
Software Engineering for Dataset Augmentation
using Generative Adversarial Networks

Benjamin Jahić, Nicolas Guelfi and Benoît Ries
 Laboratory for Advanced Software Systems

University of Luxembourg
Esch-Belval, Esch-sur-Alzette 4365, Luxembourg

{benjamin.jahic, nicolas.guelfi & benoit.ries}@uni.lu

Abstract—Software engineers require a large amount of data for
building neural network-based software systems. The
engineering of these data is often neglected, though, it is a critical
and time-consuming activity. In this work, we present a novel
software engineering approach for dataset augmentation using
neural networks. We propose a rigorous process for generating
synthetic data to improve the training of neural networks. Also,
we demonstrate our approach to successfully improve the
recognition of handwritten digits using conditional generative
adversarial networks (cGAN). Finally, we shortly discuss selected
important issues of our process, presenting related work and
proposing some improvements.

Keywords-software engineering; development process; dataset
engineering; automated data generation; neural network training

I. INTRODUCTION
Software Engineering (SE) [1] [2] is a field in computer

science that focuses on all aspects of the development phases
of the production of computer programs. Engineers develop
these digital systems within business-critical conditions (e.g.
financial, time constraints,…) using appropriate theories,
methodologies and tools. This becomes even more critical for
engineering datasets for neural network based software
systems.

There is a rising demand for data to engineer neural
network-based software systems. The necessary amount of
training data is increasing too. Software engineers will need to
engineer these datasets. However, engineering datasets is often
not supported by a rigorous process. It is complicated,
expensive and time-consuming to build new datasets.
Concerning dataset engineering, there are very few
methodologies supporting dataset requirement specification,
design or production.

Neural networks are trained on data to acquire knowledge
in performing certain tasks (e.g. classification,…). Dataset
augmentation can be used to engineer improved neural
network-based systems [3] and to improve the knowledge after
a training phase. It may help to produce better results during
the test phase [4]. Moreover, it can also be used to strengthen
some knowledge for some task. Engineers can better influence

the knowledge of the neural network based on the customer’s
requirements.

After a deep state of the art research, we have found very
few related works. It is not surprising since the majority of
research focuses on neural network architecture improvement.
We present the main studies we found related to our problem
domain in the discussion section.

In order to solve the lack of methodology and to reduce the
cost and complexity to produce/obtain datasets, we propose a
development process that exploits techniques for the synthesis
of data. This approach is useful to support the efficient creation
of a dataset based on the requirements coming from a
customer. It is also dedicated to the validation and verification
of the neural network-based system according to the
customer’s needs. Finally, it eases the interpretation and
analysis of outputs of such a system with the customer.

In Section II, we describe our proposed approach and its
constituting activities. Section III presents an illustration of our
approach through the description of an experimentation that we
conducted on the MNIST [5] case study. Then, in Section IV
we discuss three points of particular interest that we wish to put
emphasis on.

II. APPROACH
Illustration To have a concrete understanding of our

approach, let us consider that we want to engineer a neural
network(NN) to recognize handwritten digits. The default
process would be to select a neural network architecture,
instantiate this architecture, train the neural network with a
given dataset, check the results, change the NN parameters and
continue until a satisfactory result is found. This is the
traditional craftsmanship approach. Our approach does not only
formalize the engineering process but also introduces a mean to
improve the recognition qualities of neural networks. In our
example, the neural network to engineer is specialized in
recognition of images representing a handwritten “seven” in a
numerical representation (i.e. ’7’). A software engineer will
build a NN architecture and start collecting images for training
and testing purposes. He then evaluates the NN’s recognition
capacity by processing and grouping the images into

