
Bridging the Gap between Requirements Modeling
and Behavior-driven Development, Supplementary

Materials
Mauricio Alferez∗, Fabrizio Pastore∗, Mehrdad Sabetzadeh∗, Lionel C. Briand∗†, Jean-Richard Riccardi§

∗SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
†School of Engineering and Computer Science, University of Ottawa, Canada

§Clearstream Services SA, Luxembourg
Email: {alferez, pastore, sabetzadeh, briand}@svv.lu, jean-richard.riccardi@clearstream.com

I. EXCERPT OF THE UML METAMODEL FOR ADS

Activity

ActivityNode

ActivityEdge

guard: ValueSpecification
ObjectFlow

ControlFlow

ActivityGroup
ActivityPartition

UseCases::Actor

TypedElement
ObjectNode

ActivityParameterNode

ExecutableNode

Action

OpaqueAction

Pin

OutputPin

InputPin

Constraint

ControlNode

AcceptEventAction

AcceptTimeEventAction
InitialNode FinalNode

ForkNode MergeNodeDecisionNode JoinNode

CallBehaviourAction

InvocationAction

ActivityGroup
InterruptibleActivityRegion

Behaviour

StructuredClassifiers::ClassInstanceSpecification

ValueSpecification
InstanceValue slot Property

FlowFinalNode

ActivityFinalNode

InterruptFlow

nodes * target

*

definingFeature

1

edges *
source

*
represents 0..1

inPartition

*

nodes

*

postconditions0..*

localPreconditions
0..1

output

*

input

*

behaviour

1

preconditions 0..*

value

owningSlot

interrupts

0..1

interruptingEdges*

ownedAttribute *

class 0..1owningInstance1
*

0..1
partitions
*

localPostconditions
0..1

* classifier

*

Fig. 1. Excerpt of the UML metamodel for Activity Diagrams

II. SELECTION OF CONCURRENT NODES

Selected concurrent sub-path
(or SelPath)

By Rule 1: 3 ≺ 5, 3 ≺ 4
By Rule 2: 7 ≺ 8, 4 ≺ 6
By Rule 3: 5 ≺ 7, 6 ≺ 8

1:Start

2 3:Parallel
Start 4

5

6

7 8:Parallel
End 9

10:Exit

p2 = [1, 2, 3, 4, 6, 5, 7, 8, 9, 10]
p3 = [1, 2, 3, 5, 4, 6, 7, 8, 9, 10]
p4 = [1, 2, 3, 5, 4, 7, 6, 8, 9, 10]
p5 = [1, 2, 3, 5, 7, 4, 6, 8, 9, 10]
p6 = [1, 2, 3, 4, 5, 7, 6, 8, 9, 10]

p1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]Set of
possible test

paths
respecting
precedence
relations

Precedence
relations

Next

Next

Next2

Next1

Next

Next

Next

Next

Next

Next

Selected
Test Path

Concurrent
sub-paths

Fig. 2. Obtaining a test path containing a selected concurrent sub-path

AGAC must take into account concurrent nodes. Therefore,
the nodes in a path should be either non-concurrent or concur-
rent nodes satisfying precedence relationships between them.
The precedence relation, denoted “≺”, is defined over a set of
nodes N in a test model, by the application of three rules:

Rule 1: If a node ni ∈ N precedes a ParallelStart node
p and nj ∈ N is the first node that exists in any thread
originating from p, then ni ≺ nj .

Rule 2: If a node nj ∈ N follows next after a ParallelEnd
node p and nk ∈ N is the last node in any thread joining with
p, then nk ≺ nj .

Rule 3: If a node ni ∈ N and other node nj ∈ N are two
consecutive concurrent nodes in a thread originating from a
ParallelStart node p where ni exists before nj in the thread,
then ni ≺ nj .

