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Abstract—Bitcoin is a decentralized digital currency intro-
duced in 2008 and launched in 2009. Bitcoin provides a way to
transact without any trusted intermediary, but its privacy guar-
antees are questionable, and multiple deanonymization attacks
have been proposed. Cryptocurrency privacy research has been
mostly focused on blockchain analysis, i.e., extracting information
from the transaction graph. We focus on another vector for
privacy attacks: network analysis.

We describe the message propagation mechanics in Bitcoin
and propose a novel technique for transaction clustering based
on network traffic analysis. We show that timings of transaction
messages leak information about their origin, which can be
exploited by a well connected adversarial node. We implement
and evaluate our method in the Bitcoin testnet with a high level
of accuracy, deanonymizing our own transactions issued from
a desktop wallet (Bitcoin Core) and from a mobile (Mycelium)
wallet. Compared to existing approaches, we leverage the prop-
agation information from multiple peers, which allows us to
overcome an anti-deanonymization technique (“diffusion”) used
in Bitcoin.

Index Terms—Bitcoin, blockchain, cryptocurrency, privacy

I. INTRODUCTION

Bitcoin is a decentralized digital currency launched in
2009. Bitcoin addresses are not linked to any real-world
identity at the protocol level. Bitcoin does not guarantee ab-
solute privacy though. Transactions are broadcast in plaintext
through a peer-to-peer network. After being confirmed by
miners they are stored in a massively replicated database (the
blockchain). Deanonymization techniques based on blockchain
analysis [13][18][21] and network analysis [2][8] have been
developed. A number of alternative cryptocurrencies (most
notably, Dash, Monero, and Zcash) address the privacy issue
with more sophisticated cryptographic methods, which hide
details of transactions (sender, receiver, amount) while still
allowing anyone to verify their validity.

II. TRANSACTION PROPAGATION IN CRYPTOCURRENCIES

Cryptocurrencies use P2P networks to disseminate mes-
sages. We now describe the relevant details on the networking
behavior of Bitcoin (most alternative cryptocurrencies inherit
these properties).

1) Address propagation: A newly launched node first per-
forms a DNS lookup of a few records hard-coded into the
software to discover the IP addresses of bootstrap nodes. It
then asks the bootstrap nodes for (a subset of) the list of
IP addresses of nodes known to them. Upon receiving the

lists, the new node establishes a preconfigured number of
connections with a random set of nodes, which we will refer
to as entry nodes. If the required TCP port1 is open, a node
allows up to 117 incoming connections to be established (this
number can be overridden in the configuration).

After joining the network and establishing connections, a
node advertises its IP address (as seen from the Internet) in
an ADDR message to its neighbors. Upon receiving an ADDR
message, each node decides individually for each address
whether to relay it to one or two of its neighbors, depending
on reachability. A node re-advertises its address with random
delays, every 24 hours on average. Nodes may also at any time
query their neighbors for a list of addresses known to them
(GETADDR); the response is an ADDR message containing up
to 1000 addresses of peers recently seen on the network.

2) Transaction propagation: Propagation of transactions is
a three-step process. A node which has a new transaction
advertises this fact to its neighbors with an INV (inventory)
message with a transaction hash only. Upon receiving an INV,
each node decides whether to request the transaction content.
If the node does not yet have the transaction, it replies with a
GETDATA message and receives the transaction contents in a
TX message. Blocks are propagated in a similar manner.

3) Randomization: A straightforward way to broadcast
messages in a P2P network is to relay them as soon as possible
to all neighboring peers. Recognizing that this approach may
harm privacy, Bitcoin developers introduced randomness in
this process. Based on the related work and the source code
of Bitcoin and the major privacy-focused cryptocurrencies, we
distinguish three propagation mechanisms:
• Naive gossip: broadcast to all neighbors as soon as

possible (used in Monero);
• Trickling: for a number of fixed-length time periods,

broadcast to a new random subset of neighbors (used in
Zcash and Bitcoin pre-2015);

• Diffusion: broadcast to each neighbor after a random
delay (used in Dash and Bitcoin post-2015).

III. OUR TRANSACTION CLUSTERING METHOD

A. Our approach

1) Intuition: Our goal is to cluster transactions based on the
node which was the first to introduce them into the network.

