Characterizations and enumerations of classes of quasitrivial n-ary semigroups

Jimmy Devillet

University of Luxembourg
Luxembourg
in collaboraton with Miguel Couceiro

Part I: Quasitrivial semigroups

Quasitriviality

Definition

$G: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
G(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $G=$ max \leq on $X=\{1,2,3\}$ endowed with the usual \leq

Quasitriviality

Definition

$G: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
G(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $G=\max _{\leq}$on $X=\{1,2,3\}$ endowed with the usual \leq

Quasitriviality

Definition

$G: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
G(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $G=\max _{\leq}$on $X=\{1,2,3\}$ endowed with the usual \leq

Projections

Definition.

The projection operations $\pi_{1}: X^{2} \rightarrow X$ and $\pi_{2}: X^{2} \rightarrow X$ are respectively defined by

$$
\begin{array}{lll}
\pi_{1}(x, y)=x, & & x, y \in X \\
\pi_{2}(x, y)=y, & & x, y \in X
\end{array}
$$

Quasitrivial semigroups

Theorem (Länger, 1980)

Let $G: X^{2} \rightarrow X$.
G is associative and quasitrivial

$$
\exists \precsim G:\left.G\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim_{G}\right.
$$

Quasitrivial semigroups

Theorem (Länger, 1980)

Let $G: X^{2} \rightarrow X$.
G is associative and quasitrivial

$$
\exists \precsim_{G}:\left.G\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim_{G}}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim_{G}\right.
$$

Quasitrivial semigroups

Quasitrivial semigroups

Enumeration of associative and quasitrivial operations

$k \in \mathbb{N}$
$q(k)$: number of associative and quasitrivial operations on $\{1, \ldots, k\}$ (OEIS: A292932)

For any integers $0 \leq m \leq k$ the Stirling number of the second kind $\left\{\begin{array}{l}k \\ m\end{array}\right\}$ is defined as

$$
\left\{\begin{array}{l}
k \\
m
\end{array}\right\}=\frac{1}{m!} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} i^{k}
$$

Enumeration of associative and quasitrivial operations

Theorem (C.,D.,Marichal, 2019)

We have the closed-form expression

$$
q(k)=\sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i}(-1)^{m}\binom{k}{m}\left\{\begin{array}{c}
k-m \\
i
\end{array}\right\}(i+m)!, \quad k \geq 0
$$

$q(0)=1, q(1)=1, q(2)=4, q(3)=20, q(4)=138$,

Enumeration of associative and quasitrivial operations

Theorem (C.,D.,Marichal, 2019)

We have the closed-form expression

$$
q(k)=\sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i}(-1)^{m}\binom{k}{m}\left\{\begin{array}{c}
k-m \\
i
\end{array}\right\}(i+m)!, \quad k \geq 0
$$

$q(0)=1, q(1)=1, q(2)=4, q(3)=20, q(4)=138, \ldots$

Operations on $\{1,2,3\}$

Part II: Quasitrivial n-ary semigroups

Associativity and Quasitriviality

$n \in \mathbb{N}_{\geq 2}$

Definition

$F: X^{n} \rightarrow X$ is said to be - quasitrivial if

Associativity and Quasitriviality

$n \in \mathbb{N}_{\geq 2}$

Definition

$F: X^{n} \rightarrow X$ is said to be

- quasitrivial if

$$
F\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\} \quad x_{1}, \ldots, x_{n} \in X
$$

- associative if

for all $x_{1}, \ldots, x_{2 n-1} \in X$ and all $1 \leq i \leq n-1$

Associativity and Quasitriviality

$n \in \mathbb{N}_{\geq 2}$

Definition

$F: X^{n} \rightarrow X$ is said to be

- quasitrivial if

$$
F\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\} \quad x_{1}, \ldots, x_{n} \in X
$$

- associative if

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, F\left(x_{i}, \ldots, x_{i+n-1}\right), x_{i+n}, \ldots, x_{2 n-1}\right) \\
& \quad=F\left(x_{1}, \ldots, x_{i}, F\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{2 n-1} \in X$ and all $1 \leq i \leq n-1$.

Associativity and Quasitriviality

$n \in \mathbb{N}_{\geq 2}$

Definition

$F: X^{n} \rightarrow X$ is said to be

- quasitrivial if

$$
F\left(x_{1}, \ldots, x_{n}\right) \in\left\{x_{1}, \ldots, x_{n}\right\} \quad x_{1}, \ldots, x_{n} \in X
$$

- associative if

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, F\left(x_{i}, \ldots, x_{i+n-1}\right), x_{i+n}, \ldots, x_{2 n-1}\right) \\
& \quad=F\left(x_{1}, \ldots, x_{i}, F\left(x_{i+1}, \ldots, x_{i+n}\right), x_{i+n+1}, \ldots, x_{2 n-1}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{2 n-1} \in X$ and all $1 \leq i \leq n-1$.

Example. $F(x, y, z)=x+y+z(\bmod 2)$.

