
University of Luxembourg

Faculty of Science, Technology and Communication

Deontic Agency and Moral Luck

Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information and Computer Sciences

Author

Paul Meder

Student Number

009060593f

Date

August 2018

Supervisor

Prof. Dr. Leon van der Torre

Reviewer

Prof. Dr. Martin Theobald

First Advisor

Dr. Xavier Parent

Second Advisor

Priv.-Doz. Dr.-Ing.

Christoph Benzmüller

Abstract

This work presents temporal STIT I/O logic, an I/O logic based on tempo-

ral STIT logic, and documents its investigation with the proof assistant tool Is-

abelle/HOL. We show how to semantically embedding temporal STIT logic as

well as the out2 operator in HOL. Implementing those embeddings and also the

already existing embedding of the out1 operator into Isabelle/HOL framework,

enables the application of higher-order automatic theorem provers for automated

reasoning tasks in temporal STIT I/O logic. Finally, we relate our logic to a more

philosophical topic called moral luck, identify which aspects of moral luck can be

studied by it, and use examples from this subject as test cases for the logic.

Keywords: Deontic logic, Input/Output logic, STIT logic, Higher-order logic, Semantical

Embedding, Moral luck

i

ii

Declaration of Honor

I hereby declare on my honor that I am the sole author of the present thesis. I

have conducted all work connected with the thesis on my own.

I only used those resources that are referenced in the work. All formulations

and concepts adopted literally or in their essential content from printed, unprinted

or Internet sources have been cited according to the rules for academic work and

identified by means of footnotes or other precise indications of source.

This thesis has not been presented to any other examination authority. The

work is submitted in printed and electronic form.

Luxembourg, August 2018

Paul Meder

iii

iv

Acknowledgments

I want to thank the University of Luxembourg as well as the professors for their

lectures during my studies. The courses allowed me to improve my knowledge and

skills about computer science and prepared me well for the master thesis.

I wish to express my gratitude to Prof. Dr. Leon van der Torre and Dr. Xavier

Parent for allowing me to participate at this project. During our meetings they

provided me with relevant advices and were so kind to review my thesis.

Further on, I would like to sincerely thank Priv.-Doz. Dr.-Ing. Christoph

Benzmüller who offered me valuable suggestions to realize my work.

Moreover, I am thankful to Mr. Ali Farjami for his help and advices throughout

this work.

Finally, I am grateful to all my family members and friends for their support

and encouragement during my studies and this project.

v

vi

CONTENTS CONTENTS

Contents

Abstract i

Contents ix

List of Figures xi

1 Introduction 1

1.1 Context . 1

1.2 Research questions . 2

1.3 Goals and methodology . 3

1.4 Interdisciplinary aspects . 4

1.5 STIT theory . 5

1.6 Structure of the thesis . 8

2 The logic 9

2.1 Input/Output logic . 9

2.1.1 Semantics . 9

2.1.2 Proof Theory . 12

2.2 T-STIT I/O logic . 13

3 The implementation 15

3.1 Higher-order logic . 15

3.2 Isabelle/HOL Framework . 16

3.3 Semantical Embedding . 17

3.4 Implementation . 19

3.4.1 Primitives . 19

vii

CONTENTS CONTENTS

3.4.2 Connectives . 20

3.4.3 STIT operators . 21

3.4.4 Temporal Operators . 22

3.4.5 Relational Properties . 23

3.4.6 Relational Constraints . 24

3.4.7 Validity . 25

3.4.8 Axioms - Horty . 26

3.4.9 Axioms - Lorini . 28

3.5 Limitations of Isabelle/HOL . 31

3.6 T-STIT I/O logic in HOL . 32

3.6.1 Simple minded output out1 32

3.6.2 Basic output out2 . 38

3.6.3 Applying out2 to formulas of T-STIT logic 42

3.6.4 List of examples . 44

4 Moral Luck 47

4.1 Introduction to moral luck . 47

4.2 Ought implies Can . 48

4.3 The four kinds of moral luck . 50

4.3.1 Constitutive moral luck . 50

4.3.2 Circumstantial moral luck 50

4.3.3 Resultant moral luck . 51

4.3.4 Causal moral luck . 52

4.4 Relation to our logic . 53

4.5 Example - Drunk Drivers . 54

4.5.1 Formulation . 54

4.5.2 Verification . 55

4.6 Example - Murder attempt . 56

viii

CONTENTS CONTENTS

4.6.1 Formulation . 56

4.6.2 Verification . 57

4.7 Proposed solutions . 58

5 Conclusion 61

5.1 Summary . 61

5.2 Future work . 63

Appendix A 67

.1 Deontic Logic . 67

Appendix B 71

.2 Ought-to-be vs Ought-to-do . 71

.3 The gambling problem . 72

.4 Driving Example and Moral luck . 75

.5 Critical view on STIT theory . 77

Appendix C 81

.6 Temporal STIT logic . 81

.7 Semantics . 82

.7.1 Branching Time and Agent Choice 83

.7.2 Choice function . 84

.7.3 Satisfaction in BT+AC structure 87

.7.4 Temporal Kripke STIT Model 88

.8 Axioms . 92

Appendix D 95

.9 Examples . 95

ix

LIST OF FIGURES LIST OF FIGURES

List of Figures

1.1 Agent facing four choices . 6

3.1 Proofs generated by Sledgehammer 27

3.2 Counter model generated by Nitpick 27

3.3 Generated counter model in Kripke semantics 28

3.4 Model satisfying constraints C1-C6 but falsifying constraint C7 . . 31

3.5 Isabelle/HOL: out1 example . 34

3.6 Isabelle/HOL: Countermodel for z ∈ outpre(N,a) 35

3.7 Isabelle/HOL: Problems for out1 36

3.8 Isabelle/HOL: out1 and STIT logic 37

3.9 Driving Example in Isabelle/HOL 38

3.10 Isabelle/HOL: out1 vs. out2 . 40

3.11 Isabelle/HOL: out2 example . 42

3.12 Isabelle/HOL: Proof theory of out2 on examples 43

4.1 Isabelle/HOL: Moral luck example 56

1 The gambling problem . 73

2 The driving example . 76

3 Two choice situations . 78

4 Branching Time . 83

5 Branching Time with an agent’s choice 85

6 Branching Time with group choices 86

7 Standard Kripke Model . 89

8 Temporal Kripke STIT Model . 91

x

LIST OF FIGURES LIST OF FIGURES

9 Group Actions . 95

10 Isabelle/HOL embedding for the Group Action Example (part 1) . 96

11 Isabelle/HOL embedding for the Group Action Example (part 2) . 96

12 Isabelle/HOL embedding for the Group Action Example (part 3) . 97

13 Isabelle/HOL embedding for the Group Action Example (part 4) . 97

14 Temporal Kripke STIT model from Lorini’s paper 98

15 Isabelle/HOL: Model from Lorini’s paper 99

xi

LIST OF FIGURES LIST OF FIGURES

xii

CHAPTER 1. INTRODUCTION

1 | Introduction

1.1 Context

The field of logic that deals with normative concepts such as obligation, prohi-

bition, and permission, is known as Deontic logic. It is a very well studied area of

philosophy and mathematical logic. When it comes to the formalization of knowl-

edge about norms, for instance, the representation of legal knowledge, deontic

logic is an obvious choice. Various kinds of deontic logics have been developed

over the years. We have the traditional deontic logic, which includes Standard

Deontic Logic (SDL), a modal logic of type KD, and Dyadic Deontic Logic (DDL),

which have been proposed to deal with contrary-to-duty (CTD) reasoning. The

so-called norm-based deontic logics represent another family. In contrast to tradi-

tional deontic logic, the deontic operators are not evaluated with a possible worlds

semantics. For a norm-based deontic logic, the deontic modalities are analyzed

with reference to a set of explicitly given norms. Such a framework investigates

which norms apply for a given input set, referred to as facts, and a set of explicitly

given conditional norms, referred to as normative system. A particular framework

that falls within this category, is called input/output (I/O) logic. It has been devel-

oped by Makinson and van der Torre [23] and it is one of the latest achievements

in the area of deontic logic and gained a high recognition in the AI community.

Each of those deontic logics is used in different application domains such as legal

and ethical reasoning, or normative multi-agent systems. For the latest, one needs

to combine deontic logic with modalities of agency. Horty’s work [19] focuses on

the combination of deontic logic and a modal logic of action, known as STIT

theory, and it is considered as a major and important contribution in the domain

of deontic agency.

Deontic logic has recently received new attention in computer science with

regard to automated reasoning. One of the latest paper [6] by the Individual and

Collective Reasoning (ICR) group, proposes an infrastructure for the automation of

deontic and normative reasoning and discusses the development of computational

tools for reasoning based on deontic logic. The presented infrastructure supports a

wide variety of different variants of deontic logics. But how did the authors encode

deontic logic into a computer system, so that logical reasoning can be simulated

on it? They took a particular deontic logic and performed a so-called shallow

semantical embeddings (SSE) [1] of that logic in higher-order logic (HOL). By

using this approach, HOL serves as a meta-logic in which the syntax and semantics

1

1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

of that particular deontic logic can be represented and modeled. The embedded

logic was then implemented into a computer software, Isabelle/HOL [26]. It is a

proof assistant tool which uses HOL as its background logic. A variety of state-

of-the-art higher-order automatic theorem provers (ATPs) and model finders are

integrated into Isabelle and can be called by the framework’s supported tools.

Basically speaking, an ATP is a computer software which takes a logical statement

as its input and automatically generates a proof for it by using a set of axioms,

theorems, and hypotheses. Due to the technique of semantical embedding, the

authors were able to represent SDL [2], DDL by Carmo and Jones [5], as well

as the out1 operator for I/O logic [7] in higher-order logic and their embeddings

were implemented into frameworks such as Isabelle/HOL. This approach allows

for applying ATPs in order to solve certain problems modeled by those logics.

Those works form more or less the basis of the literature with regard to deontic

logic, HOL and computer supported reasoning. However, besides those deontic

logics, several non-classical logics such as several modal logics [2], including SDL,

conditional logic [4], and many others have also been embedded in HOL and

verified within the Isabelle/HOL framework.

1.2 Research questions

In this thesis, we investigate and contribute to the area of deontic logic, agency

and automated reasoning. We are particularly interested in further observing and

verifying Input/Output (I/O) logic with the proof assistant tool Isabelle/HOL [26],

but also explore STIT logic and its combination with I/O logic with the help of

the framework. By the earlier mentioned semantical embedding approach, STIT

logic and I/O logic can be formulated in such a way that they can be represented

in HOL and therefore be simulated within the Isabelle/HOL tool. For this thesis,

we therefore identified and focus on the following research questions:

RQ1: Due to the recently notable success of embeddings of non-classical logics

in HOL and their verifications in Isabelle/HOL, is it possible to realize an

embedding of STIT logic in HOL or are there any limitations?

RQ2: So far, the literature only documents an embedding of the out1 operator

in HOL [7]. Can the work of I/O logic in HOL be extended by providing a

semantical embedding of the out2 operator?

RQ3: Typically, I/O logic is used with propositional logic. How do the I/O oper-

ators out1 and out2 perform when using STIT logic as the base logic?

2

CHAPTER 1. INTRODUCTION 1.3. GOALS AND METHODOLOGY

RQ4: It has been suggested that moral luck can be studied using deontic logic,

but which aspects can be analyzed and which aspects are out of reach?

1.3 Goals and methodology

We want to investigate a logic which is composed of two logics. I/O logic covers

the deontic part whereas STIT logic is used for the agency part. We consider a

STIT logic augmented with some temporal operators, known as temporal STIT

logic [22], shortly T-STIT logic. For I/O logic, we focus on the out1 and out2

operator. The question is how to combine these two logics? In its traditional form,

I/O logic uses the language of classical propositional logic as its base logic. To

combine them, we change the language of the base logic to a language of T-STIT

logic. We will refer to the combined logic as T-STIT I/O logic.

In order to answer our research questions, the first goal of this thesis is to come

up with a semantical embedding for T-STIT logic in higher-order logic (HOL) and

provide an implementation of it in Isabelle/HOL. Lorini’s T-STIT logic provides

us with a possible worlds semantics, which comes in useful when embedding the

logic in HOL. In particular, the semantics introduce a so-called temporal Kripke

STIT model, a multi-relational Kripke model with specific constraints on each

accessibility relation. We will test the implementation by trying to generate proofs

for the axioms of T-STIT logic as well as for some laws for STIT logic from

Horty’s work [19]. Isabelle/HOL supports automatic reasoning tools, such as

Sledgehammer [11] and Nitpick [10], which can be used to prove or disprove

logical statements, respectively.

Next, the focus lies on the semantical embedding for the I/O operators out1

and out2 in HOL. Those embeddings will also be implemented into Isabelle/HOL.

The work in [7] documents the first experiments with it and already presents a

semantical embedding of out1 in HOL. The embedding of out1 is based on its

traditional formulation. However, for the out2 operator there is a translation into

modal logic, which will be used to realize the embedding. Having implemented

the embeddings of the two operators and T-STIT logic into Isasbelle/HOL, we

are able to investigate their combination, which we refer to as T-STIT I/O logic,

and apply the operators to a number of different examples in order to verify their

correctness.

The final part is to apply T-STIT I/O logic to examples of moral luck. Moral

luck describes the phenomenon when an agent is held accountable for his actions

and its consequences even though it is clear that the agent was neither in full

control of his actions nor its consequences. It conflicts therefore with the ethical

principle that agents are not morally responsible for actions that they are unable

3

1.4. INTERDISCIPLINARY ASPECTS CHAPTER 1. INTRODUCTION

to control. Horty already observed that his two defined obligation operators have

something to say about moral luck [19] (Chapter 5, page 121). In this thesis, we

want to go into more detail and see which aspects of moral luck, deontic logic is

able to analyze. Therefore we dedicate a section of this thesis with a survey of

different kinds of moral luck and we use it as a test case for the logic. In particular,

we focus on a specific kind of moral luck, known as resultant moral luck. It is

concerned with the consequences of an agent’s actions. Due to T-STIT logic, we

are able to formalize and model such scenarios and by using I/O logic, we are able

to tell what is obligatory in those situations.

By achieving our proposed goals, this thesis contributes the following to the

literature of deontic logic, agency and automated reasoning. First, it documents

an semantical embedding of T-STIT logic, a logic of action, in HOL and how it

has been implemented in Isabelle/HOL. Next, we extend the work of I/O logic in

HOL by providing an embedding for the out2 operator. Since we also investigate

T-STIT I/O logic, we explore further aspects of I/O logic with a more expressive

base logic and give more insight of it with regard to moral luck.

1.4 Interdisciplinary aspects

Testing our logic on examples from a phenomenon such as moral luck, can be

extremely valuable and indicate how well the logic can deal with such real-world

scenarios and if it is possible to use it outside of theoretical computer science.

Such involvements include artificial intelligence (AI) applications where logic is

considered as one of the most important and powerful tools used in the develop-

ment.

Self-driving cars or autonomous weapons are two modern and popular exam-

ples of technologies where AI is used as a key concept. In contrast to manual

driving cars, driverless cars are considered to be safer, more fuel-efficient, and

their popularity is increasing day by day. But putting, for instance, AI behind the

wheel of a car gives raise to ethical problems. When the car is faced with moral

dilemmas, how should it behave in those lose-lose situations? Who can be held

accountable when an autonomous vehicle ends up in a tragic accident? Imagine

a scenario with an unavoidable crash, the self-driving car has to make a choice

between either saving the life of the driver or the lives of five pedestrians. It comes

down to the reasoning power of AI in the driverless car, which now has to decide

between life and death. What does the AI consider as the right choice? The most

logical approach would be to minimize casualties. In this case, it would mean that

killing one person is better than killing five people, thus the AI will favor the lives

of pedestrians over the life of the driver. However, considering this as the right

4

CHAPTER 1. INTRODUCTION 1.5. STIT THEORY

approach is highly doubtable. Identifying the right choice is extremely complex

in such circumstances, if not impossible, and it is a quite challenging task that

computer scientists are facing when developing the logic of such an AI and its

implementation. Not only are they concerned with the correctness of the logic

but they also have to adjust it in such a way that the AI is able to deal with

such ethical decisions. Such cases are illustrating that AI has sparked more ethical

debates than any other technology before it.

The rest of the introduction section is used to provide a general overview of

STIT theory. We give a general overview of the logic of agency, known as STIT

logic, that originates in the domain of philosophy of action. We present the

motivations behind this logic and the key concepts of it.

1.5 STIT theory

Agency deals with what agents can bring about and actions are a way to bring

about some state of affairs. A particular logic of agency is the logic of STIT

which deals with choices and strategies for individual agents as well as for groups

of agents. This logic originates from the domains of the philosophy of action and

has been proposed in 1990 [9]. The objective was to formulate semantics about

agents and what they do. This allows analyzing the needs for a general theory of

an agent making a choice among alternatives that lead to an action. The works of

Belnap et al. [8] and Horty [19] are considered as major contributions in the area

of STIT theory. Over the recent years, people in computer science have also done

some work in STIT theory. Most of it includes proof theory and axiomatization

[31].

STIT refers to the acronym seeing to it that and originally the logic was em-

bedded in a branching time indeterministic framework. The time is represented in

the form of a tree and the branches are referred to as histories. Any choice made

or action performed by an agent restricts the future to a subset of these histories.

According to Horty, histories can be thought of as ’possible outcomes of actions’

and an action or a choice K of an agent may therefore be represented by a set

of outcomes. Further, this theory consists of an agentive modality in order to

formulate the idea that an agent causes some state of affairs. Usually one writes

this modality as [αstit ∶ ϕ] and can be interpreted as agent α sees to it that ϕ.

Over the years, several different kinds of agency operators have been proposed in

STIT theory. Belnap and Perloff introduced the logic for the achievement STIT.

Besides the strong support for the theory of the achievement STIT, its logic is

rather complex. In particular, Brian Chellas, who established the first semantics

of a logic of action in [14], stated the following:

5

1.5. STIT THEORY CHAPTER 1. INTRODUCTION

Belnap and Perloff’s“theories of agency are complex, fascinating, and

illuminating – without a doubt the most subtle and sophisticated pro-

posals of their kind to date.” [15].

The complexity of the achievement STIT might be a reason why Horty stayed

away from it when he was studying agency operators that could mix with deontic

aspects. Inspired by the work in philosophy of action, Horty introduced the delib-

erative STIT theories [20] which contain the logic of two operators of agency. The

first operator of agency is called Chellas’s STIT [αcstit ∶ ϕ] and it is the most

elementary one. It is named after Brian Chellas since it corresponded more or less

to his operator △αϕ in [14]. In terms of semantics, we have that [αcstit ∶ ϕ]
holds if and only if agent α makes a choice K and ϕ is true in all outcomes that

could result because of agent α making this choice K. The later one also means

that ϕ can be seen as a necessary consequence of choice K. Besides the Chellas

STIT operator, Horty also introduced the deliberate stit modality. The operator

is typically written as [αdstit ∶ ϕ] and can be read as agent α deliberately sees

to it that ϕ. For an agent α to deliberately see to it that ϕ, it is required that

[αcstit ∶ ϕ] and further that there exists at least one outcome in which ϕ does

not hold. So it corresponds to the Chellas’s STIT with a negative condition.

Figure 1.1: Agent facing four choices

Consider Figure 1.1, which will be used as an illustration for some of these

concepts. It represents a situation where a single agent α is faced with four choices

K1,⋯,K4. The seven histories h1,⋯, h7 can be thought of as possible outcomes.

Besides the choice K3, each other choice restricts the possible outcomes to two.

The labels Good, Bad, Best and Worst can be seen as propositions and indicate

the result of the outcome. They only hold in the outcomes where they occur.

For instance, the proposition Good might be interpreted as ’something is about

to happen’ and holds for the histories h1, h2 and h4. Assuming that agent α is

making the choice K1 then [αcstit ∶ Good] is true since for every outcome of

the choice K1, namely h1 and h2, the proposition Good is true. Moreover, we

have that [αdstit ∶ Good] holds as well for the choice K1. Indeed we have that

[αcstit ∶ Good] and there is an outcome, for instance, h3, where the proposition

6

CHAPTER 1. INTRODUCTION 1.5. STIT THEORY

Good does not hold.

STIT logic distinguishes itself from other logics of agency such as Coalition

logic or Alternating-time temporal logic. Those logics were designed in order

to express what an agent is able to do. This feature is also captured by STIT

logic, however, what clearly makes a difference between this logic and the other

two, is that STIT logic can additionally express what an agent actually does.

Consequently, this results in a more expressive power since it allows us to exactly

figure out the contributions of an agent to the actual state of affairs or what

actually happened. This ability is considered as a major factor in responsibility

assignment or distribution. Take for instance the example of a person that has

been killed. When it comes to tracking the agents who committed this crime, we

don’t only want to identify those agents who had been able to perform the act

of killing someone but we want to know who is responsible for the death of the

person. Or in other words, we precisely want to charge the agent that killed the

person. While Coalition logic and Alternating-time temporal logic are only capable

of capturing the part of being able or empowered to do, STIT logic accomplishes to

single out both parts due to its greater expressive power. This is what makes this

logic a suitable candidate when we want to investigate some important differences

in the general context of agency. Depending on the context, further expressive

power can be achieved by adding operators from different logics such as epistemic

or deontic logic. For instance, if we want to express what an agent knowingly does,

we have to add epistemic operators whereas deontic operators or even a combined

deontic-stit operator are essentially needed when we want to reason about what

an agent ought to do.

Moreover, STIT logic is not restricted to individual agents, but it can also

express collective actions meaning what a group of agents does. Thus it is con-

cerned with a set of agents which is often referred to as a coalition. To express

such statements, the language of STIT has to be extended with constant sym-

bols which denote then the sets of agents. Those symbols vary from literature

to literature. The most common ones are Agt, A or Γ. The group or coalition

A sees to it that ϕ is then stated by [Astit ∶ ϕ]. By doing so, one leaves the

field of mono-agency and enters the domain of multi-agency. When it comes to

identifying the responsibility of an agent in a multi-agent system, one needs the

ability to contrast the agents. In particular, one should be able to tell that agent

α, but not agent β, committed a specific crime. However in the case that agent

α and β have both committed the same crime, one needs also to single out the

responsibilities that are shared among multiple agents. Such expressions can again

be covered by STIT logic. Horty [19] and Broerson [12] provided specific versions

of STIT logic regarding what group of agents or coalitions do.

7

1.6. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

1.6 Structure of the thesis

The thesis is composed of three main parts and is structured in the follow-

ing way: Chapter 2 presents the logical part. In particular, T-STIT I/O logic, a

combination of I/O logic and T-STIT logic. We start by recalling the semantics

and proof theory of Makinson’s and van der Torre’s traditional I/O logic and then

how we combine it with T-STIT logic. Chapter 3 contains the part about the im-

plementation. It starts off with an introduction to higher-order logic (HOL) and

Isabelle/HOL. Next, it documents the semantical embedding of temporal STIT

logic in HOL and its implementation into Isabelle/HOL. Subsequently, it demon-

strates the implementation of I/O operators out1 and out2 into Isabelle/HOL.

Chapter 4 focuses on the conceptual part. It presents the principle of Moral Luck

and the problem that comes with it. We identify which aspects of moral luck

can be related to deontic logic and use examples of moral luck as test cases for

our logic. The final chapter summarizes and concludes the work and outlines

some directions for future work. Appendix A contains a general overview of de-

ontic logic whereas appendix B presents the distinction between ought-to-be and

ought-to-do, two important examples from Horty’s book [19] and a critical view

on STIT theory. Appendix C includes first a section of Lorini’s T-STIT logic [22]

to cover its syntax, semantics and axioms. Further, it also contains a semantics

based on Horty’s work [19]. The final appendix D documents how temporal Kripke

STIT models are encoded in Isabelle/HOL in order to evaluate some formulas on

a specific model.

8

CHAPTER 2. THE LOGIC

2 | The logic

This chapter starts with a section to recall the semantics and proof theory of

traditional Input/Output logic in order to provide a basic understanding of this

logic. The notations are taken from [23] . Then we introduce T-STIT I/O logic,

which is an I/O logic using Lorini’s T-STIT logic as its base logic.

2.1 Input/Output logic

Input/Output (I/O) logic was initially developed by Makinson and van der

Torre, and introduced in [23]. It is considered as one of the new achievements

in deontic logic. I/O logic focuses on the reasoning and studying of conditional

norms. Typically, a conditional norm expresses what ought to be the case in a

certain situation. Just like modal logic, which can be seen as a family of systems

K, D, S4, S5 and so on, I/O logic is also a family of logics.

However, they are different in terms of semantics. Modal logic is usually in-

terpreted in possible world semantics, but I/O logic falls within the category of

operational or norm-based semantics. Obligations are not explained by some sets

of possible worlds among which some are ideal or at least better than others, but

they are referenced to a given set of conditional norms. The meaning of the de-

ontic concepts is given in terms of a set of procedures yielding outputs for inputs.

