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Abstract. We present a systematic approach for extending the KLM framework
for defeasible entailment. We first present a class of basic defeasible entailment
relations, characterise it in three distinct ways and provide a high-level algorithm
for computing it. This framework is then refined, with the refined version being
characterised in a similar manner. We show that the two well-known forms of
defeasible entailment, rational closure and lexicographic closure, fall within our
refined framework, that rational closure is the most conservative of the defeasible
entailment relations within the framework (with respect to subset inclusion), but
that there are forms of defeasible entailment within our framework that are more
“adventurous” than lexicographic closure.4

1 Introduction

The approach by Kraus, Lehmann and Magidor [23] (a.k.a. KLM) is a well-known
framework for defeasible reasoning. The KLM properties can be viewed as constraints
on appropriate forms of defeasible entailment. We present what we believe to be the
first systematic approach for extending the KLM framework. Our first proposal, basic
defeasible entailment, strengthens the KLM framework by adding additional properties
to it. We provide both a semantic characterisation in terms of a class of ranked inter-
pretations, and a characterisation in terms of a class of functions that rank propositional
(and defeasible) statements in a knowledge base according to their level of typicality.
We also provide an algorithm for computing the framework. Next, we identify a crucial
shortcoming in basic defeasible entailment, and propose a further strengthening, ratio-
nal defeasible entailment, via an additional property. We prove that rational defeasible
entailment can be characterised both semantically and in terms of ranks, and show that
the algorithm is also applicable for computing rational defeasible entailment.

Currently there are two well-known forms of defeasible entailment satisfying those
properties: rational closure (RC) [25] and lexicographic closure (LC) [24]. We show
that both are rational (and basic) defeasible entailment relations, that RC is the most
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conservative form of rational defeasible entailment, but there are forms of rational de-
feasible entailment that are “bolder” than LC. We argue that the framework for rational
defeasible entailment is reminiscent of the AGM framework for belief change [1].

In the next section we provide the relevant background material, after which we
present our work on basic defeasible entailment, rational defeasible entailment, and a
discussion on the relation between lexicographic closure and rational defeasible entail-
ment. We conclude with a discussion of related work, a summary, and suggestions for
future work.

2 Background

For P being a finite set of propositional atoms, we use p, q, . . . as meta-variables for
atoms. Propositional sentences are denoted by α, β, . . ., and are recursively defined in
the usual way: α ::= > | ⊥ | p | ¬α | α ∧ α | α ∨ α | α → α | α ↔ α. With L
we denote the set of all propositional sentences. With U ≡def {0, 1}P we denote the set
of all propositional valuations, with 1 representing truth and 0 representing falsity. We
use u, v . . . to denote valuations. Sometimes we represent valuations as sequences of
atoms (e.g., p) and barred atoms (e.g., p), with the understanding that the presence of a
non-barred atom indicates that the atom is true in the valuation, while the presence of a
barred atom indicates that the atom is false in the valuation. Satisfaction of a sentence
α ∈ L by v ∈ U is defined in the usual truth-functional way and is denoted by v  α.
The models of a set of sentences X is: JXK ≡def {v ∈ U | v  α for every α ∈ X}.

2.1 KLM-style defeasible implication

In the logic proposed by Kraus et al. [23], often referred to as the KLM approach, we
are interested in defeasible implications (or DIs) of the form α |∼ β, read as “typically,
if α, then β”. The semantics of KLM-style rational defeasible implications is given by
structures referred to as ranked interpretations [25]. In this work we adopt the following
alternative representation thereof:

Definition 1. A ranked interpretation R is a function from U to N∪{∞} s.t. R(u) = 0
for some u ∈ U , and satisfying the following convexity property: for every i ∈ N, if
R(v) = i, then, for every j s.t. 0 ≤ j < i, there is a u ∈ U for which R(u) = j.

Given R, we call R(v) the rank of v w.r.t. R. Valuations with a lower rank are deemed
more normal (or typical) than those with a higher rank, while those with an infinite rank
are regarded as so atypical as to be impossible. With UR ≡def {v ∈ U | R(v) <∞}we
denote the possible valuations in R. Given α ∈ L, we let JαKR ≡def {v ∈ UR | v  α}.
R satisfies (is a ranked model of) α (denoted R  α) if UR ⊆ JαKR.