Figure 1. Our Business Process for Dataset Augmentation using a conditional generative adversarial network

classified
data

dstraintargetNN
architecture

targetNN

Customer
Validation

Failed

synthesizerNN

Customer
Validation
Passed

test
monitoring

data

dataset
augmentation
specification

dsdev dstest

training
monitoring

data

Frozen
Target NN

Architecture

Improvable
Target NN

Architecture

augmented
data

A. Engineer Raw
Datasets

B. Engineer a
Target NN

C. Train the
Target NN

D. Analyse
 Training Monitoring

Data

E. Test the
Target NN

F. Analyse
Test Monitoring Data

I. Generate an Augmented
Dataset with Classified

Synthetic Data

H. Engineer a
Synthesizer NN

G. Specify Synthetic
Dataset Augmentation

Legend
Yellow
Green
Blue

related to neural network engineering
related to neural network execution
related to dataset engineering

different recognition categories (i.e. errors in recognizing 7
written with or without a middle-bar, errors in labels from the
input datasets in which some images representing a ’one’ are
labelled ’seven’, etc.); The engineer introduces a synthesizer
for automated generation of synthetic training images to reduce
the errors for the determined cases (i.e. synthetic images of
handwritten 7 without a middle-bar). The engineer then uses
the new “hybrid” augmented datasets combining initial and
synthetic images to improve the NN’s recognition capacity.

In this section, we describe our novel Software Engineering
approach for augmenting datasets using neural networks. The
proposed approach is formalized using a business process
(compliant with the BPMN 2.0 [6] modeling language). Thus,
it allows engineers to better apply our process for their deep
learning projects. Our process is composed of nine activities
presented in the following subsections. Fig. 1 shows an
overview of the business process introduced in this paper.

Our process deals with three types of activities, represented
by rounded rectangles and different colors, listed below; each
of these types of activities requires different expertise:

• Dataset engineering activities (in blue). These
activities require skills in conceptual modelling,
statistical modelling and domain expertise. The
stakeholder is typically an analyst who works in close
collaboration with the customer for the constitution of
datasets needed for IT system engineering (it includes
architecture, implementation, ...).

• Neural network software engineering activities, (in
yellow). These activities aim at designing and
implementing the best NN for the targeted recognition
problem and are expected to be performed by senior
software engineers with a strong specialization in NN
development.

• Neural network execution activities (in green). These
activities aim at using the computing infrastructure to
train and test NNs, compute the synthetic dataset. They
require knowledge in NN development environments
and are typically performed by technicians.

Within the process execution three different types of Data
Objects are handled, represented in Fig. 1 by folded corner
vertical rectangles of different colors:

• Datasets (in blue). Datasets are inputs of NNs using
data of the application domain to be used for learning
or verifying recognition capacities (e.g. images, text,
scenarios, etc.). They are usually designed as a tensor
(i.e. a matrix of matrices).

• Neural Networks (in yellow). Two NNs are used: on
the one hand, the target neural network (i.e. targetNN)
is the NN which we aim to improve its quality by
augmenting its initial input datasets; on the other hand,
a synthesizer neural network (i.e. synthesizerNN) used
for the generation of data to augment the initial
datasets of the targetNN.

• Neural Networks Data (in green). These data
encompass several kinds of monitoring data resulting

from the execution of neural networks: e.g. accuracy,
loss, evolution of learning accuracy over time,...

Two data objects are coming in and out of our process, they
are represented by folded corner vertical rectangles with an
arrow in Fig. 1:

• The Classified Data (arrow in white), in the BPMN
modeling language, is the external input of the process.
In our approach, the Data Input is a collection of
classified data.

• The Augmented Data (arrow in black), in the BPMN
modeling language, is the external output of the
process. In our approach, the Data Output is the
augmented dataset resulting from the overall process
execution.

The activities are not all described with the same level of
detail. We focus on those directly related to dataset
augmentation engineering.

A. Engineering Raw Datasets
The first activity (A in Fig. 1) takes as input the process’

Data Input, i.e. a collection of classified data. This activity is a
subprocess composed of the 4 following sequential tasks :

• Create the set of equivalence classes. The first task to
engineer raw datasets is to define a number of
equivalence classes based on how the Data Input is
classified. We suggest to create an equivalence class
for each class of the classified data. Indeed, depending
on the project application of the business process, the
mapping may be defined differently. In our approach,
we denote the set of equivalence classes ecdata.

