Lack of separation of scales A view from reduced order modelling and homogenisation

First Benelux Workshop on damage and fracture ESIS2019

Ahmad Akbari - Lars Beex - Stéphane P.A. Bordas* - Olivier Goury - Pierre Kerfriden - Chen Li Thierry Massart - Ludovic Noels - Soumianarayanan Vijayaraghavan

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Antwerp 20190512

Slides can be downloaded here <u>http://hdl.handle.net/10993/39442</u>

Computed in Luxembourg

Computational Sciences Luxembourg

Download these slides at: http://hdl.handle.net/10993/35135

UNIVERSITÉ DU LUXEMBOURG

Department of Computational Engineering & Sciences

©

2200

You can download these slides here: http://hdl.handle.net/10993/31720

You can download these slides here: http://hdl.handle.net/10993/31720

Fracture of 'homogeneous' materials

Question: when should a structure be inspected for flaws?

SPAB and B. Moran, Engineering Fracture Mechanics, 2006 V.P. Nguyen et al. XFEM C++ Library IJNME, 2007 *Industrial applications of extended finite element methods* See also E. Wyart et al, EFM, IJNME, 2008

Fracture of homogeneous materials

Question: How to control accuracy and simplify/avoid meshing?

X. Peng et al. IJNME 2016, CMAME 2017 Enriched Isogeometric Boundary Elements *How to avoid meshing completely for crack propagation simulations?*

K. Agathos et al. IJNME 2016, CMAME 2016, IJNME 2017, CMAME 2017 with Eleni Chatzi and Giulio Ventura *How can we use large enrichment radii? How can we control conditioning in largescale enriched FEM? How can we use higher order terms in the expansion?*

Stéphane P.A. BORDAS

Download these slides at: https://orbilu.uni.lu/handle/10993/37921

(Goal oriented) adaptive computational fracture: use h-refinement

With CENAERO

Before: mesh "finely" in the region where the crack is "expected" to propagate

Y. Jin, O. Pierard, et al. Comput. Methods Appl. Mech. Engrg. 318 (2017) 319–348
O.A. González-Estrada et al. Computers and Structures 152 (2015) 1–10
O.A. González-Estrada et al. Comput Mech (2014) 53:957–976
C. Prange et al. IJNME 91.13 (2012): 1459-1474.
M. Duflot, SPAB, IJNME 2007, CNME 2007, IJNME 2008.
J-J. Ródenas Garcia, IJNME 2007

F.B. Barros, et allJNME 60.14 (2004): 2373-2398.

M. Rüter CMECH (2013) 1;52(2):361-76.
J. Panetier IJNME 81.6 (2010): 671-700.
P. Hild, CMECH (2010): 1-28.

Motivation

Fracture of homogeneous materials: error estimation and adaptivity with CENAERO

After: determine mesh refinement adaptively using a (goal-oriented) error estimate

Y. Jin, O. Pierard, et al. Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation Comput. Methods Appl. Mech. Engrg. 318 (2017) 319–348 M. Duflot, SPAB, IJNME 2007, CNME 2007, IJNME 2008.

Discretization: XFEM

Plate with 300 cracks vertical extension BCs

Energy-minimal crack growth using XFEM

Sutula et al. Preprint of three part EFM paper at http://hdl.handle.net/10993/29414

Stéphane P.A. BORDAS

Download these slides at: https://orbilu.uni.lu/handle/10993/37921

Stéphane P.A. BORDAS

Download these slides at: https://orbilu.uni.lu/handle/10993/37921

Real-time simulations with XFEM

Bilger et al, MICCAI, 2011

Courtecuisse et al, Med. Image Anal., 2014

Talbot et al, SIGGRAPH, 2015

Hamzé et al, Comput. Med. Imag. Grap. 2015

H.P. Bui

14

Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg

Brain shift and electrode implantation

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.

Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg

Wilbur and Orville Wright

Wright Flyer 10:35am Dec 17, 1903

Wilbur and Orville Wright

- On Dec 14 Wilbur won the coin toss, made the first attempt and stalled
- Orville made the first flight on Dec. 17
- 12 seconds & 120 ft

Aircraft safety

20,000 years

Worldwide statistics

[1959-2001] 1,307 commercial jet aircraft losses

Today: 1 accident per 1,000,000 departures

Accident rates and fatalities/year

Accident rates and fatalities/year

Source: Flight Safety Foundation/Boeing Commercial Airplane Group

Learning from intuition & theory

-en 8 in 7.5 28-31 1312= = 32.5

Franklin Institute Science Museum. Wilbur Wright's handwriting

Learning from experience

Increased practical understanding of mechanics — in particular fracture and fatigue

Novel convertible aircraft

Learning from experience

The Liberty Ships

Learning from experience

teaching...

New materials for more payload

Introduction of composite materials have reduced the weight of structures by 20%

Continuous Fibers

Over 1,000km savin of 8,660kg of fuel [A340-300]

Particles

Discontinuous Fibers, Whiskers

Fabric, Braid, Etc.

