
Deanonymization and linkability of cryptocurrency
transactions based on network analysis

Alex Biryukov
University of Luxembourg

alex.biryukov@uni.lu

Sergei Tikhomirov
University of Luxembourg

sergey.s.tikhomirov@gmail.com

Abstract—Bitcoin, introduced in 2008 and launched in 2009,
is the first digital currency to solve the double spending problem
without relying on a trusted third party. Bitcoin provides a way to
transact without any trusted intermediary, but its privacy guar-
antees are questionable. Despite the fact that Bitcoin addresses
are not linked to any identity, multiple deanonymization attacks
have been proposed. Alternative cryptocurrencies such as Dash,
Monero, and Zcash aim to provide stronger privacy by using
sophisticated cryptographic techniques to obfuscate transaction
data.

Previous work in cryptocurrency privacy mostly focused on ap-
plying data mining algorithms to the transaction graph extracted
from the blockchain. We focus on a less well researched vector
for privacy attacks: network analysis. We argue that timings of
transaction messages leak information about their origin, which
can be exploited by a well connected adversarial node. For
the first time, network level attacks on Bitcoin and the three
major privacy-focused cryptocurrencies have been examined.
We describe the message propagation mechanics and privacy
guarantees in Bitcoin, Dash, Monero, and Zcash. We propose a
novel technique for linking transactions based on transaction
propagation analysis. We also unpack address advertisement
messages (ADDR), which under certain assumptions may help
in linking transaction clusters to IP addresses of nodes. We
implement and evaluate our method, deanonymizing our own
transactions in Bitcoin and Zcash with a high level of accuracy.
We also show that our technique is applicable to Dash and
Monero. We estimate the cost of a full-scale attack on the Bitcoin
mainnet at hundreds of US dollars, feasible even for a low budget
adversary.

I. INTRODUCTION

Bitcoin was, and still to some extent is, misleadingly
referred to as an anonymous currency [42]. Indeed, unlike tra-
ditional financial systems, Bitcoin addresses are not tied to any
real-world identity at the protocol level, but this fact alone does
not guarantee strong privacy. Bitcoin transactions are broadcast
through a peer-to-peer network in cleartext; after being verified
by miners they are stored in a massively replicated shared
database (the blockchain). A common technique to improve
privacy in Bitcoin is to use a fresh address for every transaction
(generating addresses is only limited by the size of the 256-bit
key space). This piece of advice, often implemented in wallets,
is no panacea, as the relationships between transactions can
be inferred through blockchain analysis.

Multiple cryptographic techniques have been proposed to
address the Bitcoin privacy problem, from services on top
of the original protocols such as mixers to new alternative
cryptocurrencies such as Dash, Monero, and Zcash. Dash

relies on built-in background mixing powered by the so called
masternode network. Monero implements ring signatures and
confidential transactions. Zcash uses zero-knowledge proofs,
namely, zk-SNARKs (though the majority of transactions do
not take advantage of them due to heavy performance cost).
Zcash and Dash are based on a fork of the Bitcoin Core
codebase, while Monero is not.

Previous attacks on the privacy of cryptocurrency transac-
tions mostly employed some form of data analysis on the
transaction graph. We take another approach and analyze
propagation times of protocol messages to infer relationships
between transactions.

The ultimate goal of deanonymization is to reveal the re-
lationship between cryptocurrency transactions (or addresses)
and real-world identifiers, such as IP addresses. In our model,
the goal of the adversary in our model is to infer a connection
between a cryptocurrency transaction and the IP address of
a node which was the first to introduce it into the network.1

We rely on the core observation that a node can be uniquely
identified by its set of connected peers (entry nodes). Earlier
network-based deanonymization attacks [16] and [30] only
took into account the first node to propagate a given transaction
to the adversary. Our approach is more sophisticated. We
apply carefully chosen weight functions to message timing
information. This allows us to link transactions broadcast
from one node, even if all addresses involved are unrelated
(consequently, blockchain analysis would gain no insight).

Instead of associating transactions with IP addresses di-
rectly, we first cluster the transactions, and then try to assign
IP addresses to clusters. Even if the latter step gains no insight,
the clustering data used in combination with information
from other sources is useful for the attacker. Moreover, our
technique does not simply produce a binary decision (whether
two transactions are related), but also allows for manual visual
inspection of transaction clusters using heatmaps.

The rest of the paper is organized as follows. Section II pro-
vides an overview of the propagation mechanisms in various
cryptocurrencies. Section III describes our approach to trans-
action clustering based on propagation timing. We implement
and evaluate our technique on real-world cryptocurrencies.
We were able to cluster our own transactions in Bitcoin and

1Even though an IP address is not linked to a physical person, it can be
used to determine a relatively precise location of the device involved, and can
be linked to a real-world identity if the responsible ISP is compromised.

Zcash with high levels of precision and recall. In particular,
in the case of Zcash, we can cluster transactions involving
both transparent and shielded addresses. We also show that
our technique is applicable to Dash and Monero. We provide
rough calculations of the necessary resources and the monetary
cost of an attack on the Bitcoin mainnet. We discuss attack
scenarios for different types of wallets, and give a number
of recommendations for users who want to preserve their
privacy, as well as for developers of cryptocurrency protocols
and wallets who want to give users an easier way to do
so. Section IV provides an overview of related work, and
Section V summarizes and suggests future work.

II. BACKGROUND

A. Propagation of messages in cryptocurrency networks

Cryptocurrencies use P2P networks to disseminate mes-
sages. We now describe the relevant details on the networking
behavior of Bitcoin (most alternative cryptocurrencies inherit
these properties).

1) Address propagation: A newly launched node first per-
forms a DNS lookup of a few records hard-coded into the
software to discover the IP addresses of bootstrap nodes. It
then asks the bootstrap nodes for (a subset of) the list of
IP addresses of nodes known to them. Upon receiving the
lists, the new node establishes a preconfigured number of
connections with a random set of nodes, which we will refer
to as entry nodes. If the TCP port 83332 is open, a node allows
up to 117 incoming connections to be established (this number
can be overridden in the configuration).

After joining the network and establishing connections, a
node advertises its IP address (as seen from the Internet) in
an ADDR message to its neighbors. Upon receiving an ADDR
message, each node decides individually for each address
whether to relay it to one or two of its neighbors, depending
on reachability. A node re-advertises its address with random
delays, every 24 hours on average. Nodes may also at any time
query their neighbors for a list of addresses known to them
(GETADDR); the response is an ADDR message containing up
to 1000 addresses of peers recently seen on the network.

2) Transaction propagation: Propagation of transactions is
a three step process. A node which has a new transaction
advertises this fact to its neighbors with an INV (inventory)
message containing the transaction hash only. Upon receiving
an INV, each node decides whether to request the transaction
content. If the node does not yet have the transaction, it
replies with a GETDATA message and receives the transaction
contents in a TX message. Blocks are propagated in a similar
manner.