18333 for the Bitcoin mainnet, 18333 for the Bitcoin testnet.



Consider the first N nodes which relayed a transaction to our
listening node. We assign weights to IP addresses of nodes
depending on the propagation timestamps. Intuitively, a peer
that relays a new transaction to us quickly is likely to be
an entry node or closely connected to one. Our clustering
algorithm is based on the weight vectors of transactions.
We expect transactions originating from one node to yield
relatively well-correlated weight vectors.

Due to broadcast randomization, we do not expect all
transactions from one node to be well-correlated. But the
matrix of pairwise correlations exhibits special behavior which
would help us infer transactions clusters nevertheless. Consider
a node with eight entry nodes with IP addresses (p1 to p8)
making three transactions: tx1, tx2, tx3. If transactions were
broadcast in batch via the same subset of the entry nodes, their
weight vectors would be very similar. But due to diffusion or
trickling, the following scenario is more typical: tx1 quickly
relayed from p{1,2,3}, tx2 from p{3,4,5}, tx3 from p{5,6,7}. If
we considered only the first propagation, these transactions
would seem completely unrelated. But with weight vectors,
considering that those are sparse, the correlation between tx1

and tx2 and between tx2 and tx3 would be noticeable, which
would allow us to reveal not only the relationship between
these pairs but also among all three transactions. Note that this
technique is also applicable for transactions originating from a
light client (in this case, a cluster represents transactions from
multiple clients connected to the same full node).

2) Data collection and representation: We use a modified
Bitcoin network probing tool bcclient [19] to maintain
parallel connections to peers and log incoming messages:
transaction hash, the IP which relayed it to us, and the
timestamp of this event.

We use Python scripts to extract the essential information
from the log, save it in a more compact JSON format, analyze
the data, and visualize the results. For each transaction, we
save a list of (t, IP) pairs, where t is a relative timestamp
(i.e., we subtract the timestamp of the first propagation of this
transaction from all its subsequent propagations).

3) Weight functions and clustering: Let tx be a transaction.
Let ptx = [ptx1 , ptx2 , ...ptxN ] be the vector of the first N IP
addresses which relayed tx to us. Let ttx = [ttx1 , ttx2 , ...ttxN ] be
the vector of the corresponding relative timestamps. For each
ptxi ∈ ptx, we assign a parameterized weight as follows:

wk(ptxi ) = e−(t
tx
i /k)2

The weight function is chosen to reflect the decreasing
importance of every next broadcast. p1 is assigned the maximal
weight of 1.0 (note that t1 = 0 by definition); other nodes
receive lower weights. Our experiments show that this function
family yields better clustering (compared to 1/(kt) and e−kt).
The intuition is that it gives higher weights to a certain window
depending on k while exponentially decreasing outside of it.
Moreover, window size is adjusted for each vector.

For each ptx, we want to use such wk that gives sufficient
variance among the weight values. Weights quickly fall to

Fig. 1: Weight functions for three timestamp vectors

nearly zero if k is too low and stay close to one if k is high.
Let ttxmed be the median value in ttx (average of the high and
low medians if the length of ttx is even). We choose ktxopt
s.t. the weight of ttxmed would be 0.5:

ktxopt =
ttxmed√
− ln(0.5)

This choice of k distributes the weights for any ttx: they
neither stay close to one nor quickly fall to zero (see examples
in Figure 1). For each transaction, we evaluate the vector of
weights:

wtx = wktx
opt

(ttx)

Let X be the set of all transactions we consider. Let P be
the set of IP addresses of nodes which appeared in at least
one of p vectors in X:

P =
⋃

tx∈X
ptx

We define an extended weight vector vtx for each tx by
setting the weight of nodes in P\ptx to zero and sort the
values in the weight vectors w. r. t. alphabetical order of P .
We then calculate a matrix where an element in i-th row
and j-th column is the Pearson correlation of the extended
weight vectors vtxi

and vtxj
. This matrix can supposedly be

transformed into a block-diagonal matrix with blocks (clusters)
corresponding to transaction sources.