• Engineer the training dataset. This dataset is
composed of a selection of input data and is used to
feed the neural network with data to be learned from.
We denote this dataset dstrain.

• Engineer the development dataset. This dataset is
composed of an optimal number of data used to
observe the evolution of the learning accuracy of the
neural network during its training process, see activity
C in Fig. 1. We denote this dataset dsdev.

• Engineer the test dataset. This dataset is composed of
data used to validate the NN after it has been trained.
This dataset should ideally be specified together with
the customer, as it is used as a final condition to exit
our process and deliver the augmented dataset for the
targetNN. We denote this dataset dstest.

B. Engineer a targetNN
Based on the datasets defined in Activity A. This second

activity consists in building the architecture of the targetNN
and constructing an implementation respecting the built
architecture. The neural network engineer performs the
architecture design and implementation based on properties of
the previously engineered datasets. It includes, among others:
format of the datasets, size of the different datasets, number of
equivalence classes, etc.

TABLE I. OUR FOUR CATEGORIES OF TEST DATA ANALYSIS

 Recognition
 Correct Incorrect

Classification
Correct Class Ù Reco Class Ù !Reco

Incorrect !Class Ù Reco !Class Ù !Reco

C. Train the targetNN
After having engineered the targetNN, the neural network

shall be trained. This training activity consists of executing the
targetNN architecture implementation with the two input
datasets: dstrain and dsdev. During the training phase, the
neurons’ weights are adjusted, resulting in the learning of the
targetNN neural network. This is an iterative activity, each
iteration is called an epoch. When all the epochs have been
executed, the targetNN is considered to be trained on dstrain.

D. Analyse Training Monitoring Data
During this activity, the software engineer analyses the

various computations resulting from the previous training
activity. We propose the three following kinds of data to be
analyzed:

• The training data recognition accuracy values for each
equivalence class, computed by the software engineer.
A threshold for the overall accuracy value shall be
defined under which it is considered to be improvable.

• The evolution of the accuracy and loss at the end of
each epoch, computed by the neural network on the
training and development dataset. The performance of
the neural network (maximal accuracy, minimal loss)
shall be satisfied on both datasets. Decreasing
performance on the development dataset permits to
detect signs of overfitting.

• The overall loss value, computed by the neural
network on its outputs. A threshold shall be defined
under which the loss value is considered to be
sufficient, i.e. the targetNN architecture can be frozen.

When all these conditions are satisfied the targetNN’s
architecture is frozen, otherwise, its architecture should be
improved by redoing Activity B.

E. Test the targetNN
Testing the targetNN involves executing the targetNN with

dstest as input, in order to validate (or not) the recognition
capability of the current targetNN.

F. Analyse Test Monitoring Data
During this activity, the engineer analyses the test data to

extract relevant information on the recognition capability of the
targetNN. We defined four categories that we propose for
analyzing the test data, as summarized in Table I: Class Ù Reco
for the correctly classified and recognized data; Class Ù !Reco
for the correctly classified but incorrectly recognized data;
!Class Ù Reco for the incorrectly classified but correctly
recognized data; !Class Ù !Reco for the incorrectly classified
and recognized data.

G. Specify Synthetic Dataset Augmentation
In this activity, based on the analysis of the test data and its

categorization in the four defined categories, the dataset
engineer is in charge of specifying a dataset augmentation. This
specification will comprise the objectives to be met by the
synthesizerNN in Activity H.

The augmentation of a dataset involves, among other tasks,
the generation of new data. In our approach, we introduce the
notion of data similarity. Similarity is a function, strongly-
dependent on the business context, that evaluates the distance
between 2 data; it is measured in percentage. For instance, we
may express “data d1 is 80% similar to another data d2”.

In order to create the dataset augmentation specification,
we propose that the dataset (DS) engineer reviews the test data
following the tasks below:

• !Class Ù Reco and !Class Ù !Reco: The engineer
should parse all these data an keep them in the test
dataset for being recognized. The DS engineer shall
move these data from their incorrect to their correct
equivalence-class. The unrecognizable equivalence-
class of data not to be recognized is removed.