The basic mechanism behind these procedures is that of detachment or modus

ponens.

2.1.1 Semantics

Let L denote the set containing all the formulas of propositional logic. N ⊆
L × L is called a normative system and is a set of pairs of formulas. In I/O

logic, a pair (a, x) ∈ N is referred to as a conditional norm or obligation, where

a and x are formulas of propositional logic. a is called the body and represents

some situation or condition, whereas x is called the head and represents what is

obligatory or desirable in that situation. Thus the pair (a, x) is read as ’given a,

it is obligatory that x’. For example, whenever you are driving in your car and you

are approaching a right light, it is obligatory that you stop. The unconditional

obligation of x is denoted by (⊺, x), where ⊺ is representing an arbitrary tautology.

Given a set A ⊆ L, serving as an input set, the main construct of I/O logic

9

2.1. INPUT/OUTPUT LOGIC CHAPTER 2. THE LOGIC

has the form x ∈ out(N,A) and is interpreted as follows, ’given a state of affairs

A, x (obligation) is in the output under the norms N ’. When A is a set, which

consists only of one element a, the curly brackets are omitted and one writes

out(N,a). Alternatively, x ∈ out(N,a) can be formulated as (a, x) ∈ out(N). In

[23], Makinson and van der Torre introduced several different I/O operations. In

particular, out1, out2, out3 and out4 are defined as the four standard or traditional

output operations of I/O Logic. To understand their semantics, we first need to

recall some further notations.

For a given N , N(A) denotes the image N under A and is formally written

as N(A) = {x ∣ (a, x) ∈ N for some a ∈ A}. Intuitively, N(A) can be thought of

as the set of all the heads x detached from the pairs (a, x) such that the body a

is an element of A. Alternatively, N(A) can be interpreted as the set containing

the direct consequences of the normative system N for some input set A.

Remark In most cases, we use N to denote the set of conditional norms. However,

any letter can be used to denote such a set. For instance, in the literature of I/O

logic, the letter G is also sometimes used to represent such a set. Consequently,

we write then G(A) to refer to the image G under A.

Cn(A) represents the set of logical consequences of A and is formally defined

as Cn(A) = {x ∣ A ⊧ x}, where ⊧ is the propositional consequence relation.

Finally, a set A ⊆ L of formulas is called consistent if A ⊬ �, where � is

representing an arbitrary contradiction, and inconsistent otherwise.

Example 1 Let N = {(a, x), (b, y), (a∧ b, z)} and A = {a, b}. Then, we have the

following:

A Cn(A) N(A) N(Cn(A))
{a, b} Cn({a, b}) {x, y} {x, y, z}

For some set of facts A and some set of conditional norms N , the output

operators out1, out2, out3 and out4 are formulated as follows:

– out1(N,A) = Cn(N(Cn(A)))

– out2(N,A) = ⋂{Cn(N(V)) ∣ A ⊆ V,V complete}

– out3(N,A) = ⋂{Cn(N(B)) ∣ A ⊆ B = Cn(B) ⊇ N(B)}

– out4(N,A) = ⋂{Cn(N(V)) ∣ A ⊆ V ⊇ N(V), V complete}

A set of formulas is considered as complete if it is either maximal consistent

or equal to L. For this thesis, we only focused on the operators out1 and out2.

10

CHAPTER 2. THE LOGIC 2.1. INPUT/OUTPUT LOGIC

The operation out1 is also called the simple-minded output and the basic idea

behind it, is the following: first, we are given a set of formulas A, which represents

some facts and we close it under logic consequence. As a next step, we pass this

closed set to the normative system. The obtained set of formulas represents the

obligations. Finally, those obligations are closed again under logical consequence.

Example 2 Let N = {(a, x), (a ∨ b, y), (b, z)} and A = {a}.

A Cn(A) N(Cn(a)) out1(N,A)
a Cn(a) {x, y} Cn({x, y})

We have that x ∈ out1(N,A) as well as y ∈ out1(N,A) since both x and

y are obviously in Cn({x, y}). Also, we have that (x ∧ y) ∈ out1(N,A) since

(x ∧ y) ∈ Cn({x, y}).

However, the simple-minded output might not be enough. For instance, out1

fails when it comes to reasoning by cases. Suppose that a set of conditional

norms N contains the pairs (a, x) and (b, x). When a ∨ b is implied by some

facts, then we should be able to conclude that x is the case. Formally, for N =
{(a, x), (b, x)} and A = {a∨ b}, we get that out1(N,A) = Cn(∅), where Cn(∅)
denotes the set containing all possible tautologies. Therefore we don’t have that

x ∈ out1(N,a ∨ b) since a∨b is not a tautology. In order to support such reasoning

by cases, we use the operation out2, which is also referred to as basic output. To

show that x ∈ out2(N,A), we need to consider the complete set V . There are

two choices, either V equals to L or V is an maximal consistent extension (MCE)

of a ∨ b. In the first case, we get that Cn(N(V)) = Cn(x). In the second case,

by maximal consistency of V, we have that either a or b are in V . If a ∈ V then

Cn(N(V)) = Cn(x). Identically for b ∈ V . Thus out2(N,A) = Cn(x) ∩Cn(x)
and x ∈ out2(N,A).

In [23], it has been shown that out2 can be formalized in terms of modal

logic. In particular, we have: x ∈ out2(N,A) if and only if x ∈ Cn(N(L)) and

N2 ∪ A ⊢S 2x for any modal logic S with K0 ⊆ S ⊆ K45. The notation N2

denotes the set of all modal formulas of the form b → 2y, such that (b, y) ∈ N .

We have that N2 ∪A ⊢S 2x if for all the elements yi ∈ Y , such that Y is a finite

subset of N2 ∪ A, it holds that (⋀ yi → 2x) ∈ S. Alternatively, it means that

⋀ yi → 2x is a valid formula in S.

Example 3 Let N = {(a, x), (b, x)} and A = {a ∨ b}.

In order to check if x ∈ out2(N,A), we first need to check that x ∈ Cn(N(L)).

This is straightforward, since Cn(N(L)) = Cn({x}), and obviously we have that

x ∈ Cn({x}).

11

2.1. INPUT/OUTPUT LOGIC CHAPTER 2. THE LOGIC

Next, we have N2 ∪ A = {a → 2x, b → 2x, a ∨ b}. The formula ((a →
2x)∧ (b→ 2x)∧ (a∨ b))→ 2x is valid for any modal logic S with K0 ⊆ S ⊆ K45.

Thus x ∈ out2(N,A).

2.1.2 Proof Theory

In terms of proof theory, I/O logics are characterized by derivation rules about

norms. Given a set of norms N , a derivation system is the smallest set of norms

which extends N and is closed under certain derivation rules.

– (SI) Strengthening the input: from (a, x) to (b, x) whenever we have

⊧ b→ a

– (WO) Weakening the output: from (a, x) to (a, y) whenever we have

⊧ x→ y

– (AND) Conjunction of the output: from (a, x) and (a, y) to (a, x ∧ y)

– (OR) Disjunction of the input: from (a, x) and (b, x) to (a ∨ b, x)

– (CT) Cumulative transitivity: from (a, x) and (a ∧ x, y) to (a, y)

deriv1 denotes the derivation system for the I/O logic operator out1 and is

formed by the rules SI, WO and AND. Adding OR to deriv1 gives deriv2,

whereas extending deriv1 with CT gives deriv3. They represent the derivation

systems for the output operators out2 and out3, respectively. The derivation

system for out4 is called deriv4 and it is closed under all of the five rules.

Example 4 Let N = {(a ∨ b, x)}. Then we have (b, x ∨ y) ∈ deriv1(N).

1. (a ∨ b, x) By assumption

2. (b, x) 1, SI

3. (b, x ∨ y) 2, WO

Soundness and completeness hold for each of the four derivation systems derivi

with respect to the corresponding output operator outi for i ∈ {1⋯4}. See [23].

By soundness, we have that derivi(N) ⊆ outi(N) and by completeness, we have

that outi(N) ⊆ derivi(N). This means that we get the following theorem:

Theorem 2.1.1 For a given N ⊆ L ×L, we have that ψ ∈ outi(N,ϕ) if and only

if (ϕ,ψ) ∈ derivi(N).

From the previous example, we get that (b, x ∨ y) ∈ deriv1(N). It can easily

be verified that (x∨y) ∈ out1(N, b). Indeed, we have that out1(N, b) = Cn({x})
and (x ∨ y) ∈ Cn({x}).

12

CHAPTER 2. THE LOGIC 2.2. T-STIT I/O LOGIC

2.2 T-STIT I/O logic

Since I/O logic only uses propositional logic as its base logic, it is limited in

its expressive power. For instance, it is not able to capture expressions dealing

with concepts such as agent and action. Those concepts are a crucial part of

agent theory and multi-agent systems, and STIT logic is able to express notions

such as agent and action. Thus, one way to increase the expressiveness of I/O

logic is to a particular STIT logic as the basis. Xin Sun [29] used the individual

deliberative STIT operator as the basis to formulate I/O STIT logic and proved

the completeness for it. Additionally, he showed that it is free from Ross’s paradox.

In our case, to combine I/O logic with T-STIT logic, we will no longer consider

L as the base logic for the I/O operations, but instead we will use LT-STIT which

denotes the language of T-STIT logic. The appendix contains a detailed section

which covers the syntax, semantics and axioms of Lorini’s T-STIT logic [22]. We

will briefly recall the language’s syntax and give an interpretation to its formulas.

Given a set P of propositional letters and a finite set of agents Agt. For every

p ∈ P and α ∈ Agt, the language of LT-STIT is defined by the following BNF

(Backus Normal Form):

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ 2ϕ ∣ [α]ϕ ∣ [Agt]ϕ ∣ Gϕ ∣Hϕ

Intuitively, 2ϕ is read as ”ϕ is necessarily true”. Operators of the form [α]
denote the Chellas’s STIT operator and can be read as ”agent α sees to it that

ϕ”. [Agt] represents the group STIT operator and can be read as ”all the agents

see to it that ϕ by acting together”. The operators G and H denote the strict

future and strict past operators, respectively. Gϕ is read as ”ϕ will always be true

in the future” whereas Hϕ is read as ”ϕ has always been true in the past”.

For T-STIT I/O logic, we have then that N ⊆ LT-STIT × LT-STIT and A ⊆
LT-STIT and our logic can use formulas from T-STIT logic. For instance, a con-

ditional norm can now contain formulas such as [α]a where α denotes an agent

and a a propositional letter. The semantics of the operator out1 still remains the

same and also the derivation system deriv1 is still composed of the rules SI, WO

and AND.

Example 5 Let α and β represent two agents and a, b, c and d be propositional

letters. Consider N = {(a, [α]c), (a, [β]d)} and A = {a}. Then, we have:

A Cn(A) N(Cn(A)) out1(N,A)
a Cn(a) {[α]c, [β]d} Cn({[α]c, [β]d})

13

2.2. T-STIT I/O LOGIC CHAPTER 2. THE LOGIC

Example 6 Let α and β represent two agents and a, b, c and d be propositional

letters. Consider N = {(a∨b, [α]c)}, then we have ([β]b, [α](c∨d)) ∈ deriv1(N).

Indeed we get that:

1. (a ∨ b, [α]c) By assumption

2. ([β]b, [α]c) 1, SI

3. ([β]b, [α](c ∨ d)) 2, WO

We also preserve the same semantics for the operator out2 as well as the

derivation system deriv2. However, in order to semantically embed out2 in HOL,

we don’t consider its traditional formulation but we will use its translation into

modal logic.

14

CHAPTER 3. THE IMPLEMENTATION

3 | The implementation

This chapter presents the implementation of T-STIT logic as well as I/O logic

into Isabelle/HOL. We start with a section about higher-order logic (HOL), the

logic used by Isabelle/HOL. This is necessary to understand the embedding of

T-STIT logic in HOL and the implementation of it in Isabelle/HOL, covered in

the following sections. Then we discuss the limitations of the implementation. In

appendix D, we further show to formulate specific temporal Kripke STIT models

in Isabelle/HOL. The next part deals with the implementation of I/O logic in

Isabelle/HOL with the focus on the operators out1 and out2. The operators are

tested on examples with formulas of propositional logic as well as of temporal

STIT logic.

3.1 Higher-order logic

Higher order logic (HOL) was formalized by Bertrand Russell [28] and has been

introduced in 1908 in order to provide a formal basis for mathematical reasoning.

HOL is also known as type theory and got adapted over the years so that in its

modern form, it is based on the simply typed λ-calculus, which originates from

Alonzo Church’s simple type theory (STT) [16], and the formulations by Leon

Henkin [17]. Type theory became an integral and indispensable part in every

subject that deals with computation and logical reasoning, which made it an

expressive foundation in the domains of mathematics and computer science.

In HOL, the set of types is denoted by T , whose elements are freely generated

from the set of the basic types {o, µ}. The former one represents the type of

booleans whereas the last one represents the type of individuals. Further whenever

we have α,β ∈ T then α → β ∈ T . α → β denotes the function type and it is

referring to the type of function which takes an input of type α and produces an

output of type β. Those function types are constructed by using the symbol →.

So any type τ is generated by the following grammar:

τ ∶∶= o ∣ µ ∣ τ → τ

A formula or term in HOL is generated by the following BNF:

s, t ∶∶= pα ∣Xα ∣ (λXα.sβ)α→β ∣ (sα→βtα)β ∣ (¬o→oso)o ∣ ((∨o→o→oso)to)o ∣ (∀(α→o)→o(λXα.so))o

15

3.2. ISABELLE/HOL FRAMEWORK CHAPTER 3. THE IMPLEMENTATION

with α,β ∈ T . In the most simple case, terms can be constants of type α,

denoted by pα or variables of type α, denoted by Xα. Further those Xα have

to be distinct from pα. A constant always refers to the same specific object like

individual, predicate or connective. A variable can denote any object but does

not represent a particular object unless it is stated otherwise.

More complex typed terms can be constructed by using abstraction (sα→βtα)β
and application (sα→βtα)β. Abstraction means that we can form a term of type

α → β which maps the variable X of type α to a term s of type β. The resulting

term can be interpreted as a function. Application means that we can form a term

of type β by applying the term s of type α → β, which can be seen as a function,

to the term t of type α, which is then the argument. So the resulting term can

be interpreted as an outcome of a function to an argument.

Finally, a term is called a formula whenever the term is of type o. Such formulas

can represent the logical connectives ¬o→o, ∨o→o→o and ∀(α→o)→o. The symbols

¬o→o and ∨o→o→o denote the negation operator and the disjunction, respectively,

and they work exactly the same ways as in propositional logic. The other symbol

∀(α→o)→o represents the universal quantifier or for all quantifier. The term s of

type o gets applied for each variable X of type α. Only if every application is

evaluated to true then the for all quantifier will evaluate to true. Otherwise it

evaluates to false. By using those connectives, other common logical connectives

such as ∧o→o→o,→o→o→o,≡o→o→o,�o,⊺o and ∃(α→o)→o can be defined.

3.2 Isabelle/HOL Framework

Isabelle is a generic interactive theorem prover, which has been used to formal-

ize various theorems in mathematics and computer science. It supports a variety

of logical frameworks including HOL. Isabelle/HOL is the specialization of Isabelle

for HOL. It is the most widely used instance of Isabelle and can be obtained for

free.

The main purpose in Isabelle/HOL is to create theories. Embedded in a theory

are the types, terms, and formulas of HOL. The type system of HOL is similar to

the one of functional programming. For instance, it provides base types, such as

bool, the type of truth values, and nat, the type of natural numbers, and function

types which are denoted by the symbol ⇒. But, it also allows user-defined types.

The notation t ∶∶ τ expresses that t is a well-type term of type τ . The most

obvious form of a term would be a constant but also, just like in functional

programming, terms can be formed by applying functions to arguments. Let

τ1 ⇒ τ2 denote the type of a function f , the argument t is then a term of type

16

CHAPTER 3. THE IMPLEMENTATION 3.3. SEMANTICAL EMBEDDING

τ1 and when applied to the function f , f t is a term of type τ2. Further, λ-

abstractions may also occur in terms. For instance, λx.x+1 denotes the function

that takes x as an argument and returns x + 1 as a result.

λ-calculus is a very important concept in Isabelle/HOL. It allows for the re-

placement of formal by actual parameters. The substitution or computation rule

of λ-calculus is defined as:

(λx. t)u = t[u/x]

where t[u/x] denotes ”t with u substituted for x”. For example, the expression

(λx.x + 1)3 would be transformed into 3 + 1. The step from (λx. t)u to t[u/x]
is commonly known as β-reduction and is automatically performed by Isabelle.

A formula is term of type bool. For instance, the constants True and False

as well as the logical connectives ¬, ∧, ∨ and Ð→ can all been seen as formulas.

Moreover, Isabelle/HOL supports very useful reasoning tools such as Sledgehammer

[11], which applies automatic theorem provers (ATPs) and satisfiability-modulo-

theories (SMT) solver on a given goal, and Nitpick [10], a counter-model gener-

ator.

An introduction to Isabelle/HOL as well as an in-depth tutorial for functional

programming in HOL can be found in the following documentation [26].

3.3 Semantical Embedding

Since HOL is the underlying or background logic of Isabelle/HOL, we first

need to represent T-STIT logic in HOL. In other words, we have to find equivalent

notations of T-STIT logic propositions in HOL. This can be achieved by translating

the essential parts of the semantics of T-STIT logic into HOL. This procedure is

called the semantical embedding of a logic. This allows for using the background

logic as a meta-logic in order to validate the semantic truth of syntactic statements

in the embedded logic.

Embeddings of a variety of different modal logics in HOL have already been

realized [1, 2, 3]. In contrast to HOL, the truth of a propositional formula in

a modal logic depends on its context; the possible world where it is evaluated.

Thus in order to embed a modal logic in HOL, the principle of a possible world

semantics, also known as Kripke semanitcs, needs to be maintained. Since Lorini

provided a Kripke semantics for T-STIT logic [22], the techniques from these

works can be applied for our embedding.

By introducing a new type i to denote a possible world, the propositions of

T-STIT logic are mapped to associated HOL terms of type i → o, which will be

17

3.3. SEMANTICAL EMBEDDING CHAPTER 3. THE IMPLEMENTATION

abbreviated as σ. By doing so, the propositional formulas can be represented as

functions from possible worlds to truth values in HOL, which allows for explicitly

evaluating the truth of a formula in a particular world. For each type α of T-STIT

logic, the embedding of α, denoted by ⌈α⌉, is defined as:

⌈µ⌉ = µ

⌈o⌉ = σ = i→ o

⌈α → β⌉ = ⌈α⌉→ ⌈β⌉

In HOL, the connectives such as ¬ and ∨ are of type o → o resp. o → o → o.

The negation ¬ takes one boolean input and returns a boolean output whereas the

∨ connective takes two boolean inputs and produces an boolean output. However,

due to the lifted propositions of T-STIT logic, the type of the connectives of that

logic also have to be mapped. Meaning that for instance ¬ and ∨ are of type

σ → σ resp. σ → σ → σ. To distinguish them from the connectives of HOL, we

highlight the lifted connectives in blue. Those lifted connectives are ¬, ∨, ∧, →
and ≡ and abbreviate the following HOL terms:

¬σ→σ ∶= λϕσ.λwi.¬(ϕw)

∨σ→σ→σ ∶= λϕσ.λψσ.λwi.(ϕw ∨ ψw)

∧σ→σ→σ ∶= λϕσ.λψσ.λwi.(ϕw ∧ ψw)

→σ→σ→σ ∶= λϕσ.λψσ.λwi.(ϕw → ψw)

≡σ→σ→σ ∶= λϕσ.λψσ.λwi.(ϕw↔ ψw)

The lifted negation operator takes a term ϕ of type σ and a world w of type i.

Then it returns the negation of the term ϕ at the world w. The lifted disjunction

takes two terms ϕ and ψ of type σ and a world w of type i. It returns the

disjunction of both terms at that world w. The other lifted connectives work

similar to the lifted disjunction.

In modal logic, the 2 operator is evaluated with respect to an accessibility

relation R. To tell if two possible worlds are related or not, a constant symbol r

of type i→ i→ σ is introduced and associated with the accessibility relation R of

modal logic. A relation can be seen as a ternary function which takes two possible

worlds as its input and returns a boolean output which tells if the two possible

worlds are accessible via the relation or not. This allows us then to represent the

2 operator as a quantification over all possible worlds, satisfying an accessibility

relation. The same technique can be used for the 2 operator in T-STIT logic, the

18

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

group stit operator [Agt] as well as for both temporal operators G and H. Thus,

those type-raised HOL connectives are defined as follows (where r2, rAgt, rG and

rH denote the corresponding accessibility relations):

2σ→σ ∶= λϕσ.λwi.∀vi.(r2
i→i→σwv)→ ϕv

[Agt]σ→σ ∶= λϕσ.λwi.∀vi.(rAgti→i→σwv)→ ϕv

Gσ→σ ∶= λϕσ.λwi.∀vi.(rGi→i→σwv)→ ϕv

Hσ→σ ∶= λϕσ.λwi.∀vi.(rHi→i→σwv)→ ϕv

The lifted 2 operator takes a term ϕ of type σ and a world w of type i and

then checks for all worlds v of type i if the worlds w and v are related then the

term ϕ is true at the world v. The lifted [Agt], G and H operators work in the

same way, using their corresponding relations.

To evaluate the individual STIT operator [i], the corresponding accessibility

relation Ri of the agent i has to be considered. Thus this operator is parametric

to its relation and has to be defined differently than the other ones.

[i](i→i→o)→σ→σ ∶= λri→i→σ.λϕσ.λwi.∀vi.(rwv)→ ϕv

Finally, we need to encode the notation of validity for T-STIT logic propositions

(denoted by ⊧T−STIT). This allows for grounding the lifted terms of type σ to

type boolean o.

validσ→o ∶= λϕσ.∀wi.ϕw

The operator valid takes a term ϕ of type σ and returns true if that term is

true when applied to any world w of type i. In the remainder, the notation ⌊ ⋅ ⌋
will be used as an appropriate abbreviation for validity.

3.4 Implementation

The implementation of the above described semantical embedding of T-STIT

logic in HOL, into Isabelle/HOL will be further illustrated in this section.

3.4.1 Primitives

The following primitive types have been defined and used as a basis for the

embedding:

19

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

– Type i denotes the type of possible worlds for Kripke Semantics.

– Type bool denotes the type of meta-logical truth values (i.e. True and

False) and is already provided by Isabelle/HOL.

Based on those, the following function types have been defined:

– Type σ denotes the set of all functions of type i ⇒ bool and represents

propositions in the embedded logic. Those propositions are evaluated in

particular worlds.

– Tye α denotes the set of all function of type i ⇒ i ⇒ bool and represents

the individual relation Ri for possible agents.

Further, the following constants have been introduced:

– The constant aw of type i represents the designated actual world.

– The constants a1 and a2 of type α represent the equivalence relations R1

and R2 for agent 1 respectively agent 2.

– The constant r box of type i⇒ i⇒ bool represents the equivalence relation

R2.

– The constant r agt of type i⇒ i⇒ bool represents the equivalence relation

RAgt.

– The constant r G of type i⇒ i⇒ bool represents the binary relation RG.

– The constant r H of type i⇒ i⇒ bool represents RH , the inverse relation

of RG.

3.4.2 Connectives

The basic connectives are lifted to type σ and are defined as follows:

– ¬ϕ ≡ λw. ¬ϕ(w)

– ϕ∧ψ ≡ λw. ϕ(w) ∧ ψ(w)

– ϕ∨ψ ≡ λw. ϕ(w) ∨ ψ(w)

– ϕ→ψ ≡ λw. ϕ(w)Ð→ ψ(w)

– ϕ≡ψ ≡ λw. ϕ(w)←→ ψ(w)

20

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

The operator 2 represents necessity with respect to the relation R2. The

formula 2ϕ can be interpreted as ”ϕ is true regardless what every other agent

does” and is defined as follows:

– 2ϕ ≡ λw. ∀v. (wrboxv)Ð→ ϕ(v)

For a given world w, the proposition 2ϕ is evaluated to True if for all the

worlds v such that they are related via R2 to w (i.e. those worlds are alternatives

to w), v holds ϕ.

The operator 3 represents possibility with respect to the relation R2 and can

be defined in two different ways:

– 3ϕ ≡ λw. ∃v. (wrboxv)Ð→ ϕ(v)

or

– 3ϕ ≡ ¬2(¬ϕ)

The first statement expresses 3 by using the quantifier ∃. So, for a given world

w, the proposition 3ϕ is evaluated to True if there exists a world v such that v

is related to w via R2 and v holds ϕ. In the second one, it is defined as the dual

of 2.