3) Randomization: A straightforward way to broadcast
messages in a P2P network is to relay them as soon as possible
to all neighboring peers. Recognizing that this approach may
harm privacy, Bitcoin developers introduced randomness in

2The default port for the Bitcoin mainnet. Other networks use other ports
by default: 18333 for the Bitcoin testnet, 8233 for Zcash, 18080 for Monero,
9999 for Dash.

this process. Based on the related work and the source code of
the major cryptocurrencies, we distinguish three propagation
mechanisms:

• Naı̈ve gossip: broadcast to all neighbors as soon as
possible (used in Monero);

• Trickling: for a number of fixed-length time periods,
broadcast to a new random subset of neighbors (used in
Zcash and Bitcoin pre-2015);

• Diffusion: broadcast to each neighbor after a random
delay (used in Dash and Bitcoin post-2015).

B. Alternative cryptocurrencies

We now provide a brief description of the three privacy
focused cryptocurrencies we consider.

1) Zcash: Zcash [6] implements the Zerocash proto-
col [14] [27] – an improvement of an earlier Zerocoin pro-
tocol [34]. It uses zk-SNARKs [15] to hide the transaction
information, while still allowing anyone to verify its correct-
ness. Zcash does not provide privacy by default as of late 2018:
zk-SNARKs are used only in a small minority of transactions
involving shielded addresses [29]. The majority of transactions
happen between transparent addresses and have no additional
privacy-preserving mechanisms compared to Bitcoin.

Zcash codebase was forked off Bitcoin core in Novem-
ber 2015 at version 0.11.2 (commit 7e27892). In 2015, Bitcoin
changed the network propagation mechanism from trickling to
diffusion [53] (commit included in version 0.12). According
to [26], this provided only marginal privacy improvements.
Zcash did not port those modifications and still uses trickling.

In October 2018, Zcash underwent an update code-named
Sapling [54], which greatly increased performance of shielded
transactions. This allows for shielded transactions to be sup-
ported in light wallets, including mobile ones.

2) Dash: A distinguishing feature of Dash [4] is a two-
tier architecture. Along with regular nodes, users may set up
so-called masternodes, which require a 1000 DASH collat-
eral (approximately 160 000 USD, at the time of writing).
The Dash network contained around 5000 masternodes in
late 2018. Masternodes [10] receive 45% of the mining reward
for providing additional services:

• PrivateSend – a privacy-enhancing transaction type,
where a random masternode deterministically chosen
based on the latest block hash matches users who wish
to mix their coins;

• InstantSend – a technique to increase merchants’ confi-
dence in accepting transactions without waiting for them
to be included in a block, where a random subset of
ten masternodes agrees on the “locked” set of inputs.

The Dash networking protocol is based on Bitcoin’s but sub-
stantially more complex: in addition to Bitcoin message types,
it contains 22 new ones related to masternode functionality [5].
Dash uses the diffusion mechanism ported from Bitcoin.

3) Monero: Monero [9] implements the CryptoNote proto-
col [50]. Monero is not based on the Bitcoin Core codebase.

2

The Monero community recognizes the threat of deanonymiza-
tion through network analysis [45][31][24][19]. The devel-
opers are integrating an I2P router into Monero (the Kovri
project [7]), but it is not yet deployed as of November 2018.
Monero does not have any broadcast randomization such
as trickling or diffusion.3Further inspection of the source
code and an answer on a Monero-related Q&A site reveals
that Monero nodes do not limit the number of incoming
connections by default [48]. Monero is the only one of the
three privacy-preserving currencies which is private by default:
users do not have to explicitly choose the “private” option
(such as a shielded address in Zcash and PrivateSend in
Dash). In October 2018, Monero version 0.13.0 introduced an
implementation of Bulletproofs – a cryptographic technique
which allowed greatly reduced transaction size (and hence
fees), which also, similar to Sapling in Zcash, is expected
to incentivize Monero adoption on devices with limited re-
sources [47].

III. OUR APPROACH

A. Our approach

1) Intuition: Our goal is to cluster transactions based on the
node which was the first to introduce them into the network.
Consider the first N nodes which relayed a transaction to our
listening node. We assign weights to IP addresses of nodes
depending on the propagation timestamps. Intuitively, a peer
that relays a new transaction to us quickly is likely to be
an entry node or closely connected to one. Our clustering
algorithm is based on the weight vectors of transactions.
We expect transactions originating from one node to yield
relatively well-correlated weight vectors.

Due to broadcast randomization, we do not expect all
transactions from one node to be well-correlated. But the
matrix of pairwise correlations exhibits special behavior which
would help us infer transactions clusters nevertheless. Consider
a node with eight entry nodes with IP addresses (p1 to p8)
making three transactions: tx1, tx2, tx3. If transactions were
broadcast in batch via the same subset of the entry nodes, their
weight vectors would be very similar. But due to diffusion or
trickling, the following scenario is more typical: tx1 quickly
relayed from p{1,2,3}, tx2 from p{3,4,5}, tx3 from p{5,6,7}. If
we considered only the first propagation, these transactions
would seem completely unrelated. But with weight vectors,
considering that those are sparse, the correlation between tx1

and tx2 and between tx2 and tx3 would be noticeable, which
would allow us to reveal not only the relationship between
these pairs but also among all three transactions. Note that this
technique is also applicable for transactions originating from a
light client (in this case, a cluster represents transactions from
multiple clients connected to the same full node).

2) Data collection and representation: We use a modified
Bitcoin network probing tool bcclient [40] to maintain
parallel connections to peers and log incoming messages:

3See relay_notify_to_all at https://github.com/monero-project/
monero/blob/master/src/p2p/net node.inl#L1515.

Fig. 1: Weight functions for three timestamp vectors

transaction hash, the IP which relayed it to us, and the
timestamp of this event.

We use Python scripts to extract the essential information
from the log, save it in a more compact JSON format, analyze
the data, and visualize the results. For each transaction, we
save a list of (t, IP) pairs, where t is a relative timestamp
(i.e., we subtract the timestamp of the first propagation of this
transaction from all its propagations).

3) Weight functions and clustering: Let tx be a transaction.
Let ptx = [ptx1 , ptx2 , ...ptxN] be the vector of the first N IP
addresses which relayed tx to us. Let ttx = [ttx1 , ttx2 , ...ttxN] be
the vector of the corresponding relative timestamps. For each
ptxi ∈ ptx, we assign a parameterized weight as follows:

wk(ptxi) = e−(t
tx
i /k)2

The weight function is chosen to reflect the decreasing
importance of every next broadcast. p1 is assigned the maximal
weight of 1.0 (note that t1 = 0 by definition); other nodes
receive lower weights. Our experiments show that this function
family yields better clustering (compared to 1/(kt) and e−kt).
The intuition is that it gives higher weights to a certain window
depending on k while exponentially decreasing outside of it.
Moreover, window size is adjusted for each vector.

