Characterizations and enumerations of classes of quasitrivial *n*-ary semigroups

Jimmy Devillet

University of Luxembourg Luxembourg

in collaboraton with Miguel Couceiro

Part I: Quasitrivial semigroups

Quasitriviality

Definition

 $G: X^2 \to X$ is said to be *quasitrivial* (or *conservative*) if $G(x,y) \in \{x,y\}$ $x,y \in X$

Example. $G = \max_{\leq}$ on $X = \{1, 2, 3\}$ endowed with the usual \leq

・ロト・日本・日本・日本・日本・日本

Quasitriviality

Definition

 $G: X^2 \to X$ is said to be *quasitrivial* (or *conservative*) if $G(x,y) \in \{x,y\}$ $x,y \in X$

Example. $G = \max_{\leq}$ on $X = \{1, 2, 3\}$ endowed with the usual \leq

Quasitriviality

Definition

 $G: X^2 \to X$ is said to be *quasitrivial* (or *conservative*) if $G(x,y) \in \{x,y\}$ $x,y \in X$

Example. $G = \max_{\leq}$ on $X = \{1, 2, 3\}$ endowed with the usual \leq

Projections

Definition.

The projection operations $\pi_1 \colon X^2 \to X$ and $\pi_2 \colon X^2 \to X$ are respectively defined by

$$egin{array}{rll} \pi_1(x,y)&=&x,\qquad x,y\in X\ \pi_2(x,y)&=&y,\qquad x,y\in X \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Länger, 1980)		
Let $G: X^2 \to X$.		
G is associative and quasitrivial		
\$		
$\exists \precsim_G : G _{A \times B} = \begin{cases} \max_{\precsim_G} _{A \times B}, \\ \pi_1 _{A \times B} \text{ or } \pi_2 _A \end{cases}$	if $A \neq B$, $\forall A, B \in X / \sim_{\mathcal{G}}$ ×B, if $A = B$,	
$\boxed{\max_{\preccurlyeq} \pi_1 \text{ or }}$		

Theorem (Länger, 1980)		
Let $G: X^2 \to X$.		
G is associative and quasitrivial		
\$		
$\exists \precsim_G : G _{A \times B} = \begin{cases} max \\ \pi_1 \end{cases}$	$\begin{array}{ll} \underset{\prec_G}{\operatorname{ax}} _{A\times B}, & \text{if } A \neq B, \\ _{A\times B} \text{ or } \pi_2 _{A\times B}, & \text{if } A = B, \end{array} \forall A, B \in X/\sim_G \end{array}$	
$\begin{bmatrix} \max_{\prec} & \pi_1 \text{ or} \\ \pi_2 \end{bmatrix}$ $\begin{bmatrix} \pi_1 \text{ or} \\ \pi_2 \end{bmatrix} \max_{\prec}$		

▶ ▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへで

 $x \preceq y \quad \iff \quad |F^{-1}[x]| \leq |F^{-1}[y]|$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 $x \preceq y \quad \iff \quad |F^{-1}[x]| \leq |F^{-1}[y]|$

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ

Enumeration of associative and quasitrivial operations

 $k \in \mathbb{N}$

q(k): number of associative and quasitrivial operations on $\{1, \ldots, k\}$ (OEIS : A292932)

For any integers $0 \le m \le k$ the *Stirling number of the second kind* $\binom{k}{m}$ is defined as

$$\begin{cases} k \\ m \end{cases} = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} i^k.$$

Enumeration of associative and quasitrivial operations

Theorem (C.,D.,Marichal, 2019)

We have the closed-form expression

$$q(k) = \sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i} (-1)^{m} {k \choose m} {k-m \choose i} (i+m)!, \qquad k \ge 0.$$

q(0) = 1, q(1) = 1, q(2) = 4, q(3) = 20, q(4) = 138, ...

Enumeration of associative and quasitrivial operations

Theorem (C.,D.,Marichal, 2019)

We have the closed-form expression

$$q(k) = \sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i} (-1)^{m} {k \choose m} {k-m \choose i} (i+m)!, \qquad k \ge 0.$$

q(0) = 1, q(1) = 1, q(2) = 4, q(3) = 20, q(4) = 138, ...