3.4.3 STIT operators

In T-STIT logic, Chellas’s STIT operator [15] is used as primitive operator

of agency. Depending on the literature, the Chellas operator is formulated as

[α cstit ∶] or [α].

The statement ”agent α sees to it that ϕ regardless what the other agents do”

(or shorten ”agent α sees to it that ϕ), for some agent α in the group of agents,

can be stated by the formula [α cstit ∶ ϕ] or [α]ϕ.

Remark In chapter 2, we used the notation [α] to denote the Chellas’s STIT

operator. However for the implementation, we decided to use the other notation

[α cstit ∶].

At every world w, each agent i has a set of worlds that are alternatives to w.

Those sets are induced by the agent’s relation Ri and can be seen as choices

available to agent i.

21

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

For each agent i, there exists an individual accessibility relation Ri, which is

used in order to evaluate the truth of a cstit-operation. So the Chellas operator

has to be indexed by a parameter r, in order to refer to the agent who is performing

the action.

– r cstitϕ ≡ λw. ∀v. (r w v)Ð→ ϕ(v)

The deliberative STIT operator can be defined by using Chellas’s STIT operator

together with the 2-operator.

– r dstitϕ ≡ (r cstitϕ)∧¬2ϕ

The group STIT operator, to capture the fact that ϕ is guaranteed by an action

of all agents, can be expressed with the relation RAgt.

– gstitϕ ≡ λw. ∀v. (wragt v)Ð→ ϕ(v)

Lastly, the dual of group STIT operator, stating that the group of agents do not

prevent ϕ, is expressed by:

– dualgstitϕ ≡ ¬gstit(¬ϕ)

3.4.4 Temporal Operators

Finally, we have the temporal or tense operators. The G and H operators

are used to express facts that are true in the strict future and in the strict past,

respectively. They can be defined as follows by using the relation RG and RH ,

respectively:

– Gϕ ≡ λw. ∀v. (wrGv)Ð→ ϕ(v)

– Hϕ ≡ λw. ∀v. (wrH v)Ð→ ϕ(v)

Their dual operators F , respectively P , can be expressed as:

– Fϕ ≡ ¬G(¬ϕ)

– Pϕ ≡ ¬H(¬ϕ)

Other useful temporal operators such as G∗ resp. F ∗, which in contrast to G

resp. F , do also include the present.

– G∗ϕ ≡ ϕ∧(Gϕ)

– F ∗ϕ ≡ ¬G∗(¬ϕ)

22

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

3.4.5 Relational Properties

Temporal STIT logic imposes several properties on each accessibility relation.

First, we start by declaring definitions for those properties for an arbitrary relation

r:

– reflexive r ≡ ∀x. (r xx)

– symmetric r ≡ ∀xy. (r xy)Ð→ (r y x)

– transitive r ≡ ∀xy z. ((r xy) ∧ (r y z))Ð→ (r x z)

– serial r ≡ ∀w. ∃v. (r w v)

The relations R2, every Ri and RAgt are equivalence relations, meaning that

they are reflexive, symmetric and transitive at the same time. For instance,

the Isabelle/HOL constant r box represent the relation R2. To specify r box as

an equivalence relation, we use the earlier mentioned definitions and declare it as

an axiomatization in Isabelle/HOL:

– axiomatization where

ax refl rbox : ”reflexive r box” and

ax sym rbox : ”symmetric r box” and

ax trans rbox : ”transitive r rbox”

RAgt and every Ri can be defined as equivalence relation in a similar way.

Next, we have to impose some properties on the binary relations RG and RH .

The constant r G represent the relation RG, which is declared as transitive and

serial, and thus we have the following axiomatization in Isabelle/HOL:

– axiomatization where

ax trans rG : ”transitive r G ” and

ax ser rG : ”serial r G”

Since RH is the inverse relation of RG, we first start by formulating an inverse

relation and then specify RH as the inverse of RG.

– inverse r s ≡ ∀w. ∀v. (r w v)←→ (s v w)

– axiomatization where

ax inverse rG rH : ”inverse r G r H”

23

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

3.4.6 Relational Constraints

The framework for temporal STIT logic imposes special constraints on the

accessibility relations. Several constraints are making use of the inclusion w.r.t.

relations as well as the composition between two binary relations. Those can be

defined as follows for two arbitrary relation r1 and r2:

– r1 ⊆ r2 ≡ ∀w. ∀v. (r1wv)Ð→ (r2wv)

– r1 ○ r2 ≡ λw. λv. ∃u. (r1wu) ∧ (r2 uv)

By the first constraint C1, every Ri has to be included in R2. Due to that, we

first introduce a general formulation for that constraint, which can then be used

for any specific Ri relation.

– axC1 r ≡ r ⊆ r box

The constants a1 and a2 represent the relations R1 and R2 for the respective

agent. On each relation, we have to impose the constraint C1.

– axiomatization where

axC1 a1 : ”axC1 a1” and

axC1 a2 : ”axC1 a2”

Constraint C2 expresses the independence of agents and it can be implemented

in a similar way as C1. We start off by defining C2 and then impose the constraint

on the constants a1 and a2, which represent relations for the respective agents.

– axC2 r s ≡ ∀w. ∀v. ((wrboxw) ∧ (v rboxv) ∧ (wrboxv) ∧ (v rboxw))
Ð→ (∃x. (r w x) ∧ (s v x))

– axiomatization where

axC2 a1 a2 : ”axC2 a1 a2”

Constraint C3 says that the choice of a group corresponds to the intersection

of the choices of the individual agents in the group. Since the group consists of 2

agents, we can express this constraint as follows:

– axC3 r s ≡ ∀w. ∀v. (wragt v) = ((r w v) ∧ (sw v))

– axiomatization where

axC3 a1 a2 : ”axC3 a1 a2”

24

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

Remark The constraints C2 and C3 are designed for a framework with only two

agents. If one decides an other agent, chances have to done to those definitions

accordingly.

The constraints C4 and C5 for the temporal relations RG and RH , make sure

that the present is connected to the future and to the past, respectively. They

can directly be formulated as:

– axiomatization where

axC4 : ”∀w. ∀v. ∀u. ((wrGv)∧ (wrGu))Ð→ ((urGv)∨ (v rGu)∨ (u =
v))” and

axC5 : ”∀w. ∀v. ∀u. ((wrH v)∧(wrH u))Ð→ ((urH v)∨(v rH u)∨(u =
v))”

The property of no choice between undivided histories is expressed by constraint

C6 and can be stated by using the definitions of inclusion w.r.t. relation and the

composition between two relations.

– axiomatization where

axC6 : ”r G ○ r box ⊆ r agt ○ r G”

Finally, the last constraint C7 can again be directly formulated as:

– axiomatization where

axC7 : ”∀w. ∀v. (wrboxv)Ð→ ¬(wrGv)”

3.4.7 Validity

Semantic validity is defined as follows:

– ⌊ϕ⌋ ≡ ∀w. ϕ(w)

– ⌊ϕ⌋l ≡ ϕ(aw)

The first statement asserts that a propositional formula ϕ is semantically valid

if it evaluates to True for all the possible worlds whereas the second one ex-

presses that a propositional formula ϕ is semantically valid for an actual world if

it evaluates to True for the actual world aw.

25

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

3.4.8 Axioms - Horty

Although Horty does not explicitly treat proof theory in his book [19], he still

does provide axioms for the individual STIT operator and uses them for illus-

tration purposes. Due to the encoding of our embedding in Isabelle/HOL, it’s

pretty straight forward to formulate those axioms and prove them by using the

Sledgehammer tool or disprove some statements with counter models generated

by Nitpick. For instance, Horty mentions the following principles for the cstit

operator ([19], Chapter 2, page 17):

RE. ϕ ≡ ψ / [a cstit ∶ ϕ] ≡ [a cstit ∶ ψ]

N. [a cstit ∶ ⊺]

M. [a cstit ∶ ϕ ∧ ψ]→ ([a cstit ∶ ϕ] ∧ [a cstit ∶ ψ])

C. ([a cstit ∶ ϕ] ∧ [a cstit ∶ ψ])→ [a cstit ∶ ϕ ∧ ψ]

Below the corresponding formulation of those axioms in Isabelle/HOL, which

can all be proven by Sledgehammer.

– ⌊ϕ≡ψ⌋Ô⇒ ⌊(a1 cstitϕ)≡(a1 cstitψ)⌋

– ⌊(a1 cstit⊺)⌋

– ⌊(a1 cstit (ϕ∧ψ))→((a1 cstitϕ)∧(a1 cstitψ))⌋

– ⌊((a1 cstitϕ)∧(a1 cstitψ))→(a1 cstit (ϕ∧ψ))⌋

In Isabelle/HOL, we declare those statements as lemmas which allows us to

apply Sledgehammer tool in order to prove those. To apply Sledgehammer

to one of those lemmas, the only thing one needs to do is to type the com-

mand ”sledgehammer” next to the lemma. The tool will then call the ATPs and

SMT solvers to provide proofs for the statement. Depending on the complexity

of the statement, it can take a while until a proof is generated. But as soon as

Sledgehammer was successful, the proof appears in the output console of Is-

abelle/HOL. See 3.1. In this case, Sledgehammer found two proves, which were

provided by two supported SMT solvers, ”z3” and ”cvc4”.

By illustrating the dart example ([19], Chapter 2, page 21), which serves as a

counter model, Horty disproves the following two formulas:

– ϕ→ 3[a cstit ∶ ϕ]

– 3[a cstit ∶ ϕ ∨ ψ]→ (3[a cstit ∶ ϕ] ∨3[a cstit ∶ ψ])

26

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

Figure 3.1: Proofs generated by Sledgehammer

When formulating those formulas into Isabelle/HOL, Nitpick is also able to

find a counter model for both formulas. Counter models are printed out in the

console of Isabelle/HOL. The output for the second formula is illustrated in figure

3.2.

Figure 3.2: Counter model generated by Nitpick

Nitpick has found a counter example for card i=2, which means that the

generated model consists of two possible worlds i1 and i2. Next, we have the free

variables ϕ and ψ where ϕ is false at i1 and true at i2, and ψ holds in i1 but it does

not in i2. For this kind of counter model the Skolem constants are not important

and can therefore be ignored. Then we move to the constants which correspond

to the different accessibility relations. a1 and a2 are representing the relations R1

for agent 1 and R2 for agent 2, respectively. For the relation R1 and R2, Nitpick

relates the two worlds i1 and i2 as follows, we have that R1(i1) = R1(i2) = {i1, i2}
and R2(i1) = R2(i2) = {i1, i2}. The constants rG and rH represents the relations

27

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

RG and RH for the temporal operators G and H. In this model, they are not

needed and therefore RG = RH = ∅. Finally, the constant rbox represents the

relation R2 for the necessity operator 2 and the constant ragt represents the

relation RAgt for the group stit operator [Agt]. Just like for the relations R1 and

R2, we have that R2 = RAgt = {i1, i2}. In terms of Kripke semantics for temporal

STIT logic, the generated counter model looks as follows:

Figure 3.3: Generated counter model in Kripke semantics

In the illustrated figure 3.3, it can easily be verified that the antecedent of the

formula holds whereas the conclusion does not, which falsifies the second formula.

Even though the purpose of this counter model was to disprove the second formula,

it shows as well the invalidity of the first formula.

Other axioms and laws from Horty’s book were also encoded into Isabelle/HOL

and could all be proven by Sledgehammer except for one axiom where a proof

could be found but the proof reconstruction failed.

3.4.9 Axioms - Lorini

In temporal STIT logic, the K axiom holds for the 2 operator, for the group

STIT operator, for every individual STIT operator, as well as for the temporal

operator G and H. We can formulate the K-axioms for each operator as follows:

– ⌊((2ϕ) ∧ (2(ϕ→ ψ)))→ (2ψ)⌋

– ⌊((gstitϕ) ∧ (gstit (ϕ→ ψ)))→ (gstitψ)⌋

– ⌊((a1 cstitϕ) ∧ (a1 cstit (ϕ→ ψ)))→ (a1 cstitψ)⌋

– ⌊((Gϕ) ∧ (G(ϕ→ ψ)))→ (Gψ)⌋

– ⌊((Hϕ) ∧ (H(ϕ→ ψ)))→ (Hψ)⌋

All of the above axioms were easily verified by the Sledgehammer tool. Next,

we have the rule of necessitation which holds also for every operator.

28

CHAPTER 3. THE IMPLEMENTATION 3.4. IMPLEMENTATION

– ⌊ϕ⌋Ô⇒ ⌊(2ϕ)⌋

– ⌊ϕ⌋Ô⇒ ⌊(gstitϕ)⌋

– ⌊ϕ⌋Ô⇒ ⌊(a1 cstitϕ)⌋

– ⌊ϕ⌋Ô⇒ ⌊(Gϕ)⌋

– ⌊ϕ⌋Ô⇒ ⌊(Hϕ)⌋

These axioms can also be directly derived and require no further attention.

Furthermore, we have axiom 4 for all the operators except H.

– ⌊(2ϕ)→ (2(2ϕ))⌋

– ⌊(gstitϕ)→ (gstit (gstitϕ))⌋

– ⌊(a1 cstitϕ)→ (a1 cstit (a1 cstitϕ))⌋

– ⌊(Gϕ)→ (G(Gϕ))⌋

Those axioms follow from the facts that R2, RAgt and every Ri are equivalence

relations and that RG is a transitive relation as well. Additionally, we have axiom

T for the 2 operator, for the group STIT operator and every individual STIT

operator.

– ⌊(2ϕ)→ ϕ⌋

– ⌊(gstitϕ)→ ϕ⌋

– ⌊(a1 cstitϕ)→ ϕ⌋

Since R2, RAgt and every Ri are equivalence relations, they are also reflexive

which is necessary to prove that axiom T holds for those operators. Next, we have

the axiom B for the same operators as for axiom T.

– ⌊ϕ→ (2(¬(2(¬ϕ))))⌋

– ⌊ϕ→ (gstit (¬(gstit (¬ϕ))))⌋

– ⌊ϕ→ (a1 cstit (¬(a1 cstit (¬ϕ))))⌋

Similar to axiom T, axiom B follows from the fact that the relations are sym-

metric due to the equivalence property. Moreover, we have the axiom D for the

operator G:

29

3.4. IMPLEMENTATION CHAPTER 3. THE IMPLEMENTATION

– ⌊¬((Gϕ) ∧ (G¬ϕ))⌋

This axiom can be derived due the seriality property of the relation RG. The

axioms ConvG,H and ConvH,G, which are the basic interaction axioms between

future and past of minimal tense logic, are the following:

– ⌊ϕ→ (G(Pϕ))⌋

– ⌊ϕ→ (H(Fϕ))⌋

Both axioms can be proven by the fact that RH is defined as the inverse relation

of RG. To guarantee the linearity of the future resp. the past, we have the axioms

ConnectedG resp. ConnectedH and those can be formulated as:

– ⌊(P (Fϕ)→ ((Pϕ) ∨ ϕ ∨ (Fϕ))⌋

– ⌊(F (Pϕ)→ ((Pϕ) ∨ ϕ ∨ (Fϕ))⌋

The constraints C4 resp. C5 together with the fact that RH is the inverse

relation of RG are used to derive those axioms. Further we have (2 → i), (i →
Agt) and (AIA), which denote the central principles in Xu’s axiomatization in

STIT logic. Since we only consider two agents, those axioms can be defined as:

– ⌊(2ϕ)→ (a1 cstitϕ)⌋

– ⌊((a1 cstitϕ) ∧ (a2 cstitψ))→ (gstit (ϕ ∧ ψ))⌋

– ⌊((3(a1 cstitϕ)) ∧ (3(a2 cstitψ)))→ (3((a1 cstitϕ) ∧ (a2 cstitψ)))⌋

The first axiom can be proven by constraint C1 whereas the second one follows

from the constraint C3. The Sledgehammer tool is not able to find a proof for the

third axiom but the countermodel generator Nitpick also could not find a counter

model for this axiom. To complete the axiomatization system, we have modus

ponens (MP), axiom (NCUH) and (IRR), a variant of Gabbay’s irreflexivity

rule.

– ⌊(F (3ϕ))→ (dualgstit(Fϕ))⌋

– (⌊ϕ⌋) ∧ (⌊ϕ→ ψ⌋)Ô⇒ ⌊ψ⌋

– ⌊((2(¬p)) ∧ (2((Gp) ∧ (H p))))→ ϕ⌋Ô⇒ ⌊ϕ⌋

Modus pones is proven automatically and (NCUH) can be derived from con-

straint C6. Unfortunately, axiom (IRR) could not be proven by the Sledgehammer

tool.

30

CHAPTER 3. THE IMPLEMENTATION3.5. LIMITATIONS OF ISABELLE/HOL

3.5 Limitations of Isabelle/HOL

The fact that RG is a serial relation combined with the constraint (C7), makes

every temporal Kripke STIT model infinite. In other words, it consists of infinitely

many worlds.

This has been noticed after we were running a step by step consistency check

in Isabelle/HOL, meaning that we first let Nitpick find a model satisfying the

constraint C1. Whenever a model was found, we added the next constraint and

looked for another model until all of the seven constraints were covered. However,

Nitpick has not been able to find a model satisfying all of them. Figure 3.4

illustrates the model, found by Nitpick, satisfying the constraints from (C1)
until (C6), but not constraint (C7).

Figure 3.4: Model satisfying constraints C1-C6
but falsifying constraint C7

But just because Nitpick is not able to find a model satisfying all seven con-

straints, it does not mean that such a model does not exist. Nitpick only works

for finite models, thus it just means that there is no finite model satisfying all the

constraints and that the constraint (C7) together with RG, defined as a serial

relation, can never hold in a finite model. However, there still exist infinite models

satisfying all of the constraints and in order to realize the implementation of the

embedding in Isabelle/HOL, we decided to drop the seriality property of RG.

By removing the seriality condition from RG, Nitpick is able to generate a

finite model satisfying all of the constraints. As a consequence, some of the axioms

from Lorini’s work [22] are no longer valid since they can only be applied to infinite

models. For instance, axiom D is invalid for the G operator since it followed from

the seriality property of RG. The axiom (IRR) could also not be proven by

Sledgehammer and instead, a counter model was found. Further, Lorini proved

the validity of the following two formulas:

– G3G∗ϕ→ ⟨Agt⟩Gϕ

31

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

– G3(G∗ϕ ∧ F ∗ψ)→ ⟨Agt⟩(Gϕ ∧ Fψ)

However, when translated into Isabelle/HOL in order to verify them, Sledge-

hammer was not able to provide a proof for both and for the later formula, a

counter model was found.

3.6 T-STIT I/O logic in HOL

T-STIT l/O logic uses formulas from T-STIT logic. We showed earlier in this

chapter how to formulate those in HOL. The next task is to define the operators

out1 and out2 in HOL and implemented them in Isabelle/HOL so that we are able

to verify some examples of T-STIT I/O logic within the framework. In this section,

we describe the embeddings of the I/O operators out1 and out2. The literature

already provides us with a semantical embedding of the out1 operator in HOL

[7]. We start off by showing how Parent and Benzmüller [7] embedded the out1

operator in HOL and how they implemented it in Isabelle/HOL. They considered

propositional logic as the base logic for the out1 operator. But we show that their

implementation can be used together with the previously described implementation

of T-STIT logic, so that we are able to check examples of T-STIT I/O logic in

Isabelle/HOL. Next, we present the embedding of the out2 operator in HOL. At

first, we also consider propositional logic as the base logic for the operator and

change it then to T-STIT logic.

3.6.1 Simple minded output out1

Parent and Benzmüller [7] present their first attempt of a semantical embedding

of I/O logic in HOL with the main focus lying on the I/O operator out1. In

particular, it documents their initial attempt to embed I/O in Isabelle/HOL, which

failed due to an inappropriate encoding of the statement ⊧ ϕ, as well as a proper

embedding for the operator out1 in HOL.

For a given set of conditional norms N and a set of facts A, the I/O operator

out1 is defined as follows out1(N,A) = Cn(N(Cn(A))) with Cn(A) = {x ∣
A ⊧ x} and N(A) = {x ∣ (a, x) ∈ N for some a ∈ A}. To achieve a proper

formulation of the operator out1, Parent and Benzmüller used the technique of

lifting propositional formulas of I/O logic to predicates on possible worlds. This

means that they are mapped to HOL terms of type i → o where i denotes the

type of possible worlds and o refers to the boolean type. The propositional logical

connectives, such as ¬, ∧, ∧ and ⊃, are also lifted and are defined in exactly the

same way as in section 5.4.2. However, the reason to apply this technique in this

case, is to use valid ϕ, which is denoted by ⌊ϕ⌋, as a suitable encoding of ⊧ ϕ.

32

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

After having found an appropriate encoding for ⊧ ϕ, the operator outpre was

defined such that outpre(N,A) = N(Cn(A)). Thus, outpre(N,A) denotes the

set {y ∈ L ∣ ∃f ∈ Cn(A) such that (f, y) ∈ N} where L is the set containing

all the formulas of propositional logic. To obtain the operator out1, outpre has

to be closed under logical consequence. Closing a set under logical consequence

results in an infinite set, therefore only an approximation of out1 was defined. In

particular, out1(N,A) is restricted to the consequences that follow from maximally

three formulas in outpre(N,A). Thus, out1(N,A) denotes the set {x ∈ L ∣
{i, j, k} ⊆ outpre(N,A) and ⊧ (i ∧ j ∧ k) ⊃ x}. Another thing to keep in mind

is that the set of facts A is limited to singleton sets only. So out1 is adapted

for the use of a singleton formula such as a, but one also may consider a as

the conjunction of all the formulas in a set A. More precisely, a = a1 ∧ ⋅ ⋅ ⋅ ∧ an
with ai ∈ A for i ∈ {1 . . . n}. This has been done due to technical reasons. In

Isabelle/HOL, the operators outpre and out1 are then formulated as follows:

– outpre = λN.λa.λy.∃f.(⌊a⊃f⌋ ∧N(f, y))

– out1 = λN.λa.λx.(∃i j k. outpreN a i∧outpreN aj ∧outpreN ak∧⌊(i∧j∧k)⊃x⌋)

Parent and Benzmüller defined the operations outpre and out1 for formulas of

propositional logic. In our case, we are using T-STIT logic as the base logic for

our I/O operators and we used the same technique to represent those formulas

in HOL. The encoding of validity for formulas of propositional logic is exactly the

same as validity for formulas of T-STIT logic. This means that those defined

operators can also be applied when we are changing L to LT-STIT.

Having defined the operators outpre and out1, we are able to analyze some

examples. For instance, example 2 from chapter 2 can be formulated in Is-

abelle/HOL. We have that N = {(a, x), (a ∨ b, y), (b, z)} and A = {a}. See

figure 3.5.

First we have to declare the propositions a, b, x, y and z. The propositions are

mapped to associated HOL terms of type i → o. This type represents a function

type from possible worlds to truth values in HOL. This type is abbreviated here

as e. Next, we define the set of conditional norms N and we check first if x

is in outpre(N,a), meaning in N(Cn(a)), and afterwards if x is in out1(N,a).

In both cases, Sledgehammer is able to find a proof. Further, Sledgehammer

provided proofs to show that (x ∨ z) ∈ out1(N,a) and y ∈ outpre(N,a). For

the statements that y and (x ∧ y) are also in out1(N,a), we also get a proof,

however, the proof solver times out. The same problem arises when checking

if y is in the out1(N,{a ∨ b}). Finally, countermodels could be found to show

that z is neither in outpre(N,a) nor in out1(N,a). Countermodels are generated

33

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

Figure 3.5: Isabelle/HOL: out1 example

for the HOL formula of the respective statement. For instance, the statement

z ∈ outpre(N,a) unfolds as follows. We start from the line:

outpreN az

Then, outpre will be substituted with its formulation and we get:

(λN.λa.λy.∃f.(⌊a⊃f⌋ ∧N(f, y)))N az

During the next step, the λ-calculus will be performed. Thus, N , a and y will be

substituted for N , a and z, respectively, and we obtain the following expression:

∃f.(⌊a⊃f⌋ ∧N(f, z))

Next, at first N will be replaced by its definition. Then we end up again with

an expression containing a λ-calculus operation. All X’s in the expression will be

substituted for (f, z). Thus we have the following lines:

∃f.(⌊a⊃f⌋ ∧ (λX.X = (a, x) ∨X = (a∨b, y) ∨X = (b, z))(f, z))

∃f.(⌊a⊃f⌋ ∧ ((f, z) = (a, x) ∨ (f, z) = (a∨b, y) ∨ (f, z) = (b, z)))

As the propositions are of type e, the connectives such as ∨ are lifted as well. N

contains the element (a ∨ b, y), and thus we have to replace the lifted connective

by its expression.