Note that R generates a total preorder �R on U as follows: v �R u iff R(v) ≤
R(u). Given any total preorder � on V ⊆ U , we can use its strict version ≺ to generate
a ranked interpretation as follows. Let the height h(v) of v ∈ V be the length of the ≺-
path between any one of the ≺-minimal elements of V and v (the length of the ≺-path
between any of the≺-minimal elements and a≺-minimal element is 0). For V ⊆ U and



a total preorder � on V, the ranked interpretation R� generated from � is defined as
follows: for every v ∈ U , R�(v) = h(v) if v ∈ V, and R�(v) =∞ otherwise.

Given a ranked interpretation R and α, β ∈ L, R satisfies (is a ranked model
of) the conditional α |∼ β (denoted R  α |∼ β) if all the possible ≺-minimal α-
valuations also satisfy β, i.e., if min≺JαKR ⊆ JβKR. R satisfies a set of conditionals K
if R  α |∼ β for every α |∼ β ∈ K.

Figure 1 depicts an example of a ranked interpretation for P = {b, f, p} satisfying
K = {p → b, b |∼ f, p |∼ ¬f}. For brevity, we omit the valuations with rank∞ in our
graphical representations of ranked interpretations.
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Fig. 1. A ranked interpretation for P = {b, f, p}.

Observe that all classical propositional sentences can be expressed as DIs: R  α
iff R  ¬α |∼ ⊥. The logic of defeasible implications can therefore be viewed as an
extension of propositional logic.

2.2 Defeasible Entailment

Let a knowledge base K be a finite set of defeasible implications. The main question
in this paper is to analyse defeasible entailment (denoted by |≈): what it means for a
defeasible implication to be entailed by a fixed knowledge K. It is well-accepted that
defeasible entailment (unlike classical entailment) is not unique. For example, Lehmann
and Magidor [25] put forward rational closure as an appropriate form of defeasible
entailment, while Lehmann [24] proposed lexicographic closure as an alternative. We
consider both of these in more detail below. In studying different forms of defeasible
entailment, the position advocated by Lehmann and Magidor [25], and one we adopt
here as well, is to consider a number of rationality properties, referred to as the KLM
properties, for defeasible entailment.

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ
K |≈ β |∼ γ (RW)

K |≈ α |∼ β, β |= γ

K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α |∼ β ∧ γ (Or)

K |≈ α |∼ γ, K |≈ β |∼ γ
K |≈ α ∨ β |∼ γ (CM)

K |≈ α |∼ β, K |≈ α |∼ γ
K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ, K 6|≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

Lehmann and Magidor argue that defeasible entailment ought to satisfy all the
above KLM properties. We refer to this as LM-rationality.



Definition 2. A ranked interpretation R is said to generate a defeasible K-entailment
relation |≈R by setting K |≈R α |∼ β iff R  α |∼ β. (If there isn’t any ambiguity, we
drop the subscript R.)

Lehmann and Magidor proved the following useful result.

Observation 1 (Lehman & Magidor [25]) A defeasible entailment relation is LM-rational
iff it can be generated from a ranked interpretation.

It is easy to see that rank entailment, defined next, is not LM-rational [25, Sect. 4.2].

Definition 3. A defeasible implication α |∼ β is rank entailed by a knowledge base
K (denoted as K |≈R α |∼ β) if every ranked model of K satisfies α |∼ β.

But rank entailment plays an important part in defining acceptable versions of defeasible
entailment, since it can be viewed as the monotonic core of any appropriate form of
defeasible entailment [16].

2.3 Rational Closure

The first version of defeasible entailment satisfying LM-rationality we consider is ra-
tional closure [25]. Consider the ordering�K on all ranked models of a knowledge base
K, which is defined as follows: R1 �K R2 if for every v ∈ U , R1(v) ≤ R2(v). Intu-
itively, ranked models lower down in the ordering are more typical. Giordano et al. [21]
showed that there is a unique �K-minimal element.

Definition 4. Let RRC
K be the minimum element of the ordering �K on ranked mod-

els of K. A defeasible implication α |∼ β is in the rational closure of K (denoted as
K |≈RC α |∼ β) if RRC

K  α |∼ β.

Observe that there are two levels of typicality at work for rational closure, namely within
ranked models of K, where valuations lower down are viewed as more typical, and be-
tween ranked models ofK, where ranked models lower down in the ordering are viewed
as more typical. The most typical ranked model RRC

K is the one in which valuations are
as typical as K allows them to be.