For each ptx, we want to use such wk that gives sufficient
variance among the weight values. Weights quickly fall to
nearly zero if k is too low and stay close to one if k is high.
Let ttxmed be the median value in ttx (average of the high and
low medians if the length of ttx is even). We choose ktxopt
s.t. the weight of ttxmed would be 0.5:

ktxopt =
ttxmed√
− ln(0.5)

This choice of k distributes the weights for any ttx: they
neither stay close to one nor quickly fall to zero (see examples
in Figure 1). For each transaction, we evaluate the vector of
weights:

wtx = wktx
opt

(ttx)

Let X be the set of all transactions we consider. Let P be
the set of IP addresses of nodes which appeared in at least
one of p vectors in X:

3

https://github.com/monero-project/monero/blob/master/src/p2p/net_node.inl#L1515
https://github.com/monero-project/monero/blob/master/src/p2p/net_node.inl#L1515

P =
⋃

tx∈X
ptx

We define an extended weight vector vtx for each tx by
setting the weight of nodes in P\ptx to zero and sort the
values in the weight vectors w. r. t. the alphabetical order of
P . We then calculate a matrix where an element in i-th row
and j-th column is the Pearson correlation of the extended
weight vectors vtxi

and vtxj
. This matrix can supposedly be

transformed into a block-diagonal matrix with blocks (clusters)
corresponding to transaction sources.

To reveal the clusters, we use spectral co-clustering [21] im-
plemented in the Python sklearn.cluster.bicluster
module [46]. Given an input matrix A, the algorithm prepro-
cesses it as follows:

An = R1/2AC−1/2

Where R is the diagonal matrix with entry i equal to∑
j Aij , and C is the diagonal matrix with entry j equal to∑
i Aij .
The singular value decomposition of A provides the parti-

tions of rows and columns: An = UΣV T . The l = dlog2 ke
singular vectors provide the partitioning information. Let U
be a matrix with columns u2, . . . , ul+1, and similarly for V .
Then Z is defined as:

Z =

[
R−1/2 U
C−1/2 V

]
The rows of Z are clustered using the k-means algorithm.

B. Quality assessment

1) Measuring clustering quality: We use the Rand score as
an external metric of clustering quality, as described in [12]
(Section 4.2). The Rand score operates on pairs of elements
and reflects the proportion of “right decisions” regarding
whether to put a pair of transactions into one or different
clusters.
SS, SD, DS, and DD are numbers of transaction pairs

defined as follows:
• SS: same cluster, same category (two of our transactions

in the same cluster);4

• SD: same cluster, different category (our and foreign
transactions in the same cluster);

• DS: different cluster, same category (two of our transac-
tions in different clusters);

• DD: different cluster, different category (our and foreign
transactions in different clusters).

Note that this assessment only considers clusters with
“our” transactions, because we do not know whether any two
“foreign” transactions should have been assigned to the same
cluster:

R =
SS + DD

SS + SD + DS + DD

4In our case, there are only two categories: “our” and “foreign” transactions.

We further modify this metric by parameterizing it with
the minimal number of our transactions in a cluster required
to consider it in the calculation. In our experiments, we only
consider clusters with at least two of our transactions. With no
such threshold, large clusters with one of our transactions dis-
proportionately increase DD and bring the score close to 1.0,
which does not reflect the subjective amount of information
an adversary acquires.

2) Measuring the degree of deanonymization: To estimate
the success rate of the attack, we use a quality score based
on the anonymity degree proposed by Dı́az et al. [22]. The
anonymity degree is designed to measure the amount of
information an attacker gains compared to perfect anonymity
(where each user has an equal probability of being the orig-
inator of a given message). Let pi be the probability that a
transaction i originates from a given source Scontrol; N is the
total number of transactions. The entropy is calculated as:

H(X) = −
N∑
i=1

pilog2(pi)

The maximal entropy is:

HM = log2(N)

The anonymity degree is defined as:

d =
H(X)

HM

The anonymity degree does not reflect the fact that the
probability distribution obtained by the adversary may not
be well aligned with the true probability distribution. To
address this issue, we propose an adjusted anonymity degree.
First, we calculate the median square error e between our
probability distribution and the known true distribution (1 for
transactions from Scontrol and 0 for others), based on a subset
of transactions from the control set. The adjusted anonymity
degree is defined as follows:

dadj = 1− (1− e) ∗ (1− d)

To explain on two edge case examples: If e = 0 (the attacker
precisely predicted the distribution), dadj = d; if e = 1 (the
attacker’s distribution does not at all reflect the reality), dadj =
1 (the system retains full anonymity).

The assumptions of our model have their limitations. Our
clustering technique depends on a user issuing a series of
transactions in a relatively short time window of several
minutes (up to an hour), through the same set of entry nodes
(i.e. from the same session). If a user re-launches the client,
their transactions issued before and after this event would not
be linkable by our technique.

C. Experiment overview

Assume our goal is to cluster transactions originating from
one target source Scontrol. We capture N transactions and
know that n of them were issued from Scontrol; k of them
are known to us. For each transaction i, we assign an a priori

4

probability of having originated from Scontrol: pi = n/N . The
outline of our experiment is as follows.

1) collect a fresh list of live network peers;
2) establish a number of parallel connections to them, log

the timestamps of receiving INV and ADDR messages;
3) launch two nodes Slearn and Scontrol, so that their initial

ADDR advertisements would be logged;
4) issue two series of transactions (the learning and the

control sets) from Slearn and Scontrol respectively;
5) for each considered number of first propagations, calcu-

late the transaction correlation matrix;
6) run the clustering algorithm with various assumed aver-

age number of transactions per cluster;
7) choose the best clustering by Rand score on the “learn-

ing” set;
8) in the best clustering, assign the cluster weights propor-

tionally to the distribution of k known transactions from
Scontrol;

9) assign zero probability of being in Scontrol to transac-
tions from Slearn;

10) re-distribute the probability weight among transactions
in each cluster;

11) calculate the final adjusted anonymity score;
12) re-arrange the clusters such that large correlations would

be close to the diagonal (closely correlated clusters
should be close in the picture);

13) visualize the results as a heatmap.

D. Visualization

We use heatmaps to visualize the results. A heatmap is
a matrix where each row and each column represents a
transaction that we captured during an experiment. The color
of the square at the intersection of the k-th row and n-th
column represent the correlation of weight vectors of k-th and
n-th transactions (darker is higher). Note the the heatmap is
diagonally symmetric by definition (black squares along the
main diagonal reflect the fact that a transaction has a 1.0
correlation with itself).

Our assumption is that there exist a permutation of rows
and columns such that the highly correlated elements would be
close to the main diagonal and would exhibit a block-diagonal
structure, revealing possible relations between transactions
issued from the same node. In the figures below, ticks along
the axes indicate our transaction from the control set.

E. Evaluation

We evaluate our method by clustering our own transactions
in Bitcoin (testnet and mainnet) and Zcash. For these exper-
iments, we log the traffic (both INV and ADDR messages)
for 15 minutes. The anonymity degree calculated on our
own transactions indicates a substantial loss of privacy. For
Dash and Monero, we ran the clustering algorithm without
calculating an external quality metric. We obtained clearly
visible clusters, which indicated that our approach is applicable
for these cryptocurrencies as well.

1) Bitcoin testnet: We performed four experiments on
the Bitcoin testnet. For all experiments, our listening node
attempted to occupy up to 117 slots for all servers. We
performed three independent experiments for three listener lo-
cations and a fourth experiment where we use all three servers
simultaneously: we divide the fresh list of live peers into three
equal parts, distribute them among the three servers, and then
merge the three log files. The goal of the fourth experiment
was to measure the advantage an adversary may gain from
using geographically distributed servers. As listening nodes,
we used Amazon EC2 servers in three geographical locations:
Frankfurt (Germany), Tokyo (Japan), and North California (the
US). In all experiments, test transactions were issued from
computers located in Europe.