∃f.(⌊a⊃f⌋ ∧ ((f, z) = (a, x) ∨ (f, z) = (λw.a(w) ∨ b(w), y) ∨ (f, z) = (b, z)))

34

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

Finally the last step deals with the expression ⌊a⊃f⌋. First, the notation of

⌊ ⋅ ⌋ will substituted with its definition and the same thing will be done for lifted

implication ⊃.

∃f.((∀w.(a⊃f)(w))∧((f, z) = (a, x)∨(f, z) = (λw.a(w)∨b(w), y)∨(f, z) = (b, z)))

∃f.((∀w.(λw.a(w)Ð→ f(w))(w))∧((f, z) = (a, x)∨(f, z) = (λw.a(w)∨b(w), y)∨(f, z) = (b, z)))

After a final λ-calculus operation, the unfolding is complete. Thus z ∈ outpre(N,a)
unfolds into the following formula:

∃f.((∀w.a(w)Ð→ f(w))∧((f, z) = (a, x)∨(f, z) = (λw.a(w)∨b(w), y)∨(f, z) = (b, z)))

Figure 3.6: Isabelle/HOL: Countermodel for z ∈ outpre(N,a)

For this formula, Nitpick is able to give a countermodel and therefore dis-

proves the statements. Figure 3.6 shows a console output of a countermodel in

Isabelle/HOL. Consider two possible worlds i1 and i2. We have that the proposi-

tion a is true at i1 but false at i2 and so a corresponds to the set {i1}. Further

we have that the propositions b, x and y are equal to the empty set since they are

all false at both worlds and z is the set {i2} since z holds at the world i2. The

expression λw.a(w)∨ b(w) also denotes the set {i1}. It is then impossible to find

f such that this formula evaluates to true.

When using a as the conjunction of all the elements in a set of facts A, the

scope of the search space for the tools Sledgehammer and Nitpick seems to

be a bit problematic for this embedding of out1. Figure 3.7 is illustrating this

problems.

In the first example, we have a set of conditional norms R = {a, x} and a

set A = {a ∧ b}. In Isabelle/HOL, it could be proven that x is in outpre(R,A),

however, Sledgehammer times out when trying to prove that x is in out1(R,A).

When changing the set A to the singleton set {a}, Sledgehammer is also not

able to give a proof for showing that (x ∨ y) is in out1(R,a).

35

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

Figure 3.7: Isabelle/HOL: Problems for out1

For the second example, it could be shown that x is in outpre(S,{a ∧ b}) as

well as in out1(S,{a∧ b}) where S = {(a, x), (a∧ b, d)}. Also, proofs for showing

that d and (x ∧ d) are in out1(S,{a ∧ b}) could be found, but the proof solver

times out. Unfortunately, the search space is too large for Sledgehammer and

therefore is not able to show that (d ∨ x ∨ y) is in out1(S,{a ∧ b}).

As illustrated on different examples, the Sledgehammer tool only managed

to find proofs when dealing with propositional formulas of low complexity. By

increasing a formula’s complexity, the search space becomes too large which then

results in a timeout of Sledgehammer. So far, we did not use any formulas

containing any STIT operators. When doing so, the problem of the large search

scope for the tools such as Sledgehammer and Nitpick still remains. See Figure

3.8).

Consider the set of conditional norms G = {(a, [α]e), (a, [β]f), (b, e∧f)} and

the set of facts A = {a} where a, b, e, f are propositional letters and α, β are

two agents.

A Cn(A) G(Cn(A)) out1(G,A)
a Cn(a) {[α]e, [β]f} Cn({[α]e, [β]f})
b Cn(b) {e ∧ f} Cn({e ∧ f})

We have that out1(G,a) = Cn({[α]e, [β]f}), thus formulas such as [α]e,

[β]f , e, f and (e ∧ f) are all included in out1(G,a). When formulating this

example in Isabelle/HOL, only two proofs could be provided by Sledgehammer.

In particular, it showed that [α]e and [β]f are in outpre(G,a). All the other

statements were beyond the search scope of Sledgehammer and therefore no

proofs were found. When choosing the singleton b as the set of facts, all statements

36

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

Figure 3.8: Isabelle/HOL: out1 and STIT logic

were proved, however, they were of small interest since they did not include a STIT

operator.

A possibility to reduce the search space of Sledgehammer is to directly for-

mulate a particular model in Isabelle/HOL. For instance, we used Horty’s model

for the driving example ([19], Chapter 5, pages 119-121). The original model is

given in BT +AC structured, but we translated it into a temporal Kripke STIT

model and specified this model in Isabelle/HOL. The example presents a situation

where we have two drivers who drive toward each other on a one-lane road. They

have no possibility to stop or to communicate with each other, and at one partic-

ular moment, each one of them must independently decide whether he continues

driving along the road or swerves. Further, the drivers can only swerve in one sin-

gle direction, therefore they will end up in a collision when both of them choose

to continue driving along the road or to swerve. A collision can only be avoided

when one of them swerves and the other does not. We formulated then a set of

conditional norms G containing the following two pairs (b, [α]¬a) and (¬b, [α]a).

Formally, we have then G = {(b, [α]¬a), (¬b, [α]a)}. The former expresses that

under the condition that agent β swerved, it is obligatory that agent α sees to it

that he continues driving the road whereas the latest one states that under the

condition that agent β continued driving the road, it is obligatory that agent α

sees to it that he swerves. Applying out1 to the set G and using b as the input

situation, it should then be obligatory that [α]¬a. In fact, we have:

A Cn(A) G(Cn(A)) out1(G,A)
b Cn(b) {[α]¬a} Cn({[α]¬a})

Obviously, [α]¬a ∈ out1(G, b). Further since [α]¬a implies ¬a, we also have

37

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

that (¬a) ∈ out1(G, b). Indeed, this is a consequence of the Weakening the

output (WO) rule. By the conjunction of the output (AND) rule, we also have

that ([α]¬a ∧ (¬a)) ∈ out1(G, b). When providing the model in Isabelle/HOL,

Sledgehammer finds in fact proofs to verify that those three formulas are in

out1(G, b). This is depicted in Figure 3.9.

Remark Please note that in the Isabelle/HOL implementation, the agents a1 and

a2 represent the drivers α and β, respectively.

Figure 3.9: Driving Example in Isabelle/HOL

Further, we checked that [α]a ∈ out1(G,¬b) which means then that under

the condition that agent β continued driving on the road, it is obligatory that

agent α sees to that he swerves. When asked whether [α]a ∈ out1(G, b) or

[α]a ∈ out1(G,⊺), Nitpick generated counter models, which were unsurprisingly

in both case identically to the encoded model.

3.6.2 Basic output out2

In contrast to out1, the operator out2 supports reasoning by cases. For a given

set of conditional norms N and a set of facts A, we formally write out2(N,A) =
⋂{Cn(N(V)) ∣ A ⊆ V,V complete}. However, for the embedding, we considered

the modal logical formulation of out2. This allows us to reuse the same techniques

which have already been applied to embed different kinds of modal logics in HOL.

We will focus first on an embedding for the out2 with propositional logic as the base

logic. According to the modal logical formulation, we have that x ∈ out2(N,A) if

and only if

i. x ∈ Cn(N(L)) and

38

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

ii. N2 ∪A ⊢S 2x, with N2 = {b→ 2y ∣ (b, y) ∈ N}

To formulate x ∈ Cn(N(L)) in Isabelle/HOL, we start first by defining N(L).

In particular, we define N(L) as the set {y ∈ L ∣ ∃f ∈ L such that (f, y) ∈ N}.

This set gets then closed under the logical consequence and thus we can only

define an approximation of Cn(N(L)). Just like for the out1, we consider only

those consequences that follow from maximally three formulas in N(L). So,

Cn(N(L)) denotes the set {x ∈ L ∣ {i, j, k} ⊆ N(L) and ⊧ (i ∧ j ∧ k) ⊃ x}. In

Isabelle/HOL, we formulate them as:

– G L ≡ λG.λy.∃f.G(f, y)

– out2 ≡ λG.λx.(∃i j k.G LGi ∧G LGj ∧G LGk ∧ ⌊(i∧j∧k)⊃x⌋)

Remark As already stated in the chapter for I/O logic (2), a set of conditional

norms can be denoted by any letter. The letter G was mostly used during the

implementation in Isabelle/HOL, therefore the formulation uses this letter instead

of N .

The next step is to find an encoding for N2 ∪ A ⊢S 2x in Isabelle/HOL.

First, we have that S refers to any modal logic such that K ⊆ S ⊆ K45. For the

implementation we choose S equal to K45, so the accessibility relation for the

2 operator is transitive and euclidean. Thus it satisfies the following axioms and

rules:

(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

(4) 2ϕ→ 22ϕ

(5) 3ϕ→ 23ϕ

(Nec) if ⊢ ϕ then ⊢ 2ϕ

(MP) if ⊢ ϕ and ⊢ ϕ→ ψ then ⊢ ψ

In section 5.4.2, we already showed how to formulate the 2 and 3 operators in

Isabelle/HOL. Further, we demonstrated how to formulate transitivity and declare

a transitive relation. Declaring a relation as euclidean can be realized in the same

way and euclideaness is defined as follows in Isabelle/HOL:

– euclideanr ≡ ∀xy z. ((r xy) ∧ (r x z))→ (r y z)

39

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

Since S is defined now as a K45 modal logic, N2 ∪ A ⊢K45 2x means that

for a finite subset Y , such that Y ⊆ N2 ∪ A, it holds that (⋀ yi → 2x) ∈ K45

with yi denoting the elements of Y . Alternatively, (⋀ yi → 2x) ∈ K45 means that

⋀ yi → 2x is a valid formula in any K45 modal logic meaning that one needs to

show that ⊧ ⋀ yi → 2x. An appropriate notation for validity in Isabelle/HOL has

already been introduced in Section 5.4.7 and can therefore be reused in this case.

In I/O logic, obligations are referenced to a given set of conditional norms for

some input. Thus one always has to define those sets. For instance, consider the

classical example which demonstrates the difference between out1 and out2. We

have G = {(a, x), (b, x)}, A = {a∨ b} and x ∈ out2(G,A) but x ∉ out1(G,A). To

verify that x ∈ out2(G,A) by using the translation into modal logic, we first have

to check that x ∈ Cn(G(L)). This is clearly the case since Cn(G(L)) = Cn(x).

In Isabelle/HOL, we would start by defining the set G and then try to get proofs for

the statements G L G x and out2 G x, to show that x ∈ G(L) and x ∈ Cn(G(L))),

respectively. As shown in figure 3.10, Sledgehammer provided proofs for those

statements.

Figure 3.10: Isabelle/HOL: out1 vs. out2

For the modal logic part, we focus first on N2 ∪A which corresponds to the

set {a → 2x, b → 2x, a ∨ b}. By compactness, we can always choose the finite

subset Y as N2 ∪A. As we want to check that x ∈ out2(G,A), we need to show

that ((a → 2x) ∧ (b → 2x) ∧ (a ∨ b)) → 2x is a valid formula in a K45 modal

logic. Assuming that the antecedent is false, then the formula is automatically

valid. Assuming that the antecedent holds, then (a∨b) is true and therefore either

a or b is true as well. If a holds, then 2x must hold as well since we assumed that

the antecedent holds. In the same way, 2x holds in the case b is true. Therefore

the formula is valid again. In Isabelle/HOL, we check the validity of this formula

40

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

as follows:

⌊((a⊃2x)∧(b⊃2x)∧(a∨b))⊃2x⌋

For this statement, Sledgehammer also generated a proof, and since we also

got a proof for x ∈ Cn(G(L)), we have that x ∈ out2(G,A). We check both

statements individually, however one can also check them together by using the

HOL conjunction ∧. See figure 3.10. Finally, Nitpick generated counter models

to show that x is neither in outpre(G,a) nor in out1(G,a).

Just like for out1, we also encountered the same problem for out2 regard-

ing the large search scope for Sledgehammer. x ∈ out2(N,A) means that

x ∈ Cn(N(L)) and N2 ∪ A ⊢K45 2x. The modal logic part has never caused

problems in Isabelle/HOL however we could not always get proofs for the first part.

Consider a set of conditional norms Q = {(a, c), (a, d), (b, c∧d)} and A = {a∨ b},

Sledgehammer is able to give a proof for the modal logic part as well as for

(c ∧ d) ∈ Q(L). But when closing Q(L) under the set of logical consequences,

it could not prove that (c ∧ d) ∈ Cn(Q(L)). See figure 3.11 . In Isabelle/HOL,

we only defined an approximation of Cn(Q(L)). We are looking only at the con-

sequences which follow maximally from three formulas in Q(L). This requires to

make use of the quantifier ∃ which will look for propositional formulas i, j and

k such that they corresponds to some head y of some pair (b, y) ∈ Q and that

⊧ (i ∧ j ∧ k) ⊃ (c ∧ d). This use of the quantifier ∃ may be the reason which

caused the time out of Sledgehammer. Thus we were trying to find an alterna-

tive formulation for (c ∧ d) ∈ Cn(Q(L)) without making use of a quantifier. In

Isabelle/HOL, we always explicitly define the sets of conditional norms therefore

it is always finite and we know which elements it contains. In that case, we could

take the conjunction of all the heads yi for the pairs (bi, yi) and directly check if

⊧ ⋀ yi ⊃ (c∧d) which corresponds to ⌊(y1∧⋯∧yn)⊃(c∧d)⌋ in HOL. For the set Q,

we formulate (c ∧ d) ∈ Cn(Q(L)) as ⌊(c∧d∧(c∧d)) ⊃ (c∧d)⌋ and this obviously

holds.

Using the formulation mentioned above, Sledgehammer is also able to imme-

diately come up with a proof. Thus we have that (c ∧ d) ∈ Cn(Q(L)). To verify

Q2 ∪A ⊢K45 2(c ∧ d) in Isabelle/HOL, we need to check that

⌊((a⊃ 2c)∧(a⊃ 2d)∧(b⊃ 2(c∧d))∧(a∨b))⊃ 2(c ∧ d)⌋

As depicted in Figure 3.11, Sledgehammer shows that this is a valid formula.

Further it is able to give a proof for the conjunction of the statements (c ∧ d) ∈
Cn(Q(L)) and Q2∪A ⊢K45 2(c∧d), thus we proved that (c∧d) ∈ out2(Q,{a∨
b}).

41

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

Figure 3.11: Isabelle/HOL: out2 example

3.6.3 Applying out2 to formulas of T-STIT logic

The language of T-STIT logic already consists of an operator 2. It satisfies

all principles of a modal logic S5. Also, the modal formulation of out2 makes use

of an operator 2, but this one satisfies different principles, namely the ones from

a modal logic K45. So when combining both logics in Isabelle/HOL, we have

to clearly distinguish them. Therefore we let 2 denote the lifted 2 operator for

LT-STIT and 2l denotes the lifted 2 operator for the modal logic K45.

In order to verify the driving example for the out1, it was necessary to implement

a corresponding model into Isabelle/HOL in order for Sledgehammer to come

up with proofs. However, for the out2 operation in Isabelle/HOL, a model does

not have to be provided. It is sufficient to define the set of conditional norms G,

namely G = {(b, [α]¬a), (¬b, [α]a)}, and we can check the same statements also

hold for the out2 operation. And indeed, the statements, which did hold for out1,

held as well for out2.

We can also illustrate the soundness of the logic on some examples in Is-

abelle/HOL. See figure 3.12. Take for instance K = {(a, [α]x)}. Obviously we

have that [α]x ∈ out2(K,a). By weakening the output (WO), we have that

[α](x ∨ y) and x are in out2(K,a) since [α](x ∨ y) and x are logical conse-

quences of [α]x. Further we can conclude that [α]x ∈ out2(K,{a ∧ b}). This is

guaranteed by strengthening the input (SI) since we have that [α]x ∈ out2(K,a)
and a logically follows from a ∧ b. For a set M = {(a, [α]x), (a, [α]y)}, we have

that [α]x and [α]y are in out2(M,a). By the conjunction of the output (AND),

we get that ([α]x∧ [α]y) ∈ out2(M,a) and since ([α]x∧ [α]y) ⊃ [α](x∧ y), we

also get that [α](x∧y) ∈ out2(M,a). Finally, for a set T = {(a, [α]x), (b, [α]x)},

we obtain that [α]x ∈ out2(T, a) and [α]x ∈ out2(T, b) which implies by the OR

42

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

rule that [α]x ∈ out2(T, a ∨ b).

Figure 3.12: Isabelle/HOL: Proof theory of out2 on examples

Besides those rules which hold for the out2, we also tried some other rules

which do not hold for this operation. For instance, we showed that the rules

of cumulative transitivity and transitivity don’t hold for an example when us-

ing the out2 operator. For the former we considered a set of norms T1 =
{([α]a, [α]x), ([α]a ∧ [α]x, [α]y)} and Nitpick generated a counter-model to

show that [α]y ∉ out2(T1, [α]a). For the later, when T2 = {([α]x, [α]y), ([α]y, [α]z)}
then [α]z ∉ out2(T2, [α]x).

Another interesting aspect of combining STIT with I/O logic is to study the

relation between obligations of multiple agents and the obligation of a group of

agents. For example, let’s say that in a case of an emergency in a hospital, it

is obligatory for person 1 to lock all the windows whereas person 1 is obligated

to open all the security doors. So in an emergency scenario, it is then obligatory

for the group, which consists of person 1 and 2, to lock all the windows and

open all the security doors. So let the statement a denote the case of emergency.

The statements x and y express closing the windows and opening the security

doors, respectively. The two agents are denoted by α and β, and refer to person

1 and 2, respectively. Agt will denote the group of agents which consists of

agent α and β. Then we can define the set of conditional norms as follows

S = {(a, [α]x), (a, [β]y)}, use a as the input fact and we would like to conclude

that [Agt](x ∧ y) ∈ out2(S, a). When formulating this example in Isabelle/HOL,

it could indeed be proven that [Agt](x ∧ y) ∈ out2(S, a).

43

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

3.6.4 List of examples

We evaluated the out1 and out2 on as many different examples as possible in

order to verify that the operations work as intended. Below is a table containing

all the examples to which the operators have been applied. The first column

represents the set of conditional norms whereas the second one shows the input

set that we used. The third column contains the output that we requested for the

example. The fourth and fifth columns tell us whether the requested output is

in out1(N,A) and out2(N,A), respectively, or not. Thus Y es indicates that the

requested output should be detached by the respective output operator under the

given input set A and the set of conditional norms N . A No indicates then the

opposite. If the cell contains Y es and the color of that cell is green, it indicates

that Sledgehammer was able to prove the statement. A red background indicates

that Sledgehammer timed out and thus could not provide a proof. A yellow

background indicates that Sledgehammer was only able to provide a proof when

a certain model was specified. If the cell contains No, we have to disprove the

statement by using the tool Nitpick. Whenever a counter model was needed,

Nitpick was able to generate one and therefore the background color of those

cells are always green. The results from the examples for operator out2 are quite

promising. Every statement that contained an out2 could correctly be proved or

disproved by Sledgehammer resp. Nitpick. The reason behind this can surely

be traced back to the modal formulation of out2.

44

CHAPTER 3. THE IMPLEMENTATION 3.6. T-STIT I/O LOGIC IN HOL

N A Output(s) In out1(N,A)? In out2(N,A)?

{(a, x), (b, x)} {a} x Yes Yes

{(a, x), (b, x)} {a} x ∨ b Yes Yes

{(a, x), (b, x)} {a ∨ b} x No Yes

{(a, x), (b, x)} {a ∧ b} x Yes Yes

{(a, b), (a, c)} {a} b, c, b ∧ c Yes Yes

{(a, a), (a, b), (a, c)} {a ∧ ¬c} a, a ∧ b ∧ c Yes Yes

{(a, c), (b, c), (d, c)} {a ∨ b ∨ d} c No Yes

{(a, c), (b, c), (d, c ∧ e)} {a ∨ b ∨ d} c No Yes

{(a, c), (b, c), (d, c ∧ e)} {a ∨ b ∨ d} c ∧ e No No

{(a, c), (b ∨ e, c)} {a ∨ b} c No Yes

{(a, c), (a, d), (b, c ∧ d)} {a ∨ b} c, d, c ∧ d No Yes

{(a, c), (a, d), (b, c ∧ d)} {a} c ∧ d Yes Yes

{(a, x)} {a ∧ b} x Yes Yes

{(a, x)} {a} x ∨ y Yes Yes

{(a, x), (a ∧ b, d)} {a ∧ b} x Yes Yes

{(⊺, k), (¬k, a)} {¬k} k, k ∧ a Yes Yes

{(a, [α]x)} {a} [α]x,3[α]x,x Yes Yes

{(a, [α]x)} {a} [α](x ∨ y) Yes Yes

{(a, [α]x)} {a ∧ b} [α]x Yes Yes

{(a, [α]x), (a, [α]y)} {a} [α](x) ∧ [α](y) Yes Yes

{(a, [α]x), (a, [α]y)} {a} [α](x ∧ y) Yes Yes

{(a, [α]x), (b, [α]x)} {a ∨ b} [α]x No Yes

{(a, [α]x), (b, [α]x)} {[α]x} [α]x No No

{([α]a, [α]x), ([α](a) ∧ [α](x), [α]y)} {[α]a} [α]y No No

{([α]x, [α]y), ([α]y, [α]z)} {[α]x} [α]z No No

{(a, [α]x), (a, [β]y)} {a} [Agt](x ∧ y) Yes Yes

{(a, [Agt]z)} {a} [α](z) ∧ [β](z) No No

{(b, [α](¬a)), (¬b, [α]a)} {b} [α](¬a),¬a Yes Yes

{(b, [α](¬a)), (¬b, [α]a)} {¬b} [α](a), a Yes Yes

{(b, [α](¬a)), (¬b, [α]a)} {b} [α](a) No No

{(b, [α](¬a)), (¬b, [α]a)} {⊺} [α](a) No No

{(a ∨ b, [α]e)} {[β]b} [α](e ∨ f) Yes Yes

{(a, [α]e), (a, [β]f), (b, e ∧ f)} {a} [α]e, e, e ∧ f Yes Yes

{(a, [α]e), (a, [β]f), (b, e ∧ f)} {[β]b} e ∧ f Yes Yes

{(⊺, [α]e)} {⊺} [α](e ∨ f) Yes Yes

{(⊺, [α dstit ∶ e])} {⊺} [α dstit ∶ (e ∨ f)] No No

{(a,2x)} {a} 2x,3x,x, x ∨ y Yes Yes

{(a,2x)} {a} [α]x, [β]x, [Agt]x Yes Yes

{(a,2x)} {a} [α]x ∧ [β]x Yes Yes

45

3.6. T-STIT I/O LOGIC IN HOL CHAPTER 3. THE IMPLEMENTATION

46

CHAPTER 4. MORAL LUCK

4 | Moral Luck

This chapter presents the phenomenon of moral luck. Before identify which

aspects of moral luck can actually be studied by our logic and how they are related,

the chapter documents the four different kinds of moral luck identified by Thomas

Nagel [25]. Finally we use examples from moral luck as test cases for our logic.

4.1 Introduction to moral luck

The literature of moral luck is focused around the question whether luck can

ever make a moral difference or not. Chance affects our lives in much more ways

that one might actually think. However, one might consider morality as an area

where luck does not play such a powerful role. The following example actually

illustrates though how much of an impact luck can have when dealing with moral

judgments.

Example 7 (Drunk drivers) Let A and B be next door neighbors. At one

evening, both go to the same party and get equally drunk. When the party

comes to an end, A and B get to their own vehicles and since they are neighbors,

both take the same road in order to drive home. The only difference is that A

will leave a few minutes earlier than B. The roads are pretty much deserted at

that time and A manages to drive home safely even with a high percentage of

alcohol in his blood. A couple of minutes later, B drives down the same road and

suddenly a child appears in front of his car. Since B also drank a lot at the party,

his reaction time is impaired by the alcohol and it makes it impossible for him to

stop and swerve to avoid hitting and killing the child.

The question in this example is as follows, who deserves more blame? In the

20th century, the British philosopher Bernard Williams introduced the term moral

luck. It describes scenarios where a moral agent is assigned a moral judgment. The

agent gets either praised or blamed for his or her action and its consequences, even

if it is clear that either the action or its consequences were beyond the agent’s

control. Williams and the American philosopher Thomas Nagel developed the

subject of moral luck in their respective work [30, 25]. Both of them argue that

luck actually can make a moral difference and used similar examples to illustrate

the issue when dealing with moral responsibility. In philosophy, moral responsibility

refers to acts or states of affairs for which an agent can get praised or blamed.

47

4.2. OUGHT IMPLIES CAN CHAPTER 4. MORAL LUCK

Back to the example, we might notice at a first look that it seems that person

B is clearly more blameworthy due to the fact that B killed the child and A did

not. But looking more deeply into the situation, we have that A and B made the

equally blameworthy choice and decided to drive home while being intoxicated.

