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Abstract—We present MCP, a tool for automatically generating
executable security test cases from misuse case specifications
in natural language (i.e., use case specifications capturing the
behavior of malicious users). MCP relies on Natural Language
Processing (NLP), a restricted form of misuse case specifications,
and a test driver API implementing basic utility functions for
security testing. NLP is used to identify the activities performed
by the malicious user and the control flow of misuse case
specifications. MCP matches the malicious user’s activities to
the methods of the provided test driver API in order to generate
executable security test cases that perform the activities described
in the misuse case specifications. MCP has been successfully
evaluated on an industrial case study.

Index Terms—System Security Testing, Natural Language
Requirements, Natural Language Processing (NLP).

I. INTRODUCTION

Software security has become a major concern in soft-
ware development, starting from requirements analysis to
implementation and testing. Security requirements focus on
both security properties of the system and potential security
threats [1]. For instance, in use case-driven methodologies [2],
[3], security use cases describe security properties of the
system (e.g., user authentication) while misuse cases describe
malicious activities (e.g., bypassing the authorization schema).
Security testing is driven by requirements [4] and, conse-
quently, can be divided into two categories [5]: (1) security
functional testing validating the specified security properties,
and (2) security vulnerability testing addressing the identifica-
tion of system vulnerabilities. Though several security testing
approaches exist [5], the automated generation of security
test cases from Natural Language (NL) security requirements
remains limited in industrial settings.

We present a tool, MCP, which generates security vulnera-
bility test cases from misuse case specifications in NL. MCP
borrows some concepts from natural language programming,
a term which refers to approaches automatically generating
software programs (e.g., executable test cases) from NL spec-
ifications [6], [7]. MCP assumes that security requirements
are elicited according to a misuse case template including
keywords to support the extraction of control flow information.
It requires a test driver API for basic security testing activities
(e.g., requesting a URL).

Using Natural Language Processing (NLP) techniques,
MCP extracts the control flow of malicious activities described
in misuse cases. It translates the extracted control flow into
sequences of executable instructions (e.g., invocations of the

test driver API’s functions) that implement the malicious
activities. To this end, we adapt the idea, followed by other
works [8], [9], [10], [11], of combining string similarity
and ontologies [12]. Similarly, MCP builds an ontology that
captures the structure of the given test driver API. It generates
executable instructions by looking for nodes in the ontology
that are similar to phrases in NL requirements. The innovative
idea behind MCP is that it integrates additional analyses
required to enable automated testing, i.e., the identification of
test inputs and the generation of input values and test oracles.

In the remaining sections, we outline MCP’s features and
components. We highlight the findings from our evaluation of
MCP over an industrial case study.

II. RELATED WORK

Most security testing approaches and tools focus on a
particular vulnerability (e.g., buffer overflows [13] and code
injection vulnerabilities [14]). They deal with the generation
of simple inputs (e.g., strings, files), and cannot be adopted
for complex attack scenarios involving several interactions
among parties. Model-based tools are capable of generating
test cases for such complex attack scenarios [15] but require
formal models, which limit their adoption in industry where
security requirements are mostly in NL.

There are approaches generating functional system test
cases from NL requirements [16], [17], [18], [19]. However,
these approaches can be adopted in the context of security
functional testing, but not security vulnerability testing since
they generate test cases only for the intended behavior of the
system. In contrast, security vulnerability testing deals with
the problem of simulating the behavior of a malicious user.

MCP can generate security vulnerability test cases for
complex attack scenarios without any formal security model.
It employs natural language programming and NLP techniques
to automatically generate those test cases from misuse cases.

III. TOOL OVERVIEW

MCP is the tool supporting our approach for automatically
generating security vulnerability test cases from misuse case
specifications, described in a recent conference paper [20].
Fig. 1 presents an overview of our tool. In Step 1, the user
manually elicits misuse cases according to the Restricted
Misuse Case Modeling (RMCM) template [2] that includes
keywords to support the extraction of control flow information.
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Once security requirements are captured in the form of
misuse cases, MCP automatically checks whether the misuse
case specifications conform to the RMCM template. If any in-
consistency is detected, the tool reports these inconsistencies.
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Fig. 1. Tool Overview

In Step 2, MCP processes the misuse case specifications
once they are deemed consistent. It automatically generates
executable test cases and test input files from the misuse case
specifications and a test driver API that implements basic
security testing activities (e.g., requesting a URL or starting a
network sniffing tool). In Step 3, the user provides input values
for the generated test input files to be used during testing. In
the rest of this section, we elaborate on each step in Fig. 1.