We issued two sets of test transactions (the learning and
the control sets) containing 30 transactions each. We denote
10 transactions out of the control set as “known” to estimate
the anonymity degree.

Note that the number of live peers collected by each of
the listeners is very close, which indicates that we do obtain a
complete view of the network. Note also that the number of re-
ceived transactions varies little between experiments, whereas
the number of ADDR messages is significantly higher in the
experiment with three listeners. This confirms our hypothesis
that address advertisements propagate through the network
more slowly than transactions and blocks. The number of
average available slots is independent of the location of the
listener. The anonymity degree is lower (i.e., better for the
attacker) in the Frankfurt experiment, which may be explained
by the fact that the nodes issuing test transactions were closer
to the listening nodes than in the other experiments. The
joint experiments which combined information from three
geographically distributed listeners gained the best results with
an anonymity degree of 0.63.

a) Estimating the original IP: We use the ADDR mes-
sages to determine (with some level of precision) the IP of
the node which issued the transactions in the control group.
In our experiments, we first launch the listener, and only
then launch the issuing nodes. This means that the listener
captures the ADDR messages issued by the issuing nodes
during bootstrapping. Address messages propagate through the
network more slowly than transactions, which are relayed to all
nodes’ neighbors with relatively small random delays. A node
listening to network traffic can therefore distinguish between
messages containing addresses of recently joined nodes and
re-broadcasts of older addresses messages. If an IP is relayed
from 1 or 2 nodes, which is most often the case, we assume
these IP addresses are old re-broadcasts. If an IP is relayed
from a higher number of nodes, we assume the node at
the relayed IP either has just joined the network or is re-
advertising its IP after an approximately 24 hours delay.

Our idea is to leverage the ADDR messages as follows. For
each cluster, we determine the IPs of the most “important”
nodes, i.e., nodes we assume are entry nodes of the transaction
originator. For each transaction in the cluster, we sum up the
weights of all IPs which relayed it to us. The top 10% of most

5

Fig. 2: Bitcoin testnet (California) Fig. 3: Bitcoin testnet (Tokyo)

Fig. 4: Bitcoin testnet (Frankfurt) Fig. 5: Bitcoin testnet (combined)

6

TABLE I: Experiments on Bitcoin testnet and Zcash. The * sign indicates results obtained in experiments where we only
connected to a subset of network nodes.

Network Listener location Anonymity degree Servers Avg free slots Tx INVs ADDRs
Bitcoin testnet California 0.83 1141 64 139 402
Bitcoin testnet Tokyo 0.80 1128 64 193 414
Bitcoin testnet Frankfurt 0.72 1137 64 172 403
Bitcoin testnet combined 0.63 1154 63 250 1321
Bitcoin mainnet Frankfurt 0.88 1000* 25* 3238 11300
Zcash Frankfurt 0.86 206 36 62 1086

weighted IPs are assumed to be the entry nodes. Looking at
propagation of ADDR messages, the intuition is that an ADDR
message relayed by a set of IPs which substantially intersects
with assumed entry nodes of cluster X is the IP address of
the node which issued the transactions. We define an IP to
“likely” correspond to the transactions originator if it was
relayed to us in an ADDR message by a set of IPs which overlap
with assumed entry nodes determined on the previous step.
Applying this technique to the Bitcoin testnet experiments, in
3 experiments out of 4 the right IP appeared in the top 5
most likely originator IPs for clusters which consist mostly
of control transactions. This result indicates that in addition
to being able to estimate with high accuracy whether given
two transactions were issued by the same node, an adversary
can narrow down the search for the IP of the transaction
source to a handful of IPs. This may give the attacker valuable
information, including the approximate geographical location
of the victim.

2) Bitcoin mainnet: For Bitcoin mainnet, we performed one
experiment with a listener located in Frankfurt. An experiment
on Bitcoin mainnet showed that transactions also exhibit the
“clustering” behavior, though the results are weaker because of
a much larger transaction rate and due to the fact that we only
connected to 1000 servers (asking for up to 50 connections).
We used learning and control transaction sets of 20 transac-
tions each; 5 transactions from the control set were assumed
“known” for anonymity degree calculation.

3) Zcash: For the Zcash mainnet, we performed one exper-
iment with a listener located in Frankfurt. The learning and
control sets consist of 20 and 18 transactions respectively;
8 out of 18 control transactions are shielded (from a t-
address to a z-address). We use 6 control transactions as
“known” for anonymity degree estimation. The Zcash network
is much smaller than the Bitcoin testnet. Moreover, Zcash
servers have far fewer free slots on average (36 against 64
on Bitcoin testnet). We notice that relatively many servers
only provide our listener with 1 – 10 slots. This may indicate
a larger share of “protected” nodes, i.e., nodes which are
configured (using firewalls or other network-level means) to
only provide a limited number of connections to each IP. Note
than a resourceful adversary may overcome this limitation by
purchasing additional IP addresses from a cloud provider.

Note that our attack does does not take into account trans-
action content or type. Consequently, our method applied for
Zcash allows clustering transactions involving both transparent

Fig. 6: Bitcoin mainnet

and shielded addresses (transactions from the control set which
involve shielded addresses are marked with longer ticks in the
figure).

4) Dash: We ran an experiment on the Dash mainnet
(connecting to 500 random nodes from the total of 3065,
asking for 30 slots). In addition to announcing transactions
and blocks, Dash uses the inventory mechanism for managing
the masternode network [1], which includes periodic pings of
masternodes to check whether they are functioning, managing
mixing transactions, voting for governance proposals, etc. Our
tool is not yet adapted for handling Dash-specific messages.
The logs show many Dash-specific inventory messages, which
do not later appear on block explorers (i.e., are not usual
transactions). In a 15-minute experiment we received 12 trans-
action inventory messages and 396 Dash-specific messages.
We ran our clustering algorithm two times: taking Dash-
specific messages into account (Figure 10), and considering
only usual transaction inventory messages (Figure 11).

In both cases, we obtained clearly visible clusters. These
preliminary results demonstrate a clear privacy concern, espe-

7

Fig. 7: Zcash

cially if network analysis is combined with deanonymization
attacks on Dash based on transaction graph analysis [28].

5) Monero: Contrary to Bitcoin, that allows spending a
transaction output before it is confirmed, Monero imposes
certain restrictions. A new output appears as “locked” until the
corresponding transaction gets 10 confirmations (20 minutes
at the target block time of 2 minutes) [23]. Though this is a
wallet-level restriction and not a protocol-level one, the major
implementations (the official desktop wallet and Monerujo
wallet for Android) support it. This means that the scenario
of our previous experiments is rather unrealistic: for example,
in order to issue 20 transactions within a 20 minute period, a
user must have 20 independent, “unlocked” transaction outputs
(each of which takes 20 minutes to create).

We check the suitability of our technique on Monero by
performing an experiment without our own transactions. The
goal of the experiment is to check whether we observe a
block-diagonal structure of the correlation matrix between
transaction propagation vectors.

