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Abstract—Software engineers require a large amount of data for 
building neural network-based software systems. The 
engineering of these data is often neglected, though, it is a critical 
and time-consuming activity. In this work, we present a novel 
software engineering approach for dataset augmentation using 
neural networks. We propose a rigorous process for generating 
synthetic data to improve the training of neural networks. Also, 
we demonstrate our approach to successfully improve the 
recognition of handwritten digits using conditional generative 
adversarial networks (cGAN). Finally, we shortly discuss selected 
important issues of our process, presenting related work and 
proposing some improvements. 

Keywords-software engineering; development process; dataset 
engineering; automated data generation; neural network training 

I.  INTRODUCTION 
Software Engineering (SE) [1] [2] is a field in computer 

science that focuses on all aspects of the development phases 
of the production of computer programs. Engineers develop 
these digital systems within business-critical conditions (e.g. 
financial, time constraints,…) using appropriate theories, 
methodologies and tools. This becomes even more critical for 
engineering datasets for neural network based software 
systems. 

There is a rising demand for data to engineer neural 
network-based software systems. The necessary amount of 
training data is increasing too. Software engineers will need to 
engineer these datasets. However, engineering datasets is often 
not supported by a rigorous process. It is complicated, 
expensive and time-consuming to build new datasets. 
Concerning dataset engineering, there are very few 
methodologies supporting dataset requirement specification, 
design or production. 

Neural networks are trained on data to acquire knowledge 
in performing certain tasks (e.g. classification,…). Dataset 
augmentation can be used to engineer improved neural 
network-based systems [3] and to improve the knowledge after 
a training phase. It may help to produce better results during 
the test phase [4]. Moreover, it can also be used to strengthen 
some knowledge for some task. Engineers can better influence 

the knowledge of the neural network based on the customer’s 
requirements. 

After a deep state of the art research, we have found very 
few related works. It is not surprising since the majority of 
research focuses on neural network architecture improvement. 
We present the main studies we found related to our problem 
domain in the discussion section. 

In order to solve the lack of methodology and to reduce the 
cost and complexity to produce/obtain datasets, we propose a 
development process that exploits techniques for the synthesis 
of data. This approach is useful to support the efficient creation 
of a dataset based on the requirements coming from a 
customer. It is also dedicated to the validation and verification 
of the neural network-based system according to the 
customer’s needs. Finally, it eases the interpretation and 
analysis of outputs of such a system with the customer. 

In Section II, we describe our proposed approach and its 
constituting activities. Section III presents an illustration of our 
approach through the description of an experimentation that we 
conducted on the MNIST [5] case study. Then, in Section IV 
we discuss three points of particular interest that we wish to put 
emphasis on. 

II. APPROACH 
Illustration To have a concrete understanding of our 

approach, let us consider that we want to engineer a neural 
network(NN) to recognize handwritten digits. The default 
process would be to select a neural network architecture, 
instantiate this architecture, train the neural network with a 
given dataset, check the results, change the NN parameters and 
continue until a satisfactory result is found. This is the 
traditional craftsmanship approach. Our approach does not only 
formalize the engineering process but also introduces a mean to 
improve the recognition qualities of neural networks. In our 
example, the neural network to engineer is specialized in 
recognition of images representing a handwritten “seven” in a 
numerical representation (i.e. ’7’). A software engineer will 
build a NN architecture and start collecting images for training 
and testing purposes. He then evaluates the NN’s recognition 
capacity by processing and grouping the images into



  

Figure 1.  Our Business Process for Dataset Augmentation using a conditional generative adversarial network 
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different recognition categories (i.e. errors in recognizing 7 
written with or without a middle-bar, errors in labels from the 
input datasets in which some images representing a ’one’ are 
labelled ’seven’, etc.); The engineer introduces a synthesizer 
for automated generation of synthetic training images to reduce 
the errors for the determined cases (i.e. synthetic images of 
handwritten 7 without a middle-bar). The engineer then uses 
the new “hybrid” augmented datasets combining initial and 
synthetic images to improve the NN’s recognition capacity. 