A. Elicitation of Misuse Cases
The user elicits misuse cases based on the RMCM method.

RMCM extends the Restricted Use Case Modeling (RUCM)
method [21], [17], [22], [23], [24] to support the specification
of security requirements in an analyzable form [2].

RMCM provides a template that characterizes basic and
alternative flows in misuse cases. A basic threat flow describes
a nominal scenario for a malicious actor to harm the system
(Lines 4 - 13 in Fig. 2). It contains misuse case steps and
a postcondition. Alternative flows capture failed attacks (e.g.,
Lines 21 - 26), while alternative threat flows describe alterna-
tive attack scenarios. For instance, in Lines 14 - 20, the specific
alternative threat flow SATF1 describes another successful
attack scenario where the resource contains a role parameter.
A specific alternative flow always depends on a specific step of
the reference flow, specified by the RFS keyword. The IF ..
THEN keyword describes the conditions under which alterna-
tive flows are taken (e.g., Line 16). The RMCM keywords are
used to specify actors (e.g., MALICIOUS user), successful
attacks (e.g., EXPLOIT), attack patterns (e.g., PROVIDE
SQLI VALUES) and control flow (e.g., FOREACH). All other
terms in a specification are freely selected by the user.

MCP is provided with a set of predefined misuse case
specifications derived from the OWASP testing guidelines [4].
They can be reused (or adapted) across projects; in addition,
the user can write new, system specific misuse cases.

B. Security Vulnerability Test Case Generation
MCP takes as input a test driver API and misuse case

specifications to automatically generate security vulnerability

1 MISUSE CASE Bypass Authorization Schema
2 Description The MALICIOUS user accesses resources that are dedicated to a user with a different role.
3 Precondition For each role available on the system, the MALICIOUS user has a list of credential of users

with that role, plus a list functions/resources that cannot be accessed with that role.
4 Basic Threat Flow
5 1. FOREACH role
6 2. The MALICIOUS user sends username and password to the system through the login page
7 3. FOREACH resource
8 4. The MALICIOUS user requests the resource from the system.
9 5. The system sends a response page to the MALICIOUS user.
10 6. The MALICIOUS user EXPLOITS the system using the response page and the role.
11 7. ENDFOR
12 8. ENDFOR
13 Postcondition: The MALICIOUS user has executed a function dedicated to a user with different role.
14 Specific Alternative Threat Flow (SATF1)
15 RFS 4.
16 1. IF the resource contains a role parameter in the URL THEN
17 2. The MALICIOUS user modifies the role values in the URL.
18 3. RESUME STEP 4.
19 4. ENDIF.
20 Postcondition: The MALICIOUS user has modified the URL.
21 Specific Alternative Flow (SAF1)
22 RFS 6
23 1. IF the response page contains an error message THEN
24 2. RESUME STEP 7.
25 3. ENDIF.
26 Postcondition The malicious user cannot access the resource dedicated to users with a different role.

Fig. 2. ‘Bypass Authorization Schema’ misuse case specification.

test cases. The test driver API is used by the generated test
cases to execute the functions of the system under test. MCP
is released with a general test driver API in Python that can
be used to test any Web system; if needed, the user can extend
the test driver API or use another one (e.g., one for functional
testing). Misuse cases drive the generation of the test code.

MCP generates, for each misuse case, an executable test
case, a JSON test input file without input values (see Fig. 3),
and some configuration files for the test driver API (see Fig. 4).

Configuration files are used to configure general purpose
test API methods for a specific system. For Web systems, these
methods send inputs to the system through a Web page. MCP
automatically generates configuration files for these methods.