We connected to 200 nodes (with a single connection per
node) and received 124 transactions in a 38 minute window
(see Figure 12).

The less clear picture compared to e.g. Bitcoin testnet may
be explained as follows:

• We establish connections with too few nodes (200, while
the total number of nodes is estimated at 1700-1800 [8]);

• The propagation mechanism is not optimized: there is no
INV – GETDATA – TX exchange, transactions are relayed
unconditionally to all neighbors, which blurs the picture.
On the other hand, an adversary connecting to nearly all
nodes is expected to gain a near-perfect insight into the

original broadcasters of transactions, as IP addresses of
transaction authors will most likely be among the first to
relay a transaction to the adversary.

Another peculiarity which makes our analysis more difficult is
that monerod connects to nodes relatively slowly (compared
to bcclient). In our experiment, while trying to connect to
200 nodes, we got 150 connections only after approximately
2 hours, 175 connections after 3 hours, 200 connections after
nearly 8 hours. We also notice that none of the hard-coded
DNS seeds resolves (as of mid-July 2018); the client falls
back to seed IP addresses (also hard-coded).

F. Estimation of costs for an attacker

We now estimate the resources required for a full-scale at-
tack on the Bitcoin mainnet. As of November 2018, the Bitcoin
mainnet consists of approximately 10 000 nodes. According
to our measurements, the average number of free slots is 43
(measured on 1000 random peers). According to the Bitcoin
protocol documentation [2], the size of an INV message is
“36x + const for message with x objects”. We assume an INV
for a single transaction requires 40 bytes. An average Bitcoin
transaction rate, as of November 2018, is around 250 000
transactions per day, or 2.89 tx/s. Assuming each connection
eventually relays each transaction, we arrive at the required
bandwidth for one connection slot as: 2.89 tx/s * 40 b/tx
= 115.6 b/s. A full-scale attack on Bitcoin mainnet would
require maintaining an average of 43 connections to 10 000
nodes, i.e., a total bandwidth of 115.6 b/s * 10000 nodes
* 43 slots/node = 49708000 b/s = 47.4 Mb/s = 379 Mbit/s.
An hour-long attack at this bandwidth will require receiving
approximately 167 GB of incoming traffic.

We may estimate the monetary cost of the attack based on
the costs of running a Bitcoin full node on a cloud server.
Various estimations put that cost at between $3 and $20 per
month [55][20] Bitcoin Core maintains 8 outgoing and accepts
up to 117 incoming connections by default. In our measure-
ments, an average Bitcoin server has 43 open slots. Assuming
it has a total of 125 slots, 125 - 43 = 82 slots eventually
get occupied. An adversary needs to maintain 10 000 * 43
= 430 000 connections, or 5244.0 times the bandwidth of a
regular node. A 30-days month is 720 hours. Considering all of
the above, we conclude that an estimated cost of an hour-long
attack is approximately 5244 / 720 = 7.3 times the monthly
cost of running a full node. That leads to an estimation of
bandwidth costs at $20 – 150. Even taking into account the
cost of computation and storage, the total cost of the attack is
on the order of hundreds of US dollars – well within reach of
even amateur adversaries, not to mention professional black-
hat hackers and nation states.

All our experiments on Bitcoin testnet and Zcash mainnet
cost $35 (this can probably be decreased by optimizing the
scripts, immediately copying the data to a local machine and
deleting it from the cloud, etc).

8

Fig. 8: Free slots: Bitcoin testnet Fig. 9: Free slots: Zcash mainnet

Fig. 10: Dash (Dash-specific messages and usual transactions)

G. Ethical considerations

All linkage experiments were done on our own transactions
and when possible on the testnets. The experiments on the
Bitcoin mainnet deliberately did not attempt to occupy all
connection slots, and operated only on a subset of 1000 nodes
(out of approximately 10 000). Logs from mainnet experiments
will be deleted.

H. Discussion and mitigations

1) Attack scenarios and countermeasures: We now discuss
the possible attack scenarios and countermeasures.

Fig. 11: Dash (usual transactions)

Application-level cryptographic techniques, such as zero-
knowledge proofs in Zcash, can not defend against our attack,
as we only consider transaction hashes and their propagation
times, ignoring their content.

A popular mitigation for deanonymization attacks based on
network analysis is to use anonymity overlay networks such
as Tor [11], or mix networks such as Loopix [39]. In our
case, this countermeasure is inefficient: transactions issued
by the same cryptocurrency node can be linked by a global
passive adversary even if the data was transferred through Tor
or other anonymity network before being publicly broadcast.

9

Fig. 12: Monero

Tor helps to hide the relationship between IP addresses of the
originating node and the first node to broadcast the transaction
to the peer-to-peer network, but we cluster transactions based
on the first broadcaster’s entry nodes (or nodes topologically
close to those in terms of network propagation times), not the
IP addresses of the originating node. Note that broadcasting
transactions via Tor may even introduce additional man-in-the-
middle vulnerabilities [17] (the situation is similar to the case
of a light wallet described below).

We distinguish three cases depending on the type of the
user’s wallet.

a) Full node with incoming connections (server): A
typical operator of a Bitcoin server is either a business (wallet
provider, exchange, etc), or an enthusiast willing to donate
their computing resources to help the network. In the first
case, the transaction relayed through the node may originate
from multiple users of this business, which also harms their
privacy. The full node operator may implement the following
countermeasures:
• Run the node with an increased number of outgoing

connections to dilute the quality of the topological fin-
gerprint;

• Use additional random delays on top of those imple-
mented in the node software;

• Drop connections to randomly chosen entry nodes and
establish new ones, constantly altering the set of entry
nodes;

• Give advice to users not to broadcast sensitive transac-
tions within a short period of time.
b) Full node without incoming connections: Transactions

originating from a full node without incoming connections (ex.

computer behind NAT) may be clustered based on the set of
entry nodes. In order to prevent that, the user can re-launch the
software after making a transaction, so that each transaction
would be broadcast through a new set of entry nodes.

c) Light wallets: The majority of Bitcoin users use light
wallets, i.e., they delegate validation to another full node
using simple payment verification (SPV). From the networking
perspective, most light wallets, especially mobile ones, do not
even connect to a P2P network. Instead, they send transactions
to the server of the wallet provider via TLS, which in turn
broadcasts them to the P2P network.5 Proposed countermea-
sures for light wallets would be:
• Use wallets that connect to the actual P2P network and

broadcast transactions without relying on a centralized
server (e.g., Bitcoin wallet for Android [3]);

• Use different light wallets for transactions not meant to
be linkable;

• If the above advice is inapplicable, at least choose a
popular light wallet to increase the anonymity set.

2) Recommendations for core developers: Cryptocurrency
developers should introduce privacy enhancing measures at the
network level, especially if the currency is meant to be privacy-
preserving. As our results show, trickling and diffusion, as they
are implemented in Bitcoin and its forks, are not sufficient. A
promising proposal for anonymous peer-to-peer broadcast is
Dandelion [51][25] (see Section IV for an overview).