In this section, we describe our novel Software Engineering 
approach for augmenting datasets using neural networks. The 
proposed approach is formalized using a business process 
(compliant with the BPMN 2.0 [6] modeling language). Thus, 
it allows engineers to better apply our process for their deep 
learning projects. Our process is composed of nine activities 
presented in the following subsections. Fig. 1 shows an 
overview of the business process introduced in this paper. 

Our process deals with three types of activities, represented 
by rounded rectangles and different colors, listed below; each 
of these types of activities requires different expertise: 

• Dataset engineering activities (in blue). These 
activities require skills in conceptual modelling, 
statistical modelling and domain expertise. The 
stakeholder is typically an analyst who works in close 
collaboration with the customer for the constitution of 
datasets needed for IT system engineering (it includes 
architecture, implementation, ...). 

• Neural network software engineering activities, (in 
yellow). These activities aim at designing and 
implementing the best NN for the targeted recognition 
problem and are expected to be performed by senior 
software engineers with a strong specialization in NN 
development. 

• Neural network execution activities (in green). These 
activities aim at using the computing infrastructure to 
train and test NNs, compute the synthetic dataset. They 
require knowledge in NN development environments 
and are typically performed by technicians. 

Within the process execution three different types of Data 
Objects are handled, represented in Fig. 1 by folded corner 
vertical rectangles of different colors: 

• Datasets (in blue). Datasets are inputs of NNs using 
data of the application domain to be used for learning 
or verifying recognition capacities (e.g. images, text, 
scenarios, etc.). They are usually designed as a tensor 
(i.e. a matrix of matrices). 

• Neural Networks (in yellow). Two NNs are used: on 
the one hand, the target neural network (i.e. targetNN) 
is the NN which we aim to improve its quality by 
augmenting its initial input datasets; on the other hand, 
a synthesizer neural network (i.e. synthesizerNN) used 
for the generation of data to augment the initial 
datasets of the targetNN. 

• Neural Networks Data (in green). These data 
encompass several kinds of monitoring data resulting 

from the execution of neural networks: e.g. accuracy, 
loss, evolution of learning accuracy over time,... 

Two data objects are coming in and out of our process, they 
are represented by folded corner vertical rectangles with an 
arrow in Fig. 1: 

• The Classified Data (arrow in white), in the BPMN 
modeling language, is the external input of the process. 
In our approach, the Data Input is a collection of 
classified data. 

• The Augmented Data (arrow in black), in the BPMN 
modeling language, is the external output of the 
process. In our approach, the Data Output is the 
augmented dataset resulting from the overall process 
execution. 

The activities are not all described with the same level of 
detail. We focus on those directly related to dataset 
augmentation engineering. 

A. Engineering Raw Datasets 
The first activity (A in Fig. 1) takes as input the process’ 

Data Input, i.e. a collection of classified data. This activity is a 
subprocess composed of the 4 following sequential tasks : 

• Create the set of equivalence classes. The first task to 
engineer raw datasets is to define a number of 
equivalence classes based on how the Data Input is 
classified. We suggest to create an equivalence class 
for each class of the classified data. Indeed, depending 
on the project application of the business process, the 
mapping may be defined differently. In our approach, 
we denote the set of equivalence classes ecdata. 

• Engineer the training dataset. This dataset is 
composed of a selection of input data and is used to 
feed the neural network with data to be learned from. 
We denote this dataset dstrain. 

• Engineer the development dataset. This dataset is 
composed of an optimal number of data used to 
observe the evolution of the learning accuracy of the 
neural network during its training process, see activity 
C in Fig. 1. We denote this dataset dsdev. 

• Engineer the test dataset. This dataset is composed of 
data used to validate the NN after it has been trained. 
This dataset should ideally be specified together with 
the customer, as it is used as a final condition to exit 
our process and deliver the augmented dataset for the 
targetNN. We denote this dataset dstest. 

B. Engineer a targetNN 
Based on the datasets defined in Activity A. This second 

activity consists in building the architecture of the targetNN 
and constructing an implementation respecting the built 
architecture. The neural network engineer performs the 
architecture design and implementation based on properties of 
the previously engineered datasets. It includes, among others: 
format of the datasets, size of the different datasets, number of 
equivalence classes, etc. 