To reveal the clusters, we use spectral co-clustering [5] im-
plemented in the Python sklearn.cluster.bicluster
module [23]. Given an input matrix A, the algorithm prepro-
cesses it as follows:

An = R1/2AC−1/2

Where R is the diagonal matrix with entry i equal to∑
j Aij , and C is the diagonal matrix with entry j equal to∑
i Aij .
The singular value decomposition of A provides the parti-

tions of rows and columns: An = UΣV T . The l = dlog2 ke
singular vectors provide the partitioning information. Let U
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be a matrix with columns u2, . . . , ul+1, and similarly for V .
Then Z is defined as:

Z =

[
R−1/2 U
C−1/2 V

]
The rows of Z are clustered using the k-means algorithm.

B. Quality assessment

1) Measuring clustering quality: We use the Rand score
as an external metric of clustering quality, as described in [1]
(Section 4.2). The Rand score operates on pairs of elements
and reflects the proportion of “right decisions” regarding
whether to put a pair of transactions into one or different
clusters.
SS, SD, DS, and DD are numbers of transaction pairs

defined as follows:
• SS: same cluster, same category (two our transactions in

the same cluster)2;
• SD: same cluster, different category (our and foreign

transactions in the same cluster);
• DS: different cluster, same category (two our transactions

in different clusters);
• DD: different cluster, different category (our and foreign

transactions in different clusters).
Note that this assessment only considers clusters with

“our” transactions, because we do not know whether any two
“foreign” transactions should have been assigned to the same
cluster:

R =
SS + DD

SS + SD + DS + DD

We further modify this metric by parameterizing it with
the minimal number of our transactions in a cluster required
to consider it in the calculation. In our experiments, we only
consider clusters with at least two of our transactions. With no
such threshold, large clusters with one of our transactions dis-
proportionately increase DD and bring the score close to 1.0,
which does not reflect the subjective amount of information
an adversary acquires.

2) Measuring the degree of deanonymization: To estimate
the success rate of the attack, we use a quality score based
on the anonymity degree proposed by Dı́az et al. [6]. The
anonymity degree is designed to measure the amount of
information an attacker gains compared to perfect anonymity
(where each user has an equal probability of being the orig-
inator of a given message). Let pi be the probability that a
transaction i originates from a given source Scontrol; N is the
total number of transactions. The entropy is calculated as:

H(X) = −
N∑
i=1

pilog2(pi)

The maximal entropy is:

HM = log2(N)

2In our case, there are only two categories: “our” and “foreign” transactions.

The anonymity degree is defined as:

d =
H(X)

HM

The anonymity degree does not reflect the fact that the
probability distribution obtained by the adversary may not
be well aligned with the true probability distribution. To
address this issue, we propose an adjusted anonymity degree.
First, we calculate the median square error e between our
probability distribution and the known true distribution (1 for
transactions from Scontrol and 0 for others), based on a subset
of transactions from the control set. The adjusted anonymity
degree is defined as follows:

dadj = 1− (1− e) ∗ (1− d)

To explain on two edge case examples: If e = 0 (the attacker
precisely predicted the distribution), dadj = d; if e = 1 (the
attacker’s distribution does not at all reflect the reality), dadj =
1 (the system retains full anonymity).

The assumptions of our model have their limitations. Our
clustering technique depends on a user issuing a series of
transactions in a relatively short time window of several
minutes (up to an hour), through the same set of entry nodes
(i.e. from the same session). If a user re-launches the client,
their transactions issued before and after this event would not
be linkable by our technique.

IV. EXPERIMENTS

Assume our goal is to cluster transactions originating from
one target source Scontrol. We capture N transactions and
know that n of them were issued from Scontrol; k of them
are known to us. We discard transactions which are relayed
to us by less than 10 peers or which were last relayed to
us earlier than 30 seconds after the logging started (this likely
means their propagation started before the experiment, and the
relevant information is not recorded). For each transaction i,
we assign an a priori probability of having originated from
Scontrol: pi = n/N . For wallets with P2P broadcast, the
outline of our experiment is as follows.