Since rational closure can be defined in terms of a single ranked interpretation, it
follows from Observation 1 that it is LM-rational (it satisfies all the KLM properties).

It will be useful to be able to refer to the possible valuations w.r.t. a knowledge base.
We refer to UKR ≡def U \ {u ∈ JαK | K |≈R ¬α |∼ ⊥} as the set of possible valuations
w.r.t. K. So UKR refers to all the valuations not in conflict with rank entailment w.r.t. K.
From results by Lehmann and Magidor [25] (Lemmas 24 and 30) it follows that the
possible valuations in the minimal model RRC

K are precisely the possible valuations
w.r.t. K: UKR = URRC

K .
Rational closure can also be defined in terms of the base rank of a statement. A

propositional sentence α is said to be exceptional w.r.t. K if K |≈R > |∼ ¬α (i.e., α is
false in all the most typical valuations in every ranked model of K). Let ε(K) = {α |∼
β | K |≈R > |∼ ¬α}. Define a sequence of knowledge bases EK0 , . . . , EK∞ as follows:



EK0 ≡def K, EKi ≡def ε(EKi−1), for 0 < i < n, and E∞ ≡def EKn , where n is the smallest
k for which EKk = EKk+1 (since K is finite, n must exist). The base rank brK(α) of a
propositional statement α w.r.t. a knowledge base K is defined to be the smallest r for
which α is not exceptional w.r.t. EKr . brK(α) ≡def min{r | EKr 6|≈R > |∼ ¬α}.

Observation 2 (Giordano et al. [21]) K |≈RC α |∼ β iff brK(α) < brK(α ∧ ¬β) or
brK(α) =∞.

There is a fundamental connection between the base ranks of propositional statements
w.r.t. K and the ranks of valuations in the minimal ranked model RRC

K .

Observation 3 (Giordano et al. [21]) For every knowledge baseK andα ∈ L, brK(α) =
min{i | there is a v ∈ JαK s.t. RRC

K (v) = i}.

From Observation 3 it follows that a classical statement α (or its defeasible represen-
tation ¬α |∼ ⊥) is in the rational closure of K iff the base rank of ¬α w.r.t. K is
∞. The definition of base rank can be extended to defeasible implications as follows:
brK(α |∼ β) ≡def brK(α). Assigning base ranks to defeasible implications in this way
forms the basis of an algorithm for computing rational closure; an algorithm that can
be reduced to a number of classical entailment checks. Define the materialisation of a
knowledge base K as

−→
K ≡def {α → β | α |∼ β ∈ K}. It can be shown [25] that a

sentence α is exceptional w.r.t. K iff
−→
K |= ¬α. From this we can define a procedure

BaseRank which partitions the materialisation of K into n + 1 classes according to
base rank: i = 0, . . . n− 1,∞, Ri ≡def {α→ β | α |∼ β ∈ K, brK(α) = i}.

Algorithm 1: BaseRank
Input: A knowledge base K
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 i := 0;

2 E0 :=
−→
K ;

3 repeat
4 Ei+1 := {α→ β ∈ Ei | Ei |= ¬α};
5 Ri := Ei \ Ei+1;
6 i := i+ 1;
7 until Ei−1 = Ei;
8 R∞ := Ei−1;
9 if Ei−1 = ∅ then

10 n := i− 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1,R∞, n)

We use BaseRank to describe an algorithm originally proposed by Freund [18] for
computing rational closure. It takes as input K and α |∼ β, and returns true iff α |∼ β
is in the rational closure of K.



Algorithm 2: RationalClosure
Input: A knowledge base K and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRank(K);
2 i := 0;
3 R :=

⋃j<n
i=0 Rj ;

4 while R∞ ∪ R |= ¬α and R 6= ∅ do
5 R := R \ Ri;
6 i := i+ 1;

7 return R∞ ∪ R |= α→ β;

The algorithm keeps on removing (materialisations of) defeasible implications from
(the materialisation of) K, starting with the lowest base rank, and proceeding base rank
by base rank, until it finds the first R which is classically consistent with α (and therefore
α is not exceptional w.r.t. the defeasible version of R). α |∼ β is then taken to be in the
rational closure of K iff R classically entails the materialisation of α |∼ β.

