen to client apps

xrpServer: ’ws://192.168.1.98:51233’, //MAINNET wss://s2.ripple.com

13



address,

secret

}

}

const moneydGui = {

relation: ’child’,

plugin: ’ilp-plugin-mini-accounts’,

assetCode: ’XRP’,

assetScale: 6,

options: {

port: 7768

}

}

const connectorApp = {

name: ’connector’,

env: {

DEBUG: ’ilp*,connector*’,

CONNECTOR_ENV: ’production’,

CONNECTOR_ADMIN_API: true,

CONNECTOR_ADMIN_API_PORT: 7769,

CONNECTOR_ILP_ADDRESS: ’g.conn2’, //<YOUR ILP ADDRESS>

CONNECTOR_BACKEND: ’one-to-one’,

CONNECTOR_SPREAD: ’0’,

CONNECTOR_STORE: ’memdown’,

//CONNECTOR_STORE: ’ilp-store-redis’,

//CONNECTOR_STORE_CONFIG: JSON.stringify({

// prefix: ’connector’,

// port: 6379

//}),

CONNECTOR_ACCOUNTS: JSON.stringify({

conn1: peer1,

ilsp_clients: ilspServer,

moneyd_GUI: moneydGui,

peer_ETH: peerETH

})

},

script: path.resolve(__dirname, ’src/index.js’)

}

module.exports = { apps: [ connectorApp ] }

This connector supports SPSP client-server. This is explained in Part 1, Section 4.0.1.
Below, we provide a more advanced practical example involving two ledgers (XRP and

Ethereum), a connector trading on the two ledgers, two customers - one with an XRP wallet
and one with an Ethereum wallet, and Machinomy, which will be further detailed next, in Part 3.

Example 2. XRP-ETH ILP payment using Moneyd, SPSP and a connector

We will discuss the configuration presented in Figure 7. It is comprised of:

• The XRP ledger, or the XRP network, made up of servers running the ”Rippled” software.

14



Mainly, the ledger holds the account balances for all users and validates the transactions
performed in-between users.

• The ETH ledger, with a similar function.

• Alice, holding an account on the XRP ledger, operating Machine A, and running a user-
level ILP XRP app, in this case Moneyd-XRP and SPSP.

• Bob, holding an account on the ETH ledger, operating Machine B, and running a user-level
ILP Ethereum app, in this case Moneyd-ETH and SPSP.

• A Connector, having 2 accounts - one on each ledger. The connector will act as a facilitator
- an intermediary between the two users. It will accept XRP from Alice and will forward
the corresponding value, denominated in ETH, applying its exchange rate, to Bob.

Bob
Machine B
ETH wallet

Alice
Machine A
XRP wallet

XRP ledger
Paychan-enabled

ETH ledger
connector’s XRP wallet connector’s ETH wallet

Connector
Machine C

Exchange

STREAM connection
using SPSP

BTP + ws(s) connection

ws(s) ws(s)

BTP + ws(s) connection

ws(s) ws(s)

Fetch from www :
“ecb” plus “coinmarketcap”

Fig. 7: Example 2: Interledger payment.

A more advanced representation of the same setup is provided in Figure 8 and explained
below. In order to be able to settle the payments in ETH, Machinomy smart contract has to be
deployed on the ETH ledger.

• Alice negotiates and opens a paychan denominated in XRP with the connector

• Bob negotiates and opens a paychan denominated in ETH with the connector

• Alice and Bob’s machines comprise the following:

– Moneyd-XRP (Alice) or ETH (Bob), comprising of:

∗ Moneyd-core

∗ XRP/ETH plugin, providing the settlement means

∗ XRP/ETH uplink, providing the uplink to the connector

– Moneyd-GUI, providing a visual admin interface

– SPSP modules:

∗ SPSP server: listens for connections from SPSP clients and receives payments

15



“Moneyd XRP” “Moneyd ETH”

Moneyd core

Connector core

XRP uplink ETH uplink

XRP plugin ETH plugin

Alice: 192.168.1.116 Bob: 192.168.1.35

XRP plugin ETH plugin

Rates backend
« ecb-plus-coinmarketcap »

Alice <-> connector  
XRP pay channel
btp+ws, port 7442

Bob <-> connector  
ETH pay channel
btp+ws, port 7442

SPSP server
port 6000

SPSP client

Moneyd GUI Moneyd GUI
Moneyd core

SPSP client

SPSP server
port 6000

Alice PAYS Bob

Bob PAYS Alice

Web browser 
localhost:7770

Web browser 
localhost:7770

7769 7769

ws://192.168.1.98: 51233

XRP ledger

Alice XRP account

ILSP XRP account

Alice – ILSP 
paychan

Machinomy

Bob – ILSP 2 
paychan

192.168.1.87:8545

ETH ledger
PoA / Ganache

Machinomy
contract 
account

ILSP 2 ETH 
account

Bob’s ETH 
account

Js connector 2 

Ilp-plugin-miniaccounts

ILSP 2

Moneyd-GUI

Web browser
Localhost:7770

192.168.1.131

Internet:
Fetch conversion rate

Fig. 8: Example 2: Interledger payment, advanced.