Figure 2 shows a simplified model composed of concur-
rent and non-concurrent nodes. The nodes in the subpaths
[1 , 2 , 3] and [8 , 9 , 10] are non-concurrent, and the nodes
in the subpaths [5 , 7] and [4 , 6] are concurrent. There are
six precedence rules in the graph G: 3 ≺ 5 , 3 ≺ 4 , 7 ≺ 8 ,
4 ≺ 6 , 5 ≺ 7 and 6 ≺ 8 . If we consider only the paths that
comply with the six precedence relations and traverse all the
nodes, we obtain 4 !/(2 ! ∗ 2 !) = 6 paths. This simple example
shows how easy it is to face an explosion of candidate test
paths. For example, if we add only one extra parallel subpath
with two nodes, we would have 6 !/(2 ! ∗ 2 ! ∗ 2 !) = 90 paths.
Moreover, the presence of loops and Condition nodes among
concurrent nodes results in even more paths and hence, it may
be impossible to consider all the possible test paths during
acceptance testing due to limited resources.

AGAC avoids the generation of the entire set of possible
test paths by selecting a concurrent subpath that maximizes
the number of threads interleavings by exercising, in sequence,
actions that belong to different threads (or SelPath). We select
SelPath as the one in which the sequence of concurrent
nodes corresponds to their breadth-first traversal since breadth-
first traversal, by construction, selects subsequent activities
belonging to different threads and ensures all precedence
relationships among the nodes. The precedence relationships
are satisfied because a breadth-first traversal of G starts at the
ParallelStart node, and explores all of the immediately next
nodes at the present depth prior to proceeding with the nodes
at the next depth level. In addition, AGAC enables engineers
to specify the maximum number of times a node belonging to
a loop should be visited.

1

III. GENERATED ACCEPTANCE CRITERIA IN GHERKIN
1 Feature: Perform a Settlement
2 Background:
3 Given SettlementPlatform.allInstances() -> forAll (t / t.isInitialised is equal ←↩

to true)
4 # The intent "Create" was identified by analyzing the inputs and outputs
5 @Intent: Create
6 Scenario: Send settlement Instruction
7 Given pInx of type Participant Settlement Ins does not exists in P of type ←↩

Participant
8 When P Send settlement Instruction
9 Then pInx exists in P

10 # The intent "Send" was identified by analyzing the verb
11 @Intent: Send
12 Scenario: Send settlement Instruction
13 Given pInx of type Participant Settlement Ins exists in P of type Participant
14 When P Send settlement Instruction
15 Then P sent pInx
16 # The intent "Create" was identified by analyzing the inputs and outputs
17 @Intent: Create
18 Scenario: Receive and Generate Instruction
19 Given Inx of type T2S Settlement Ins does not exists in T2S of type Settlement ←↩

Platform
20 When T2S Receive and Generate Instruction
21 Then Inx exists in T2S
22 And the property State of Inx is equal to "ToValidate"
23 # The intent "Receive" was identified by analyzing the verb
24 @Intent: Receive
25 Scenario: Receive and Generate Instruction
26 Given pInx of type Participant Settlement Ins does not exists in T2S of type ←↩

Settlement Platform
27 When T2S Receive and Generate Instruction
28 Then pInx exists in T2S
29 # The intent "Validate" was identified by analyzing the verb
30 @Intent: Validate
31 Scenario: Validate Ins
32 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
33 When T2S Validate Ins
34 Then T2S validated Inx
35 # Passed by the Condition node "Inx.State is equal to Valid"
36 # Passed by the Parallel Start node
37 # The intent "Update" was identified by analyzing the inputs and outputs
38 @Intent: Update
39 Scenario: Run Matching Process. Thread 1
40 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
41 And "Inx.State is equal to Valid" is True
42 And the property State of Inx is equal to "Valid"
43 When T2S Run Matching Process
44 Then the property State of Inx is equal to "Matched"
45 # Passed by the Merge node Merge2. Thread 2
46 # Passed by the Condition node "Inx.SettlementDate > T2S.CurrentDate". Thread 1
47 # The intent "Create" was identified by analyzing the inputs and outputs
48 @Intent: Create
49 Scenario: Send Notification. Thread 2
50 Given notif of type Participant Notification does not exists in T2S of type ←↩