Observation 4 (Freund [18]) Given K and α |∼ β, RationalClosure returns
true iff K |≈RC α |∼ β.

Observe that RationalClosure involves a number of calls to a classical-entailment
checker that is polynomial in the size of K. Computing rational closure is therefore no
harder than checking classical entailment.

3 Basic Defeasible Entailment

Our departure point for defining defeasible entailment is that it ought to be LM-rational.
The central question we address in this paper is whether LM-rationality is sufficient.
The immediate answer is that it is not. For starters, we also require |≈ to satisfy Inclusion
(all elements of K should be defeasibly entailed by K):

(Inclusion) K |≈ α |∼ β for every α |∼ β ∈ K

and Classic Preservation—the classical defeasible implications (those corresponding to
classical sentences) defeasibly entailed by K should correspond exactly to those in the
monotonic core of K (i.e., those that are rank entailed by K:

(Classic Preservation) K |≈ α |∼ ⊥ iff K |≈R α |∼ ⊥

An easy corollary of Classic Preservation is Classic Consistency, requiring that a knowl-
edge base is consistent iff it is consistent w.r.t. rank entailment.

(Classic Consistency) K |≈ > |∼ ⊥ iff K |≈R > |∼ ⊥



We refer to a defeasible entailment relation satisfying LM-rationality, Inclusion, and
Classic Preservation as a basic defeasible entailment relation.

We shall see below (using Theorem 1) that rational closure is a basic defeasible
entailment relation. However, since ranked entailment does not satisfy RM, it is not
LM-rational, and is therefore not a basic defeasible entailment relation.

Definition 5. A ranked model R of K is said to be K-faithful if the possible valuations
in R are precisely the possible valuations w.r.t. K: UR = UKR .

Note that the minimal model RRC
K is K-faithful.

Our first fundamental result (using points 1 and 2b of Theorem 1 below) is a se-
mantic characterisation of basic defeasible entailment in terms of the K-faithful ranked
models. From this it also follows immediately that basic defeasible entailment satisfies
the following property.

(Rank Extension) If K |≈R α |∼ β, then K |≈ α |∼ β

Rank Extension requires |≈ to extend its monotonic core.
We can also characterise basic defeasible entailment by generalising the notion of

base rank.

Definition 6. Let r : L −→ N ∪ {∞} be a rank function s.t. r(>) = 0, satisfying
the following convexity property: for every i ∈ N, if r(α) = i then, for every j such
that 0 ≤ j < i, there is a β ∈ L for which r(β) = j. r is entailment preserving if
α |= β implies r(α) ≥ r(β). r isK-faithful if (i) it is entailment preserving; (ii) r(α) <
r(α ∧ ¬β) or r(α) =∞, for every α |∼ β ∈ K, and (iii) r(α) =∞ iff K |≈R α |∼ ⊥.

Observe that the base rank brK(·) is K-faithful.

Definition 7. A rank function r generates a defeasible entailment relation |≈ whenever
K |≈ α |∼ β if r(α) < r(α ∧ ¬β) or r(α) =∞.

It follows (using points 1 and 2c of Theorem 1 below), that basic defeasible entail-
ment can be characterised using the K-faithful rank functions.

Next, we present an algorithm that computes the defeasible entailment relation gen-
erated by a K-faithful rank function. It is a modified version of RationalClosure,
differing from it in that the call to BaseRank is replaced with a call to the Rank al-
gorithm described below. It receives as input a knowledge base K and a K-faithful rank
function r. It produces as output a sequence (R0, . . . ,Rn−1,R∞, n) where the Ris are
sentences, unlike BaseRank, which produces sets of sentences. DefeasibleEntailment
is then adjusted accordingly.

DefeasibleEntailment removes statements, starting with the lowest rank,
and proceeding rank by rank, until it finds the first R which is classically consistent
with α. α |∼ β is then taken to be defeasibly entailed by K iff R classically entails
the materialisation of α |∼ β. The Ris correspond to classical representations of defea-
sible information, with different Ris representing information with different levels of
typicality, and with R∞ corresponding to information that is classical. In fact, the set
containing all the Ris is equivalent to the materialisation of K.