Operations on $\{1, 2, 3\}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part II: Quasitrivial *n*-ary semigroups

 $n \in \mathbb{N}_{\geq 2}$

Definition

- $F\colon X^n \to X$ is said to be
 - quasitrivial if

 $F(x_1,\ldots,x_n) \in \{x_1,\ldots,x_n\}$ $x_1,\ldots,x_n \in X$

• associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1})$$

= $F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $1 \le i \le n-1$.

Example. $F(x, y, z) = x + y + z \pmod{2}$.

 $n \in \mathbb{N}_{\geq 2}$

Definition

- $F: X^n \to X$ is said to be
 - quasitrivial if

$$F(x_1,\ldots,x_n) \in \{x_1,\ldots,x_n\}$$
 $x_1,\ldots,x_n \in X$

• associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) = F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $1 \le i \le n-1$.

Example. $F(x, y, z) = x + y + z \pmod{2}$.

 $n \in \mathbb{N}_{\geq 2}$

Definition

- $F: X^n \to X$ is said to be
 - quasitrivial if

$$F(x_1,\ldots,x_n) \in \{x_1,\ldots,x_n\}$$
 $x_1,\ldots,x_n \in X$

• associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) = F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $1 \le i \le n-1$.

Example. $F(x, y, z) = x + y + z \pmod{2}$.

 $n \in \mathbb{N}_{\geq 2}$

Definition

- $F: X^n \to X$ is said to be
 - quasitrivial if

$$F(x_1,\ldots,x_n) \in \{x_1,\ldots,x_n\}$$
 $x_1,\ldots,x_n \in X$

• associative if

$$F(x_1, \dots, x_{i-1}, F(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) = F(x_1, \dots, x_i, F(x_{i+1}, \dots, x_{i+n}), x_{i+n+1}, \dots, x_{2n-1})$$

for all $x_1, \ldots, x_{2n-1} \in X$ and all $1 \le i \le n-1$.

Example. $F(x, y, z) = x + y + z \pmod{2}$.

Reducibility

Definition

 $F: X^n \to X$ and $G: X^2 \to X$ associative operations.

F is said to be *reducible to G* if

 $F(x_1,...,x_n) = G(x_1, G(x_2, G(..., G(x_{n-1}, x_n)...)))$

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ and $G'(x, y) = x + y + 1 \pmod{2}$

Reducibility

Definition

 $F: X^n \to X$ and $G: X^2 \to X$ associative operations.

F is said to be *reducible to G* if

$$F(x_1,\ldots,x_n)=G(x_1,G(x_2,G(\ldots,G(x_{n-1},x_n)\ldots)))$$

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ and $G'(x, y) = x + y + 1 \pmod{2}$

Reducibility

Definition

 $F: X^n \to X$ and $G: X^2 \to X$ associative operations.

F is said to be *reducible to G* if

$$F(x_1,...,x_n) = G(x_1, G(x_2, G(..., G(x_{n-1}, x_n)...)))$$

Example.

,

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ and $G'(x, y) = x + y + 1 \pmod{2}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Quasitrivial *n*-ary semigroups

Theorem (Ackerman 2011, Dudek and Mukhin 2006)

Every quasitrivial *n*-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

G(x, y) = x + y (mod 2) G'(x, y) = x + y + 1 (mod 2)

Quasitrivial *n*-ary semigroups

Theorem (Ackerman 2011, Dudek and Mukhin 2006)

Every quasitrivial *n*-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

G(x, y) = x + y (mod 2) G'(x, y) = x + y + 1 (mod 2)

Quasitrivial *n*-ary semigroups

Theorem (Ackerman 2011, Dudek and Mukhin 2006)

Every quasitrivial *n*-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.

Example.

$$F(x, y, z) = x + y + z \pmod{2}$$

 $G(x, y) = x + y \pmod{2}$ $G'(x, y) = x + y + 1 \pmod{2}$

Neutral elements

Definition

 $e \in X$ is said to be a *neutral element for F* if

$$F(x,e,\ldots,e)=F(e,x,e,\ldots,e)=\ldots=F(e,\ldots,e,x)=x,$$

for all $x \in X$

Example. $F(x_1, ..., x_n) = \sum_{i=1}^n x_i \pmod{n-1}$

Proposition

Every quasitrivial *n*-ary semigroup has at most two neutral elements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Neutral elements

Definition

 $e \in X$ is said to be a *neutral element for F* if

$$F(x, e, \ldots, e) = F(e, x, e, \ldots, e) = \ldots = F(e, \ldots, e, x) = x,$$

for all $x \in X$

Example.
$$F(x_1, ..., x_n) = \sum_{i=1}^n x_i \pmod{n-1}$$

Proposition

Every quasitrivial *n*-ary semigroup has at most two neutral elements.