TABLE I.  OUR FOUR CATEGORIES OF TEST DATA ANALYSIS 

  Recognition 
  Correct Incorrect 

Classification 
Correct Class Ù Reco Class Ù !Reco 

Incorrect !Class Ù Reco !Class Ù !Reco 

C. Train the targetNN 
After having engineered the targetNN, the neural network 

shall be trained. This training activity consists of executing the 
targetNN architecture implementation with the two input 
datasets: dstrain and dsdev. During the training phase, the 
neurons’ weights are adjusted, resulting in the learning of the 
targetNN neural network. This is an iterative activity, each 
iteration is called an epoch. When all the epochs have been 
executed, the targetNN is considered to be trained on dstrain. 

D. Analyse Training Monitoring Data 
During this activity, the software engineer analyses the 

various computations resulting from the previous training 
activity. We propose the three following kinds of data to be 
analyzed: 

• The training data recognition accuracy values for each 
equivalence class, computed by the software engineer. 
A threshold for the overall accuracy value shall be 
defined under which it is considered to be improvable. 

• The evolution of the accuracy and loss at the end of 
each epoch, computed by the neural network on the 
training and development dataset. The performance of 
the neural network (maximal accuracy, minimal loss) 
shall be satisfied on both datasets. Decreasing 
performance on the development dataset permits to 
detect signs of overfitting. 

• The overall loss value, computed by the neural 
network on its outputs. A threshold shall be defined 
under which the loss value is considered to be 
sufficient, i.e. the targetNN architecture can be frozen. 

When all these conditions are satisfied the targetNN’s 
architecture is frozen, otherwise, its architecture should be 
improved by redoing Activity B. 

E.  Test the targetNN 
Testing the targetNN involves executing the targetNN with 

dstest as input, in order to validate (or not) the recognition 
capability of the current targetNN. 

F. Analyse Test Monitoring Data 
During this activity, the engineer analyses the test data to 

extract relevant information on the recognition capability of the 
targetNN. We defined four categories that we propose for 
analyzing the test data, as summarized in Table I: Class Ù Reco 
for the correctly classified and recognized data; Class Ù !Reco 
for the correctly classified but incorrectly recognized data; 
!Class Ù Reco for the incorrectly classified but correctly 
recognized data; !Class Ù !Reco for the incorrectly classified 
and recognized data. 

G. Specify Synthetic Dataset Augmentation 
In this activity, based on the analysis of the test data and its 

categorization in the four defined categories, the dataset 
engineer is in charge of specifying a dataset augmentation. This 
specification will comprise the objectives to be met by the 
synthesizerNN in Activity H. 

The augmentation of a dataset involves, among other tasks, 
the generation of new data. In our approach, we introduce the 
notion of data similarity. Similarity is a function, strongly-
dependent on the business context, that evaluates the distance 
between 2 data; it is measured in percentage. For instance, we 
may express “data d1 is 80% similar to another data d2”. 

In order to create the dataset augmentation specification, 
we propose that the dataset (DS) engineer reviews the test data 
following the tasks below: 

•  !Class Ù Reco and !Class Ù !Reco: The engineer 
should parse all these data an keep them in the test 
dataset for being recognized. The DS engineer shall 
move these data from their incorrect to their correct 
equivalence-class. The unrecognizable equivalence-
class of data not to be recognized is removed. 

• Class Ù !Reco: All these data should be evaluated, if 
there is a need to refine some of the existing 
equivalence classes into sub-classes. For instance, in a 
digit-recognition business context, the {7} equivalence 
class, may be refined into two sub-classes, one with a 
bar (european-style), another one without a bar 
(american-style). A Decision of which equivalence 
classes are critical must be taken in order to generate 
additional similar data to strengthen recognition 
capacity of the targetNN. 

• Class Ù Reco: Generate additional synthetic data with 
synthesizerNN to strengthen the capacity of targetNN 
for recognizing data in that category. 

Finally, the dataset augmentation specification is created, 
consisting of a set of objectives resulting from the tasks above. 
Examples of such specification could contain phrases like 
“Generate 1000 additional data of minimum similarity of 80% 
for equivalence class ec1”, “Move d1,…d10 to the 
unrecognizable equivalence class”, “Move data d11,…d20 from 
ec2 to ec3”, etc. 