1) establish parallel connections to a set of live peers, log
the timestamps of incoming messages;

2) launch two nodes Slearn and Scontrol;
3) issue two series of transactions (the learning and the

control sets) from Slearn and Scontrol respectively;
4) calculate the transaction correlation matrix w.r.t. the

weights of propagation times;
5) run the clustering algorithm with multiple sets of pa-

rameters and choose the best clustering by Rand score
on the “learning” set;

6) in the best clustering, assign the cluster weights propor-
tionally to the distribution of k known transactions from
Scontrol (transactions from Slearn get a zero probability
weight);

7) calculate the final adjusted anonymity score w.r.t. the
probability distribution among clusters;
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8) visualize the results as a heatmap.
The results for the Bitcoin testnet are presented in Figure 2.

In that experiment (November 2018), we tried to connect to
all available peers. We established around 64 connections on
average to 1129 out of 1142 peers from a fresh snapshot.
We logged the traffic for 20 minutes and captured inventory
messages for one block, 402 addresses, and 139 transactions.
Our learning set and control set consisted of 30 transactions
each, issued from a standard Bitcoin Core client.

The correlation matrix shows a block-diagonal structure, as
expected. Of the 30 transactions from the control set, 25 ended
up in one cluster, which also contained 7 unrelated transactions
(78% precision and 83% recall). Assume an adversary who
knows that some of the transactions originate from the victim
node. From the clustering picture, the adversary can deduct,
with a high level of confidence, which other transactions,
issued around that time, originate from the same node.

To validate our method for the case when the victim
issued transactions from a mobile device, we conducted an
experiment using a testnet version of a popular Mycelium
wallet for Android as the source of the transactions in the
control set. We established around 64 connections on average
to 1126 out of 1133 peers from a fresh snapshot. We logged
the traffic for 20 minutes and captured inventory messages for
3 blocks, 320 addresses, and 115 transactions.

The results for Mycelium are presented in Figure 3. The
first cluster contains all 28 control set transactions3, and
13 other transactions, which yields 100% precision and 68%
recall. Note that Mycelium does not connect directly to the
Bitcoin P2P network. Transactions are sent to a server via
TLS, and then broadcast by the node(s) maintained by the
wallet developers. This means that in a real-world scenario a
cluster corresponding to a wallet with a centralized broadcast
(the majority of mobile wallets) corresponds to transactions
issued by all users of this wallet in the relevant timeframe and
broadcast from a single node.

V. DISCUSSION

We now discuss the possible attack scenarios and counter-
measures.

Application-level cryptographic techniques, such as zero-
knowledge proofs in Zcash, cannot defend against our attack,
as we only consider transaction hashes and their propagation
times, ignoring their content.

A popular mitigation technique against networking-based
deanonymization attacks is to use anonymity overlay networks
such as Tor. In our case, this countermeasure is inefficient:
transactions issued by the same cryptocurrency node can be
linked by a global passive adversary even if the data was
transferred through Tor or another anonymity network before
being publicly broadcast. Tor helps to hide the relationship
between IP addresses of the originating node and the first node
to broadcast the transaction to the peer-to-peer network, but we

3One additional transaction from the control set was not captured by our
listening node.

Fig. 2: Bitcoin Core (testnet). Black dashes correspond to our
control set transactions.

Fig. 3: Mycelium (testnet)
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cluster transactions based on the first broadcaster’s entry nodes
(or nodes topologically close to those in terms of network
propagation times), not the IP addresses of the originating
node. Note that broadcasting transactions via Tor may even
introduce additional man-in-the-middle vulnerabilities [3] (the
situation is similar to the case of a light wallet described
below).

Below we distinguish three cases depending on the type
of the user’s node and wallet and suggest countermeasures
against our attack.

A. Full node with incoming connections (server)

A typical operator of a Bitcoin server is either a business
(wallet provider, exchange, etc), or an enthusiast willing to
donate their computing resources to help the network. In
the first case, the transaction relayed through the node may
originate from multiple users of this business, which also
harms their privacy. The full node operator may implement
the following countermeasures:
• Run the node with an increased number of outgoing

connections to dilute the quality of the topological fin-
gerprint;

• Use additional random delays on top of those imple-
mented in the node software;

• Drop connections to randomly chosen entry nodes and
establish new ones, constantly altering the set of entry
nodes;

• Give advice to users not to broadcast sensitive transac-
tions within a short period of time or from the same wallet
session.