• Class Ù !Reco: All these data should be evaluated, if
there is a need to refine some of the existing
equivalence classes into sub-classes. For instance, in a
digit-recognition business context, the {7} equivalence
class, may be refined into two sub-classes, one with a
bar (european-style), another one without a bar
(american-style). A Decision of which equivalence
classes are critical must be taken in order to generate
additional similar data to strengthen recognition
capacity of the targetNN.

• Class Ù Reco: Generate additional synthetic data with
synthesizerNN to strengthen the capacity of targetNN
for recognizing data in that category.

Finally, the dataset augmentation specification is created,
consisting of a set of objectives resulting from the tasks above.
Examples of such specification could contain phrases like
“Generate 1000 additional data of minimum similarity of 80%
for equivalence class ec1”, “Move d1,…d10 to the
unrecognizable equivalence class”, “Move data d11,…d20 from
ec2 to ec3”, etc.

H. Engineer a SynthesizerNN
Based on the dataset augmentation specification, a neural

network is engineered that shall be able to generate the
specified data synthetically.

I. Augment the Training Dataset with Generated Synthetic
Data
This task consists of a monitored execution of the

synthesizerNN engineered in Activity H, composed of these
sub-tasks:

• The synthetic data is generated by synthesizerNN
complying with the dataset augmentation specification
and are collected in a new dataset dssyn.

• Each data in dssyn is evaluated with the similarity
function against a certain threshold, determined based
on the context, such that we do not introduce new
synthetic data which are too distant from the initial
dataset.

• Finally, a new augmented training dataset ds’train is
created as the union from the original dstrain and dssyn.

J. Engineer an improved targetNN Instance with the
Augmented Datasets (Activities B’ to F’)
Now that the augmented dataset ds’train has been generated,

the software engineer performs the Activities B’-F’ a second
time using ds’train to create a new instance of an improved
targetNN. This process being iterative, it may be repeated as
many times as necessary until reaching customer validation.

III. EXPERIMENTING THE APPROACH
In this section, we present an experimentation that we con-

ducted on our approach described in the previous Section II.
This experimentation consists in instantiating our process on
the MNIST [5] case study.

A. Engineering Raw Datasets
For this experimentation, the process’s Data Input is a

collection of classified grayscale images of handwritten digits,
called MNIST having the following characteristics:

• Each image is a matrix of size 28×28, where each
element representing an image pixel is a value from 0
to 255 representing the grayscale intensity

• Each monochrome image is associated to a label, being
an integer value in [0..9] reflecting the handwritten
depiction of the digit, visible on the image.

• The MNIST image collection, consists of two sets of
classified images, the MNIST training dataset
containing 60.000 classified images and MNIST
testing dataset containing 10.000 classified images.

Given the Data Input, we performed the four tasks defined
in our approach, creating:

• The set of equivalence classes, named ecMNIST
hereafter, defined as ecMNIST = {‘0’,...,’ 9’}.

• The training dataset, dstrain∈P([0,255]28×28) ×P(ecdata),
consists of a random selection of 90% of the initial
MNIST training dataset of 60.000 images. dstrain
contains 54.000 images;

• The development dataset, dsdev ∈ P([0,255]28×28)×
P(ecdata), consists of a random selection of 10% of the
MNIST training dataset, 6.000 images;

• The testing dataset, dstest ∈ P([0,255]28×28)×P(ecdata),
is the MNIST testing dataset of 10.000 images.

We created the datasets satisfying these properties :

 dsdev ∩ dstrain ∩ dstest = ∅� (1)

 dsdev ∩ dstrain = ∅ (2)

 dstrain ∩ dstest = ∅ (3)

 dsdev ∩ dstest = ∅ (4)

B. Engineering a targetNN
TargetNN has been designed as a Convolutional Neural

Network (CNN) architecture inspired from Kizhevsyky et al.
[4] and implemented in Python [7] using the Keras Library [8].
We selected a CNN architecture, because of the high ranking
of CNNs for the MNIST recognition proposed by [9].