H. Engineer a SynthesizerNN 
Based on the dataset augmentation specification, a neural 

network is engineered that shall be able to generate the 
specified data synthetically. 

I. Augment the Training Dataset with Generated Synthetic 
Data 
This task consists of a monitored execution of the 

synthesizerNN engineered in Activity H, composed of these 
sub-tasks: 

• The synthetic data is generated by synthesizerNN 
complying with the dataset augmentation specification 
and are collected in a new dataset dssyn.  



• Each data in dssyn is evaluated with the similarity 
function against a certain threshold, determined based 
on the context, such that we do not introduce new 
synthetic data which are too distant from the initial 
dataset. 

• Finally, a new augmented training dataset ds’train is 
created as the union from the original dstrain and dssyn. 

J.  Engineer an improved targetNN Instance with the 
Augmented Datasets (Activities B’ to F’) 
Now that the augmented dataset ds’train has been generated, 

the software engineer performs the Activities B’-F’ a second 
time using ds’train to create a new instance of an improved 
targetNN. This process being iterative, it may be repeated as 
many times as necessary until reaching customer validation. 

III. EXPERIMENTING THE APPROACH 
In this section, we present an experimentation that we con- 

ducted on our approach described in the previous Section II. 
This experimentation consists in instantiating our process on 
the MNIST [5] case study. 

A. Engineering Raw Datasets 
For this experimentation, the process’s Data Input is a 

collection of classified grayscale images of handwritten digits, 
called MNIST having the following characteristics: 

• Each image is a matrix of size 28×28, where each 
element representing an image pixel is a value from 0 
to 255 representing the grayscale intensity 

• Each monochrome image is associated to a label, being 
an integer value in [0..9] reflecting the handwritten 
depiction of the digit, visible on the image. 

• The MNIST image collection, consists of two sets of 
classified images, the MNIST training dataset 
containing 60.000 classified images and MNIST 
testing dataset containing 10.000 classified images. 

Given the Data Input, we performed the four tasks defined 
in our approach, creating: 

• The set of equivalence classes, named ecMNIST 
hereafter, defined as ecMNIST = {‘0’,...,’ 9’}. 

• The training dataset, dstrain∈P([0,255]28×28) ×P(ecdata), 
consists of a random selection of 90% of the initial 
MNIST training dataset of 60.000 images. dstrain 
contains 54.000 images; 

• The development dataset, dsdev ∈ P([0,255]28×28)× 
P(ecdata), consists of a random selection of 10% of the 
MNIST training dataset, 6.000 images; 

• The testing dataset, dstest ∈ P([0,255]28×28)×P(ecdata), 
is the MNIST testing dataset of 10.000 images. 

We created the datasets satisfying these properties : 

 dsdev ∩ dstrain ∩ dstest = ∅� (1) 

 dsdev ∩ dstrain = ∅ (2) 

 dstrain ∩ dstest = ∅ (3) 

 dsdev ∩ dstest = ∅ (4) 

B. Engineering a targetNN 
TargetNN has been designed as a Convolutional Neural 

Network (CNN) architecture inspired from Kizhevsyky et al. 
[4] and implemented in Python [7] using the Keras Library [8]. 
We selected a CNN architecture, because of the high ranking 
of CNNs for the MNIST recognition proposed by [9]. 

Our CNN has 7 layers with randomly initialized weights; 4 
convolutional and 2 fully connected layers. The first 2 layers 
are convolutional layers. The output kernel maps are max 
pooled with a (2 × 2) pool and a random dropout of 50%. The 
next 2 layers are additional convolutional layers. Again, the 
output kernel maps are max pooled with a (2 × 2) pool, a 
random dropout of 50% and the resulting kernel maps are 
flattened. The last 2 layers are fully connected layers. 50% of 
the outputs of the first fully connected layer are randomly 
dropped out. The last fully connected layer is the output layer 
of 10 neurons and outputs a probability distribution over the 10 
equivalence classes. The loss is calculated with the categorical 
cross-entropy function. 

Krizhevsky et al. [4] proposed a CNN for the classification 
of 224×224×3 ImageNet images [10] with many more layers 
and neurons. Our targetNN is much smaller and designed for 
recognizing MNIST images of size 28×28. We took inspiration 
from their architecture to design our targetNN. We adjusted the 
parameters of the architecture (e.g. layers, neurons, input/ 
output dimension) without changing the activation functions, 
such that the targetNN recognizes the MNIST images. We used 
dropouts to prevent overfitting. According to Srivastava et al. 
[11], dropout prevents overfitting and make a NN more robust. 