However, B encountered an external factor while driving down the road, namely

a child. Imagine now, that the child had crossed the path of person A. Being

drunk, A would also have been unable to avoid hitting the child.

Both drivers neglected the fact that one should not take the road while having

a high percentage of alcohol in the blood. Still, both of them decided to drive

home and neither one of them intended to hit and kill anyone. It seems, therefore,

irrational that B is more blameworthy than A. Both of them neglected the same

thing and only because of luck, nobody got harmed and killed in the scenario

of person A. Therefore, we say that A got morally lucky. Such an example

illustrates the problem of moral luck. But luck should not affect the degree of

moral responsibility.

So a question that one may ask is, how to figure out and know for sure that

someone should deserve praise or blame for some situation that just happened?

4.2 Ought implies Can

A well-known ethical formula in moral philosophy is the principle of Ought

implies can. Among philosophers, this principle is commonly used when dealing

with moral obligations. It states that if an agent ought or should perform an

action morally, then he or she must be able to perform it. Alternatively, an agent

is only morally required to do things that are possible for him or her under natural

conditions. According to this principle, obligations of a human are restricted to

what is humanly possible and therefore we have a limit on ethical responsibility.

As a consequence, some obligations might break due to changes in real-world

circumstances. Consider the case where a person A made a promise to person

B in order to meet for lunch. Consequently, A has the obligation to keep this

promise. On his or her way to meet B, person A, however, ends up in a car crash

and gets knocked unconscious. Several minutes later, an ambulance arrives and A

gets brought to the nearest hospital. A is now unable to meet B. Even though A

promised to have lunch with B, A did nothing wrong in this situation. This may

lead some of us to think that we can neglect obligations by intentionally getting

ourselves into situations where we are unable to do what we are obligated to do.

For instance, the court charges someone to pay child support. Then this person

decides to go to a casino and spends every dollar on gambling but he or she loses

all of his or her fortune in the end. Having no money at all, the person is unable

48

CHAPTER 4. MORAL LUCK 4.2. OUGHT IMPLIES CAN

to pay the child support, he or she has then no obligation to do so. However, this

argument is not valid. If person A has an obligation for X, and X depends on

doing Y , then if Y falls within the control of A, then person A has an obligation

for Y as well. In the case of the previous example, the person has an obligation

to pay child support and thus he or she also has an obligation not to visit a casino

and waste away all the money.

From a logical point of view, the principle of Ought implies can also makes

absolute sense. Therefore it belongs to the few principles, which basically everyone

agrees. With this principle in mind, if an agent faces a situation, which is out of

his or her control, then we should agree on that he or she cannot be morally

responsible for it.

Imagine that someone would cut the brake lines of somebody’s car without

getting noticed. As a consequence, the driver of that car would end up in an

accident but he is not morally responsible for the resulting injuries and damage.

However, he still took part in the chain of events that resulted in injuries and

damage. Had the driver decided not to get into his car, then this accident would

never have taken place.

This small example illustrates the difference between casual and moral respon-

sibility. The former states whether agents had been involved in a series of events

or not whereas the latest assigns responsibility to the agents. Depending on what

happened, the agents receive either positive or negative judgments. However, the

concept of moral responsibility is only considered for moral agents. Meaning that

we only consider those agents that have the ability to distinguish between right

and wrong and then make choices accordingly.

Looking back at the example of the drunk drivers and if we consider that one

is only morally responsible for what is in your control, then we have to conclude

that both drivers should be equally blameworthy. Alternatively, we say that A and

B are morally equal. Neither person is relevantly worse than the other. The fact

that the child ran into the road, is something beyond B’s control and therefore

he has no influence on it.

A moral assessment cannot depend on factors which are out of range of the

agent’s control. This is statement is captured by the condition of control. In

particular, it states that agents are morally assessable only to the extent that

what they are assessed for depends on factors under their control. This implies

then if the differences in the actions of two agents are only because of factors

outside their control than the differences in their actions cannot be relevant for

the moral evaluation. Thus the problem of moral responsibility is much more

complex than it looked at first sight.

49

4.3. THE FOUR KINDS OF MORAL LUCK CHAPTER 4. MORAL LUCK

4.3 The four kinds of moral luck

Nagel states that external factors might affect the moral quality of our actions

and he goes on by describing these effects in terms of different kinds of luck. In

particular, Nagel identified four kinds of moral luck.

4.3.1 Constitutive moral luck

Constitutive moral luck is referred to as the luck that deals with our own con-

stitution or personal character. Thus it is concerned with the individual character

traits and motivations of an agent. Nagel claims that some people are born gen-

erous whereas some of us are more greedy and envious. On one side, some people

tend to get angry very quickly and on the other, there are people who are more

easy going and very calm. Therefore everyone has a different temperament.

According to Nagel, people tend to make their choices based on their person-

ality which implies that our own personal traits dictate our actions. As a conse-

quence, different personalities will lead to different choices and we act as who we

are. However one may argue that our personality, to some extent, is shaped by

influences which are out of our control. Such influences include parental as well

as academic education, environmental and genetics.

For example, a person may not like to share his or her snacks with another

person. But a lot of other people find sharing food with each other to be second

nature. Even though that one person may have gotten used to offering to whoever

is around him or her, it is easy for others to judge that person by his or her

natural disposition towards not sharing as selfish and greedy. Regardless of people’s

intentions or actions, they are held praiseworthy or blameworthy for parts of their

personality that they do not control.

4.3.2 Circumstantial moral luck

Circumstantial moral luck is concerned with the surrounding or the situation

the moral agent finds himself in. According to Nagel, people don’t have any

control over the circumstances they face during their lifetime. But one should

keep in mind that those surrounding play a huge factor when it comes to making

a choice.

An example, illustrating the concept of circumstantial moral luck, can be found

in Nagel’s paper [25]. It deals with the followers and supporters of the Nazi regime

in Germany. Some of those people are morally blameworthy for terrible deeds

during that time. Others can be morally blamed for allowing those deeds to occur

50

CHAPTER 4. MORAL LUCK 4.3. THE FOUR KINDS OF MORAL LUCK

because they did not make the effort to oppose them. However, imagine that

those people would have been moved to different countries some years before this

regime had been in control, then those people would have possibly lived different

lives and would not receive the same amount of moral blame. But this is due to

the luck of circumstances in which they are surrounded.

This makes it clear, that people who have done things for which they deserve

moral blame, would not have done those if they had found themselves in different

circumstances.

4.3.3 Resultant moral luck

Resultant moral luck is the most obvious form of luck. Thus it is concerned

with the way things turn out and deals with the consequences of actions and

situations. When two people are performing the same action or making the same

choice, the degree of responsibility might differ due to subsequent events which are

out of their control. Resultant luck may arise in cases of negligence, intentional

wrongdoing or decision under uncertainty.

For instance, take two truck drivers who have forgotten to get their brakes

checked. Due to this negligence, both drivers experience a moment where their

brakes fail, which will then end up in a crash. One driver only caused material

damage, but the other one finds a dead pedestrian in front of his truck. In both

scenarios, we notice two different outcomes of the crashes. In one situation, a

pedestrian appeared and got unluckily hit by the truck whereas, in the other, the

pedestrian did not appear or avoided being hit. Both drivers were negligent in the

same way, however, in one situation, it ended up in a tragedy. In the other one,

it was just a matter of luck that nobody ended up dead. The same kind of luck

was also illustrated by the example of the two drunken drivers.

A successful and unsuccessful murder attempt is considered as a case of in-

tentional wrongdoing. In many countries, the charges for an attempting murder

versus actual murder are quite different. But the intention in both cases is exactly

the same and the person is judged by the end result of whether someone died or

not. This might be something which is outside of the agent’s control. For in-

stance, a bird could have been flown into the path of a bullet or maybe the victim

have been worn a bullet proofed vest or the trigger of the weapon is not work-

ing, resulting in a failed murder attempt. From a moral point of view, murdering

someone is wrong. Additionally, the law considers murder as a crime, therefore

morality and law overlap in the case of murder. However, in law, the punishment

for attempted and actual murder is not the same. The law prioritizes outcomes

over intentions meaning that it is primarily concerned with definite outcomes and

51

4.3. THE FOUR KINDS OF MORAL LUCK CHAPTER 4. MORAL LUCK

secondly with intentions. The difference between killing someone and grievous

bodily harm is not traced back to the intentions or the inflicted wounds, but it

is a matter of the outcome, whether someone has died or not. In contrast, our

moral judgment may be identically in the case of murder and vicious assault.

Decisions under uncertainty deal with the issue that an agent takes a highly

risky action. Due to that, the result of that action is surely unpredictable, so that

under no circumstances one is able to foresee the outcome. But in the end, the

moral judgment will be based on that outcome of the agent. For example, take a

person who is a merciless and ruthless leader of a revolution and fights violently

against an authoritarian regime. It is clear to him that if he fails he is going to be

responsible for the anarchy. But he will also be held accountable for the suffering

and death of the people, believing in him, that was in vain due. However, a success

against the regime would mean that he gets justification for the outcome.

4.3.4 Causal moral luck

Causal moral luck can be seen as a combination of constitutive and circum-

stantial moral luck. Therefore it is the luck due to antecedent circumstances and

according to Nagel, it is largely related to the classical problem of free will.

It is all about the events that have influenced the person that you are. For

instance, someone may have read a life-changing book or a person may have been

inspired by a teacher during his or her studies. A person’s personality is formed

by the events that have happened to him or her.

Further, a person is unable to control where he or she comes from. But unde-

niable, it has a huge impact on what a person is going to become. Some people

may have encountered hard struggles during their lives, which made them more

viciousness, while others may not have faced such things. People can be raised

in the most terrible circumstances but still have amazing personalities. However,

it also holds vice versa. The best possible environment does not guarantee good

character traits.

Nagel has been criticized for introducing this kind of moral luck as a separate

category. For many, it is considered as largely redundant since it does not include

any new cases which have not been already separately covered by constitutive or

circumstantial luck.

52

CHAPTER 4. MORAL LUCK 4.4. RELATION TO OUR LOGIC

4.4 Relation to our logic

Moral luck is a rather philosophical topic, however, since we want to use ex-

amplew from it as test cases, we have to relate it to our presented logic, T-STIT

I/O logic, and identify the aspects that can be analyzed by it.

First, we must be able to formalize and model examples from moral luck. Since

we presented the different kinds of moral luck, we have to determine which out

of the four kinds is suitable for our logic, meaning that the logic is able to model

such examples of this kind. Clearly, our logic is not able to capture an agent’s

personality, character or circumstances. This already rules out three out of the

four kinds of moral luck. An agent’s actions and its consequences are covered in

resultant moral luck. With T-STIT logic, we are able to capture the concepts of

agency and action, which means then that we put our focus on examples from

resultant moral luck and T-STIT logic is used to formalize the statements to model

a scenario of an agent in the example.

In I/O logic, we have an input set A which describes our state of affairs and

if ϕ ∈ out(N,A), we say that ϕ is obligatory under the norms N for such an

input set A. This is how obligations are determined in I/O logic. So when we

model an example of moral luck, the set A is used to represent the scenario of

an agent in such an example whereas the set N contains the desired norms. As

already mentioned before, T-STIT logic is used for the modeling part, thus the

sets A and N contain formulas of this logic. With our I/O operators, we are able

to determine which obligations hold for the different agents in their respective

situations. But which other aspects from moral luck can we cover with deontic

logic, in particular, I/O logic? Looking for instance at the example of two drunk

drivers, we have that both of them made the choice to drive home under the

influence of alcohol. Deontic logic is the study that is concerned with obligations

and looking at this example from a deontic logical point of view, we clearly want

that it is forbidden for the agents to be drunk and take the road. Alternatively,

it is obligatory not to be drunk and not to drive at the same time. However, in

both cases, both agents still made the choice not to follow this obligation. By

doing so, we say that both of them committed a violation of an obligation. A

violation is formally represented as follows: for a set of conditional norms N and

an input set A, an obligation for ϕ has been violated if and only if ϕ ∈ out(N,A)
and ¬ϕ ∈ Cn(A). Alternatively this can be expressed as � ∈ out(N,A) ∪Cn(A).

Violations of obligations can be seen as not permitted actions or even forbidden

actions. In an ideal system, we expected that the agents behave according to

our norms and obligations. However, in non-ideal systems, agents might actually

behave differently, and the conflict between an expected and an actual behavior

causes those violations of obligations. An agent is then responsible for a violation

53

4.5. EXAMPLE - DRUNK DRIVERS CHAPTER 4. MORAL LUCK

of an obligation ϕ if there has been an obligation of ϕ but they decided to perform

an action which led to ¬ϕ.

4.5 Example - Drunk Drivers

4.5.1 Formulation

A particular example of resultant moral luck is the one regarding the two drunk

drivers, mentioned at the beginning of this chapter, and we use it as a test case for

our logic. We want to investigate which obligations are holding in the cases of the

two drivers. With the operators out1 and out2, we are able to express obligations

for some set of conditional norms and a given input set. STIT logic is used to

represent the actions and choices of the agents. To formulate this example, we

need two agents α and β which are representing the two drivers. The scenarios of

both agents are almost identical, the only difference comes from the fact that one

agent ended up killing someone whereas the other one did not. We will focus first

on the case for the former agent, which will be denoted by α, and specify an input

set to model his scenario. The propositions Drunkα and [α]Drive represent

the facts that agent α got drunk and that he still decided to drive, respectively.

In the case of α, we also had that a child appeared on the road, thus we use

the proposition Jump as a corresponding representation. The influence of alcohol

impairs the agent’s driving behavior in such a way that he is no longer able to drive

carefully. In STIT logic, the formula 3[α]ϕ denotes that agent α has the ability

to see to it that ϕ. Thus, we can represented this sentence by the proposition

Drunkα → ¬3[α]DriveCarefully. Finally, we have that if the agent decides to

drive, but not being able to do it carefully, and there is somebody appearing on the

road, then this results in killing or hurting that person. Thus the last input fact is

formalized as (¬3[α]DriveCarefully∧[α]Drive∧Jump)→ (Kill∨Hurt). We

will use A to denote input set, containing all those facts of agent α. In addition

to the input facts, we use N to denote the set of conditional norms containing

the following identified conditional norms:

– (⊺,¬Kill ∧ ¬Hurt)
This norm states that in any situation, it is obligatory that one does not kill

and does not hurt somebody else. Alternatively, under no circumstances, it

is not allowed to kill or hurt somebody.

– (⊺,2DriveCarefully)
This norm states that in any situation, it is obligatory that it is necessary

to drive carefully. One is obligated to always drive carefully.

54

CHAPTER 4. MORAL LUCK 4.5. EXAMPLE - DRUNK DRIVERS

– (¬3[α]DriveCarefully, [α]Stay)
This norms that under the condition that agent α is not able to drive care-

fully, it is obligatory that agent α sees to it that he stays at his current

place. By staying at the current place, it indicates that agent α should not

take the road.

For agent β, we have more or less the same input set A′ containing the following

propositions: Drunkβ, [β]Drive, ¬Jump, Drunkβ → ¬3[β]DriveCarefully
and (¬3[β]DriveCarefully ∧ [β]Drive∧Jump)→ (Kill∨Hurt). For the set

of conditional norms N ′, the first two norms are identical to ones we used for

agent α. The third norm will just be adapted for agent β, meaning that we have

(¬3[β]DriveCarefully, [β]Stay) ∈ N ′.

4.5.2 Verification

In the case of agent α, when applying the operators out1 to the sets N and

A, we get the following output set:

out1(N,A) = Cn({¬Kill ∧ ¬Hurt,2DriveCarefully, [α]Stay})

and therefore we obviously get that (¬Kill∧¬Hurt) ∈ out1(N,A) and [α]Stay ∈
out1(N,A). Further, since 2DriveCarefully → [α]DriveCarefully and

[α]DriveCarefully → 3[α]DriveCarefully, we have 3[α]DriveCarefully ∈
out1(N,A). All of these statements are also part of out2(N,A). The operators

out1 and out2 behaved as expected. Also when formulating this example in Is-

abelle/HOL for the out2 operator, we are able to obtain proofs that those proposi-

tions are included in out2(N,A). But looking more closely at the example, we no-

tice the following. The output set is consistent, thus � ∉ outi(N,A) for i ∈ {1,2}.

However, looking back at the input set A, we notice that Kill ∨Hurt ∈ Cn(A)
and ¬3[α]DriveCarefully ∈ Cn(A). The agent α is not able to drive carefully

even though there is an obligation which tells us that is necessary to drive carefully

and therefore we have a conflict between those two and we say that this obligation

has been violated. In particular, we have two violations:

– 3[α]DriveCarefully ∈ out1(N,A) but ¬3[α]DriveCarefully ∈ Cn(A).

– (¬Kill ∧ ¬Hurt) ∈ out1(N,A) but (Kill ∨Hurt) ∈ Cn(A).

By applying the out1 operator to the sets N ′ and A′, we get a similar output

set for agent β.

out1(N ′,A′) = Cn({¬Kill ∧ ¬Hurt,2DriveCarefully, [β]Stay})

55

4.6. EXAMPLE - MURDER ATTEMPT CHAPTER 4. MORAL LUCK

Since (Kill∨Hurt) ∉ Cn(A′), we have that agent β did not violated the obliga-

tion of ¬Kill ∧ ¬Hurt. However, we still observe a violation:

– 3[β]DriveCarefully ∈ out1(N ′,A′) but ¬3[β]DriveCarefully ∈ Cn(A′)

Due to violations, our input set gets inconsistent with our output. This

implies also that it is not possible to satisfy all the norms in the given situ-

ation. Dealing with violations has always been a challenge in traditional I/O

logic. Additionally, Contrary-To-Duty (CTD) reasoning and deontic dilemmas

(unsolvable conflicts between obligations) are difficult to handle for the stan-

dard I/O operators out1 and out2. This example can be seen as CTD reason-

ing. The norm (⊺,2DriveCarefully) represents a primary obligation whereas

(¬3[α]DriveCarefully, [α]Stay) is the Contrary-To-Duty obligation to it and

tells us what is obligatory in the case when our primary obligation has been vio-

lated.

Figure 4.1: Isabelle/HOL: Moral luck example

4.6 Example - Murder attempt

4.6.1 Formulation

Another example of resultant moral luck is the earlier mentioned case of a

successful and unsuccessful murder attempt. In one scenario, an assassin shoots

and kills his target whereas, in the other one, the assassin is not able to shoot and

kill the target because of a malfunctioning trigger of his weapon. To formalize

this example, we need to consider again agents α and β which are denoting the

two assassins. Next, we need to define some propositions for the input sets of the

56

CHAPTER 4. MORAL LUCK 4.6. EXAMPLE - MURDER ATTEMPT

agents to model their scenarios. Agent α is the assassin in the first scenario and

the input set A contains the following propositions:

– [α]Pull

– TriggerWorking

– ([α]Pull ∧ TriggerWorking)→Kill

The input set A′ for agent β, the assassin in the second scenario, is almost

identically but in the case for β, the trigger is not working properly.

– [β]Pull

– ¬TriggerWorking

– ([β]Pull ∧ TriggerWorking)→Kill

The propositions [α]Pull and [β]Pull are representing the facts that α and β

chose to pull the trigger of their weapons, respectively. The proposition Trigger

Working is representing the fact that the trigger of the weapon is working

properly. If an agent decides to pull the trigger and this trigger is working as

intended then this results in shooting and killing somebody with his weapon.

This is captured by the propositions ([α]Pull ∧ TriggerWorking) → Kill and

([β]Pull∧TriggerWorking)→Kill. Finally, the set of conditional norm N will

contain the following norm:

– (⊺,¬Kill)
In a similar way as in the first example, this norms states that in any situa-

tion, it is obligatory that one does not kill somebody else.

4.6.2 Verification

Having defined the input and the conditional norms sets, we can apply the

operator out1 to the sets. For both agents, we obviously have that:

out1(N,A) = out1(N,A′) = Cn({¬Kill})

For agent β, we detached the obligation of not killing somebody. Since Kill ∉
Cn(A′), agent β did not kill someone, hence he also did not violate this obligation.

However, we observe again a violation of a norm in the case of agent α. We have

that ¬Kill ∈ out1(N,A) but Kill ∈ Cn(A). This results also in an inconsistency

between the output and the input set and shows again the weakness of traditional

I/O logic.

57

4.7. PROPOSED SOLUTIONS CHAPTER 4. MORAL LUCK

4.7 Proposed solutions

A first solution to tackle this problem is to make use of constraints in I/O

logic. This is referred to as Constraint I/O logic (cIOL) [24]. It introduces a set

C, the so-called set of constraints, as an extra parameter and is used to filter out

excessive output. Next, we have the following two definitions [24] :

– maxfamily(N,A,C) is the set of ⊆-maximal subsets N ′ of N such that

out(N ′,A) is consistent with C.

– outfamily(N,A,C) = {out(N ′,A) ∣ N ′ ∈ maxfamily(N,A,C)} where

out = outi with i ∈ {1,2,3,4}

The constrained output operator outc is then defined as follows [24]:

outc(N,A) = ∪/ ∩ outfamily(N,A,C)

Using cIOL, we can actually handle for instance the example of the drunk

drivers without getting inconsistency between the output and the input set. Of

course the results depend on the choice for the set of constraints C. Set C = ∅
and out = out1, then maxfamily(N,A,∅) = {N} and outfamily(N,A,∅) =
{out(N,A)}. Then outc(N,A) = out(N,A) and we get the same solution as we

did before.

Set C = A, thenmaxfamily(N,A,A) = {{(¬3[α]DriveCarefully, [α]Stay)}}
and outfamily(N,A,A) = {Cn([α]Stay)}. Thus outc(N,A) = Cn([α]Stay)
and we have consistent output which is also consistent with our input. Since the

agent violated two obligations in the situation, it is therefore clear that they no

longer hold in that case. Being able to handle such violations is an advantage of

cIOL over the traditional unconstrained I/O logic. However, cIOL has to drawback

of having no proof theory.

Another way to handle this example is to consider the I/O logic defined in the

following work [27]. It presents an unconstrained I/O logic with a consistency

check that still preserves a proof theory. In [27], the output operator is denoted

by O and in terms of semantics, the authors propose that x ∈ O(N,A) if and only

if there is a finite set M ⊆ N and a set B ⊆ Cn(A) such that M(B) ≠ ∅ and

i. x ⊣⊢ ∧M(B) where x ⊣⊢ y stands short for x ⊢ y and y ⊢ x.

ii. ∀(a, x) ∈M , we have that {a, x} ∪B is consistent.

On the side of the proof theory, for some conjunction a of elements of A, we say

58

CHAPTER 4. MORAL LUCK 4.7. PROPOSED SOLUTIONS

that (a, x) ∈D(N) if and only if (a, x) is derivable from N by using the following

rules [27]:

– (SI) Strengthening the input: from (a, x) to (b, x) whenever we have

b ⊢ a

– (EQ) Equivalence of the output: from (a, x) to (a, y) whenever we have

x ⊣⊢ y

– (R-AND) Restricted AND: from (a, x) and (a, y) to (a, x ∧ y) whenever

a ∧ x consistent and a ∧ y consistent

To check that [α]Stay is outputted in context of Cn(A), we have to consider

M = {(¬3[α]DriveCarefully, [α]Stay)} and B = Cn(A). Then M(B) =
{[α]Stay} and ∧M(B) ⊣⊢ [α]Stay. Moreover, {¬3[α]DriveCarefully, [α]Stay}∪
B is consistent, thus [α]Stay ∈ O(N,A).

As long as the set B contains the proposition ¬3[α]DriveCarefully, the

proposition 2DriveCarefully is not outputted due to the consistency check. To

output this proposition, M needs to contain at least the element {(⊺,2DriveCarefully)}
and we choose B = Cn(A) to keep the context close to the intended input. How-

ever, this will never pass the consistency test and thus 2DriveCarefully is not

outputted. The proposition ¬Kill∧¬Hurt is also never part of the output as long

as B is equal to A or Cn(A). Given that the context is Cn(A) then the agent α

is not able to drive carefully, the obligation that agent α sees to it that he stays

becomes operative whereas the obligation to always drive carefully is inactive. The

other obligation of not killing and not hurting somebody is also out since in the

context of Cn(A), agent α ended up killing or hurting somebody.

However, it is still possible to output the propositions ¬Kill ∧ ¬Hurt and

2DriveCarefully. Since B ⊆ Cn(A), we can choose B = {⊺}, M = N and

obviously we will have the conjunction of those mentioned propositions in the

output. However, by changing B to such a set, we are alternating the situation

so that it does not correspond anymore to the situation that we had in mind for

our input.