IV. RELATED WORK

A. Privacy in cryptocurrencies

Most early research on security and privacy of cryptocur-
rencies only considered Bitcoin as the dominant cryptocur-
rency at that time and was primarily focused on blockchain
analysis [33][38][43]. Reid et al. [42] and Androulaki et
al. [13] provide an overview of privacy challenges in Bitcoin.
A popular mitigation, which does not require modifications to
the Bitcoin protocol, is mixing. A Bitcoin transaction spends
a number of unspent transaction outputs (UTXO) as inputs
and generates a number of new UTXOs. Mixing allows users
to create a joint transaction that combines all relevant inputs
and outputs, making it harder for an adversary to track the
flow of coins of a single user. The major drawback of this
scheme is that users must agree to co-sign the transaction using
additional means of communication. This process is unscalable
without coordination by a trusted third party. Bonneau et
al. [18] propose Mixcoin, a protocol to automate mixed
payments in Bitcoin and similar cryptocurrencies which in-
cludes an accountability mechanism to expose theft. Valenta et
al. [49] add a blind signature scheme to Mixcoin to prevent the
operator from spying on users. Alternative implementations of
mixing protocols include CoinJoin [32] and CoinShuffle [44].

5Apart from clustering, this poses an arguably more serious privacy threat,
which is outside the scope of this work: the wallet provider can log all users’
transactions and link them to their IP addresses. Using Tor is not applicable
in this case, as the wallet servers will still be able to associate a user’s
transactions by other means (e.g., by making the wallet send a cookie along
with transactions).

10

Quesnelle [41] proposes a method to link Zcash transac-
tion based on a heuristic extracted from real-world usage of
transparent and shielded addresses.

B. Network analysis

Koshy et al. [30] analyze Bitcoin’s anonymity through the
lens of P2P network properties. They propose a technique
for a global passive adversary to deanonymize users based
on transaction propagation times. The adversary aggregates
network traffic into tuples containing the Bitcoin address, the
first IP address to relay this transaction, and the transaction
identifier. For each transaction, the tuples are constructed for
each input and output. Each tuple is counted as a “vote” in
favor of a hypothesis that a certain IP “owns” (i.e., possesses
the private key of) a certain Bitcoin address. While this paper
provided valuable insights, it seems not to account for trickling
/ diffusion, which must have decreased the quality of the
proposed deanonymization algorithm.

Biryukov et al. [16] describe the networking properties
of Bitcoin and propose a multi-step attack for correlating
Bitcoin clients’ transactions with their IP addresses. The attack
proceeds as follows. Firstly, the attacker prevents clients from
using Tor by abusing the Bitcoin’s anti-DoS mechanism: by
sending invalid blocks or transactions through Tor it is possible
to make Bitcoin servers temporarily ban all Tor exit nodes (see
also [17]). Next, the attacker establishes multiple connections
to each of the servers and tracks which of them advertise an IP
address of the victim client. The intuition is that the client’s
entry nodes will be the ones to advertise its IP address to
the attacker (this is not guaranteed; the paper suggests ways
to reduce noise in the resulting data). After constructing a
mapping of client IP addresses to sets of their entry nodes,
the attacker listens to new transactions and correlates them
with the victim client, if they are broadcast from that client’s
entry nodes.

Miller et al. [35] exploit some peculiarities in the update
mechanism for a known address database (addrMan) in
the Bitcoin reference implementation to infer the underlying
graph structure. Each Bitcoin node maintains a database of
IP addresses of peers it knows, along with corresponding
timestamps intended to reflect the peer’s “freshness”. Unintu-
itively, at the time of writing (2015), Bitcoin nodes only update
timestamps for nodes they maintain outgoing connections with
(at each message received). For incoming connections, the
peer preserves the first timestamp relayed along with the
address. The authors implement a tool that takes advantage
of such rules to make quite an accurate guess of the topology
of the Bitcoin network. After an update of Bitcoin Core in
March 2015, this technique is no longer feasible.

Neudecker et al. [36] propose a timing analysis attack to
infer the network topology. Their approach is different from
the previous work (and similar to ours) in that it does not
use any side-channels, but only the timing of transaction
propagation. The real-world validation in the Bitcoin network
inferred network links at a substantial recall and precision. The
authors showed that an inappropriately parameterized trickling

mechanism can actually reduce the resistance to traffic analysis
compared to naı̈ve gossip (for the goal of learning the network
topology).

Wang and Pustogarov [52] conduct a measurement study of
Bitcoin to analyze the unreachable nodes (i.e., those behind
NATs and firewalls) and report, among other findings, that a
large share of Bitcoin transactions originate from only two
mobile applications.

Fanti et al. [26] study the anonymity properties of trickling
and diffusion. Despite the motivation to change the Bitcoin’s
propagation mechanism from trickling to diffusion, as the
study shows, this provided only a marginal privacy improve-
ment. The authors conclude that the key feature that enables
deanonymization in both trickling and diffusion is an inherent
symmetry: as messages spread through the network in a
circular fashion, a global adversary can estimate where the
center (i.e., the message source) is.

Dandelion [51] and its improvement Dandelion++ [25] are
message propagation protocols for P2P networks designed to
prevent deanonymization attacks. Its key idea is introducing
asymmetry: a message is first sent along a random path,
and only then broadcast gossip-style. Message propagation in
Dandelion++6 proceeds in two stages: the “stem” phase and
the “fluff” stage. In the stem phase, a new message is broadcast
along a random path in the anonymity graph: an approximately
regular random graph based on the same set of nodes as
the regular P2P network. In the fluff phase, the latest node
to receive the message disperses it using the regular gossip-
style broadcast. The authors show that the protocol achieves
much stronger anonymity than Bitcoin’s current propagation
mechanism, though at the cost of a several second propagation
delay and additional sensitivity to DoS attacks at stem phase.

Though the authors mention (Section 4.2) that some config-
urations of the protocol may be prone to transaction correlation
attacks, our approach is not suitable against Dandelion++. The
key feature that allows our well-connected listening node to
gather useful information is that nodes choose neighbors to
propagate messages at random, without distinguishing incom-
ing and outgoing connections. This means that by saturating
50% of a node’s connection slots we have a 50% chance to be
the first to receive a new transaction from it. In Dandelion++,
nodes choose neighbors for the stem phase propagation only
from outgoing connections. There is no obvious way to force a
remote peer to initiate a connection to us, therefore a malicious
node with many outgoing connections will not have any
advantage in the stem phase (it can only aggregate incoming
information while acting as a regular relay, which may gain
some but not much insight into possible transaction clusters).

Neudecker and Hartenstein [37] combine blockchain and
network analysis to cluster Bitcoin addresses and associate
them with IP addresses. They determine the originator of
a transaction as the first originator, using two independent
listening nodes and some heuristics to make the estimation
more precise. The authors conclude that for the majority of

6We focus on the latest, improved version of the protocol.

11

users network-based deanonymization is not a concern, though
a small percentage of users might be susceptible to attacks of
this type.