Owing to our loss function and the development dataset, we 
were able to determine during the training whether the NN was 
overfitting. We optimized the architecture’s parameters after 
several training processes. 

C. Training the targetNN 
We trained our model on 2 GPUs (Nvidia GTX1080Ti). 

The training execution of our experimentation lasted for ±10 
minutes and 50 epochs. During the epochs, we observed the 
accuracy and the loss to optimize the targetNN’s parameters to 
improve the training results. The following parameters of the 
architecture have been optimized: the kernel-size on the 
convolutional layers; the dropout probability for the different 
layers ; the number of nodes on the first fully connected layer; 
the total number of fully connected layers after the last 
convolutional layer and before the last fully connected layer. 

By adjusting these parameters, we reduced signs of 
overfitting by observing the accuracy and loss on the training 
and development dataset as shown in Fig. 2. 



TABLE II.  OVERALL ACCURACY AND LOSS OF TARGETNN 

dstrain dsdev dstest 
acc.(%) loss acc.(%) loss acc.(%) loss 

99.91 0.0033 99.45 0.0371 99.47 0.0251 

Figure 2.  targetNN’s accuracy and loss for dstrain and dsdev 

D. Analysing the Training Monitoritng Data 
Table II illustrates the targetNN’s accuracy and loss on the 

training, development and testing datasets that represent the 
training monitoring data. These values are computed with a 
built-in Keras [8] function that outputs the evaluation of the 
model. For the three datasets, training, development and testing 
dataset, we observed a very high accuracy and a low loss. 

Thus, it is unlikely that the targetNN is overfitting. 
Moreover, thanks to the adjustments of the parameters, the 
targetNN didn’t tend to overfit during the training. 

Based on these observations, we stopped the targetNN’s 
training and accepted its architecture, by freezing it. 

E. Testing the targetNN 
In this activity, we tested our targetNN with images from 

the testing dataset. The targetNN takes as input an image and 
returns probability distribution over the 10 equivalence classes 
that represent the handwritten digit of the image. Each 
probability describes the likelihood that the image belongs to 
an equivalence class. We decided to choose the equivalence 
class with the maximal probability as selection criteria. 

Our selection criteria allows us to compare the recognized 
class with the expected class of every test image. We collected 
the incorrectly recognized test images and sorted them by its 
equivalence class. Fig. 3 shows examples of these images and 
Table III shows the summary of correctly and incorrectly 
recognized images for each equivalence class. 

F. Analysing the Test Monitoring Data 
The tested targetNN has an accuracy of 99.47% and a loss 

of 0.0251 on the testing dataset. Thus, due to the low loss and 
high accuracy, the targetNN did not tend to overfit and 
recognized the test images very well . 

TABLE III.  TESTING DATASET ACCURACY FOR EACH EQUIVALENCE 
CLASS  

Equivalence class 0 1 2 3 4 
Accuracy (%) 99.80 99.92 99.52 99.71 99.39 

Equivalence class 5 6 7 8 9 
Accuracy (%) 99.44 99.17 99.13 99.59 99.01 

Figure 3.  Sample Categorisations for handwritten digit 7  

Table III represents the accuracy for each equivalence class. 
We observe that images for the equivalence classes 7 and 9 are 
worst recognized. We focus on analyzing the test monitoring 
data on images of the equivalence class 7. 

We categorized the test data according to the four 
categories defined in our approach, see Section II-F, we 
categorized the test data. Table IV represents the number of 
images per category for the equivalence class for digit 7. 

Fig. 3 shows some sample image categorizations of the 
handwritten digit 7. We describe the equivalence class as the 
input classification Classinput; the corrected classification as the 
client’s classification Classclient and the recognition class of the 
neural network as the neural network’s recognition RecoNN . 
The classification category (Class or !Class) is selected by 
comparing the input to client’s classification. The recognition 
category (Reco or !Reco) is selected by comparing the client’s 
classification and neural network’s recognition. 