For β, we have that [β]Stay ∈ O(N ′,A′) by settingM = {(¬3[β]DriveCarefully,
[β]Stay)} and B = Cn(A′). In contrast to the input set for agent α, we have

that (Kill ∨ Hurt) ∉ Cn(A′), and therefore it is not possible to violate the

norm (⊺,¬Kill ∧ ¬Hurt). By choosing M = {(⊺,¬Kill ∧ ¬Hurt)} and keeping

B = Cn(A′), we get (¬Kill ∧ ¬Hurt) ∈ O(N ′,A′).

With the proposed formalization of the example, we tried to make it as precise

as possible. Depending on how one decides to formulate and model such an

59

4.7. PROPOSED SOLUTIONS CHAPTER 4. MORAL LUCK

example, different outcomes might be achieved. Of course, there may exists

alternatives when it comes to the formalization for this kind of examples. It is

always a subjective matter and it can be a challenging task to tell that a certain

formulation of an example is absolutely correct. However, with every formulation,

one should capture the fact that both agents have been neglecting an obligation

which leads then to the conflict between an output and the input set. Such

violations expose the limitations of the traditional I/O operators and have led to

development of cIOL and I/O logic with consistency check.

60

CHAPTER 5. CONCLUSION

5 | Conclusion

5.1 Summary

The aim of the thesis was to further study the concepts of deontic and agency

with regard to automatic reasoning tools. In particular, we were interested in

T-STIT logic combined with I/O logic, which we called T-STIT I/O logic, and

we used the proof assistant tool Isabelle/HOL to verify examples of this logic.

In order to do so, we first presented a semantical embedding of T-STIT logic in

HOL. Next, we showed the already existing embedding of the out1 operator and

we applied it to formulas of T-STIT logic in Isabelle/HOL. Then we extended the

work of I/O logic in HOL by introducing an embedding for the out2 operator in

HOL. The embedding has been implemented into the framework Isabelle/HOL

so that we could apply the out2 operator first to formulas of propositional logic

and afterward to formulas of T-STIT logic. Finally, we related our logic to moral

luck, identified which aspects of it are possible to study by the logic and we used

examples from it as test cases.

Next, we will give answers to our proposed research questions, identified in

chapter 1. The first research question, we wanted to investigate in this thesis, was

the following:

RQ1: Due to the recently notable success of embeddings of non-classical logics

in HOL and their verifications in Isabelle/HOL, is it possible to realize an

embedding of STIT logic in HOL or are there any limitations?

In order to realize a semantical embedding of a STIT logic in HOL, we decided to

use Lorini’s temporal STIT logic [22]. Due to the logic’s possible world semantics,

the techniques from previous works [1] of the literature could be reused. The

embedding was then implemented into Isabelle/HOL, a proof assistant for higher-

order logic. However, the implementation has its limits. The constraints imposed

on the models and the seriality condition of the RG relation made every model

infinite which causes issues for the framework’s tools such as Sledgehammer and

Nitpick. To overcome this, we decided to remove the property of seriality from

RG. As a consequence, this step makes the models finite and most of the axioms

from Lorini’s work [22] could still be proved by the tools. However other axioms

were no longer provable because of the removing of the property for the relation

RG. We also tried to prove some laws from Horty’s book [19] within Isabelle/HOL.

61

5.1. SUMMARY CHAPTER 5. CONCLUSION

Most of them could also be correctly verified or disproved. As far as we know,

this has been the first attempt of an embedding of a modal logic of action in HOL

but maybe when the embedding is based on a different semantics, for instance

choosing the original semantics of STIT theory, we might be able to overcome the

encountered limitations.

In this work, we considered the out1 and out2 operators for I/O logic. To verify

the out2 operator on examples in Isabelle/HOL, we need a representation for it in

HOL. This was captured by our second research question:

RQ2: So far, the literature only documents an embedding of the out1 operator

in HOL [7]. Can the work of I/O logic in HOL be extended by providing a

semantical embedding of the out2 operator?

In contrast to the embedding of the out1 in HOL, we did not decide to use

the traditional formulation of the out2 for our semantical embedding in HOL but

instead, we used its translation into modal logic. By choosing this formulation, the

embedding for out2 could be realized by reusing the same technique already used

for other embeddings of various modal logics. Due to its translation into modal

logic, the statements were much easier to prove for the tools and the timeout

issue, from which the out1 operators suffers, could be avoided. After adapting

the formulation of x ∈ Cn(N(L)) in Isabelle/HOL, all the statements from the

examples could be correctly proved or disproved by the corresponding tools. We

conclude that the implementation of the out2 operator is able to deal with more

complex statements and the tools can prove them accordingly. This certainly can

be traced back to the modal formulation of the out2, used for the realization of

the embedding in HOL.

The two embeddings of those logics are then combined. This allows us then

to investigate examples of T-STIT I/O logic in Isabelle/HOL. The third research

question is concerned about this aspect.

RQ3: Typically, I/O logic is used with propositional logic. How do the I/O oper-

ators out1 and out2 perform when using STIT logic as the base logic?

Benzmüller and Parent [7] already introduced a semantical embedding of the

out1 in HOL. However when changing the base logic from propositional logic to

temporal STIT logic, a lot of statements could not be proven in Isabelle/HOL

due to the large search space for the Sledgehammer tool. By specifying a model,

like in the case for the driving model, the scope of the search space gets reduced

which allowed then to prove the desired statements of the example. In contrast,

the out2 operator performs far better with T-STIT logic as its base logic than the

62

CHAPTER 5. CONCLUSION 5.2. FUTURE WORK

out1 operator, in the sense that the tools did not encounter the time-out issue and

therefore they were able to provide proofs for all the corresponding statements.

Next, we moved to the conceptual part of the thesis. We presented moral luck

and the problem that comes with it. In particular, it conflicts with the ethical

principle that agents are not morally responsible for actions that are outside their

control. The relation between moral luck and T-STIT I/O logic has been covered

by the following question:

RQ4: It has been suggested that moral luck can be studied using deontic logic,

but which aspects can be analyzed and which aspects are out of reach?

According to Nagel’s studies, moral luck can be classified into four different

kinds. Agents can be morally lucky due to their characters, circumstances or a

combination of both, known as causal moral luck. However our logic is not able

to capture aspects of an agent’s character or circumstances. Thus, the class that

we are able to focus on, is the one that deals with the agent’s actions and their

consequences, known as resultant moral luck. We identified which aspects of it

can be captured by denotic logic. Looking at an example from resultant moral

luck, we noticed that the agents always committed violations to the obligations.

Finally examples of moral luck were formulated in terms of temporal STIT logic

and we used I/O logic to determine what is obligatory in those scenarios. The

operators out1 and out2 behaved as expected but the examples showed again the

limits of unconstrained I/O logic. Because of violations to obligations, the output

is inconsistent with the input set. To handle this issue, two possible approaches

were presented in form of constrained I/O logic and an I/O logic with consistency

check.

All the research questions could be answered to a satisfiable degree. However,

those answers lead us to the identification of new problems for which we can

formulate again new research questions for future work. The newly identified

problems will be discussed in the final section of this thesis.

5.2 Future work

In terms of STIT logic, we considered Lorini’s temporal STIT logic [22] because

he provided a possible world semantics for it. The presented embedding is based

on those and it could be realized by using techniques from previous work. But as

presented, the implementation of the embedding also has its limitations in terms

of being only able to deal with finite models. The original semantics of STIT logic

are given in terms of branching time and agent choice structure and most of the

examples from the literature are formulated in those. So far, there has been no

63

5.2. FUTURE WORK CHAPTER 5. CONCLUSION

work conducted with regard to those semantics in HOL and it is still open if it is

possible to do so. Realizing an embedding based on the original semantics may

overcome the limitations that we have faced. Further, we should also investigate

the following: is it feasible to prove that Lorini’s possible world semantics and

the original ones are equivalent? For simple examples, it is straightforward to

find equivalent models. But in some cases, it is not so evident and it is an open

question if it is possible to find for all branching time and agent choice models a

corresponding temporal Kripke STIT model. So a future step would then be to

show the relationship between those two semantics and to prove that for every

temporal Kripke STIT model, there is an equivalent model in terms of branching

time and agent choice, and vice versa.

The implementation of the semantical embedding out2 in HOL was explic-

itly tested on a variety of examples. We applied the operator to formulas of

propositional logic and T-STIT logic. Even though we obtained a proof for every

statement, this does not guarantee the correctness of the embedding. This also

includes the embedding of the out1 operator, presented in [7], which also has only

been tested on examples so far. To do so, one has to provide the faithfulness of

these embeddings. Therefore further work includes presenting proofs of the sound-

ness and completeness of those. This also holds for the embedding of T-STIT

logic in HOL.

This work presented an embedding of the out2 operator but one may also be

interested in providing embeddings for the other two traditional operators, out3

and out4. This would then complete the work of traditional or unconstrained I/O

logic in HOL. Just like for the out2 operator, there exists also a translation into

modal logic for out4 [23] and its formulation is similar to the one for out2. In

contrast to the formulation for out2, for out4 it is required that we consider a

modal logic S such that KT ⊆ S ⊆ KT45. Thus the embedding for out4 will

be almost identical to the one for out2, the only difference is that the relation

R for the corresponding 2 operator has to fulfill the property of reflexivity. As

illustrated on an example in the previous chapter, the rule of cumulative transitivity

does not hold for the operator out2 and therefore Nitpick generated a counter

model. However when adding the condition of reflexivity to the relation for the

lifted operator 2l, then Nitpick is no longer able to disprove the corresponding

statement and additionally Sledgehammer provides us with a proof. Further,

the examples for testing the rules of AND, SI and WO also hold for the out4

operator. Still, one would need to test the operator on further examples and

finally provide again the faithfulness of the embedding. Additionally, a lot of the

statements could not be proven for the out1 operator due to the complexity of

the formulas, therefore one might consider to optimize the embedding of it or to

use an alternative formulation for this operator.

64

CHAPTER 5. CONCLUSION 5.2. FUTURE WORK

After the completion of traditional I/O logic in HOL, the next step would

be to move to the ”stronger” I/O logics. Due to the vulnerability of traditional

I/O logic to violations which occur in the examples of moral luck, a next step

would be to implement constrained I/O logic [24] into Isabelle/HOL by using

again the semantical embedding approach. Because of the downside of having no

proof theory, there have been suggestions in the I/O logic framework to overcome

this. Some works [27] propose an unconstrained I/O logic with a consistency

check, which allows the logic to handle violations, CTD, and dilemmas while still

preserving its proof theory. So it would be interesting to see if embeddings for

those kinds of I/O logics could be obtained as well.

To further analyze the principle of moral luck, T-STIT logic must be extended

with additional operators. For the examples, the STIT operators were used to

represent the actions and choices of the agents. To study the examples from moral

luck more deeply, one may also have to consider the intentions of the agents or

their knowledge. Knowledge operators exist in epistemic logic and there have also

been attempts of adding these to STIT theory [13]. It may be interesting to see if

it is possible to extend STIT logic with a notation to express an agent’s intention.

STIT logic is already able to express actions and abilities of agents, but together

with an agency operator for intention, those operators can be used to formalize

an agent’s responsibility and blameworthiness which would be very useful when

studying examples of moral luck.

65

5.2. FUTURE WORK CHAPTER 5. CONCLUSION

66

APPENDIX . APPENDIX A

Appendix A

.1 Deontic Logic

In deontic logic, ◯p is usually used in order to express that it is obligatory that

p is the case, (or it ought to be that p is the case), and Pp to express that it is

permitted, or permissible, that p is the case. The term ’deontic’ originates from

the ancient Greek word de‘on, meaning that which is binding or proper.

The most familiar deontic logic is known as Standard Deontic Logic (SDL),

proposed by von Wright in 1951. It has been developed as a branch of modal

logic where an obligation is interpreted as a variation of modal necessity. Instead

of the unary operators for the alethic modalities necessity and possibility, denoted

by 2 and 3, it uses unary operators for the deontological modalities of obligation

and permission, denoted by ◯ and P . Having this modal logical setting brings

several advantages with it. In the first place, it allows us to make use of Kripke

Semantics which means that obligations can be modeled with possible worlds

techniques. Therefore, we say that a formula ◯p is true if and only if p is true

in all ideal worlds. Further, it lets us define permissions in terms of obligations.

To say that p is permissible can be stated as it is not obligatory that p is not the

case. Formally, Pp = ¬◯¬p. To deal with prohibition, an operator Fp, which is

interpreted as it is forbidden that p is the case, is also defined with the help of the

ought operator ◯, namely Fp =◯¬p. To say that p is forbidden is equivalent to

say that it is obligatory that p is not the case. In terms of semantics, we have that

a formula Pp is true if and only if there exists at least one ideal world in which

p is true, and Fp is true if and only if p is false in all ideal worlds. Additionally,

the axiomatization of this theory is pretty straightforward and the proof properties

are well known. In particular, SDL is a propositional modal logic which extends

the propositional tautologies with the axioms K ∶ ◯(p → q) → (◯p →◯q) and

D ∶ ◯p → Pp. Moreover it is closed under the primitive inference rules of modus

ponens: if ⊢ p and ⊢ (p→ q) then ⊢ q and Necessitation: if ⊢ p then ⊢◯p where

the symbol ⊢ is read as ’is provable’. Modus ponens is also known as detachment.

More specifically, in the literature of deontic logic, the term factual detachment

is used. The resulting system is known as KD. The elegance of this theory lies in

its simplicity. Being classified as a propositional modal logic, SDL is gifted with

another benefit. Extension with other modalities such as temporal operations or

an action modality can easily be realized. For instance, in his work [19], Horty

investigated the combination of deontic logic with STIT logic, a modal logic of

67

.1. DEONTIC LOGIC APPENDIX . APPENDIX A

action.

But being a highly simplified theory has also its downside. A well-known prob-

lem that SDL has to deal with, is its vulnerability to deontic paradoxes. For

instance, some paradoxes are related to weakening: ◯(p ∧ q) →◯p. As deontic

logic have been developed as a branch of modal logic, most deontic logics support

weakening. On the one hand, we have that ◯(p ∧ q)→◯p might seem intuitive

but on the other hand, its equivalent ◯p→◯(p∨q) does not look so convincing.

An example of such paradoxes is Ross’s paradox (1941). Consider the following

two statements:

1. It is obligatory that the letter is mailed.

2. It is obligatory that the letter is mailed or the letter is burned.

In SDL, the statements 1 and 2 can be expressed by ◯m and ◯(m ∨ b), respec-

tively. Further, we have that ⊢ m → (m ∨ b). Applying the Necessitation rule to

it, we get that ⊢ ◯(m → (m ∨ b)). Finally by the application of the K axiom

and followed by the modus ponens rule, we can infer ⊢ ◯m → ◯(m ∨ b). This

indicates that the second statement follows from the first one. However, it seems

odd to say that an obligation to mail the letter entails an obligation that can be

fulfilled by burning the letter. This is a counterintuitive derivation and it can be

traced back to the interpretation of ’or’ in our natural language.

Another main issue in the study of deontic logic is the representation of the

so-called Contrary-To-Duty (CTD) obligations. Several well-known paradoxes are

caused by those. A CTD obligation is an obligation which tells us what ought to

be the case if something that should not be is the case. In SDL, a conditional

obligation is normally formulated as q → ◯p, where q represents the condition

and p the deontic conclusion. We say that the conditional obligation q → ◯p is

a Contray-To-Duty or secondary obligation of the primary obligation ◯p1, when

q and p1 are contradictory. Forrester’s paradox, sometimes also referred to as the

gentle murderer paradox, is a popular example. Consider the following scenario:

1. Smith should not kill Jones.

2. If Smith kills Jones then he should do it gently.

3. Smith kills Jones.

In SDL, those three statements are represented by the formulas ◯¬k, k →◯(k∧g)
and k, respectively. They are considered as the set of premises. As ¬k and k are

contradictory, we have that the conditional obligation k → ◯(k ∧ g) is a CTD

68

APPENDIX . APPENDIX A .1. DEONTIC LOGIC

obligation to the obligation ◯¬k. Since SDL supports the rule of modus pones

or factual detachment, we can infer ◯(k∧g) from the statements 2 and 3. From

◯(k ∧ g), we are able to derive ◯k which leads us to the main problem of this

paradox. We have that ◯k and ◯¬k are inconsistent in SDL even though the

three formulas from our set of premises were intuitively consistent. In SDL, there

is no consistent formulation available for this paradox.

The type of possible worlds semantics used by SDL is not flexible enough. In

this semantics, we are only able to distinguish between two types of worlds, namely

actual and ideal worlds. From Forester’s paradox, we had initially ◯¬k and we

are able to derive ◯k from a set of formulas. This causes then the paradox since

it is clear that no ideal world can hold k and ¬k at the same time. Thus ideal

worlds are not enough in order to represent a proper model for this paradox. To

do so, the notation of sub-ideal worlds is introduced and which solves then the

inconsistency in the ideal worlds. Further, a preference ordering can be established

on these sub-ideal worlds due to the finer distinction between a hierarchy of sub-

ideal worlds instead of one type of ideal world. By replacing the principle of ideality

of SDL by the principle of optimality, we move to dyadic deontic logic (DDL),

which has been introduced by Hansson. Hansson’s proposed DDL is actually able

to deal with contrary-to-duty reasoning.

A dyadic obligation is a conditional obligation, which is formulated as ◯(p ∣ q)
and is interpreted as it is obligatory that p is the case if q is the case. An

unconditional obligation can also be formulated as follows ◯(p ∣ ⊺). They are

seen as special kind of dyadic obligations. {◯(k ∣ ⊺),◯(k∧g ∣ k), k} represents a

dyadic formulation of Forrester’s paradox. Due to the optimally principle of DDL,

a consistent formulation of the paradox can be achieved.

In contrast to SDL and DDL, which are analyzing the deontic modalities with

reference to a set of possible worlds, there exist as well a family of frameworks

which are referred to as norm-based deontic logic. A set of explicitly given norms is

used in order to evaluate the deontic modalities. In such frameworks, the focus lies

on interference patterns and thus the perspective is different from the traditional

setting. In particular, for some given input A, referred to as facts, and a set of

given conditional norms N , the framework tells us which norms apply. A instance

of such a framework is Makinson’s and van der Torre’s I/O logic [23]. A key

characteristic of this logic is its semantics. Rather than reusing truth-values and

possible worlds techniques as other logics do, it provides operational semantics

which are based on detachment. In order to capture the meaning of the deontic

concepts, I/O operations are yielding outputs, seen as obligations, for inputs. This

is achieved by defining different output operators, denoted by out. x ∈ out(N,A)
means than that ’given the input set A, x is obligatory under the norms N . In

69

.1. DEONTIC LOGIC APPENDIX . APPENDIX A

terms of proof theory, I/O logic consists of a set of inference rules. Those rules

are applied to pairs of formulas rather than individual ones. I/O logic is covered

in more detail in chapter 2.

70

APPENDIX . APPENDIX B

Appendix B

.2 Ought-to-be vs Ought-to-do

When it comes to ought-to-be and ought-to-do sentences and obligations,

philosophers often mention that there is clear distinction between both of them. ’It

ought to be that you are friendly’ denotes an ought-to-be sentence which expresses

an ought-to-be obligation whereas ’You ought to help an injured person’ represents

an ought-to-do sentence which states an ought-to-do obligation. Deontic logic is

primarily concerned with ought-to-be obligations, however in natural languages,

besides expressing statements that something is ought to be, one also wants to

have statements that someone ought to do something. The deontic operator ◯
seems to capture the idea of the first concept, but to what extent can it be used

to represents the second concept? In deontic logic, it often has been assumed

that what an agent ought to do can be identified with the notation of what it

ought to be what the agent does. If this assumption is correct then it is possible

to paraphrase a sentence like ’You ought to go home’ as ’It ought to be that you

go home’. A way to formulate the concept of an ought-to-do obligation is to add

some action logic or dynamic logic to a deontic system or vice versa. Then this

would allow stating someone is ought to do something if and only if it ought to

be that someone sees to it or brings it about.

Among deontic logicians and philosophers, the distinctions between the logics of

ought-to-be and ought-to-do obligations is a highly discussed topic. In particular,

we have that:

– Ought-to-do deontic statements refer to actions and express imperatives of

the form ”an agent ought to perform an action”.

– Ought-to-be deontic statements express a desired state of affairs (results of

actions) at a certain moment.

For Humberstone, there is also a distinction between the two kinds of ought

statements. Humberstone [21] states that ought-to-be statements are situational

oughts whereas ought-to-do statements are agent-implicating oughts. Horty il-

lustrated Humberstone’s distinction in his book [19]. He points out a scenario in

which Albert has competed in a gymnastics event. From all the performances of

the participants, Albert’s one was clearly superior, however, the judge is known to

be biased, so that it most likely that somebody else will be awarded the medal.

71

.3. THE GAMBLING PROBLEM APPENDIX . APPENDIX B

Then the sentence ’Albert ought to win the medal’ is referred to that kind of

statement that Humberstone would consider as a situational ought. It reflects a

judgment about a situation, not about Albert, and can, therefore, be paraphrased

as ’it ought to be that Albert wins the medal’. There is no indication, that it

will be Albert’s fault when he does not manage to win the medal. Further is

winning the medal not within Albert’s control after his performance. However, if

one assumes that Albert has been lazy and ignoring his training schedule, then

the sentence ’Albert ought to practice harder’ would refer to the kind of ought

statement that Humberstone categorizes as agent-implicating. It indicates that

Albert has the ability to actually practice harder and the blame comes down to

him if he fails to do so.

Further, Horty addresses the challenge on how to formulate obligations for

actions in his book. In particular, the focus lies on the assumption whether that

what an agent ought to do can be identified with the notion of what it ought to be

what the agent does. As a first attempt, he defines an obligation to do an action

as an obligation that such an action is done. In other words, he analyses whether

ought-to-do can be reduced to ought-to-be. In order to formalize ought-to-do

deontic statements, the STIT framework is extended with the Standard Deontic

Logic (SDL) ought-operator, denoted by ◯. Then he investigates the claim of

the Meinong-Chisholm thesis which states the following:

An agent α ought to see to it that ϕ, if and only if, it ought to be

the case that the agent α sees to it that ϕ.

Finally, he comes to the conclusion that ought-to-do statements can’t be formal-

ized as ought-to-be statements about action. Thus, the statement ”agent α ought

to see to it that A” can’t be captured by the formula ◯[αcstit ∶ A], which cor-

responds to the statement ”it ought to be that agent α sees to it that A”. The

so-called gambling problem serves as an illustration in order to justify his claim.

.3 The gambling problem

We first give a quick overview on Horty’s utilitarian STIT model before looking

at the gambling problem. Such a model corresponds to the tree which represents

a branching structure for indeterministic time. Each moment in the tree is repre-

sented as a partitioning of branches or histories. It is open to the future meaning

that each branch represents a growth of the world. Horty uses a function V alue

which assigns to each history a value in terms of a real number. A real number is

representing the utility of that history. Hence the utility of a history h is denoted

by V alue(h). The higher the value of the utility, the better the history. In Horty’s

72

APPENDIX . APPENDIX B .3. THE GAMBLING PROBLEM

STIT model, propositions are evaluated for a pair composed of a moment and a

history. A proposition A is true at a moment-history pair m/h if and only if it

got assigned the value True in the STIT model. Formally m/h ∈ V (A) where V

denotes the evaluation function mapping each proposition to a set of m/h pairs.

The general evaluation for a formula ◯A in such a model is the following: ◯A

holds at a moment-history pair m/h if and only if there is a history h′ passing

through that moment m such that A holds for all moment-history pairs m/h′′ for

which that utility of history h′′ is at least as great as the utility of history h′.

The example of the gambling problem captures a moment m in which an agent

faces the choice between gambling or refraining. By choosing to gamble, the agent

might double his 5 dollars or might lose them. This is represented by the action or

choice K1. If the agents, however, decides to refrain, he keeps his 5 dollars and is

represented by the action K2. The statement A expresses that the agent gambles

whereas, ¬A indicates that the agent refrains. Figure 1 illustrates the situation.

Figure 1: The gambling problem

The histories h1 and h2 represent the possible outcomes when the agent decides

to gamble, i.e. to perform the action K1. In one history, the agent doubles his

money and ends up with 10 dollars whereas, in the other one, he ends up losing

his money. By choosing to refrain and therefore not taking part in the game, the

agent ends up either in the history h3 or h4, where the agent still preserves his 5

dollars.

Since [αcstit ∶ A] is true at the index m/h1 and also along all the histories

with greater or equal utility, we have that the formula ◯[αcstit ∶ A] is settled

true at moment m for this model. However an interpretation of ◯[αcstit ∶ A] as

”agent α ought to perform action K1”is counter-intuitive and a strange conclusion

to draw here. By gambling, the agent may risk an outcome of utility 0 but at the

73

.3. THE GAMBLING PROBLEM APPENDIX . APPENDIX B

same time, he is able to guarantee an outcome of utility 5 just by not taking part

in the game.