Settlement Platform
51 And "Inx.SettlementDate > T2S.CurrentDate" is equal to "Yes"
52 When T2S Send Notification
53 Then notif exists in T2S
54 # The intent "Send" was identified by analyzing the verb
55 @Intent: Send
56 Scenario: Send Notification. Thread 2
57 Given notif of type Participant Notification exists in T2S of type Settlement ←↩

Platform
58 And "Inx.SettlementDate > T2S.CurrentDate" is equal to "Yes"
59 When T2S Send Notification
60 Then T2S sent notif
61 # Passed by the Event "Inx.SettlementDate starts". Thread 1
62 # The intent "Receive" was identified by analyzing the verb
63 @Intent: Receive
64 Scenario: Receive notification. Thread 2
65 Given notif of type Participant Notification does not exists in P of type ←↩

Participant
66 And the event "Inx.SettlementDate starts" happened
67 When P Receive notification
68 Then notif exists in P
69 # Passed by the Merge node Merge1. Thread 1
70 # Passed by the Exit node "FlowFinal". Thread 2
71 # The intent "Update" was identified by analyzing the inputs and outputs
72 @Intent: Update
73 Scenario: Settle Instruction. Thread 1
74 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
75 And the property State of Inx is equal to "Matched"
76 When T2S Settle Instruction
77 Then the property State of Inx is equal to "Settled"
78 # Passed by the Merge node Merge2. Thread 1
79 # The intent "Create" was identified by analyzing the inputs and outputs
80 @Intent: Create
81 Scenario: Send Notification. Thread 1
82 Given notif of type Participant Notification does not exists in T2S of type ←↩

Settlement Platform
83 When T2S Send Notification
84 Then notif exists in T2S
85 # The intent "Send" was identified by analyzing the verb
86 @Intent: Send
87 Scenario: Send Notification. Thread 1
88 Given notif of type Participant Notification exists in T2S of type Settlement ←↩

Platform
89 When T2S Send Notification
90 Then T2S sent notif
91 # The intent "Receive" was identified by analyzing the verb
92 @Intent: Receive
93 Scenario: Receive notification. Thread 1
94 Given notif of type Participant Notification does not exists in P of type ←↩

Participant
95 When P Receive notification
96 Then notif exists in P
97 # Passed by the Exit node "FlowFinal". Thread 1

Listing 1. Acceptance criterion related to path p1

1 Feature: Perform a Settlement
2 Background:
3 Given SettlementPlatform.allInstances() -> forAll (t / t.isInitialised is equal ←↩

to true)
4 # The intent "Create" was identified by analyzing the inputs and outputs
5 @Intent: Create
6 Scenario: Send settlement Instruction
7 Given pInx of type Participant Settlement Ins does not exists in P of type ←↩

Participant
8 When P Send settlement Instruction
9 Then pInx exists in P

10 # The intent "Send" was identified by analyzing the verb
11 @Intent: Send
12 Scenario: Send settlement Instruction
13 Given pInx of type Participant Settlement Ins exists in P of type Participant
14 When P Send settlement Instruction
15 Then P sent pInx
16 # The intent "Create" was identified by analyzing the inputs and outputs
17 @Intent: Create
18 Scenario: Receive and Generate Instruction
19 Given Inx of type T2S Settlement Ins does not exists in T2S of type Settlement ←↩

Platform
20 When T2S Receive and Generate Instruction
21 Then Inx exists in T2S
22 And the property State of Inx is equal to "ToValidate"
23 # The intent "Receive" was identified by analyzing the verb
24 @Intent: Receive
25 Scenario: Receive and Generate Instruction
26 Given pInx of type Participant Settlement Ins does not exists in T2S of type ←↩