G. Specifying a Synthetic Dataset Augmentation 
We designed our synthetic dataset augmentation based on 

the results of the test analysis and the categorization. The 
testing images have been grouped in 4 categories. We observed 
that the NN incorrectly recognized 9 images of the equivalence 
class 7. This group of images contains 1019 correctly classified 
and recognized images; 4 Class Ù Reco images ; 1 Class Ù 
!Reco; 1 !Class Ù Reco image and 4 !Class Ù !Reco images 

Firstly, we analyzed the Class Ù Reco and Class Ù !Reco 
images. We would like to strengthen and improve the 
recognition of these images. The Class Ù !Reco images can be 
grouped into two equally-sized groups of seven’s with a bar 
and without a bar in the middle. There is no need for refining 
the equivalence class 7 because we have an equal number of 
incorrectly recognized images. Thus, we specified the 
generation of 5 different sets of 1.000, 2.000, 3.000, 5.000 and 
10.000 randomly generated synthetic images of the equivalence 
class 7. We defined the input parameters of the synthetiserNN 
as our equivalence classes ecdata. Thus, the synthesizerNN 
should be trained on the training dataset dstrain. 



Figure 4.  synthetiserNN’s similarity evolution in between generated 
synthetic and training images  

We specified a similarity threshold for generating synthetic 
images at ±80% average similarity to the training images. 

Secondly, we analyzed the !Class Ù Reco and !Class Ù 
!Reco images. We decided to remove these images from the 
testing dataset dstest, because we do not want them to be 
recognized by the targetNN. Thus, we reduced the number of 
incorrectly recognized images to 4. 

H. Engineering a SynthesizerNN 
We engineered a conditional Generative Adversarial 

Network (cGAN) [12] to train a synthetic image generator. Our 
cGAN is composed of two CNNs: one CNN, called generator, 
which generates synthetic MNIST images, based on a set of 
input data; and the other CNN, called the discriminator, which 
computes the probability of an image being part of the set of 
input data. 

The cGAN generator has been chosen as our synthetiserNN 
for automating the generation of synthetic images that 
corresponds to the synthetic dataset augmentation specification 
resulting from the previous Activity G. We trained the 
synthetiserNN on 5.000 epochs on our initial training dataset 
and 10 equivalence classes. Its accuracy is described by the 
average of the maximal similarities between a generated 
synthetic image and the training images of the same 
equivalence class. The similarity is computed with 2 different 
functions; the mean-squared error (MSE) and the structural 
similarity measure [13] (SSM). We trained the synthetiserNN 
by maximizing the SSM and minimizing the MSE error over 
the number of training iterations. 

In Fig. 4, we illustrate the synthetiserNN’s accuracy 
evolution. The synthetiserNN reached an accuracy of ±81% 
(SSM similarity function) and ±160 (MSE function). We 
accepted these results to generate the synthetic images. 

I. Generating an Augmented Training Dataset with 
Classified Synthetic Data 
In this activity, we ran the synthetiserNN to generate the 

synthetic images based on the previously defined specification. 

In Fig. 5, we show some examples of generated synthetic 
images. The generated synthetic images are automatically 
classified and collected in the synthetic dataset dssyn. The new 
augmented training dataset contains the data of the synthetic 
dataset dssyn and the raw training dataset dstrain. 

TABLE IV.  ACCURACY AND LOSS FOR TARGETNN  

|dssyn| 0 1000 2000 3000 5000 10000 
accuracy (%) 99.47 99.45 99.42 99.45 99.6 99.47 

loss 0.025 0.021 0.024 0.022 0.021 0.025 

Figure 5.  Synthetic Images for Digit 7  

J. Engineering of an Improved targetNN Instance with the 
Augmented Dataset (Activities B’ to F’) 
After re-designing an augmented dataset, we unfroze the 

targetNN and re-train it on the augmented dataset. 

Table V illustrates the overall accuracy and loss of the 
targetNN after being trained on the augmented datasets. We 
observe that the overall accuracy is stable. Thus, the targetNN 
correctly recognizes the same total number of images on 
average. However, we observe a lower loss for the dataset 
augmented with 1.000, 2.000, 3.000, 5.000 images, compared 
to the loss of the targetNN trained on a non-augmented dataset. 
It seems that a targetNN trained on augmented data generalizes 
better. In the case of a dataset with 10.000 synthetic images, we 
achieved equal accuracy and loss for the targetNN compared to 
the targetNN trained on a non- augmented dataset. Due to the 
decrease in performance on the testing dataset, it is probable 
that this targetNN showed first signs of overfitting in that case. 