Reducibility

Definition

$F: X^{n} \rightarrow X$ and $G: X^{2} \rightarrow X$ associative operations.
F is said to be reducible to G if

Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

Reducibility

Definition

$F: X^{n} \rightarrow X$ and $G: X^{2} \rightarrow X$ associative operations.
F is said to be reducible to G if

$$
F\left(x_{1}, \ldots, x_{n}\right)=G\left(x_{1}, G\left(x_{2}, G\left(\ldots, G\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right)
$$

Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

Reducibility

Definition

$F: X^{n} \rightarrow X$ and $G: X^{2} \rightarrow X$ associative operations.
F is said to be reducible to G if

$$
F\left(x_{1}, \ldots, x_{n}\right)=G\left(x_{1}, G\left(x_{2}, G\left(\ldots, G\left(x_{n-1}, x_{n}\right) \ldots\right)\right)\right)
$$

Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

$$
G(x, y)=x+y(\bmod 2) \quad \text { and } \quad G^{\prime}(x, y)=x+y+1(\bmod 2)
$$

Quasitrivial n-ary semigroups

Theorem (Ackerman 2011, Dudek and Mukhin 2006)
Every quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.
Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

Quasitrivial n-ary semigroups

Theorem (Ackerman 2011, Dudek and Mukhin 2006)

Every quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.
Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

$$
G(x, y)=x+y(\bmod 2) \quad G^{\prime}(x, y)=x+y+1(\bmod 2)
$$

Quasitrivial n-ary semigroups

Theorem (Ackerman 2011, Dudek and Mukhin 2006)

Every quasitrivial n-ary semigroup is reducible to a semigroup.

But the binary reduction is not necessarily quasitrivial nor unique.
Example.

$$
F(x, y, z)=x+y+z(\bmod 2)
$$

$$
G(x, y)=x+y(\bmod 2) \quad G^{\prime}(x, y)=x+y+1(\bmod 2)
$$

Neutral elements

Definition

$e \in X$ is said to be a neutral element for F if

$$
F(x, e, \ldots, e)=F(e, x, e, \ldots, e)=\ldots=F(e, \ldots, e, x)=x
$$

for all $x \in X$
Example. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}(\bmod n-1)$

Neutral elements

Definition

$e \in X$ is said to be a neutral element for F if

$$
F(x, e, \ldots, e)=F(e, x, e, \ldots, e)=\ldots=F(e, \ldots, e, x)=x
$$

for all $x \in X$
Example. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}(\bmod n-1)$
Proposition
Every quasitrivial n-ary semigroup has at most two neutral elements.

Neutral elements

Definition

$e \in X$ is said to be a neutral element for F if

$$
F(x, e, \ldots, e)=F(e, x, e, \ldots, e)=\ldots=F(e, \ldots, e, x)=x,
$$

for all $x \in X$
Example. $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}(\bmod n-1)$

Proposition

Every quasitrivial n-ary semigroup has at most two neutral elements.

Uniqueness of a reduction

Proposition

Every quasitrivial n-ary semigroup has at most two neutral elements.

Theorem
$F: X^{n} \rightarrow X$ associative and quasitrivial. TFAE
(i) Any binary reduction of F is idempotent
(ii) Any binary reduction of F is quasitrivial
(iii) F has at most one binary reduction
(iv) F has at most one neutral element

Uniqueness of a reduction

Proposition

Every quasitrivial n-ary semigroup has at most two neutral elements.

Theorem

$F: X^{n} \rightarrow X$ associative and quasitrivial. TFAE
(i) Any binary reduction of F is idempotent
(ii) Any binary reduction of F is quasitrivial
(iii) F has at most one binary reduction
(iv) F has at most one neutral element

Characterization of quasitrivial n-ary semigroups

Theorem

Let $F: X^{n} \rightarrow X$.
F is associative, quasitrivial, and has at most one neutral element

$$
\Uparrow
$$

\exists a binary reduction $G: X^{2} \rightarrow X$ of F and $\precsim G$ such that

$$
\left.G\right|_{A \times B}= \begin{cases}\left.\max _{\precsim G}\right|_{A \times B}, & \text { if } A \neq B, \quad \forall A, B \in X / \sim_{G} \\ \left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,\end{cases}
$$

Enumeration of quasitrivial n-ary semigroups

$$
q(k)=\sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i}(-1)^{m}\binom{k}{m}\left\{\begin{array}{c}
k-m \\
i
\end{array}\right\}(i+m)!, \quad k \geq 0
$$

$q^{n}(k)$: number of associative and quasitrivial n-ary operations that have at most one neutral element on $\{1, \ldots, k\}$

Corollary

Enumeration of quasitrivial n-ary semigroups

$$
q(k)=\sum_{i=0}^{k} 2^{i} \sum_{m=0}^{k-i}(-1)^{m}\binom{k}{m}\left\{\begin{array}{c}
k-m \\
i
\end{array}\right\}(i+m)!, \quad k \geq 0 .
$$

$q^{n}(k)$: number of associative and quasitrivial n-ary operations that have at most one neutral element on $\{1, \ldots, k\}$

Corollary

We have

$$
q^{n}(k)=q(k), \quad k \geq 0 .
$$

Final remarks

In http://orbilu.uni.lu/handle/10993/39337
(1) Characterization of the class of quasitrivial n-ary semigroups that have exactly two neutral elements
(2) New integer sequences (http://www.oeis.org)

- Number of quasitrivial n-ary semigroups that have no neutral element: A308352
- Number of quasitrivial n-ary semigroups that have exactly two neutral elements: A308354
- Number of quasitrivial n-ary semigroups: A308362 \& A292932

Some references

N. L. Ackerman.

A characterization of quasitrivial n-semigroups.
To appear in Algebra Universalis.

M. Couceiro, J. Devillet, and J.-L. Marichal.

Quasitrivial semigroups: characterizations and enumerations.
Semigroup Forum, 98(3):472-498, 2019.

M. Couceiro and J. Devillet.

Every quasitrivial n-ary semigroup is reducible to a semigroup.
http://orbilu.uni.lu/handle/10993/39337.
W. A. Dudek and V. V. Mukhin.

On n-ary semigroups with adjoint neutral element.
Quasigroups and Related Systems, 14:163-168, 2006.
H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups.
Semigroup Forum, 20:151-156, 1980.
B
N. J. A. Sloane (editor).

The On-Line Encyclopedia of Integer Sequences.
http://www.oeis.org