Our CNN has 7 layers with randomly initialized weights; 4
convolutional and 2 fully connected layers. The first 2 layers
are convolutional layers. The output kernel maps are max
pooled with a (2 × 2) pool and a random dropout of 50%. The
next 2 layers are additional convolutional layers. Again, the
output kernel maps are max pooled with a (2 × 2) pool, a
random dropout of 50% and the resulting kernel maps are
flattened. The last 2 layers are fully connected layers. 50% of
the outputs of the first fully connected layer are randomly
dropped out. The last fully connected layer is the output layer
of 10 neurons and outputs a probability distribution over the 10
equivalence classes. The loss is calculated with the categorical
cross-entropy function.

Krizhevsky et al. [4] proposed a CNN for the classification
of 224×224×3 ImageNet images [10] with many more layers
and neurons. Our targetNN is much smaller and designed for
recognizing MNIST images of size 28×28. We took inspiration
from their architecture to design our targetNN. We adjusted the
parameters of the architecture (e.g. layers, neurons, input/
output dimension) without changing the activation functions,
such that the targetNN recognizes the MNIST images. We used
dropouts to prevent overfitting. According to Srivastava et al.
[11], dropout prevents overfitting and make a NN more robust.

Owing to our loss function and the development dataset, we
were able to determine during the training whether the NN was
overfitting. We optimized the architecture’s parameters after
several training processes.

C. Training the targetNN
We trained our model on 2 GPUs (Nvidia GTX1080Ti).

The training execution of our experimentation lasted for ±10
minutes and 50 epochs. During the epochs, we observed the
accuracy and the loss to optimize the targetNN’s parameters to
improve the training results. The following parameters of the
architecture have been optimized: the kernel-size on the
convolutional layers; the dropout probability for the different
layers ; the number of nodes on the first fully connected layer;
the total number of fully connected layers after the last
convolutional layer and before the last fully connected layer.

By adjusting these parameters, we reduced signs of
overfitting by observing the accuracy and loss on the training
and development dataset as shown in Fig. 2.

TABLE II. OVERALL ACCURACY AND LOSS OF TARGETNN

dstrain dsdev dstest
acc.(%) loss acc.(%) loss acc.(%) loss

99.91 0.0033 99.45 0.0371 99.47 0.0251

Figure 2. targetNN’s accuracy and loss for dstrain and dsdev

D. Analysing the Training Monitoritng Data
Table II illustrates the targetNN’s accuracy and loss on the

training, development and testing datasets that represent the
training monitoring data. These values are computed with a
built-in Keras [8] function that outputs the evaluation of the
model. For the three datasets, training, development and testing
dataset, we observed a very high accuracy and a low loss.

Thus, it is unlikely that the targetNN is overfitting.
Moreover, thanks to the adjustments of the parameters, the
targetNN didn’t tend to overfit during the training.

Based on these observations, we stopped the targetNN’s
training and accepted its architecture, by freezing it.

E. Testing the targetNN
In this activity, we tested our targetNN with images from

the testing dataset. The targetNN takes as input an image and
returns probability distribution over the 10 equivalence classes
that represent the handwritten digit of the image. Each
probability describes the likelihood that the image belongs to
an equivalence class. We decided to choose the equivalence
class with the maximal probability as selection criteria.

Our selection criteria allows us to compare the recognized
class with the expected class of every test image. We collected
the incorrectly recognized test images and sorted them by its
equivalence class. Fig. 3 shows examples of these images and
Table III shows the summary of correctly and incorrectly
recognized images for each equivalence class.

F. Analysing the Test Monitoring Data
The tested targetNN has an accuracy of 99.47% and a loss

of 0.0251 on the testing dataset. Thus, due to the low loss and
high accuracy, the targetNN did not tend to overfit and
recognized the test images very well .

TABLE III. TESTING DATASET ACCURACY FOR EACH EQUIVALENCE
CLASS

Equivalence class 0 1 2 3 4
Accuracy (%) 99.80 99.92 99.52 99.71 99.39

Equivalence class 5 6 7 8 9
Accuracy (%) 99.44 99.17 99.13 99.59 99.01

Figure 3. Sample Categorisations for handwritten digit 7

Table III represents the accuracy for each equivalence class.
We observe that images for the equivalence classes 7 and 9 are
worst recognized. We focus on analyzing the test monitoring
data on images of the equivalence class 7.