Algorithm 3: DefeasibleEntailment
Input: A knowledge base K, a K-faithful rank function r, and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := Rank(K,r);
2 i := 0;
3 R :=

⋃j<n
i=0 {Rj};

4 while {R∞} ∪ R |= ¬α and R 6= ∅ do
5 R := R \ {Ri};
6 i := i+ 1;

7 return {R∞} ∪ R |= α→ β;

Algorithm 4: Rank
Input: A knowledge base K and a K-faithful rank function r
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 R∞ := ¬
(∨

r([α]=∞)[α]
)

;

2 n := max{i ∈ N | there is an α ∈ L s.t. r(α) = i};
3 if n = 0 then
4 R0 := >;n := 1;

5 else
6 for i := 0 to n− 1 do
7 Ri ≡def ¬

(∨
r([α])=i+1[α]

)
8 return (R0, . . . ,Rn−1,R∞, n)

For α ∈ L, let [α] be a canonical representative of the set {β | β ≡ α}. Rank
receives as input a knowledge baseK and aK-faithful rank function r and, as mentioned
above, produces as output an ordered tuple of sentences (R0, . . . ,Rn−1,R∞, n).

If there is no α such that r(α) =∞, then R∞ will be set to >. This corresponds to
the case where all information is defeasible. If n = 0, it corresponds to the case where
there is no defeasible information. In this case we set n to 1 and set R0 to >.

Proposition 1. Let (R0, . . . ,Rn−1,R∞, n) be the output obtained from the Rank algo-
rithm, given a knowledge base K and a K-faithful ranking function r. Then {R∞} ∪⋃j<n

i=0 {Rj} ≡
−→
K .

Example 1. Let K = {p → b, b |∼ f, p |∼ ¬f}. One can see there is only one ranking
function r for which r((b→ f)→ p) = 1, r(p∧(b→ f)) = 2, and r(¬(p→ b)) =∞.
Moreover, for every α ∈ L, r(α) =∞ or r(α) ≤ 2. Given K and r, Rank will output
the ordered tuple (R0,R1,R∞, 2), where R∞ ≡ p → b, R1 ≡ ¬(p ∧ (b → f)) ≡
p → (b ∧ ¬f), and R0 ≡ ¬((b → f) → p) ≡ (b → f) ∧ ¬p. Given K, r, and
(p ↔ b) ∧ (b ↔ f) |∼ ¬f, DefeasibleEntailment will return true. It will do
so by first verifying that {R0,R1,R∞} 6|= ¬((p ↔ b) ∧ (b ↔ f)) and then checking
whether {R0,R1,R∞} |= ((p↔ b) ∧ (b↔ f))→ ¬f (which it does). Note that, given
this r, DefeasibleEntailment computes the rational closure of K. ut



Example 2. Let K be as in Example 1. It can be shown that there is only one ranking
function r s.t. r(f → p) = 1, r((b ∨ f) → (p ∧ f)) = 2, and r(¬(p → b)) = ∞,
and that r is K-faithful. Moreover, for r it will be the case that for every α ∈ L,
r(α) = ∞ or r(α) ≤ 2. Given K and r, the Rank algorithm will output the ordered
tuple (R0,R1,R∞, 2) where R∞ ≡ p → b, R1 ≡ ¬((b ∨ f) → (p ∧ f)) ≡ (¬b →
f) ∧ (p→ ¬f), and R0 ≡ ¬(f → p) ≡ f ∧ ¬p. Given K, r, and the DI (p↔ b) ∧ (b↔
f) |∼ ¬f, algorithm DefeasibleEntailment will return false. It will do so by first
removing R0 (since {R0,R1,R∞} |= ¬((p↔ b) ∧ (b↔ f))), then removing R1 (since
{R1,R∞} |= ¬((p↔ b)∧ (b↔ f))), and then, since {R∞} 6|= ¬((p↔ b)∧ (b↔ f)),
it will check whether {R∞} |= ((p↔ b) ∧ (b↔ f))→ ¬f (which it does not). ut

Definition 8. DefeasibleEntailment computes a defeasible entailment relation
|≈ for a knowledge base K and a rank functon r if DefeasibleEntailment, when
presented with K, r, and α |∼ β, returns true if and only if K |≈ α |∼ β .

It follows (using points 1 and 2d of Theorem 1) that DefeasibleEntailment
computes exactly basic defeasible entailment.