∗ SPSP client: connects to SPSP servers and sends payments

• The connector, comprising of:

– Connector core

– Different plugins:

∗ XRP plugin

∗ ETH plugin

∗ Possibly, ”ilp-plugin-mini-accounts” - to make use of Moneyd-GUI as a visual
admin interface

∗ Possibly other plugins

– The rates backend, which fetches the exchange rates from the internet. We will be
using ”ecb-plus-coinmarketcap”. Other possibilities are: ecb, ecb-plus-xrp, , one-
to-one. ”One-to-one” applies an exchange rate of 1 to everything and is used by
connectors operating in a single currency environment.

Into perspective, the situation can be represented as in Figure 9, where:

• Sender and Receiver are Alice and Bob

• Node B, Node C are Moneyd

• Node A is the connector

• Application is the SPSP client

• Ledger A and B are the XRP and ETH ledgers

16



Receiver Sender 

Node A 

Ledger A 

Node C 

Ledger B 

(15) SPSP Server Node B 

Application 

(C) SPSP over HTTPS 

(B) Ledger specific connection 

(A) BTP over WebSocket 

Fig. 9: Perspective: connections. [8]

• Moneyd connects to the connector over BTP (A) and also has a ledger specific connection
(B) for settlement.

The protocol interactions are the same as in Example 1, and also Alice’s machine is the same
as in Example 1. The main differences are that on the ETH ledger, for settlement, Machinomy
smart contract must be deployed, and that the paychan between Bob and the ILSP (Connector)
is recorded there instead of the XRP ledger. As such, on the XRP ledger we find:

• Alice’s XRP account

• ILSP (the connector) XRP account

• Alice - ILSP paychan,

while on the ETH side:

• Bob’s ETH account

• ILSP (connector) ETH account

• Bob - ILSP paychan

• The Machinomy smart contract account, deployed in order to help manage the paychans
and settlements on Ethereum.

An advanced diagram of connections and protocols interactions is provided by Ripple in [9].
The explanations are extensive and beyond the scope of this paper, but they can be retrieved
by the interested readers by following the link to the reference.

For orientation, we provide as example a Moneyd-ETH configuration file:

{

"version": 1,

"uplinks": {

"eth": {

"relation": "parent",

"plugin": "/home/user/node_modules/ilp-plugin-ethereum/index.js",

"assetCode": "ETH",

"assetScale": 9,

"sendRoutes": false,

"receiveRoutes": false,

17



"options": {

"role": "client",

"ethereumPrivateKey":

"0x72f3b5a36a6719492913f6480b8b5036bf5cc5f312152351886c8e216fc63288",

"ethereumProvider": "kovan",

"outgoingChannelAmount": "50000000",

"balance": {

"maximum": "1000000",

"settleTo": "0",

"settleThreshold": "300000"

},

"server":

"btp+ws://ASDG:294a4788a4b0a7a048332c7d2390e6ce06bcd63e59585493f50e8738650

a948a@192.168.1.131:7442"

}

}

}

}

Other connectors, functional but still in development, are the Rafiki16 connector and the
Rust17 connector. A basis for a Java connector is also in the works, as Quilt18.

Rafiki is a modular connector which is meant to improve on the ”reference” js connector
in regards to practical aspects like cloud deployment, more manageable and ’hot’ changes of
configuration, etc [10].

The Rust connector is meant to be a faster connector for high traffic. One important update
is the new concept of ”Settlement engine” and the elimination of the plugins. Official informa-
tion on the Settlement Engines’ architecture can be found in the new RFC on the Interledger
website19. Also because of the modular architecture, at least in the case of Rust and at the
present moment, in order to run a connector, the user needs to separately start 3 processes:
the connector itself, the settlement engine, and in some cases the Redis database. Separate
configuration need to be provided20.

Next time we are going to discuss the ILP protocol which is the core of the Interledger, and
about the Ledgers, a primary infrastructure component. We are also going to see some more
advanced theoretical and practical examples.

Acknowledgements

This work was done in the framework of the Ripple UBRI initiative.