B. Full node without incoming connections

Transactions originating from a full node without incoming
connections (ex. computer behind NAT) may be clustered
based on the set of entry nodes. In order to prevent that, the
user can re-launch the software after making a transaction,
such that each transaction would be broadcast through a new
set of entry nodes.

C. Light wallets

The majority of Bitcoin users use light wallets, i.e., they
delegate validation to other full node using simple payment
verification (SPV). From the networking perspective, most
light wallets, especially mobile, do not even connect to a P2P
network. Instead, they send transactions to the server of the
wallet provider via TLS, which in turn broadcasts them to
the P2P network4. Proposed countermeasures for light wallets
would be:
• Use wallets that connect to the actual P2P network and

broadcast transactions without relying on a centralized
server (e.g., Bitcoin wallet for Android);

4Apart from clustering, this poses an arguably more serious privacy threat,
which is outside the scope of this work: the wallet provider can log all user’s
transactions and link them to their IP address. Using Tor is not applicable
in this case, as the wallet servers will still be able to associate the user’s
transactions by other means (e.g., by making the wallet send a cookie along
with transactions).

• Use different light wallets for transactions not meant to
be linkable;

• If the above advice is inapplicable, at least choose a
popular light wallet to increase the anonymity set.

Cryptocurrency developers should introduce privacy-
enhancing measures on the network level, especially if the
currency is meant to be privacy-preserving. As our results
show, trickling and diffusion, as they are implemented in
Bitcoin and its forks, are not sufficient. A promising proposal
for anonymous peer-to-peer broadcast is Dandelion [25][7].

VI. RELATED WORK

Early research on cryptocurrency privacy mostly covered
Bitcoin public blockchain graph analysis.A popular mitigation
technique is mixing: users combine inputs in a joint trans-
action, making it harder for an adversary to track the flow
of coins. The major drawback of initial mixing proposals is
that users must agree to co-sign the transaction out-of-band.
Various mixing schemes have been proposed [4][24][12][22].
Gervais et al. [9] analyze the privacy implications of Bloom
filters in SPV wallets. Hussain et al. [10] propose a smart card
based security extension to Bitcoin wallets. Montanez [15]
analyze Bitcoin wallets for iOS and Android from the forensics
perspective.

Approaches to deanonymization using network analysis
developed from a simple “first relayer” heuristic [11] to
more sophisticated techniques: fingerprinting by entry set [2]
(while abusing the Bitcoin DoS-protection mechanism to pre-
vent the victim from connecting over Tor [3]), exploiting
peculiarities in the update mechanism for known address
database [14], discovering the network topology from tim-
ing analysis [16]. These techniques are being applied to
privacy-focused cryptocurrencies as well [20]. Neudecker and
Hartenstein [17] combine blockchain and network analysis to
cluster Bitcoin addresses and associate them with IP addresses.
Dandelion [25] and its improvement Dandelion++ [7] are
message propagation protocols for P2P networks designed to
prevent deanonymization attacks by introducing asymmetry in
message propagation.

VII. CONCLUSION

We proposed and tested a transaction clustering technique
based on propagation timing. We showed that a global passive
adversary can cluster transactions issued from one device
within a short time frame with relatively high accuracy.

Most alternative cryptocurrencies use similar networking
mechanics, many of them originating from forks of the Bit-
coin Core codebase. Out of the major alternative cryptocurren-
cies, Litecoin and Zcash directly inherit networking mechanics
from Bitcoin. Dash, being initially based on Bitcoin Core
code, utilizes many additional message types and uses a two-
tier network with masternodes transmitting messages along-
side usual nodes. Monero, a privacy-focused cryptocurrency
implemented independently of Bitcoin, uses a similar peer-
to-peer gossip protocol without trickling or diffusion. This
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suggests that our technique in addition to Bitcoin is applicable
for alternative cryptocurrencies as well.

We suggest implementing more strong anonymization tech-
niques on the networking level in Bitcoin and other cryptocur-
rencies. Cryptocurrency users should be aware of the issue and
not broadcast sensitive transactions within a short timeframe
using the same set of entry nodes.
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