Neutral elements

Definition

 $e \in X$ is said to be a *neutral element for F* if

$$F(x,e,\ldots,e)=F(e,x,e,\ldots,e)=\ldots=F(e,\ldots,e,x)=x,$$

for all $x \in X$

Example.
$$F(x_1, ..., x_n) = \sum_{i=1}^n x_i \pmod{n-1}$$

Proposition

Every quasitrivial *n*-ary semigroup has at most two neutral elements.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Uniqueness of a reduction

Proposition

Every quasitrivial *n*-ary semigroup has at most two neutral elements.

Theorem

- $F: X^n \to X$ associative and quasitrivial. TFAE
- (i) Any binary reduction of F is idempotent
- (ii) Any binary reduction of F is quasitrivial
- (iii) F has at most one binary reduction
- (iv) F has at most one neutral element

Uniqueness of a reduction

Proposition

Every quasitrivial *n*-ary semigroup has at most two neutral elements.

Theorem

- $F: X^n \to X$ associative and quasitrivial. TFAE
 - (i) Any binary reduction of F is idempotent
- (ii) Any binary reduction of F is quasitrivial
- (iii) F has at most one binary reduction
- (iv) F has at most one neutral element

Characterization of quasitrivial *n*-ary semigroups

Theorem

Let $F: X^n \to X$.

F is associative, quasitrivial, and has at most one neutral element

$$\label{eq:G} \begin{array}{l} \label{eq:G} \\ \exists \text{ a binary reduction } G \colon X^2 \to X \text{ of } F \text{ and } \precsim_G \text{ such that} \\ \\ G|_{A \times B} = \begin{cases} \max_{\precsim G} |_{A \times B}, & \text{ if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{ if } A = B, \end{cases} \quad \forall A, B \in X / \sim_G \end{cases}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Enumeration of quasitrivial *n*-ary semigroups

$$q(k) = \sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i} (-1)^{m} {k \choose m} {k-m \choose i} (i+m)!, \qquad k \ge 0.$$

 $q^n(k)$: number of associative and quasitrivial *n*-ary operations that have at most one neutral element on $\{1, \ldots, k\}$

Corollary We have $q^n(k) = q(k), \qquad k \ge 0.$

Enumeration of quasitrivial *n*-ary semigroups

$$q(k) = \sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i} (-1)^{m} {k \choose m} {k-m \choose i} (i+m)!, \qquad k \ge 0.$$

 $q^n(k)$: number of associative and quasitrivial *n*-ary operations that have at most one neutral element on $\{1, \ldots, k\}$

CorollaryWe have $q^n(k) = q(k), \quad k \ge 0.$

Final remarks

In http://orbilu.uni.lu/handle/10993/39337

- Characterization of the class of quasitrivial *n*-ary semigroups that have exactly two neutral elements
- 2 New integer sequences (http://www.oeis.org)
 - Number of quasitrivial *n*-ary semigroups that have no neutral element: A308352
 - Number of quasitrivial *n*-ary semigroups that have exactly two neutral elements: A308354
 - Number of quasitrivial *n*-ary semigroups: A308362 & A292932

Some references

N. L. Ackerman.

A characterization of quasitrivial *n*-semigroups. To appear in *Algebra Universalis*.

M. Couceiro, J. Devillet, and J.-L. Marichal.

Quasitrivial semigroups: characterizations and enumerations. Semigroup Forum, 98(3):472–498, 2019.

M. Couceiro and J. Devillet.

Every quasitrivial *n*-ary semigroup is reducible to a semigroup. http://orbilu.uni.lu/handle/10993/39337.

W. A. Dudek and V. V. Mukhin.

On *n*-ary semigroups with adjoint neutral element. *Quasigroups and Related Systems*, 14:163–168, 2006.

H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups. *Semigroup Forum*, 20:151–156, 1980.

N. J. A. Sloane (editor).

The On-Line Encyclopedia of Integer Sequences.

http://www.oeis.org