Thus, the retrained targetNN recognizes images of the 
equivalence class 7 at a higher accuracy of 99.6% compared to 
the accuracy 99.13% (from Table III). For each dataset 
augmentation of 1.000, 2.000, 3.000, 5.000 and 10.000 images, 
we were capable of reducing the unrecognized images from 9 
to 5, 8, 5, 4 and 4. We compared the results to the results of the 
targetNN trained on non-augmented data. We were able to 
reduce the incorrectly classified images of equivalence class 7 
from 9 to 4 (2 Class Ù !Reco and 2 !Class Ù !Reco). 

IV. DISCUSSION 
In this section, we have identified two main points of 

discussion. We present the issue and current limitations as well 
as related work and possible improvements. 

A first point to discuss is that in our process, the dataset 
augmentation specification is performed informally. It involves 
manual steps translating from the specification to a 
synthesizerNN architecture engineering and usage. Related 
work on that matter is mainly twofold. Firstly, most papers 
talking about augmentation techniques [14]–[17] do not 
formally specify the dataset augmentation strategy. In their 
work, they generate data transformations without a rigorous 
process and it mostly consists of describing how many more 
synthetic data are generated. Secondly, other works tackle the 
usage of AI to provide a dataset augmentation strategy as 



Cubuk et al. [18] with their AutoAugment approach computing 
the probability for the best data augmenta- tion strategy based 
on a set of input data transformations func- tions. From a 
software engineering perspective, we would suggest as a 
possible improvement of our approach, to use model-driven 
engineering MDE [19]. In particular domain-specific languages 
(DSL) to rigorously specify the synthetic dataset augmentation 
and provide a transformation program that generates an 
implementation of a synthesizerNN architecture. 

A second point to discuss is that in our process we 
introduce a loose notion of a similarity function (e.g. in our 
experiment we have mean-squared errors, structural similarity, 
…) to compare synthetic images with the training images, for 
computing the accuracy of our synthesizerNN. We found some 
related work on similarity functions for image comparison. 
One based on the morphological similarity of images, Vizilter 
and Zhetlov [20] present four techniques for determining 
similarity and dissimilarity on the morphology of images. They 
transform images into a set of mosaic shapes and compare 
different techniques for comparing the shapes. A second one 
using AI techniques for computing the similarity in between 
images. Appalaraju and Chaoji [21] present a convolutional 
neural network for computing the similarity between two 
images. They present a CNN architecture that takes as input 
two images and output a distance measure. We would suggest 
as a possible improvement of our approach to propose multiple 
similarity functions for computing the accuracy of the 
synthesizerNN based on the domain problem. Selecting the 
appropriate similarity function can improve the accuracy of the 
synthesizerNN. Thus, we could specify more precisely the 
similarity of the synthetic data for dataset augmentation. 

V. CONCLUSION 
In this paper, we have presented our approach for 

improving the quality of neural networks by defining an semi-
formal engineering process. The approach has been specified in 
compliance with the business process modeling notation 
BPMN 2.0. We have described a concrete experimentation of 
our approach with the synthetic generation of augmented 
dataset using conditional Generative Adversarial Network on 
the MNIST case study for image recognition. The 
experimentation has shown that our approach is promising, as 
we managed to improve the accuracy of the initial network by 
augmenting the MNIST dataset with automatically generated 
synthetic data. 

As a future work, we will work on a formal definition of a 
DSL for the specification of datasets and dataset augmentation 
strategies. The DSL grammar should be designed for dataset 
engineers. Following a model-engineering approach, the 
specifications written with the DSL would then be used as 
input to generate automatically an architecture of the 
synthesizerNN. 

Another future work is to perform experimentations with 
other types of similarity functions for image recognition, e.g. 
morphological similarity. These functions can be used to 
improve the accuracy computation of a synthesizerNN and 

better capture the similarities between synthetic and training 
images. 
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