Material complexity

Material complexity

- Heterogeneous & multifunctional
- Experiments required to attain sufficient confidence in their behavior are increasingly costly

- Heterogeneous & multifunctional
- Experiments required to attain sufficient confidence in their behavior are increasingly costly
 - Factor-of-Safety or probabilistic based methods cannot handle unknown unknowns

 Lack of similitude between testing (experimental) and operating conditions — also encountered in geophysics...

- Heterogeneous & multifunctional
- Experiments required to attain sufficient confidence in their behavior are increasingly costly
- Factor-of-Safety or probabilistic based methods cannot handle unknown unknowns - lack of similitude.

- Move away from heuristics and experiencebased engineering
- Develop fundamental understanding of physical processes (degradation, ...)
- Reduce weight

A bolted joint

One single bolted joint

- 5 elements through the thickness of a ply => 0.025mm/element
- 50mm bolted joint area => 2,000 elements
- 50mm x 50mm x 100 plies => 2,000 x 2,000 x (100 x 5)

=> 2 billion elements

Large structures

whose behaviour is governed by small-scale effects

=> intractable problem size

How can the problem size be reduced but the accuracy controlled?

Challenge

- Reduce the problem size
- Preserve essential features

Reduce computational

expense

Control the error

Physics based model reduction a.k.a. Multiscale Methods Algebraic based model reduction a.k.a. Machine Learning

Challenge

- Reduce the problem size
- Preserve essential features

Reduce computational

expense

Control the error

Physics based model reduction a.k.a. Multiscale Methods Algebraic based model reduction a.k.a. Machine Learning

Lack of scale separation

A view from reduced order modelling and homogenisation

Stéphane P.A. Bordas, University of Luxembourg and Cardiff University Nottingham SafeFly Summer School Seminar 2018 09 19 organised by Savvas Triantafyllou — Download these slides at: <u>http://hdl.handle.net/10993/35135</u>

Mathematical Modelling

erc RealTCut

Physics-based model reduction methods

multi-scale methods

Full-scale

Full-scale

Homogenisation

Multi-scale methods Replace the heterogeneous finescale model by an equivalent smoother model at the scale where the predictions are required

Concurrent methods

Akbari, Kerfriden, Bordas, 2014

: to the **coarse scale zone**

Concurrent methods

Akbari, Kerfriden, Bordas, 2014

Concurrent methods

Talebi, Ramaia, Rabczuk, Bordas, Kerfriden, 2014 ₃₅

Akbari, Kerfriden, Bordas, 2014

Akbari, Kerfriden, Bordas, 2014

Hybrid methods

Example

Direct Numerical Solution

Adaptive Multiscale method

Sizes are in mm

Results: uni-axial tension

100X (magnification of displacement)

Adaptive multi-scale

Feyel, Chaboche, 2000 - Akbari, Kerfriden, Bordas, 2014

Open problem - model selection and error control

Possible approach machine learning and statistical inference, e.g. Bayesian statistics

Open problem - statistical variability at the fine scale (geometry, material parameter)

Possible approach

 identification through smallscale experiments (costly, difficult to characterize interfaces)

- Monte Carlo

Algebraic model reduction methods

Use precomputed solutions to accelerate online simulations

Example - parametric problems

Method of separated representation

Aim: accelerate the simulation using pre-computations

Compute solutions for several loading conditions

 $\underline{\underline{\mathbf{S}}} = \begin{pmatrix} \underline{\mathbf{S}}^1 & \underline{\mathbf{S}}^2 \end{pmatrix}$

 $\underline{\underline{\mathbf{S}}} = \begin{pmatrix} \underline{\mathbf{S}}^1 & \underline{\mathbf{S}}^2 & \dots \end{pmatrix}$

Perform singular value decomposition - POD to obtain "most energetic modes"

Reduced basis

P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas. *Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems*. Computer Methods in Applied Mechanics and Engineering, 200(5-8):850-866, 2011.

Reduced basis

P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas. *Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems*. Computer Methods in Applied Mechanics and Engineering, 200(5-8):850-866, 2011.

Beyond the elastic limit

P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas. *Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems*. Computer Methods in Applied Mechanics and Engineering, 200(5-8):850-866, 2011

Beyond the elastic limit

P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas. *Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems*. Computer Methods in Applied Mechanics and Engineering, 200(5-8):850-866, 2011

67

This solution is not in the snapshot !

Parametric / stochastic multiscale fracture mechanics

Partitioned POD/DDM

Partitioned POD/DDM

Domain Decomposition Method

Partitioned POD/DDM

Adaptive equation-free multiscale modeling of metallic lattice with geometrical (and material) nonlinearity and variability

Li Chen ^{1,2} Promoters: Thierry J. Massart, Lars Beex, Peter Berke, Stéphane Bordas

¹Université libre de Bruxelles

²Université du Luxembourg

Conceptual idea of the work

Figure: Metal lattice in the form of periodic mesostructural unit cells

The problem

In case of certain metallic structures the strut nodes (i.e. the locations where several struts are connected) are relatively weak.