We categorized the test data according to the four
categories defined in our approach, see Section II-F, we
categorized the test data. Table IV represents the number of
images per category for the equivalence class for digit 7.

Fig. 3 shows some sample image categorizations of the
handwritten digit 7. We describe the equivalence class as the
input classification Classinput; the corrected classification as the
client’s classification Classclient and the recognition class of the
neural network as the neural network’s recognition RecoNN .
The classification category (Class or !Class) is selected by
comparing the input to client’s classification. The recognition
category (Reco or !Reco) is selected by comparing the client’s
classification and neural network’s recognition.

G. Specifying a Synthetic Dataset Augmentation
We designed our synthetic dataset augmentation based on

the results of the test analysis and the categorization. The
testing images have been grouped in 4 categories. We observed
that the NN incorrectly recognized 9 images of the equivalence
class 7. This group of images contains 1019 correctly classified
and recognized images; 4 Class Ù Reco images ; 1 Class Ù
!Reco; 1 !Class Ù Reco image and 4 !Class Ù !Reco images

Firstly, we analyzed the Class Ù Reco and Class Ù !Reco
images. We would like to strengthen and improve the
recognition of these images. The Class Ù !Reco images can be
grouped into two equally-sized groups of seven’s with a bar
and without a bar in the middle. There is no need for refining
the equivalence class 7 because we have an equal number of
incorrectly recognized images. Thus, we specified the
generation of 5 different sets of 1.000, 2.000, 3.000, 5.000 and
10.000 randomly generated synthetic images of the equivalence
class 7. We defined the input parameters of the synthetiserNN
as our equivalence classes ecdata. Thus, the synthesizerNN
should be trained on the training dataset dstrain.

Figure 4. synthetiserNN’s similarity evolution in between generated
synthetic and training images

We specified a similarity threshold for generating synthetic
images at ±80% average similarity to the training images.

Secondly, we analyzed the !Class Ù Reco and !Class Ù
!Reco images. We decided to remove these images from the
testing dataset dstest, because we do not want them to be
recognized by the targetNN. Thus, we reduced the number of
incorrectly recognized images to 4.

H. Engineering a SynthesizerNN
We engineered a conditional Generative Adversarial

Network (cGAN) [12] to train a synthetic image generator. Our
cGAN is composed of two CNNs: one CNN, called generator,
which generates synthetic MNIST images, based on a set of
input data; and the other CNN, called the discriminator, which
computes the probability of an image being part of the set of
input data.

The cGAN generator has been chosen as our synthetiserNN
for automating the generation of synthetic images that
corresponds to the synthetic dataset augmentation specification
resulting from the previous Activity G. We trained the
synthetiserNN on 5.000 epochs on our initial training dataset
and 10 equivalence classes. Its accuracy is described by the
average of the maximal similarities between a generated
synthetic image and the training images of the same
equivalence class. The similarity is computed with 2 different
functions; the mean-squared error (MSE) and the structural
similarity measure [13] (SSM). We trained the synthetiserNN
by maximizing the SSM and minimizing the MSE error over
the number of training iterations.

In Fig. 4, we illustrate the synthetiserNN’s accuracy
evolution. The synthetiserNN reached an accuracy of ±81%
(SSM similarity function) and ±160 (MSE function). We
accepted these results to generate the synthetic images.

I. Generating an Augmented Training Dataset with
Classified Synthetic Data
In this activity, we ran the synthetiserNN to generate the

synthetic images based on the previously defined specification.

In Fig. 5, we show some examples of generated synthetic
images. The generated synthetic images are automatically
classified and collected in the synthetic dataset dssyn. The new
augmented training dataset contains the data of the synthetic
dataset dssyn and the raw training dataset dstrain.