From the description of the gambling problem, there is no information on which

action is better than another one. Further, without knowing the probabilities of

winning, there is nothing we can say in favor of the action K1, except that this

choice might be more preferred by the more adventurous agents. We just know

that when performing K1, we may either end up with more or less money then by

choosing K2.

This demonstrates that ◯[αcstit ∶ A] can’t be interpreted as ”agent α ought

to see to it that A”. So it is not sufficient to simply adapt and generalize the SDL

ought-operator to STIT-logic in order to express ought-to-do statements.

Ought-to-be statements are evaluating the truth based on the optimal histories

and this optimality is determined by the utilities associated with the individual

histories. Having the highest utility is enough for a history to be considered as

optimal. So if ought-to-be is concerned about optimal histories, then ought-to-do

is dealing with optimal actions.

However actions are assumed to be non-deterministic, therefore actions corre-

spond with sets of histories and one has to consider those rather than individual

histories. The notation of optimality has to be adapted in such a way that it

applies to sets of histories, which identify the different actions. The approach

used by Horty is very simple and straightforward. The ordering of the action is

based on the underlying ordering of the histories. More specifically, we say that

an action is strictly better than another one if all the histories of that action are

at least as good as the histories of the other one and it does not hold the other

way around. Further an action K is categorized as optimal, if there is no other

action K ′ such that K ′ is strictly better than K.

Having defined the ranking of actions, Horty introduces a utilitarian ought

operator, also known as the dominance ought operator, which only applies to

actions. This allows to formulate ought-to-do statements of the form ”agent α

ought to see to it that A” and is denoted by ⊙[α cstit ∶ A]. ⊙[α cstit ∶ A]
is settled true at moment m if and only if the outcomes of each optimal action,

available to the agent α at moment m, guarantee the truth of A. When applying

the new operator to the gambling problem, we have that both formulas ⊙[α cstit ∶
A] and ⊙[α cstit ∶ ¬A] are false, since neither actions are better or worse than

the other one. More specifically, K1 is not strictly better than K2 since the utility

of history h2 is smaller than the utility of h3, and K2 is not strictly better than

K1 since the utility of history h3 is smaller than the utility of h1. This shows that

none of the action is better than the other one and consequently both actions are

74

APPENDIX . APPENDIX B .4. DRIVING EXAMPLE AND MORAL LUCK

categorized as optimal. Therefore we have that ⊙[α cstit ∶ A] is not valid since

the outcomes of the action K2 don’t guarantee A, and ⊙[α cstit ∶ ¬A] does not

hold since none of the outcomes of the action K1 hold ¬A. Using this operator,

in order to represent ought to do statements, solves the gambling problem. Still

obtaining the utility 10 or 0 is not something that is control of the agent. None

of the actions available to the agent can for sure obtain a utility of 10. The only

factor which determines it is luck.

With the help of the following example, Horty points out that luck becomes an

even more important factor when we consider multiple agents. In particular, it is

about moral luck, the role of external factors in our moral evaluations. Assuming

that we have two agents α and β, an action of agent β can be considered as

an external factor for agent α since it is something that α is unable to control.

Therefore achieving a certain utility depends not only on the actions of agent α

but it also depends on what β does.

.4 Driving Example and Moral luck

The driving example [19] (Chapter 5, pages 119-121) addresses this challenge.

In particular, Horty uses this example as an illustration to show the difference

between the so-called dominance act utilitarianism and orthodox perspective on

the agent’s ought. The dominance act utilitarianism perspective is captured by

⊙[α cstit ∶ A]. For the orthodox perspective, Horty introduces another ought-to-

do operator, known as the orthodox ought operator ⊕[α cstit ∶ A]. In contrast

to the dominance ought operator, the truth or falsity of ⊕[α cstit ∶ A] may vary

from index to index. Intuitively ⊕[α cstit ∶ A] holds at an index if and only if

the truth of A is guaranteed by each available action that is optimal under the

circumstances in which the agent finds himself at that index.

Imagine a situation where we have two drivers who drive toward each other on

a one-lane road. They have no possibility to stop or to communicate with each

other, and at one particular moment, each one of them must independently decide

whether he continues driving along the road or swerves. Further, the drivers can

only swerve in one single direction, therefore they will end up in a collision when

both of them choose to continue driving along the road or to swerve. A collision

can only be avoided when one of them swerves and the other does not.

Figure 2 illustrates the driving example. We have agents α and β who represent

the two drivers. Every driver has two actions available to him. K1 represents the

action that α swerves whereas K2 refers to the action that α stays on the road.

In a similar way, K3 and K4 denote the actions that β swerves or that β continues

driving. Further, m represents the moment where both drivers have to make their

75

.4. DRIVING EXAMPLE AND MORAL LUCK APPENDIX . APPENDIX B

Figure 2: The driving example

choice. There are four histories, denoted by h1, h2, h3 and h4, passing through

the moment m. The statement a, which expresses that α swerves, is true at the

histories h1 and h2. Therefore h1 and h2 are the possible outcomes of the action

K1 whereas performing action K2 might result either in the histories h3 or h4.

Likewise the statement b, expressing that β swerves, holds at the histories h2 and

h3, making them the possible outcomes of action K3. Finally, β might end up in

the histories h1 or h4 when he decides to perform K4. The histories h1 and h3

are considered as the ideal outcomes since along those, one driver swerves and the

other stays on the road and thus they don’t end up in a collision. Therefore we

assign the utility of 1 to those two histories. The other two histories h2 and h3

are non-ideal since along those the collision can’t be avoided and thus they have

a utility of 0.

To apply Horty’s dominance ought operator, we first have to identify the opti-

mal actions of the agents. For both agents, we have that both actions available are

classified as optimal. Consequently, we have then for agent α, that ⊙[α cstit ∶ a]
and ⊙[α cstit ∶ ¬a] are settled false at moment m since K1 and K2 are opti-

mal but K1 can only guarantee the truth of a whereas K2 makes only ¬a true.

Likewise for β, we have that ⊙[β cstit ∶ b] and ⊙[β cstit ∶ ¬b] are also settled

false at moment m. To evaluate the orthodox ought operator, we have to focus

on an index which consists of a moment and an history. For instance, agent α

finds himself at index m/h1. At this particular index, agent β continues the road,

therefore it reduces the possible outcomes of action K1 to the history h1 and of

action K2 to the history h4. Therefore the optimal action available to agent α

under these circumstances, is to swerve which is captured by action K1. Since the

truth of a is guaranteed by K1, we have that the statement ⊕[α cstit ∶ a] holds

76

APPENDIX . APPENDIX B .5. CRITICAL VIEW ON STIT THEORY

at the index m/h1. However, when focusing on a different index, for instance

m/2, ⊕[α cstit ∶ a] is no longer true. At this index, agent β swerves, thus the

optimal action available to α is K2, which refers to the action that α stays on the

road. K2 does not guarantee the truth of a but of ¬a, therefore at index m/h2,

the statement ⊕[α cstit ∶ ¬a] holds.

According to Horty, the differences between those two ought operators provides

us with another perspective on the issue of moral luck. Both operators are able to

capture a legitimate sense of the ought used in our ordinary judgments. On the

one hand, the orthodox ought captures the sense of looking back after the actual

event. Imagine that at a later moment, through which history h4 passes, agent α

finds himself recovering from his injuries of the collision in the bed of a hospital.

Since at the index m/h4 it holds that ⊕[α cstit a], the agent α might regret his

choice and might say to himself that he ought to have swerved. On the other

hand, the dominance ought capture the sense of looking forward. Yet, the agent

might honestly regret his choice, it is not something on which he can be blamed.

From this perspective, neither was it the case that agent α ought to swerve nor

was it the case that he ought to continue the road. This means that the agent

did not fail to do something he ought to have done. Either choice of α at that

time could have led to a collision and the outcome cannot be fully determined by

himself. Also, the choice of the other agent plays a role in the determination of

the outcome but this is a factor which is outside the control of agent α.

.5 Critical view on STIT theory

In computer science, actions are typically formalized in terms of preconditions

and postconditions such that they can be put in a sequence plan. This allows for

giving an operational semantics of a computer program like in Hoare logic. In a

logic of action, propositions are not identified with actions, however, propositions

are used to specify aspects of actions. On one hand, in dynamic logic actions are

basically viewed as objects to which a name is assigned so that they are part of

the logic’s language. Postconditions indicate then the propositions that are made

true by an action whereas preconditions tell us which propositions are necessary

and sufficient conditions for the possible execution of an action. On the other

hand, due to the different view of actions in STIT theory, it seems less clear on

how to define the preconditions.

Horty’s approach is based on the utilitarian perspective. Generally speaking,

this means that an action is right or obligatory if it maximizes utility. The out-

comes of the actions, or in other words, the histories, are expressed in terms of

numbers. The only purpose of those numbers is to determine if a history is better

77

.5. CRITICAL VIEW ON STIT THEORY APPENDIX . APPENDIX B

or worse than another history. Other than that, those numbers have no meaning.

For instance, for the gambling problem, the same results can be achieved when

assigning different values to the histories but still preserving the same linear order.

When changing the values of the histories h1, h2, h3 and h4 in the model to 1000,

7, 250 and 250, respectively, then the original model, depicted in 1, and the new

one have no difference in terms of results. Both models are not distinguishable in

the logic proposed by Horty.

Horty’s approach to order the actions and how he identifies that a particular

action is better than another one needs also to be discussed. Consider the following

figure 3:

Figure 3: Two choice situations

On the left, we have a moment m where an agent α can either perform action

K1 or K2. With Horty’s ordering on actions, we get that K1 is a better action than

K2 because all the histories of the action K1 are at least as good as the histories of

the action K2 and it does not hold the other way around. Consequently, we have

that ⊙[α cstit ∶ A] is true at m, so that α ought to perform K1. However, for the

situation on the right side, we have that at moment n, it is not that case that α

ought to perform K3 nor is it the case that he ought to perform K4. In particular,

K3 is not a better action than K4 since the history h2, a possible outcome of K3,

is not better than h3, a possible outcome of K4. Similarly, K4 is not a better

action than K3 due to the fact that for a possible outcome of K4, for instance,

h3, there is a possible outcome of K3 that is better, namely h1. Because of the

utilitarian setting, chosen by Horty, there are reasonable arguments to support

the claim that K3 is actually a better action than K4. Like already mentioned

before, the utilities, assigned to the individual histories, have no meaning. So all

the information that we can get from the model on the right is the following:

the highest utility can only be reached when performing the action K1 whereas

the lowest can be achieved by performing K2. When an agent has to decide

between those two actions, there are two valid reasons to choose K1. In the first

place, K1 is the action that might lead to the best possible outcome, namely

h1. Second, by performing K1, the agent can surely avoid the worst possible

78

APPENDIX . APPENDIX B .5. CRITICAL VIEW ON STIT THEORY

outcome, namely h4. Horty’s logic is only about choices, non-determinism, and

utilities. The probabilities regarding the occurrence of the different histories are

unknown and also not considered by the logic.

79

.5. CRITICAL VIEW ON STIT THEORY APPENDIX . APPENDIX B

80

APPENDIX . APPENDIX C

Appendix C

This section presents the syntax, semantics and axioms of Lorini’s temporal

STIT logic [22] and serves to provide background knowledge to the reader. All of

the definitions from this section are taken from Lorini’s work [22], otherwise we

put the corresponding reference to that definition. Besides Lorini’s possible world

semantics, we will also give a semantics in Branching Time and Agent Choice,

which is taken from Horty’s work [19].

.6 Temporal STIT logic

Definition 1 (Syntax) Let P be the set of atomic propositions and Agt be a

finite set of agents. The language LT-STIT of temporal STIT logic is generated by

the following BNF (Backus Normal Form):

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ 2ϕ ∣ [α]ϕ ∣ [Agt]ϕ ∣ Gϕ ∣Hϕ

where p ∈ P and α ∈ Agt.

Other connectives are introduced by the definitions:

disjunction ϕ ∨ ψ is ¬(¬ϕ ∧ ¬ψ)
implication ϕ→ ψ is (¬ϕ) ∨ ψ
equivalence ϕ↔ ψ is (ϕ→ ψ) ∧ (ψ → ϕ)
versum ⊺ is p ∨ ¬p (for some p ∈ P)

falsum � is ¬⊺

2ϕ can be interpreted as ”ϕ is true no matter what the agents do” or simply

”ϕ is necessarily true”. The dual of 2 is defined as 3ϕ = ¬2¬ϕ and expresses ”ϕ

is possibly true”.

Operators of the form [α] represent the Chellas’s STIT operators. The formula

[α]ϕ captures the fact that ϕ is guaranteed by an action or choice of agent α

and can be interpreted as ”agent α sees to it that ϕ regardless what the other

agents do”. For simplification reasons, the interpretation of [α]ϕ can be shortened

to ”agent α sees to it that ϕ”. The dual operator of [α] is defined in the usual

way as: ⟨α⟩ϕ = ¬[α]¬ϕ. The dual of the Chellas’s STIT operator ⟨α⟩ϕ can be

interpreted as ”agent α allows it that ϕ”. Further STIT theory offers the way to

formalize the concept of ability. This is achieved by combining the 3 operator

81

.7. SEMANTICS APPENDIX . APPENDIX C

with [α]. The formula 3[α]ϕ expresses then that agent α has the ability to see

to it that ϕ or that agent α has the choice to enforce ϕ.

Remark Please note that in STIT literature, [α]ϕ is usually written [α cstit ∶ ϕ],
but the former notation is used because of conciseness reasons. Additionally, there

exist several STIT operators such as the deliberative STIT operator which can be

defined in terms of Chellas’s STIT operator and the 2 operator as following:

[α dstit ∶ ϕ] = [α cstit ∶ ϕ] ∧ ¬2ϕ.

[Agt] represents the group STIT operator. For a propositional formula ϕ, it

captures the fact that ϕ is guaranteed by a choice of all the agents and has to

be interpreted as ”all agents see to it that ϕ by acting together”. Just like for

the Chellas’s STIT operator, the dual operator of [Agt] is expressed as ⟨Agt⟩ϕ =
¬[Agt]¬ϕ.

Moreover, the operators G and H are tense operators that are used to express

facts that are always true in the strict future respectively facts that are always

true in the strict past. The strict future, respectively the strict past, does not

include the present. Gϕ can be interpreted as ”ϕ will always be true in the future”

whereas Hϕ means ”ϕ has always been true in the past”. The dual operator of G

is defined as Fϕ = ¬G¬ϕ and can be read as ”ϕ will be true at some point in the

future”. Likewise, the dual operator of H is defined as Pϕ = ¬H¬ϕ and can be

read as ”ϕ has been true at some point in the past”.

Finally, Lorini defines two very helpful operators as follows:

– G∗ϕ = ϕ ∧Gϕ

– F ∗ϕ = ¬G∗¬ϕ

G∗ϕ expresses that ”ϕ is true in the present and will always be true” and F ∗ϕ

means that ”ϕ is true in the present and will be true at some point in the future”.

.7 Semantics

This section presents two possible semantics for LT-STIT. The first alternative

is a Branching Time (BT) structure augmented by an agent choice (AC) function,

abbreviated BT+AC structure, and corresponds to the original framework for STIT

logic given by Belnap [8]. However, some works, like the one proposed by Lorini

[22], have also adapted a Kripke style semantics for STIT logic. Those have the

advantage of being similar to the semantics of modal logic than Belnap’s original

semantics.

82

APPENDIX . APPENDIX C .7. SEMANTICS

.7.1 Branching Time and Agent Choice

The semantics of STIT can be embedded in a branching time structure (BT),

which is defined as:

Definition 2 (BT structure [19]) A branching time structureM is of the form

⟨M,<⟩, where:

– M is a non-empty set of moments

– < is a transitive, irreflexive and treelike ordering on M .

By treelike ordering, we say that for any moments m1, m2, m3 ∈ M , if

m1 <m3 and m2 <m3 then either m1 =m2 or m1 <m2 or m2 <m1.

A history is considered as a maximal linearly ordered set of moments m from

M . Further, when we have m ∈ h, we say that the moment m lies on the history

h and the set of all the histories is denoted by Hist.

Hm = {h ∣ h ∈Hist,m ∈ h}

represent the set of histories passing through the moment m. A moment-history

pair is a pair m/h consisting of a moment m from M and a history h from Hm.

In other words, it’s a history and a moment in that history.

Figure 4: Branching Time

Figure 4 visualizes a branching time structure which is illustrated as a tree

containing five histories h1 . . . h5. Further there are three moments, denoted by

m1, m2 and m3, lying on the different histories. For instance, we have that

m2 ∈ h1 and m1 ∈ h3. The upward direction represents the forward direction of

time and so we have that m1 < m2 and m1 < m3. Finally, we can also give the

histories passing through a certain moment. For example, the set Hm3 , denoting

the histories going through m3, contains h4 and h5.

83

.7. SEMANTICS APPENDIX . APPENDIX C

By augmenting the BT structure with the choices of agents, one obtains the

most elementary framework in STIT logic. The resulting structure is called agents

and choices in branching time and is abbreviated as BT+AC structure.

Definition 3 (BT + AC structure [19]) A branching time and agent choice

(BT+AC) structure is a tuple M = ⟨M,<,Choice, V ⟩ where:

– ⟨M,<⟩ is a BT structure.

– Choice ∶ Agt×M ↦ 22
Hist

is a function mapping each agent α and moment

m into a partition Choicemα of the set of histories Hm.

– V ∶ P↦ 2M×Hist is a valuation function assigning to each atom p a set

V (p) ⊆M ×Hist.

In general, a BT +AC structure is often referred to simply as STIT structure

or STIT model. The Choice function is a very fundamental aspect of the BT+AC

structure and it is specified detailed in Horty’s book [19].

.7.2 Choice function

Individual Choice

Each equivalence class induced by Choicemα can be seen as a choice or ac-

tion that is available to agent α at moment m. For any history h ∈ Hm,

Choicemα (h) returns a particular choice K from Choicemα such that it contains

the history h. Or in other words, the particular action that has been performed

by agent i at the moment-history pair m/h. Formally, Choicemα (h) = {h′ ∣ ∃K ∈
Choicemα such that h,h′ ∈ K}. The histories belonging to a particular action K

can be thought of as possible outcomes that might result from performing this

action.

Further, there are several constraints imposed on the Choice function. In

order to impose the first constraint on the Choice function, Horty introduces the

following definition:

Definition 4 (Undivided histories [19]) Let ⟨M,<⟩ be a BT-structure such that

m ∈M and h1, h2 ∈ Hm. h1 and h2 are said to be undivided at m if and only if

there exists m′ ∈M such that m <m′ and m′ ∈ h1 ∩ h2.

Then he defines the property of No Choice between undivided histories, which

forms then the first constraint on the Choice function.

Definition 5 (No choice between undivided histories [19]) ∀h,h′ ∈Hm, if h

and h′ are undivided at the moment m, then h′ ∈ Choicemi (h) for every agent i.

84

APPENDIX . APPENDIX C .7. SEMANTICS

Figure 5: Branching Time with an agent’s choice

Figure 5 illustrates the choice partitions. At moment m1, there are two choices

available to agent α, namelyK1 andK2. Formally, we write Choicem1
α = {K1,K2}

with K1 = {h1, h2, h3} and K2 = {h4}. We can say, for instance, at the index

m1/h3, the agent α performs action K1 which might result in history h1, h2

or h3. Further, the particular choice that contains the history h3 is K1, so we

write Choicem1
α (h3) = {h1, h2, h3} = K1. Moreover, the histories h1 and h2 are

undivided at moment m1 since they share the later moment m2 in common. Thus,

we have h1, h2 ∈Hm1 and there is m2 such that m1 <m2 and m2 ∈ h1 ∩ h2.

Group Choice

When dealing with group agency, Horty further specifies the Choice function.

In [19], he defines the so called group actions by introducing an action selection

function sm from Agt into 2Hm such that for each m ∈M and α ∈ Agt, sm(α) ∈
Choicemα . So, the selection function sm selects a particular action for each agent

at moment m. Next, the set Selectm is the set containing all of the action

selection functions sm.

Selectm = {sm ∶ Agt↦ 2Hm ∣ sm(α) ∈ Choicemα ,∀α ∈ Agt}

This allows then to formulate the property of independence of agents (or in-

dependence of choices) and will be used as the second constraint. It can be

interpreted in the sense that agents can never be deprived of choices due to the

choices made by the other agents. Alternatively, this constraints means that every

85

.7. SEMANTICS APPENDIX . APPENDIX C

possible choice of an agent is consistent with every choice made by every other

agent. Two choices are said to be consistent if and only if they have at least one

outcome in common. This condition can be defined as:

Definition 6 (Independence of agents [19]) For each function sm ∈ Selectm, we

must have ⋂α∈Agt sm(α) ≠ ∅.

By using the action selection functions sm, the Choice function can be generalized

in order to apply for particular groups of agents. The collective choice for a group

of agents A ⊆ Agt at a moment m can be stated as:

ChoicemA = {⋂
α∈A

sm(α) ∣ sm ∈ Selectm}

Again, ChoicemA (h) = {h′ ∣ ∃K ∈ ChoicemA such that h,h′ ∈K}.

To illustrate the concept of group choices, consider the example represented in

figure 6 which can be found in Horty’s book [19] (Chapter 2, page 30).

Figure 6: Branching Time with group choices

In contrast to the previous figure, we have two agents, α and β. Each one

of them has several choices open to him/her. The choices available to agent

α at the moment m are represented by the vertical partitions on Hm whereas

the choice available to agent β at moment m are represented by the horizontal

partitions on Hm. In particular, Choicemα = {K1,K2} with K1 = {h1, h2, h3}
and K2 = {h4, h5, h6} and Choicemβ = {K3,K4} with K3 = {h2, h3, h4} and

K4 = {h1, h5, h6}. At moment m, each agent has two possible choices, so the set

Selectm will contain the following four functions s1, s2, s3 and s4:

86

APPENDIX . APPENDIX C .7. SEMANTICS

s1(α) =K1 and s1(β) =K3

s2(α) =K1 and s2(β) =K4

s3(α) =K2 and s3(β) =K3

s4(α) =K2 and s4(β) =K4

Now let A = {α,β} denoting the group consisting of agent α and agent β.

The choices available to the group A at moment m are then:

ChoicemA = {⋂
i∈A

sm(i) ∣ sm ∈ Selectm}

= {sm(α) ∩ sm(β) ∣ sm ∈ Selectm}
= {s1(α) ∩ s1(β), s2(α) ∩ s2(β), s3(α) ∩ s3(β), s4(α) ∩ s4(β)}
= {K1 ∩K3,K1 ∩K4,K2 ∩K3,K2 ∩K4}

For example, take m/h3 as an index, then the group A is able to perform

K1 ∩K3 which might result in the history h2 or h3. And since K1 ∩K3 is the

particular action performed by A at m that contains the history h3, we have

ChoicemA (h3) =K1 ∩K3.

.7.3 Satisfaction in BT+AC structure

Definition 7 (Satisfaction [19]) Given a BT+AC structureM = ⟨M,<,Choice, V ⟩
and a moment-history pair m/h, we define the satisfaction relation M,m/h ⊧ ϕ
(read as ”ϕ is true at the moment-history pair m/h in M”) as follows:

– M,m/h ⊧ p⇐⇒m/h ∈ V (p)

– M,m/h ⊧ ¬ϕ⇐⇒M,m/h ⊭ ϕ

– M,m/h ⊧ ϕ ∧ ψ⇐⇒M,m/h ⊧ ϕ and M,m/h ⊧ ψ

– M,m/h ⊧ 2ϕ⇐⇒ ∀h′ ∈Hm ∶M,m/h′ ⊧ ϕ

– M,m/h ⊧ 3ϕ⇐⇒ ∃h′ ∈Hm ∶M,m/h′ ⊧ ϕ

– M,m/h ⊧ [α]ϕ⇐⇒ ∀h′ ∈ Choicemα (h) ∶M,m/h′ ⊧ ϕ

– M,m/h ⊧ [Agt]ϕ⇐⇒ ∀h′ ∈ ChoicemAgt(h) ∶M,m/h′ ⊧ ϕ

– M,m/h ⊧ Gϕ⇐⇒ ∀m′ ∈ h such that m <m′ ∶M,m′/h ⊧ ϕ

– M,m/h ⊧Hϕ⇐⇒ ∀m′ ∈ h such that m′ <m ∶M,m′/h ⊧ ϕ

87

.7. SEMANTICS APPENDIX . APPENDIX C

A formula ϕ is valid if and only if for every BT+AC models M and for every

moment-history pairs m/h, we have M,m/h ⊧ ϕ. A formula ϕ is satisfiable

if and only if there is a BT+AC model M and some moment-history pairs m/h
such that M,m/h ⊧ ϕ.