V. CONCLUSION AND FUTURE WORK

We study the state of anonymity of cryptocurrencies on the
network level. We describe and implement a novel kind of
transaction clustering based on the analysis of propagation
times. We implement and test our tool on four popular cryp-
tocurrencies: Bitcoin, Zcash, Dash, and Monero. Our results
indicate that many cryptocurrencies, including privacy-focused
ones, do not sufficiently defend against our attack: a low
budget adversary can link transactions initially broadcast from
the same node with a high degree of accuracy. We argue
that cryptocurrencies must defend against network analysis to
provide stronger privacy guarantees.

A. The applicability of the external quality metric

The adjusted anonymity degree, which we used as an
external quality metric, has limitations. In particular, we didn’t
account for transactions from clusters which did not also
contain at least one of our own transactions. The rationale
behind this is the lack of the ground truth for two “foreign”
transactions: we do not know whether they should be included
in the same cluster. Consequently, our quality metric may
poorly reflect the reality on large networks (such as the Bitcoin
mainnet), where our transactions make up only a small part of
the full network throughput. One direction of future research
may be deriving an anonymity metric which works better
under these circumstances.

B. Direct comparison of relay randomization techniques

As described in Section II, cryptocurrencies use different
relay randomization techniques aimed at improving privacy:
trickling, diffusion, or no randomization. A natural question
would be to measure the relative effectiveness of these meth-
ods. Unfortunately, we cannot use a direct comparison between
cryptocurrencies that use diffusion and trickling to make a
conclusion about relative effectiveness of these methods, as the
real-world networks also differ in many other parameters (such
as the number of nodes and transaction rate) that also influence
the attack results. A possible direction for future research may
be to quantify the effects of trickling and diffusion on privacy
properties of a Bitcoin-like cryptocurrency with respect to our
attack technique, holding all other parameters equal.

REFERENCES

[1] “Dash 0.12.0 release notes,” 2015, https://github.com/dashpay/dash/blob/
master/doc/release-notes/dash/release-notes-0.12.0.md.

[2] “Bitcoin protocol documentation,” 2018, https://en.bitcoin.it/wiki/
Protocol documentation.

[3] “Bitcoin wallet,” 2018, https://bitcoin.org/en/wallets/mobile/android/
bitcoinwallet/.

[4] “Dash is digital cash,” 2018, https://www.dash.org/.
[5] “Dash. protocol documentation - 0.12.1,” 2018, https://github.com/

dashpay/dash/blob/master/dash-docs/protocol-documentation.md.
[6] “Internet money,” 2018, https://z.cash/.
[7] “Kovri,” 2018, https://getkovri.org/.
[8] “Monero active nodes distribution,” 2018, https://monerohash.com/

nodes-distribution.html.

[9] “Monero. private digital currency,” 2018, https://getmonero.org/.
[10] “Understanding masternodes,” 2018, https://docs.dash.org/en/latest/

masternodes/understanding.html.
[11] “Tor,” 2019, https://www.torproject.org/.
[12] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of

extrinsic clustering evaluation metrics based on formal constraints,” Inf.
Retr., vol. 12, no. 4, pp. 461–486, 2009.

[13] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in Bitcoin,” in Financial Cryptography, ser.
Lecture Notes in Computer Science, vol. 7859. Springer, 2013, pp.
34–51, https://eprint.iacr.org/2012/596.

[14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
Bitcoin,” in IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2014, pp. 459–474, .

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von Neumann architecture,” in USENIX
Security Symposium. USENIX Association, 2014, pp. 781–796, http:
//zerocash-project.org/paper.

[16] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of
clients in Bitcoin P2P network,” in ACM Conference on Computer and
Communications Security. ACM, 2014, pp. 15–29, https://arxiv.org/
abs/1405.7418.

[17] A. Biryukov and I. Pustogarov, “Bitcoin over Tor isn’t a good idea,” in
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2015, pp. 122–134, https://arxiv.org/abs/1410.6079.

[18] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten, “Mixcoin: Anonymity for Bitcoin with accountable mixes,” in
Financial Cryptography, ser. Lecture Notes in Computer Science, vol.
8437. Springer, 2014, pp. 486–504.

[19] J. Cameron, “What privacy issues did Monero have and still has?” 2016,
https://monero.stackexchange.com/q/1495/4089.

[20] J. Connell, “How much does it cost to run a full Bitcoin node?” 2017,
https://news.bitcoin.com/cost-full-bitcoin-node/.

[21] I. S. Dhillon, “Co-clustering documents and words using bipartite
spectral graph partitioning,” in KDD. ACM, 2001, pp. 269–274.

[22] C. Dı́az, S. Seys, J. Claessens, and B. Preneel, “Towards measuring
anonymity,” in Privacy Enhancing Technologies, ser. Lecture Notes in
Computer Science, vol. 2482. Springer, 2002, pp. 54–68.

[23] dpzz, “What’s the difference between “balance” and “unlocked bal-
ance”?” 2017, https://monero.stackexchange.com/q/3262/4089.

[24] expez, “In what ways can a wallet connected to a malicious remote node
be abused?” 2016, https://monero.stackexchange.com/q/2962/4089.

[25] G. C. Fanti, S. B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava,
A. Miller, and P. Viswanath, “Dandelion++: Lightweight cryptocurrency
networking with formal anonymity guarantees,” in SIGMETRICS (Ab-
stracts). ACM, 2018, pp. 5–7, https://arxiv.org/abs/1805.11060.

[26] G. C. Fanti and P. Viswanath, “Anonymity properties of the Bitcoin P2P
network,” CoRR, vol. abs/1703.08761, 2017, https://arxiv.org/abs/1703.
08761.

[27] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” 2018, https://github.com/zcash/zips/blob/master/protocol/
protocol.pdf.

[28] H. A. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan,
“Blocksci: Design and applications of a blockchain analysis platform,”
CoRR, vol. abs/1709.02489, 2017, https://arxiv.org/abs/1709.02489.

[29] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn, “An empirical
analysis of anonymity in Zcash,” CoRR, vol. abs/1805.03180, 2018,
https://arxiv.org/abs/1805.03180.

[30] P. Koshy, D. Koshy, and P. D. McDaniel, “An analysis of
anonymity in Bitcoin using P2P network traffic,” in Financial
Cryptography, ser. Lecture Notes in Computer Science, vol. 8437.
Springer, 2014, pp. 469–485, https://pdfs.semanticscholar.org/c277/
62257f068fdbb2ad34e8f787d8af13fac7d1.pdf.

[31] manontheinside, “Does Monero protect against timing analysis?” 2016,
https://monero.stackexchange.com/q/2765/4089.

[32] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” 2013, https:
//bitcointalk.org/index.php?topic=279249.

[33] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: characterizing payments
among men with no names,” Commun. ACM, vol. 59, no. 4, pp. 86–93,
2016.