TABLE IV. ACCURACY AND LOSS FOR TARGETNN

|dssyn| 0 1000 2000 3000 5000 10000
accuracy (%) 99.47 99.45 99.42 99.45 99.6 99.47

loss 0.025 0.021 0.024 0.022 0.021 0.025

Figure 5. Synthetic Images for Digit 7

J. Engineering of an Improved targetNN Instance with the
Augmented Dataset (Activities B’ to F’)
After re-designing an augmented dataset, we unfroze the

targetNN and re-train it on the augmented dataset.

Table V illustrates the overall accuracy and loss of the
targetNN after being trained on the augmented datasets. We
observe that the overall accuracy is stable. Thus, the targetNN
correctly recognizes the same total number of images on
average. However, we observe a lower loss for the dataset
augmented with 1.000, 2.000, 3.000, 5.000 images, compared
to the loss of the targetNN trained on a non-augmented dataset.
It seems that a targetNN trained on augmented data generalizes
better. In the case of a dataset with 10.000 synthetic images, we
achieved equal accuracy and loss for the targetNN compared to
the targetNN trained on a non- augmented dataset. Due to the
decrease in performance on the testing dataset, it is probable
that this targetNN showed first signs of overfitting in that case.

Thus, the retrained targetNN recognizes images of the
equivalence class 7 at a higher accuracy of 99.6% compared to
the accuracy 99.13% (from Table III). For each dataset
augmentation of 1.000, 2.000, 3.000, 5.000 and 10.000 images,
we were capable of reducing the unrecognized images from 9
to 5, 8, 5, 4 and 4. We compared the results to the results of the
targetNN trained on non-augmented data. We were able to
reduce the incorrectly classified images of equivalence class 7
from 9 to 4 (2 Class Ù !Reco and 2 !Class Ù !Reco).

IV. DISCUSSION
In this section, we have identified two main points of

discussion. We present the issue and current limitations as well
as related work and possible improvements.

A first point to discuss is that in our process, the dataset
augmentation specification is performed informally. It involves
manual steps translating from the specification to a
synthesizerNN architecture engineering and usage. Related
work on that matter is mainly twofold. Firstly, most papers
talking about augmentation techniques [14]–[17] do not
formally specify the dataset augmentation strategy. In their
work, they generate data transformations without a rigorous
process and it mostly consists of describing how many more
synthetic data are generated. Secondly, other works tackle the
usage of AI to provide a dataset augmentation strategy as

Cubuk et al. [18] with their AutoAugment approach computing
the probability for the best data augmenta- tion strategy based
on a set of input data transformations func- tions. From a
software engineering perspective, we would suggest as a
possible improvement of our approach, to use model-driven
engineering MDE [19]. In particular domain-specific languages
(DSL) to rigorously specify the synthetic dataset augmentation
and provide a transformation program that generates an
implementation of a synthesizerNN architecture.

A second point to discuss is that in our process we
introduce a loose notion of a similarity function (e.g. in our
experiment we have mean-squared errors, structural similarity,
…) to compare synthetic images with the training images, for
computing the accuracy of our synthesizerNN. We found some
related work on similarity functions for image comparison.
One based on the morphological similarity of images, Vizilter
and Zhetlov [20] present four techniques for determining
similarity and dissimilarity on the morphology of images. They
transform images into a set of mosaic shapes and compare
different techniques for comparing the shapes. A second one
using AI techniques for computing the similarity in between
images. Appalaraju and Chaoji [21] present a convolutional
neural network for computing the similarity between two
images. They present a CNN architecture that takes as input
two images and output a distance measure. We would suggest
as a possible improvement of our approach to propose multiple
similarity functions for computing the accuracy of the
synthesizerNN based on the domain problem. Selecting the
appropriate similarity function can improve the accuracy of the
synthesizerNN. Thus, we could specify more precisely the
similarity of the synthetic data for dataset augmentation.

V. CONCLUSION
In this paper, we have presented our approach for

improving the quality of neural networks by defining an semi-
formal engineering process. The approach has been specified in
compliance with the business process modeling notation
BPMN 2.0. We have described a concrete experimentation of
our approach with the synthetic generation of augmented
dataset using conditional Generative Adversarial Network on
the MNIST case study for image recognition. The
experimentation has shown that our approach is promising, as
we managed to improve the accuracy of the initial network by
augmenting the MNIST dataset with automatically generated
synthetic data.