16https://github.com/interledgerjs/rafiki, accessed June 2019
17https://github.com/emschwartz/interledger-rs/tree/master, accessed June 2019
18https://www.hyperledger.org/projects/quilt, accessed July 2019
19https://interledger.org/rfcs/0038-settlement-engines/, accessed January 2020
20https://github.com/interledger-rs/interledger-rs/tree/master/examples, accessed January 2020

18

https://github.com/interledgerjs/rafiki
https://github.com/emschwartz/interledger-rs/tree/master
https://www.hyperledger.org/projects/quilt
https://interledger.org/rfcs/0038-settlement-engines/
https://github.com/interledger-rs/interledger-rs/tree/master/examples


Acronyms

API Abstract Programming Interface. 7, 8, 19

BTP Bilateral Transfer Protocol. 3, 17

FSM Finite State Machine. 2, 6

GUI Graphical User Interface. 8, 10, 12, 15, 16

ILP Interledger Protocol. 3–5, 7–9, 14, 15

ILSP Interledger Service Provider. 7, 8, 12, 17

SPSP Simple Payment Setup Protocol. 3–5, 8, 12, 14–16

STREAM Streaming Transport for the Realtime Exchange of Assets and Messages. 3

Glossary

Moneyd An ILP provider, allowing all applications on an end-user computer to use funds on
the live ILP network. 4, 7, 8, 14–17

Switch API A SDK for cross-chain trading between BTC, ETH, DAI and XRP with In-
terledger Streaming. 7, 8

XRP Ripple’s digital payment asset which is used for Interledger payments. 8, 9, 12, 14–17

References

[1] Evan Schwartz. Protocol Stack Deep Dive - Boston Interledger Meetup, [On-
line] Accessed: June 6, 2019. https://www.slideshare.net/Interledger/

interledger-protocol-stack-deep-dive-boston-interledger-meetup.

[2] Evan Schwartz. STREAMing Money and Data Over ILP, [Online] Accessed: June 11, 2019. https://

medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e.

[3] Ripple. STREAM: A Multiplexed Money and Data Transport for ILP, [Online] Accessed: June 11, 2019.
https://interledger.org/rfcs/0029-stream/.

[4] S. Thomas, E. Schwartz, and A. Hope-Bailie. The Interledger Protocol, July. 2016. [Online] Accessed: April
10, 2019. https://tools.ietf.org/html/draft-thomas-interledger-00.

[5] Ripple. Interledger Protocol (ILP), [Online] Accessed: April 10, 2019. https://interledger.org/rfcs/

0003-interledger-protocol/.

[6] Adrian Hope-Bailie. Interledger Community Group Call, Nov. 2018. [Online] Accessed: April 10, 2019. https:
//zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?

continueMode=true.

[7] HowToToken Team. How Is Ripple Different From All Other Cryptocurrencies? An Ul-
timate Guide, [Online] Accessed: April 10, 2019. https://howtotoken.com/explained/

ripple-different-cryptocurrencies-ultimate-guide/#ripple-payment-channels.

[8] Ripple. Relationship between Protocols, [Online] Accessed: June 14, 2019. https://interledger.org/rfcs/
0033-relationship-between-protocols/.

[9] Ripple. Interledger Architecture, [Online] Accessed: June 6, 2019. https://interledger.org/rfcs/

0001-interledger-architecture/#protocol-layers.

[10] Adrian Hope-Bailie. Introducing Rafiki, [Online] Accessed: June 24, 2019. https://medium.com/

interledger-blog/introducing-rafiki-e3de4710d3de.

19

https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup
https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup
https://medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e
https://medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e
https://interledger.org/rfcs/0029-stream/ 
https://tools.ietf.org/html/draft-thomas-interledger-00
https://interledger.org/rfcs/0003-interledger-protocol/
https://interledger.org/rfcs/0003-interledger-protocol/
https://zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?continueMode=true
https://zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?continueMode=true
https://zoom.us/recording/play/rCj_0BZfNzUAHmg1lR52z0mGql55XICJ1CMJMl1sqDRNZmP3xFpyI52rgSOG6C8s?continueMode=true
https://howtotoken.com/explained/ripple-different-cryptocurrencies-ultimate-guide/#ripple-payment-channels
https://howtotoken.com/explained/ripple-different-cryptocurrencies-ultimate-guide/#ripple-payment-channels
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://medium.com/interledger-blog/introducing-rafiki-e3de4710d3de
https://medium.com/interledger-blog/introducing-rafiki-e3de4710d3de

	What this document covers
	Who this document is for
	The Interledger ecosystem
	The Interledger protocol suite
	The Streaming Transport for the Realtime Exchange of Assets and Messages


	The connectors