Each generated test case is a Python class implementing a
run method executing the malicious activities described in
a given misuse case. We chose Python since it is a popular
language for Web systems. Fig. 5 shows part of the test
case generated from the misuse case in Fig. 2. MCP declares
and initializes the variables system, maliciousUser and
inputs (Lines 3 - 5). The variable system refers to an
instance of the class System whose methods trigger the
functions of the system under test (e.g., request). The
variable maliciousUser refers to the test class simulating
the malicious user behavior. The variable inputs refers to

{"role": [
{
"password": "REPLACE-THIS-STRING",
"role": "REPLACE-THIS-STRING",
"username": "REPLACE-THIS-STRING"
"resource": [
{
"resource": "REPLACE-THIS-STRING",
"error_message": "REPLACE-THIS-STRING",
"role_values": "REPLACE-THIS-STRING",
"the_resource_contains_the_role_parameter_in_the_URL": "PUT-EXECUTABLE-CODE",
"the_resource_contains_the_role_parameter_in_the_HTTP_post_data": "PUT...

},
ADD-MORE-ENTRIES

],
},
ADD-MORE-ENTRIES
]

}

Fig. 3. Input file generated by MCP.

"URL" : "http://link_to_the_page",
"Position" : "Choose POST-data, URL or BOTH",
"username" : "USERNAME_id_in_the_page",
"password" : "PASSWORD_id_in_the_page",
"Others" : ["list_of_other_parameters"]

Fig. 4. Configuration file generated to send inputs through to the login page.



1 class bypassAuthorizationSchema(HTTPTester):
2 def run(self):
3 system = System(path=self.rootPath)
4 maliciousUser = self
5 inputs = self.loadInput("inputs.json")
6 roleIter = inputs["role"].__iter__()
7 while True:
8 try:
9 role = roleIter.__next__()
10 parameters = dict()
11 parameters["password"] = role["password"]
12 parameters["username"] = role["username"]
13 system.send("login page",parameters)
14 resourceIter = role["resource"].__iter__()
15 while True:
16 try:
17 resource = resourceIter.__next__()
18 if not eval(resource["the_resource_contains_a_role_
19 parameter_in_the_URL"]):
20 if not eval(resource["the_resource_contains_a_role_parameter..
21 system.request(resource)
22 maliciousUser.responsePage = system.responsePage
23 if not responsePage.contains( resource["error message"] )
24 parameters = dict()
25 parameters["resource"] = resource["resource"]
26 parameters["role"] = role["role"]
27 system.exploit(parameters)
28 else:
29 maliciousUser.abort("The MALICIOUS user CANNOT ex...")

Fig. 5. Part of the test case generated from the misuse case in Fig. 2.

a dictionary populated with input values in the JSON input
file. The instructions in the test case (e.g., a call to an API
method) are selected based on string similarity between the
phrases in the misuse case steps and the variables, methods
and parameters of the test driver API.

C. Providing Input and Configuration Values

The user provides input values for the generated JSON input
file. The generated input file reflects the relations between
input entities in the misuse case (see Fig. 3). Fig. 6 shows
example input values for the JSON input file in Fig. 3.

Simple inputs are represented as key-value pairs; complex
inputs are given as a list of dictionaries (e.g., role in Fig. 3).
A complex input is generated every time an input entity (e.g.,
role) is referred to in an iteration (i.e., a step containing the
keyword FOREACH) because the body of iterations typically
contains activities that provide a set of related inputs to
the system (e.g., username and password). Every input
entity referred to in the body of the iteration is captured
by a key-value pair (e.g., the case for the key username).
Nested iterations are captured by nested lists of dictionaries
(e.g., the case of resources), since they usually describe
groups of activities working on additional sets of related
inputs. A special type of input are the values evaluated
in conditional statements in specifications (e.g., the case of
the_resource_contains...) as, for these values, the
user can provide either a boolean value (e.g., TRUE) or a
Python expression to be evaluated at runtime.

{"role": [
{
"role": "Doctor",
"username": "phu@mymail.lu"
"password": "testPassword1",
"resource": [
{
"resource": "http://www.icare247.eu/?q=micare_invite&accountID=11"
"error_message": "error",
"the_resource_contains_the_role_parameter_in_the_URL": False,

},
{
"resource": "http://www.icare247.eu/?q=micare_skype/config&clientID=36"

...
}, ], }

{
"role": "Patient",

. . .

Fig. 6. Part of the JSON file in Fig. 3 with input values.