3d printed structures

Physical research object:

Numerical twin:

Ader et al. (2004)

Conceptual idea of the work

Finite Element Model

۸Y

ZX

(a) 3D RVE

(b) 3D strut node

۸Y

Z

X

Beam model from image

Beam model

Physical failure mechanism:

Numerical treatment:

Carlton et al. (2017)

1st interpolation scheme and summation scheme:

2nd interpolation scheme and summation scheme:

3rd interpolation scheme and summation scheme:

4th interpolation scheme and summation scheme:

5th interpolation scheme and summation scheme:

POD based hyper-reduction strategy

Figure: φ_1 - Refined grid

POD based hyper-reduction strategy

(a) φ_1 - Final grid

(b) φ_2 - Initial grid
POD based hyper-reduction strategy

The final gird:

Challenges

Reduce the problem size

Preserve essential features

Reduce computational expense - Control the error

WCCM2020 Symposium in Paris

14th World Congress on Computational Mechanics (WCCM XIV) Sth European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2020) July 19- 24, 2020, Paris, France

BENCHMARKING ADVANCED DISCRETISATION TECHNIQUES: PART I. MESH BURDEN ALLEVIATION WITH APPLICATIONS TO CAD-ANALYSIS TRANSITION, FRACTURE MECHANICS AND HIGHER-ORDER PDES

TRACK NUMBER 20

Elena Atroshchenko, Stéphane Bordas, Franz Chouly, Daniel Dias-Da-costa, Jakub Lengiewicz, Sundararajan Natarajan, Timon Rabczuk, Chongmin Song, Satyendra Tomar, Giulio Ventura, Eric Wyart

Key words: verification and validation, benchmarking, mesh-burden, IGA, XFEM, embedded discontinuities,

ABSTRACT

The last 50 years have seen the birth of a large number of "special" approximation methods aiming at complementing finite difference and finite element methods and alleviating their intrinsic difficulties. Major advances have been made, and yet, it is not always obvious to identify the most relevant advantages and drawbacks of a given approach.

This is the first of a series of symposia organised under the egis of ECCOMAS, IUTAM and EUROMECH. This series is organised by various groups involved in advanced discretisation techniques and aims at:

 i) providing a set of benchmark problems and associated protocols for computational mechanics problems;

 ii) providing a forum for long-term discussions around the theme of advanced discretisation methods; and

iii) unifying different groups of thought in the field of advanced discretisation methods.

In this first symposium, focus will be given to fracture approximation and mesh burden alleviation,

Stéphane P.A. BORDAS and colleagues Download these slides at: <u>http://hdl.handle.net/10993/39442</u>

http://hdl.handle.net/10993/39442

Legato-team

University of Luxembourg

Department of Computational Engineering Sciences University of Luxembourg

http://hdl.handle.net/10993/39442

Open problems - how to define the reduced area? - precomputation time (offline)

Future?

Heterogeneous & multifunctional materials

Can we optimise the material microstructure given macroscopic objective functions Experiments required to attain sufficient confidence in their behavior are increasingly costly

Factor-of-Safety or probabilistic based methods cannot handle unknown unknowns Lack of similitude between testing (experimental) and operating conditions — also encountered in geophysics, medicine...

- Move away from heuristics and experiencebased engineering
- Develop fundamental understanding of physical processes (degradation, ...)

Digital twin concept

Actual aircraft Digita

Digital aircraft model

Life prediction and extension

Situation awareness

High fidelity modeling and simulation

Certification and design methods

Requires real-time data assimilation, and model update...

Parallel with medicine

Mechanics

Macro (wing) - Micro (carbon fibres)

Environmental effects (Temperature, irradiation...)

Experimental condition dissimilarities

Medicine

Macro (Body, Physiology) to micro (microbes, needle/ scalpel...)

Patient's environment, living conditions, habits...

Organ properties depend strongly on age, gender, ...

Medicine

Mechanics

The average drug developed by a major pharmaceutical company costs at least \$4 billion, and it can be as much as \$11 billion. The development cost of the A380

<u>11 billion</u> euros...

of the dreamliner... \$32 billion

50 mm

Discretise

ourtesy: EADS

[Allix, Kerfriden, Gosselet 2010]

Reduce the problem size while controlling the error (in QoI) when solving very large (multiscale) mechanics problems

0.125 mm

thanks for your attention

Verification

MATERIAL MODELS Phenomenological

Elasticity/Plasticity Crack growth law (Paris...) Fracture energy Maximum tensile strength **Multi-scale** Debonding, Fibre pull-out Fibre breakage, interface fracture, grains, dislocations,

NUMERICAL SOLUTION

DISCRETISATION

A POSTERIORI ERROR

Validation & parameter identification

EXPERIMENTS

CONVENTIONAL APPROACH

Validation & parameter identification

EXPERIMENTS ???

Data-driven Modelling

Embrace the conceptual shift from "model through data abstraction" to "data is the model".

Assuming the material model is representative, what is the influence of each parameter in the model?

Different methods: Karhunen–Loève expansion [Adler 2007], Fast Fourier transform [Nowak 2004].

Randoms fields

Two realisations of RF, with a log-normal distribution, for the parameter C_1 (in MPa).

Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg

Confidence level in predicting the target location

Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg

Possible approach

DIGITAL TWIN OF THE PATIENT

Alex Garland, Ex Machina, 2015