Settlement Platform
27 When T2S Receive and Generate Instruction
28 Then pInx exists in T2S
29 # The intent "Validate" was identified by analyzing the verb
30 @Intent: Validate
31 Scenario: Validate Ins
32 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
33 When T2S Validate Ins
34 Then T2S validated Inx
35 # Passed by the Condition node "Inx.State is equal to Valid"
36 # Passed by the Parallel Start node
37 # The intent "Update" was identified by analyzing the inputs and outputs
38 @Intent: Update
39 Scenario: Run Matching Process. Thread 1
40 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
41 And "Inx.State is equal to Valid" is True
42 And the property State of Inx is equal to "Valid"
43 When T2S Run Matching Process
44 Then the property State of Inx is equal to "Matched"
45 # Passed by the Merge node Merge2. Thread 2
46 # Passed by the Condition node "Inx.SettlementDate > T2S.CurrentDate". Thread 1
47 # The intent "Create" was identified by analyzing the inputs and outputs
48 @Intent: Create
49 Scenario: Send Notification. Thread 2
50 Given notif of type Participant Notification does not exists in T2S of type ←↩

Settlement Platform
51 And "Inx.SettlementDate > T2S.CurrentDate" is equal to "No"
52 When T2S Send Notification
53 Then notif exists in T2S
54 # The intent "Send" was identified by analyzing the verb
55 @Intent: Send
56 Scenario: Send Notification. Thread 2
57 Given notif of type Participant Notification exists in T2S of type Settlement ←↩

Platform
58 And "Inx.SettlementDate > T2S.CurrentDate" is equal to "No"
59 When T2S Send Notification
60 Then T2S sent notif
61 # Passed by the Merge node Merge1. Thread 1
62 # The intent "Receive" was identified by analyzing the verb
63 @Intent: Receive
64 Scenario: Receive notification. Thread 2
65 Given notif of type Participant Notification does not exists in P of type ←↩

Participant
66 When P Receive notification
67 Then notif exists in P
68 # The intent "Update" was identified by analyzing the inputs and outputs
69 @Intent: Update
70 Scenario: Settle Instruction. Thread 1
71 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
72 And the property State of Inx is equal to "Matched"
73 When T2S Settle Instruction
74 Then the property State of Inx is equal to "Settled"
75 # Passed by the Exit node "FlowFinal". Thread 2
76 # Passed by the Merge node Merge2. Thread 1
77 # The intent "Create" was identified by analyzing the inputs and outputs
78 @Intent: Create
79 Scenario: Send Notification. Thread 1
80 Given notif of type Participant Notification does not exists in T2S of type ←↩

Settlement Platform
81 When T2S Send Notification
82 Then notif exists in T2S
83 # The intent "Send" was identified by analyzing the verb
84 @Intent: Send
85 Scenario: Send Notification. Thread 1
86 Given notif of type Participant Notification exists in T2S of type Settlement ←↩

Platform
87 When T2S Send Notification
88 Then T2S sent notif
89 # The intent "Receive" was identified by analyzing the verb
90 @Intent: Receive
91 Scenario: Receive notification. Thread 1
92 Given notif of type Participant Notification does not exists in P of type ←↩

Participant
93 When P Receive notification
94 Then notif exists in P
95 # Passed by the Exit node "FlowFinal". Thread 1

Listing 2. Acceptance criterion related to path p2

2

1 Feature: Perform a Settlement
2 Background:
3 Given SettlementPlatform.allInstances() -> forAll (t / t.isInitialised is equal ←↩

to true)
4 # The intent "Create" was identified by analyzing the inputs and outputs
5 @Intent: Create
6 Scenario: Send settlement Instruction
7 Given pInx of type Participant Settlement Ins does not exists in P of type ←↩

Participant
8 When P Send settlement Instruction
9 Then pInx exists in P

10 # The intent "Send" was identified by analyzing the verb
11 @Intent: Send
12 Scenario: Send settlement Instruction
13 Given pInx of type Participant Settlement Ins exists in P of type Participant
14 When P Send settlement Instruction
15 Then P sent pInx
16 # The intent "Create" was identified by analyzing the inputs and outputs
17 @Intent: Create
18 Scenario: Receive and Generate Instruction
19 Given Inx of type T2S Settlement Ins does not exists in T2S of type Settlement ←↩