12

https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.12.0.md
https://github.com/dashpay/dash/blob/master/doc/release-notes/dash/release-notes-0.12.0.md
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://bitcoin.org/en/wallets/mobile/android/bitcoinwallet/
https://bitcoin.org/en/wallets/mobile/android/bitcoinwallet/
https://www.dash.org/
https://github.com/dashpay/dash/blob/master/dash-docs/protocol-documentation.md
https://github.com/dashpay/dash/blob/master/dash-docs/protocol-documentation.md
https://z.cash/
https://getkovri.org/
https://monerohash.com/nodes-distribution.html
https://monerohash.com/nodes-distribution.html
https://getmonero.org/
https://docs.dash.org/en/latest/masternodes/understanding.html
https://docs.dash.org/en/latest/masternodes/understanding.html
https://www.torproject.org/
https://eprint.iacr.org/2012/596
http://zerocash-project.org/paper
http://zerocash-project.org/paper
https://arxiv.org/abs/1405.7418
https://arxiv.org/abs/1405.7418
https://arxiv.org/abs/1410.6079
https://monero.stackexchange.com/q/1495/4089
https://news.bitcoin.com/cost-full-bitcoin-node/
https://monero.stackexchange.com/q/3262/4089
https://monero.stackexchange.com/q/2962/4089
https://arxiv.org/abs/1805.11060
https://arxiv.org/abs/1703.08761
https://arxiv.org/abs/1703.08761
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://arxiv.org/abs/1709.02489
https://arxiv.org/abs/1805.03180
https://pdfs.semanticscholar.org/c277/62257f068fdbb2ad34e8f787d8af13fac7d1.pdf
https://pdfs.semanticscholar.org/c277/62257f068fdbb2ad34e8f787d8af13fac7d1.pdf
https://monero.stackexchange.com/q/2765/4089
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249

[34] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from Bitcoin,” in IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2013, pp. 397–411, .

[35] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring,
and B. Bhattacharjee, “Discovering Bitcoin’s public topology and influ-
ential nodes,” et al., 2015, https://www.cs.umd.edu/projects/coinscope/
coinscope.pdf.

[36] T. Neudecker, P. Andelfinger, and H. Hartenstein, “Timing analysis
for inferring the topology of the Bitcoin peer-to-peer network,” in
UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld. IEEE Computer So-
ciety, 2016, pp. 358–367, https://dsn.tm.kit.edu/publications/files/323/
bitcoin timing analysis dsn.pdf.

[37] T. Neudecker and H. Hartenstein, “Could network information facilitate
address clustering in Bitcoin?” in Financial Cryptography Workshops,
ser. Lecture Notes in Computer Science, vol. 10323. Springer, 2017,
pp. 155–169.

[38] M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and anonymity
of the Bitcoin transaction graph,” Future Internet, vol. 5, no. 2, pp.
237–250, 2013.

[39] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis,
“The Loopix anonymity system,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, 2017,
pp. 1199–1216. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/piotrowska

[40] I. Pustogarov, “Bitcoin network probing tool,” 2017, https://github.com/
ivanpustogarov/bcclient.

[41] J. Quesnelle, “On the linkability of Zcash transactions,” CoRR, vol.
abs/1712.01210, 2017, https://arxiv.org/abs/1712.01210.

[42] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin
system,” in SocialCom/PASSAT. IEEE, 2011, pp. 1318–1326, https:
//arxiv.org/abs/1107.4524.

[43] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin
transaction graph,” in Financial Cryptography, ser. Lecture Notes in
Computer Science, vol. 7859. Springer, 2013, pp. 6–24.

[44] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical
decentralized coin mixing for Bitcoin,” in ESORICS (2), ser. Lecture
Notes in Computer Science, vol. 8713. Springer, 2014, pp. 345–364.

[45] rukoom, “Is Monero in I2P secure now, and how do I do it?” 2017,
https://monero.stackexchange.com/q/6264/4089.

[46] scikit learn, “Biclustering,” 2018, http://scikit-learn.org/stable/modules/
biclustering.html.

[47] R. Spagni, “Monero 0.13.0 “beryllium bullet” release,” 2018, https://
www.getmonero.org/2018/10/11/monero-0.13.0-released.html.

[48] user36303, “Does each node have a maximum number of peers?” 2016,
https://monero.stackexchange.com/a/1127/4089.

[49] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for
bitcoin,” in Financial Cryptography Workshops, ser. Lecture Notes in
Computer Science, vol. 8976. Springer, 2015, pp. 112–126.

[50] N. van Saberhagen, “Cryptonote v 2.0,” 2013, https://cryptonote.org/
whitepaper.pdf.

[51] S. B. Venkatakrishnan, G. C. Fanti, and P. Viswanath, “Dandelion:
Redesigning the Bitcoin network for anonymity,” POMACS, vol. 1, no. 1,
pp. 22:1–22:34, 2017, https://arxiv.org/abs/1701.04439.

[52] L. Wang and I. Pustogarov, “Towards better understanding of Bitcoin
unreachable peers,” CoRR, vol. abs/1709.06837, 2017, https://arxiv.org/
abs/1709.06837.

[53] P. Wuille, “Replace trickle nodes with per-node/message poisson de-
lays,” 2015, https://github.com/bitcoin/bitcoin/commit/10b88be.

[54] Zcash, “Sapling,” 2018, https://z.cash/upgrade/sapling.
[55] R. Zeyde, “Bitcoin full node on AWS free tier,” 2018, https://gist.github.

com/romanz/17ff716f13a34df49ff4.

13

https://www.cs.umd.edu/projects/coinscope/coinscope.pdf
https://www.cs.umd.edu/projects/coinscope/coinscope.pdf
https://dsn.tm.kit.edu/publications/files/323/bitcoin_timing_analysis_dsn.pdf
https://dsn.tm.kit.edu/publications/files/323/bitcoin_timing_analysis_dsn.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://github.com/ivanpustogarov/bcclient
https://github.com/ivanpustogarov/bcclient
https://arxiv.org/abs/1712.01210
https://arxiv.org/abs/1107.4524
https://arxiv.org/abs/1107.4524
https://monero.stackexchange.com/q/6264/4089
http://scikit-learn.org/stable/modules/biclustering.html
http://scikit-learn.org/stable/modules/biclustering.html
https://www.getmonero.org/2018/10/11/monero-0.13.0-released.html
https://www.getmonero.org/2018/10/11/monero-0.13.0-released.html
https://monero.stackexchange.com/a/1127/4089
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://arxiv.org/abs/1701.04439
https://arxiv.org/abs/1709.06837
https://arxiv.org/abs/1709.06837
https://github.com/bitcoin/bitcoin/commit/10b88be
https://z.cash/upgrade/sapling
https://gist.github.com/romanz/17ff716f13a34df49ff4
https://gist.github.com/romanz/17ff716f13a34df49ff4

	Introduction
	Background
	Propagation of messages in cryptocurrency networks
	Address propagation
	Transaction propagation
	Randomization

	Alternative cryptocurrencies
	Zcash
	Dash
	Monero

	Our approach
	Our approach
	Intuition
	Data collection and representation
	Weight functions and clustering

	Quality assessment
	Measuring clustering quality
	Measuring the degree of deanonymization

	Experiment overview
	Visualization
	Evaluation
	Bitcoin testnet
	Bitcoin mainnet
	Zcash
	Dash
	Monero

	Estimation of costs for an attacker
	Ethical considerations
	Discussion and mitigations
	Attack scenarios and countermeasures
	Recommendations for core developers

	Related work
	Privacy in cryptocurrencies
	Network analysis

	Conclusion and future work
	The applicability of the external quality metric
	Direct comparison of relay randomization techniques

	References