As a future work, we will work on a formal definition of a
DSL for the specification of datasets and dataset augmentation
strategies. The DSL grammar should be designed for dataset
engineers. Following a model-engineering approach, the
specifications written with the DSL would then be used as
input to generate automatically an architecture of the
synthesizerNN.

Another future work is to perform experimentations with
other types of similarity functions for image recognition, e.g.
morphological similarity. These functions can be used to
improve the accuracy computation of a synthesizerNN and

better capture the similarities between synthetic and training
images.

REFERENCES
[1] Software Engineering – Guide to the Software Engineering Body of

Knowledge (SWEBOK). International Organization for
Standardization, 2014.ISO-IEC TR 19759-2014, 2014.

[2] I. Sommerville, Software Engineering, 10th ed. Pearson, 2016.
[3] P.Y. Simard, D. Steinkraus,and J.C. Platt,“Best practices for

convolutional neural networks applied to visual document analysis, “In
Proceedings of the 7th International Conference on Document Analysis
and Recognition, ICDAR 2003, Edinburgh, UK, 2003, pp. 958–963.

[4] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classification
with deep convolutional neural networks, “In Advances in neural
information processing systems, May 2012. pp. 84–90.

[5] L. Deng, “The MNIST database of handwritten digit images for machine
learning research. “IEEE Signal Processing Magazine, vol. 29, 2012,
p.141-142.

[6] Object Management Group, “Business Process Modeling Notation
(BPMN) v2.0, ”Object Management Group, Full Specification
formal/2011-01-03, 2011.

[7] M. Summerfield. Programming in Python 3: A Complete Introduction to
the Python Language. Addison-Wesley. 2013.

[8] A. Gulli. and P. Sujit. “Deep Learning with Keras. “Packt Publishing
Ltd. 2017.

[9] Y. Lecun, C. Cortes, and C. J.C. Burges, “The MNIST database of
handwritten digits. [Online]. Available: http://yann.lecun.com/.
[Accessed May. 1,2018].

[10] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition chal-
lenge. 2010. [Online]. Available: http://www.image-net.org/. [Accessed
May. 1,2018].

[11] N.Srivastava,G.Hinton,A.Krizhevsky,I.Sutskever,andR.Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
The Journal of Machine Learning Research. 2014. p. 30.

[12] M. Mehdi et S. Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[13] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,
“IEEE Transactions on Image Processing, Apr. 2004. pp. 600–612.

[14] A. Mikolajczyk and M. Grochowski,“Data augmentation for improving
deep learning in image classification problem, “In International
Interdisciplinary PhD Workshop, IIPhDW, Swinoujscie, 2018, pp.117–
122.

[15] A. Antoniou, A. Storkey, and H. Edwards, “Data Augmentation
Generative Adversarial Networks, “arXiv preprint arXiv:1711.04340,
2017. in press.

[16] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell,
“Understanding data augmentation for classification: when to warp?, “In
International conference on digital image computing: techniques and
applications, DICTA, Sep. 2016. pp. 1-6.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique, “In Journal of
Artificial Intelligence Research, vol. 16, Jun. 2002. pp. 321–357.

[18] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan and Q. V. Le,
“AutoAugment: Learning Augmentation Policies from Data, arXiv
preprint arXiv:1805.09501, 2018. in press.

[19] S. Kent, “Model driven engineering., “In International Conference on
Integrated Formal Methods, 2002.

[20] Yu. V. Vizilter and S. Yu. Zheltov, “Similarity measures and
comparison metrics for image shapes, “In Journal of Computer and
Systems Sciences International, vol. 53, no. 4, Jul. 2014. pp. 542–555.

[21] S. Appalaraju and V. Chaoji, “Image similarity using Deep CNN and
Curriculum Learning, arXiv preprint arXiv:1709.08761, 2017. in press.