Platform
20 When T2S Receive and Generate Instruction
21 Then Inx exists in T2S
22 And the property State of Inx is equal to "ToValidate"
23 # The intent "Receive" was identified by analyzing the verb
24 @Intent: Receive
25 Scenario: Receive and Generate Instruction
26 Given pInx of type Participant Settlement Ins does not exists in T2S of type ←↩

Settlement Platform
27 When T2S Receive and Generate Instruction
28 Then pInx exists in T2S
29 # The intent "Validate" was identified by analyzing the verb
30 @Intent: Validate
31 Scenario: Validate Ins
32 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
33 When T2S Validate Ins
34 Then T2S validated Inx
35 # Passed by the Condition node "Inx.State is equal to Valid"
36 # The intent "Update" was identified by analyzing the inputs and outputs
37 @Intent: Update
38 Scenario: Process Instruction Rejection
39 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
40 And "Inx.State is equal to Valid" is False
41 When T2S Process Instruction Rejection
42 Then the property State of Inx is equal to "Rejected"
43 # Passed by the Merge node Merge2
44 # The intent "Create" was identified by analyzing the inputs and outputs
45 @Intent: Create
46 Scenario: Send Notification
47 Given notif of type Participant Notification does not exists in T2S of type ←↩

Settlement Platform
48 When T2S Send Notification
49 Then notif exists in T2S
50 # The intent "Send" was identified by analyzing the verb
51 @Intent: Send
52 Scenario: Send Notification
53 Given notif of type Participant Notification exists in T2S of type Settlement ←↩

Platform
54 When T2S Send Notification
55 Then T2S sent notif
56 # The intent "Receive" was identified by analyzing the verb
57 @Intent: Receive
58 Scenario: Receive notification
59 Given notif of type Participant Notification does not exists in P of type ←↩

Participant
60 When P Receive notification
61 Then notif exists in P
62 # Passed by the Exit node "FlowFinal"

Listing 3. Acceptance criterion related to path p3

1 Feature: Perform a Settlement
2 # The intent "Interrupt" was identified by analyzing the region and type of the ←↩

outgoing flow of the event
3 @Intent: Interrupt
4 Scenario: X days passed
5 Given Run Matching Process is running in T2S of type Settlement Platform
6 When the event "X days passed" happens in T2S
7 Then Run Matching Process is interrupted in T2S
8 # The intent "Update" was identified by analyzing the inputs and outputs
9 @Intent: Update

10 Scenario: Process Instruction Rejection
11 Given Inx of type T2S Settlement Ins exists in T2S of type Settlement Platform
12 When T2S Process Instruction Rejection
13 Then the property State of Inx is equal to "Rejected"
14 # Passed by the Merge node Merge2
15 # The intent "Create" was identified by analyzing the inputs and outputs
16 @Intent: Create
17 Scenario: Send Notification
18 Given notif of type Participant Notification does not exists in T2S of type ←↩

Settlement Platform
19 When T2S Send Notification
20 Then notif exists in T2S
21 # The intent "Send" was identified by analyzing the verb
22 @Intent: Send
23 Scenario: Send Notification
24 Given notif of type Participant Notification exists in T2S of type Settlement ←↩

Platform
25 When T2S Send Notification
26 Then T2S sent notif
27 # The intent "Receive" was identified by analyzing the verb
28 @Intent: Receive
29 Scenario: Receive notification
30 Given notif of type Participant Notification does not exists in P of type ←↩

Participant
31 When P Receive notification
32 Then notif exists in P

33 # Passed by the Exit node "FlowFinal"

Listing 4. Acceptance criterion related to path p4

3

	Excerpt of the UML metamodel for ADs
	Selection of concurrent nodes
	Generated Acceptance Criteria in Gherkin