"URL" : "http://www.icare247.eu/?q=micare_user_login",
"Position" : "POST-data",
"password" : "passwd",
"username" : "email",
"Others" : ["op", "form_build_id", "form_id"]

Fig. 7. Values provided to the configuration file in Fig.4

Configuration files are generated to match input entities
in misuse cases and input parameters of Web pages of the
system (see Fig. 4). Fig.7 shows the values provided to the
configuration file in Fig. 4.

The test case is executed using the Python interpreter. Dur-
ing execution, the test case loads the inputs and configuration
values from the JSON files and invokes the test driver API
functions when needed. Vulnerabilities are reported by the test
driver API method exploit (Line 27 in Fig. 5).

IV. IMPLEMENTATION & AVAILABILITY

MCP has been implemented as a Java application. Fig. 8
shows the architecture of MCP.
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Fig. 8. MCP Architecture

SpecificationProcessor parses misuse case specifications to
extract a model (misuse case model) that captures the control
flow in the specifications. OntologyLoader maps the test driver
API into an OWL ontology to have a structured representation
of the API elements (i.e., classes, methods, and parameters).

ExecutableCodeGenerator identifies input entities and gen-
erates executable code. NLPHandler executes NLP on each
misuse case step. More specifically, NLPHandler executes
the CogComp NLP pipeline [25] to perform Semantic Role
Labelling (SRL), an advanced NLP procedure that identifies
roles of phrases in sentences (e.g., an actor performing an
activity). InputEntitiesIdentifier uses SRL results to identify
input entities. To speed up NLP, NLPHandler relies on the
CogComp NLP pipeline running as a Web service1. If the
service is not reachable, the analysis is executed locally.

PythonCodeGenerator generates Python code together with
configuration files. It processes the misuse case model and
generates a method call or an assignment for each use case
step, except condition and iteration steps which are translated
into Python instructions. In general, thanks to SRL outputs, a
method call is identified by selecting a method (1) that belongs
to a class instance with a name similar to either the actor
performing the activity or the destination in the sentence, (2)

1MCP can rely both on the installation of the University of Pennsylvania,
http://macniece.seas.upenn.edu:4001/annotate, or services running in-house.



that has a name textually similar to the verb in the sentence,
and (3) that has parameters matching the remaining semantic
roles in the sentence. An assignment instruction is generated
when some data is exchanged between an actor and the system.
It is generated by looking for two variables textually similar
to the source and destination of the data exchange.

Additional details about MCP, including executable files
and a screencast, are available on the tool’s website at:

https://sntsvv.github.io/MCP/

V. EMPIRICAL EVALUATION

We evaluated the feasibility of MCP with an industrial case
study, which is a healthcare software system developed in the
context of the EU project EDLAH2 [26]. The EDLAH2 system
is a representative example of a modern, user-oriented system
including Web, mobile and wearable user interfaces.

The EDLAH2 engineers followed the RMCM methodology
to capture security requirements. The EDLAH2 misuse case
specifications include a total of 68 misuse cases which de-
scribe both general attack patterns derived from the OWASP
guidelines [4], [27] and system specific attacks that leverage
some characteristics of the EDLAH2 system.

We used MCP to generate executable test cases from
12 misuse case specifications. We selected 12 misuse cases
targeting the Web interface and with the highest risk according
to the OWASP risk rating methodology [4].

MCP successfully generated one executable test case for
each specification. Nine of the generated test cases identified
real vulnerabilities affecting the system. The generated test
cases do not contain any programming errors despite the
generated code being not trivial (791 lines of code in total, 172
method calls, 44 assignments, and 260 method arguments).
Also, MCP successfully identified the input entities required
to execute the test cases, with a high precision and recall of
0.97 and 0.91, respectively.

VI. CONCLUSION

We presented a tool, MCP, that automatically generates
executable security vulnerability test cases from misuse case
specifications. The key characteristics of our tool are (1) the
use of security requirements in NL, only involving a few
keywords, (2) the automated translation of these requirements
into executable test cases targeting vulnerabilities, and (3) the
automated identification of test inputs. We evaluated MCP
over an industrial Web application. The evaluation shows
that our tool is able to generate test cases that are effective
at identifying vulnerabilities. MCP also reduces the effort
required to perform security vulnerability testing. Ongoing
work regards the adoption of MCP to test Android systems
and the automated generation of the inputs required by MCP.
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