On the single-peakedness property

Jimmy Devillet

University of Luxembourg Luxembourg

Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in decreasing preference:

 a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches

a₆: more than 4 sandwiches

We write $a_i \prec a_j$ if a_i is preferred to a_j

 a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches

a₆: more than 4 sandwiches

- after a good lunch: $a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6$
- if you are starving: $a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1$
- a possible intermediate situation: $a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$
- a quite unlikely preference: $a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$

Let us represent graphically the latter two preferences with respect to the reference ordering $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$

$$a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$$

$$a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$$

Definition. (Black, 1948)

Let \leq and \leq be total orderings on $X_n = \{a_1, \dots, a_n\}$.

Then \preceq is said to be *single-peaked for* \leq if the following patterns are forbidden

Mathematically:

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$

Let us assume that $X_n = \{a_1, \dots, a_n\}$ is endowed with the ordering $a_1 < \dots < a_n$

For
$$n = 4$$

$$a_1 \prec a_2 \prec a_3 \prec a_4$$
 $a_4 \prec a_3 \prec a_2 \prec a_1$
 $a_2 \prec a_1 \prec a_3 \prec a_4$ $a_3 \prec a_2 \prec a_1 \prec a_4$
 $a_2 \prec a_3 \prec a_1 \prec a_4$ $a_3 \prec a_2 \prec a_4 \prec a_1$
 $a_2 \prec a_3 \prec a_4 \prec a_1$ $a_3 \prec a_4 \prec a_2 \prec a_1$

There are 2^{n-1} total orderings \leq on X_n that are single-peaked for \leq

Weak orderings

Recall that a *weak ordering* (or *total preordering*) on X_n is a binary relation \lesssim on X_n that is total and transitive.

Defining a weak ordering on X_n amounts to defining an ordered partition of X_n

$$C_1 \prec \cdots \prec C_k$$

where C_1,\ldots,C_k are the equivalence classes defined by \sim

For n = 3, we have 13 weak orderings

Definition. (Black, 1948)

Let \leq be a total ordering on X_n and let \lesssim be a weak ordering on X_n . Then \lesssim is said to be *single-plateaued for* \leq if the following patterns are forbidden

Mathematically:

$$a_i < a_j < a_k \implies a_j \prec a_i$$
 or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$

Examples

$$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$

$$a_3\sim a_4\prec a_2\sim a_1\prec a_5\prec a_6$$

 $n \in \mathbb{N}$

u(n): number of weak orderings on X_n that are single-plateaued for \leq (OEIS: A048739)

Proposition (Couceiro, D., Marichal, 2019)

We have the closed-form expression

$$2 u(n) + 1 = \frac{1}{2} (1 + \sqrt{2})^{n+1} + \frac{1}{2} (1 - \sqrt{2})^{n+1} = \sum_{k \ge 0} {n+1 \choose 2k} 2^k$$

$$u(0) = 0$$
, $u(1) = 1$, $u(2) = 3$, $u(3) = 8$, $u(4) = 20$, ...

Example. u(3) = 8

$$a_1 \prec a_2 \prec a_3$$
 $a_1 \sim a_2 \prec a_3$ $a_1 \sim a_2 \sim a_3$
 $a_2 \prec a_1 \prec a_3$ $a_2 \prec a_3 \prec a_1$ $a_2 \prec a_1 \sim a_3$
 $a_3 \prec a_2 \prec a_1$ $a_3 \sim a_2 \prec a_1$

Q: Given \leq is it possible to find \leq for which \leq is single-plateaued?

Example: On $X_4 = \{a_1, a_2, a_3, a_4\}$ consider \leq and \leq' defined by

$$a_1 \sim a_2 \prec a_3 \sim a_4$$

$$a_1 \sim a_2 \prec a_3 \sim a_4$$
 and $a_1 \prec' a_2 \sim' a_3 \sim' a_4$

Yes! Consider \leq defined by $a_3 < a_1 < a_2 < a_4$

2-quasilinear weak orderings

Definition.

We say that \lesssim is 2-quasilinear if

$$a \prec b \sim c \sim d \implies a, b, c, d$$
 are not pairwise distinct

Proposition (D., Marichal, Teheux)

We have

 \precsim is 2-quasilinear \iff \exists \le for which \precsim is single-plateaued

2-quasilinear weak orderings

v(n): number of weak orderings on X_n that are 2-quasilinear (OEIS: A307005)

Proposition (D., Marichal, Teheux)

We have the closed-form expression

$$v(n) = \sum_{k=0}^{n} \frac{n!}{(n+1-k)!} G_k, \quad n \geq 1,$$

where $G_n = \frac{\sqrt{3}}{3} \left(\frac{1+\sqrt{3}}{2} \right)^n - \frac{\sqrt{3}}{3} \left(\frac{1-\sqrt{3}}{2} \right)^n$.

$$v(0) = 0$$
, $v(1) = 1$, $v(2) = 3$, $v(3) = 13$, $v(4) = 71$, ...

Some references

S. Berg and T. Perlinger.

Single-peaked compatible preference profiles: some combinatorial results. *Social Choice and Welfare*, 27(1):89–102, 2006.

D. Black.

On the rationale of group decision-making. *J Polit Economy*, 56(1):23–34, 1948.

M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. *Semigroup Forum*, 98(3):472–498, 2019.

J. Devillet, J.-L. Marichal, and B. Teheux. Classifications of quasitrivial semigroups. arXiv:1811.11113

Z. Fitzsimmons.

Single-peaked consistency for weak orders is easy.

In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages 127–140, June 2015. arXiv:1406.4829.