Example 8 In Figure 5, we have that M,m1/h1 ⊧ [α]A since Choicem1
α (h1) =

{K1} = {h1, h2, h3} and for every history h ∈ Choicem1
α (h1), we haveM,m1/h ⊧

A. However at the indexm1/h4, the formula [α]A is not satisfied (i.e. M,m1/h4 ⊭
[α]A) since Choicem1

α (h4) = {K4} = {h4} and M,m1/h4 ⊭ A. Moreover, we

have that M,m2/h1 ⊧ 2A, because for every history h ∈ Hm2 = {h1, h2}, we

have M,m2/h ⊧ A. Finally, we have that M,m1/h1 ⊧ GA since m2 ∈ h1 such

that m1 <m2 and M,m2/h1 ⊧ A.

Example 9 In Figure 6, it is not possible for both agents to individually see to

it that A, since ∀h ∈ Hm, we have M,m/h ⊭ [α]A resp. M,m/h ⊭ [β]A.

But by acting together, the formula [A]A is true at index m/h2 and m/h3,

where A denotes the group of agent consisting of α and β, is valid. For every

history h ∈ ChoicemA (h3) = {h2, h3}, we have M,m/h ⊧ A. Finally, we have that

∀h ∈Hm, M,m/h ⊧ 3[A]A.

.7.4 Temporal Kripke STIT Model

In this section, we discuss a Kripke-style semantic for STIT logic. In contrast to

the BT+AC semantics, the Kripke semantic for STIT takes the concept of worlds

as a primitive. Let’s first remind the definition of a Kripke model for modal logic.

Definition 8 (Kripke Model) A Kripke model is a structure M = ⟨W,R,V ⟩
where

– W is a nonempty set of possible worlds.

– R is a binary relation on worlds, called accessibility relation. For any world

w ∈W , let R(w) = {v ∈W ∣ (w, v) ∈ R}.

– V ∶ P ↦ 2W is a valuation function. A proposition p is true at a world w if

and only if w ∈ V (p).

A Kripke model is illustrated in Figure 7. The possible worlds are represented

by the nodes and the relation is indicated by the arrows from nodes to nodes. Here

we have W = {w1,w2,w3,w4} and for instance R(w1) = {w2,w3}. Additionally,

each possible world w is labelled with the propositional atom which are true at

88

APPENDIX . APPENDIX C .7. SEMANTICS

w. The set of atoms P is composed of p and q, which gives us in this case the

following valuation functions: V (p) = {w1,w2,w3} and V (q) = {w1,w4}.

Figure 7: Standard Kripke Model

The temporal Kripke STIT model can be seen as Kripke model with multiple

relations on which several constraints are imposed. A world w corresponds to

a moment-history pair m/h in a BT+AC model. Moments will be defined as

equivalence classes which are induced by an equivalence relation over the set of

worlds and an agent’s set of choice at a moment is a partition of that moment.

Definition 9 (Equivalence relation) Let R be a binary relation on the set W .

R is called an equivalence relation if it has the following three properties:

– Reflexivity: ∀w ∈W , we have (w,w) ∈ R.

– Symmetry: ∀w, v ∈W , if (w, v) ∈ R, then (v,w) ∈ R.

– Transitivity: ∀w, v, u ∈W , if (w, v) ∈ R and (v, u) ∈ R, then (w,u) ∈ R.

Further, given two binary relation R1 and R2, let R1 ○R2 denote the operation

of composition between binary relation. Finally, we define R−1, the inverse relation

of R, as R−1 = {(v,w) ∣ (w, v) ∈ R}.

Before giving the definition of a temporal Kripke STIT model, we will list the

different accessibility relations and give an interpretation for each of them.

For any given world w ∈W , we have

– R2(w) defines the set of worlds that are alternatives to the world w. The

equivalence classes induced by R2 can be seen as moments. For any world

v ∈ W , v ∈ R2(w) can be interpreted as ”v and w belong to the same

moment”.

89

.7. SEMANTICS APPENDIX . APPENDIX C

– Ri(w) defines the set of worlds that identifies agent i’s actual choice or

action at world w. In other words, the set of all alternatives that are forced

by agent i’s choice or action at world w.

– RAgt(w) defines the set of worlds that identifies the actual choice or action

of a group Agt at the world w. In other words, the set of all alternatives

that are forced by the collective choice or action of all the agents at world

w.

– RG(w) defines the set of worlds that are in the strict future of the world w.

The strict future does not include the present.

– RH(w) defines the set of worlds that are in the strict past of the world w.

The strict past does not include the present.

Lorini defines then the temporal Kripke STIT model as follows.

Definition 10 (Temporal Kripke STIT model) A temporal Kripke STIT model

M is a tuple ⟨W,R2,{Ri ∣ i ∈ Agt},RAgt,RG,RH , V ⟩ where:

– W is a non-empty set of possible worlds.

– R2, every Ri and RAgt are equivalence relations between the worlds in W

such that:

(C1) Ri ⊆ R2

(C2) ∀w1, . . . ,wn ∈W : if (wi,wj) ∈ R2 ∀i, j ∈ {1, . . . , n} then

⋂i∈AgtRi(wi) ≠ ∅

(C3) ∀w ∈W ∶ RAgt(w) = ⋂i∈AgtRi(w)

– RG and RH are relations between the worlds in W such that RG is serial

and transitive, RH is the inverse relation of RG.

(C4) ∀u, v,w ∈W ∶ if u, v ∈ RG(w) then u ∈ RG(v) or v ∈ RG(u) or u = v

(C5) ∀u, v,w ∈W ∶ if u, v ∈ RH(w) then u ∈ RH(v) or v ∈ RH(u) or u = v

(C6) RG ○R2 ⊆ RAgt ○RG
(C7) ∀w ∈W ∶ if v ∈ R2(w) then v ∉ RG(w)

– V ∶ P↦ 2W is a valuation function assigning to each atom p a set V (p) ⊆W .

Constraint (C1) states that an agent can only choose between possible alter-

natives. For any world w ∈W , the equivalence relation Ri induces a partition on

the set R2(w) and any element of this partition can be seen as a possible choice

for an agent i at world w.

90

APPENDIX . APPENDIX C .7. SEMANTICS

Constraint (C2) corresponds to the property of independence of agents or

independence of choices.

Constraint (C3) means that the choices of agents in the group Agt are made

up of the choices of each individual agent and no more.

Constraint (C4) guarantees that the time is connected towards the future while

constraint (C5) ensures the connection towards the past.

Constraint (C6) corresponds to the property of no choice between undivided

histories. If v is in the future of w and u and v are in the same, then there exists

an alternative z in the collective choice of all agents at w such that u is in the

future of z.

Constraint (C7) makes sure that if two worlds belong to the same moment

then it is not possible that the one world is in the future of the other one.

Figure 8: Temporal Kripke STIT Model

Figure 8 gives an illustration of a temporal Kripke STIT model. In fact, it is the

same as shown in Figure 5 but just represented in Kripke STIT semantics. The

moments, which are induced by the relation R2, are represented by the rectangles.

We have two moments, m1 consists of the set of worlds {i1, i2, i3, i4} whereas

m2 of {i5, i6}.The choices available to agent α at a moment are represented

by columns. For example, at moment m1, agent α has two choices, namely

{i1, i2, i3} and {i4}. The dotted rectangles show the choices available to the

91

.8. AXIOMS APPENDIX . APPENDIX C

group. In this case, the group of agents only consists of agent α. The arrows

serve as a representation for the temporal relation RG.

Definition 11 (Satisfaction) Given a temporal Kripke STIT modelM = ⟨W,R2,{Ri ∣
i ∈ Agt},RAgt,RG,RH , V ⟩ and a world w ∈ W, Lorini defines the satisfaction re-

lation M,w ⊧ ϕ (read as ”ϕ is true at world w in M”) as follows:

– M,w ⊧ p⇐⇒ w ∈ V (p)

– M,w ⊧ ¬ϕ⇐⇒M,w ⊭ ϕ

– M,w ⊧ ϕ ∧ ψ⇐⇒M,w ⊧ ϕ and M,w ⊧ ψ

– M,w ⊧ 2ϕ⇐⇒ ∀v ∈ R2(w) ∶M, v ⊧ ϕ

– M,w ⊧ 3ϕ⇐⇒ ∃v ∈ R2(w) ∶M, v ⊧ ϕ

– M,w ⊧ [i]ϕ⇐⇒ ∀v ∈ Ri(w) ∶M, v ⊧ ϕ

– M,w ⊧ [Agt]ϕ⇐⇒ ∀v ∈ RAgt(w) ∶M, v ⊧ ϕ

– M,w ⊧ Gϕ⇐⇒ ∀v ∈ RG(w) ∶M, v ⊧ ϕ

– M,w ⊧Hϕ⇐⇒ ∀v ∈ RH(w) ∶M, v ⊧ ϕ

A formula ϕ is valid if and only if for every temporal Kripke STIT model M
and for every world w ∈W , we haveM,w ⊧ ϕ. A formula ϕ is satisfiable if and

only if there is a temporal Kripke STIT model M and some world w ∈ W such

that M,w ⊧ ϕ.

Example 10 In Figure 8, we have for instance thatM,w1 ⊧ [α]A since Rα(w1) =
{w1,w2,w3} and for every world w ∈ Rα(w1), we have M,w ⊧ A. Further

M,w5 ⊧ 2A, since for every world w ∈ R2(w5) = {w5,w6}, we have M,w ⊧ A.

Finally, we have that M,w1 ⊧ GA since for every world w ∈ RG(w1) = {w5}, we

have M,w ⊧ A.

.8 Axioms

Finally, Lorini proposed the following axioms for T-STIT logic. First, we have

all the tautologies of classical proposition calculus. For instance, a formula such

as ϕ ∨ ¬ϕ is considered as a tautology.

The relation R2, every Ri and RAgt are defined as equivalence relation for

the operators 2, [i] for each i ∈ Agt, and [Agt], respectively. Thus we have all

principles of a modal logic S5 for those operators. In particular, for an operator

▽ ∈ {2, [i] for each i ∈ Agt, [Agt]}, the following principles are valid:

92

APPENDIX . APPENDIX C .8. AXIOMS

(Nec) if ⊢ ϕ then ⊢▽ϕ

(K) ⊢▽(ϕ→ ψ)→ (▽ϕ→▽ψ)

(T) ⊢▽ϕ→ ϕ

(B) ⊢ ϕ→▽¬▽¬ϕ

(4) ⊢ ϕ→▽▽ ϕ

Remark We write ⊢ ϕ in order to express the formula ϕ is derivable. Alternatively,

one also says that ϕ is a theorem or that ϕ is provable.

The temporal operator G satisfies all the principles of a modal logic KD4 since

the corresponding relation RG is defined as serial and transitive. More precisely,

besides the axioms (Nec), (K) and (4), we also have the following principle for

the operator G:

(D) ⊢ ¬(Gϕ ∧G¬ϕ)

The relation RH is declared as the inverse relation of RG, therefore the other

temporal operator H just holds the principles of a modal logic K, which includes

the axioms (Nec) and (K).

Further, Lorini gave the following axioms with respect to the class of temporal

Kripke STIT models:

(2→ i) ⊢ 2ϕ→ [i]ϕ

(i→ Agt) ⊢ ([1]ϕ1 ∧ ⋅ ⋅ ⋅ ∧ [n]ϕn)→ [Agt](ϕ1 ∧ ⋅ ⋅ ⋅ ∧ ϕn)

(AIA) ⊢ (3[1]ϕ1 ∧ ⋅ ⋅ ⋅ ∧3[n]ϕn)→ 3([1]ϕ1 ∧ ⋅ ⋅ ⋅ ∧ [n]ϕn)

(ConvG,H) ⊢ ϕ→ GPϕ

(ConvH,G) ⊢ ϕ→HFϕ

(ConnectedG) ⊢ PFϕ→ (Pϕ ∨ ϕ ∨ Fϕ)

(ConnectedH) ⊢ FPϕ→ (Pϕ ∨ ϕ ∨ Fϕ)

(NCUH) ⊢ F3ϕ→ ⟨Agt⟩Fϕ

(MP) if ⊢ ϕ and ⊢ ϕ→ ψ then ⊢ ψ

(IRR) if ⊢ (2¬p ∧ 2(Gp ∧ Hp)) → ϕ then ⊢ ϕ, provided p does not

occur in ϕ

93

.8. AXIOMS APPENDIX . APPENDIX C

For instance, the axiom (2 → i) says that if ϕ is settled as true no matter

what the agent does, then the agent sees to it that ϕ. Together with (AIA),

they form two essential principles of Xu’s axiomatization [31] for Chellas’s STIT

operator. According to Axiom (i → Agt), all agents bring about together what

each of them brings about individually.

(ConnectedG) and (ConnectedH) are the axioms that guarantee the linearity

of the future and the past, respectively. According to (ConvG,H) and (ConvH,G),

we have that what is, will always have been and what is, has always been going

to be, respectively. Both correspond to the basic axioms of interaction between

future and time in minimal tense logic.

Axiom (NCUH) states that if at some moment in the future it is possible

that ϕ, then the collective group of agents will possibly reach a state in which ϕ

is true. This axiom corresponds to the constraint of ’no choice between undivided

histories’.

Moreover, we have the modus pones rule (MP), which says that if ϕ is deriv-

able as well as ϕ→ ψ is derivable, then ψ is derivable.

(IRR) corresponds to an alternative formulation of Gabbay’s well-known ir-

reflexivity rule. It has commonly been used in order to prove the completeness of

several temporal logic where the time is assumed to be irreflexive. In temporal

STIT logic, we also have a special kind of irreflexivity for the relation RG, which

is a consequence from the fact that R2 is reflexive and the constraint (C7) from

definition 10.

94

APPENDIX . APPENDIX D

Appendix D

.9 Examples

In his book [19], Horty illustrates group agency and ability through an example

(Chapter 2, p. 30, Figure 2.5). With our embedding, it is possible to formulate

the model of this example in Isabelle/HOL and verify the possible actions of the

individual agents as well as the group actions.

The example is given in a BT+AC model but since the embedding is based

on Kripke semantics, the example has to be transformed. In this case, it is pretty

straightforward. The figure 9 represents the example in temporal Kripke STIT

semantics.

Figure 9: Group Actions

The figure 10 shows the first part of the implementation for the example in

Isabelle/HOL. We start by defining our constants, in this case, the six possible

worlds i1, i2, i3, i4, i5 and i6 of type i and the proposition A of type σ. It is

important that we explicitly state that all the six worlds are different from each

other. Further all the worlds in our model belong to the same moment, which

can be stated for instance as R2(i1) = {i1, i2, i3, i4, i5, i6}, and since there is only

a single moment, we have no two worlds w and v such that v ∈ RG(w). Next,

we specify the relation RAgt for every world. For instance at world i2, we have

RAgt(i2) = {i2, i3}.

95

.9. EXAMPLES APPENDIX . APPENDIX D

Figure 10: Isabelle/HOL embedding for the Group Action Example (part 1)

Moreover, we have to define the individual choices at the different worlds for

the agents. In the example, we have two agents, a1 and a2. Taking for instance

world i2 again and let R1 resp. R2 denote the accessibility relations for the agent

a1 resp. a2, then we have R1(i2) = {i1, i2, i3} and R2(i2) = {i2, i3, i4}. The

Isabelle/HOL formulation for those relations is shown in Figure 11.

Figure 11: Isabelle/HOL embedding for the Group Action Example (part 2)

Finally, we have to define for each world whether it holds the proposition A or

¬A and we have to set the actual world, i.e. the world on which we have evaluated

the propositions. In this case, we choose i2 as the actual world.

In this example, at world i2, it is not possible for both agents to individually

see to it that A, meaning that propositions 3[a1 cstit ∶ A] and 3[a2 cstit ∶ A]
are false at i2. However, by acting together, it is possible that both agents do see

to it that A, so 3[Agt]A is true at i2.

Sledgehammer is able to provide a proof in order to show that the proposi-

96

APPENDIX . APPENDIX D .9. EXAMPLES

tions are valid at the world i2 and when asked for a model that satisfies those

propositions, Nitpick came up with the same model as we specified. This is

shown in figure 12.

Figure 12: Isabelle/HOL embedding for the Group Action Example (part 3)

Not only are the propositions valid at the world i2, they also hold in every

world of the model. In order that Sledgehammer is able to find a proof for that,

we have to limit the tool so that only considers the 6 possible worlds. This is

represented in figure 13.

Figure 13: Isabelle/HOL embedding for the Group Action Example (part 4)

All the formulas for Horty’s example could be proven in Isabelle/HOL. For this

particular example, the model was composed only of one single moment and the

formulas, which we verified, did not include any temporal operators. However, it

would still be interesting to see if Isabelle/HOL is able to evaluate some formulas

with some temporal operators for a model. Thus we specified a model from

Lorini’s paper [22] which he used in order to illustrate the semantics of temporal

STIT logic. We already mentioned that temporal Kripke STIT models are infinite

and this can also be seen in the model which is depicted in figure 14. The

model is composed of five moments but actually, there are infinitely more which

is represented by the dotted lines. In Isabelle/HOL we specified a finite version of

97

.9. EXAMPLES APPENDIX . APPENDIX D

this model meaning that we only considered the five moments that are depicted

in the figure and removed the temporal relation for the ’outer’ moments. The

formulation of this model was done in a similar way as for the model of the

previous example.

Figure 14: Temporal Kripke STIT model from Lorini’s paper

The world w is considered as the actual world and Lorini mentions three formu-

las which hold for the infinite model, but they also hold for the finite version. For

that finite model M , we have that M,w ⊧ [2]p since p holds in every world that

is in agent 2’s choice at world w. For agent 1, we have that M,w ⊧ [1](p ∨ q)
since either p or q holds in every world in agent 1’s choice at world w. Further,

we have that the group, consisting of agents 1 and 2, sees to it that q will be true

at some point in the future.This is formulated as M,w ⊧ [Agt]Fq. Those three

formulas could also be verified by the Sledgehammer tool. For the finite model,

we also have that M,w ⊧ G(2q) which could be proved as well.

98

APPENDIX . APPENDIX D .9. EXAMPLES

Figure 15: Isabelle/HOL: Model from Lorini’s paper

99

.9. EXAMPLES APPENDIX . APPENDIX D

100

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] C. Benzmüller and L. C. Paulson. Quantified Multimodal Logics in Simple

Type Theory. Logica Universalis (Special Issue on Multimodal Logics), 7(1),

pp. 7–20, doi:10.1007/s11787-012-0052-y. 2013.

[2] C. Benzmüller, M. Claus, and N. Sultana. Systematic verification of the modal

logic cube in Isabelle/HOL. arXiv:1507.08717, 2015.

[3] C. Benzmüller, B. Woltzenlogel Paleo . Higher-Order Modal Logics: Automa-

tion and Applications 2015

[4] C. Benzmüller, D. Gabbay, V. Genovese and D. Rispoli. Embedding and Au-

tomating Conditional Logics in Classical Higher-Order Logic. Annals of Math-

ematics and Artificial Intelligence. 66. 2011.

[5] C. Benzmüller, A. Farjami, and X. Parent. Faithful semantical embed-

ding of a dyadic deontic logic in HOL. Technical report, CoRR, 2018.

https://arxiv.org/abs/1802.08454.

[6] C. Benzmüller, X. Parent, and L. van der Torre. A Deontic Logic Reasoning

Infrastructure. 60-69. 10.1007/978-3-319-94418-0 6. 2018.

[7] C. Benzmüller, X. Parent. I/O Logic in HOL - First Steps, Computer Science

and Communications, University of Luxembourg, Luxembourg. (2018)

[8] N. Belnap, M. Perloff, and M.Xu, Facing the future: agents and choices in

our indeterminist world, Oxford University Press, New York, 2001.

[9] N. Belnap and M. Perloff. Seeing to it that: A canonical form for agentives.

In Knowledge Representation and Defeasible Reasoning, H. E. Kyburg, R. P.

Loui and G. N. Carlson, eds, pp. 167–190. Kluwer, Boston, 1990.

[10] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for

higher-order logic based on a relational model finder. In International Confer-

ence on Interactive Theorem proving, pages 131-146

[11] J. C. Blanchette and L. C. Paulson. Hammering Away - A User’s Guide to

Sledgehammer for Isabelle/HOL, 2017.

[12] Jan Broerson. A logical analysis of the interaction between ’obligation-to-do’

and ’knowingly doing’, Deon 2008, vol. 5076, pp. 140-154. Springer, Heidel-

berg (2008)

101

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Jan Broersen. A Complete STIT Logic for Knowledge and Action, and Some

of Its Applications. 47-59. 10.1007/978-3-540-93920-7 4. (2008)

[14] Brian F. Chellas, The Logical Form of Imperatives, Ph.D. thesis, Philosophy

Department, Stanford University, 1969.

[15] Brian F. Chellas, Time and modality in the logic of agency, Studia Log- ica

51, no. 3/4, pp. 485–518. 1992.

[16] A. Church. A formulation of the simple theory of types. In The journal of

symbolic logic, volume 5, pages 56–68. Cambridge Univ Press, 1940.

[17] Henkin, L. A theory of propositional types. Fundamenta Mathematicae 52

(1963), 323–344

[18] A.Herzig, F. Schwarzentruber, Properties in logics of individual and group

agency, Advances in Modal Logic (Vol. 7, pp. 133-149), London: King’s Col-

lege, 2008.

[19] John F. Horty, Agency and Deontic Logic, Oxford University Press, 2001.

[20] John F. Horty and Nuel Belnap, The Deliberative Stit: A Study of Action,

Omission, Ability, and Obligation, Journal of Philosophical Logic, Vol. 24, No.

6, pp. 583-644, 1995.

[21] I.L. Humberstone. Two sorts of ’ought’s. Analysis, 32:8-11. 1971.

[22] E. Lorini. Temporal STIT logic and its application to normative reasoning.

Journal of Applied Non-Classical Logics, 23(4):372-399.

[23] David Makinson and Leendert van der Torre, Input/output logics, Journal of

Philosophical Logic, 29(4), 383–408, (2000).

[24] David Makinson and Leendert van der Torre. 2001. Constraints for input/out-

put logics. Journal of Philosophical Logic 30, 2 (2001), 155–185.

[25] Thomas Nagel. Moral luck. In Mortal questions, 24–38. New York: Cambridge

University (1979)

[26] T. Nipkow, L. C. Paulson and M. Wenzel, Isabelle/HOL - A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS, Springer, 2002.

[27] X. Parent and L. van der Torre. The pragmatic oddity in a norm-based se-

mantics. In G. Governatori, editor, Proceedings of the 16th Edition of the

International Conference on Artificial Intelligence and Law, ICAIL ’17, pages

169–178, New York, NY, USA, 2017. ACM.

[28] Russell, B. Mathematical logic as based on the theory of types. American

Journal of Mathematics 30 (1908), 222–262.

102

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Xin Sun. Input/Output STIT Logic for Normative Systems, Computer Sci-

ence and Communications, University of Luxembourg, Luxembourg. (2015)

[30] Bernard Williams. Moral Luck. Moral Luck: Philosophical Papers 1973-1980.

Cambridge: Cambridge University Press. pp. 20–39. (1981)

[31] Ming Xu, Axioms for deliberative STIT, Journal of Philosophical Logic, 27,

505–552, (1998)

103

BIBLIOGRAPHY BIBLIOGRAPHY

104

	Abstract
	Contents
	List of Figures
	Introduction
	Context
	Research questions
	Goals and methodology
	Interdisciplinary aspects
	STIT theory
	Structure of the thesis

	The logic
	Input/Output logic
	Semantics
	Proof Theory

	T-STIT I/O logic

	The implementation
	Higher-order logic
	Isabelle/HOL Framework
	Semantical Embedding
	Implementation
	Primitives
	Connectives
	STIT operators
	Temporal Operators
	Relational Properties
	Relational Constraints
	Validity
	Axioms - Horty
	Axioms - Lorini

	Limitations of Isabelle/HOL
	T-STIT I/O logic in HOL
	Simple minded output out1
	Basic output out2
	Applying out2 to formulas of T-STIT logic
	List of examples

	Moral Luck
	Introduction to moral luck
	Ought implies Can
	The four kinds of moral luck
	Constitutive moral luck
	Circumstantial moral luck
	Resultant moral luck
	Causal moral luck

	Relation to our logic
	Example - Drunk Drivers
	Formulation
	Verification

	Example - Murder attempt
	Formulation
	Verification

	Proposed solutions

	Conclusion
	Summary
	Future work

	Appendix A
	Deontic Logic

	Appendix B
	Ought-to-be vs Ought-to-do
	The gambling problem
	Driving Example and Moral luck
	Critical view on STIT theory

	Appendix C
	Temporal STIT logic
	Semantics
	Branching Time and Agent Choice
	Choice function
	Satisfaction in BT+AC structure
	Temporal Kripke STIT Model

	Axioms

	Appendix D
	Examples