Theorem 1. The following statements are equivalent: (1) |≈ is a basic defeasible K-
entailment relation, and (2) there is a K-faithful ranked model R and a K-faithful rank
function r such that:

a. r(α) = min{i | there is a v ∈ JαK s.t. R(v) = i};
b. |≈ can be generated from R;
c. |≈ can be generated from r;
d. |≈ can be computed by Defeasible Entailment, given K and r as input.

Note that points 1 and 2 in Theorem 1 establish a connection between R and r via a
result that is a generalisation of Observation 3. And observe that DefeasibleEntailment
involves a number of calls to a classic entailment checker that is linear in n times the
size of K (where n is the number returned by the Rank algorithm). But note also that
n may be exponential in the size of K.

4 Rational Defeasible Entailment

We now proceed by suggesting that basic defeasible entailment is too permissive. We
first show that it does not satisfy RC Extension:

(RC Extension) If K |≈RC α |∼ β, then K |≈ α |∼ β

To see that basic defeasible entailment does not satisfy RC Extension, consider the
following example.

Example 3. Figure 2(a) depicts the (K-faithful) minimal ranked model RRC
K of K =

{p→ b, b |∼ f, p |∼ ¬f}. Note that RRC
K  ¬p∧¬f |∼ ¬b and (from Definition 4) that

K |≈RC ¬p ∧ ¬f |∼ ¬b. But for the K-faithful ranked model R in Figure 2(b) below
it follows that R 6 ¬p ∧ ¬f |∼ ¬b. And from Theorem 1 it follows that for the basic
defeasible K-entailment relation |≈ generated from R, K 6|≈ ¬p ∧ ¬f |∼ ¬b. So RC
Extension does not hold. ut
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Fig. 2. Ranked models of the knowledge base in Example 3. 2(a) shows the minimal K-faithful
ranked model RRC

K , while 2(b) depicts the K-faithful ranked model R.

If a basic defeasible entailment relation also satisfies RC Extension , we refer to it
as rational defeasible entailment. We propose the class of rational defeasible entailment
relations as those worthy of the term rational and analyse them further in the remain-
der of this section. We start by showing (points 1 and 2b of Theorem 2) that rational
defeasible entailment can be characterised in terms of a subset of the K-faithful ranked
models, referred to as rank preserving.

Definition 9. AK-faithful ranked model R is said to be rank preserving if the following
condition holds: for all v, u ∈ U , if RRC

K (v) < RRC
K (u), then R(v) < R(u).

Informally, rank preservation requires the total preorder �R generated from R to re-
spect the relative positions assigned to valuations in the minimal model RRC

K of K.
We can also characterise rational defeasible entailment (points 1 and 2c of Theo-

rem 2) using a subclass ofK-faithful rank functions referred to as base rank preserving.

Definition 10. A K-faithful rank function r is said to be base rank preserving if the
following condition holds: for all α, β ∈ L, if brK(α) < brK(β), then r(α) < r(β).

Base rank preserving rank functions (or, the relations < derivable from base rank pre-
serving rank functions) respect the base rank (or rather, the relation< derivable from the
base rank). We show (points 1 and 2d of Theorem 2) that DefeasibleEntailment
described in the previous section can also be used to compute rational defeasible entail-
ment, provided it receives base rank preserving rank functions as input.

Theorem 2. The following statements are equivalent: (1) |≈ is a rational defeasible
K-entailment relation, and (2) there is a rank preserving K-faithful ranked model R
and a K-faithful base rank preserving rank function r s.t.:

a. r(α) = min{i | v ∈ JαK and R(v) = i};
b. |≈ can be generated from R;
c. |≈ can be generated from r;
d. |≈ can be computed from Defeasible Entailment, given K and r as input.

Analogous to basic defeasible entailment, Points 1 and 2 of Theorem 2 establish a
connection between R and r via a result that is a generalisation of Observation 3.



5 Lexicographic Closure

We now turn our attention to lexicographic closure, a second form of defeasible entail-
ment that has been studied in the literature [24]. Our central result is that lexicographic
closure is a rational defeasible entailment relation. We also show that lexicographic
closure can be characterised in three different ways: semantically via a rank preserving
K-faithful ranked model, in terms of a base preserving K-faithful rank function r, and
via DefeasibleEntailment when it is presented with r (and a knowledge base
K) as input. While the semantic construction of lexicographic closure is known [24],
the other two constructions are new. We also show that there are rational defeasible
entailment relations that extend lexicographic closure, which means that lexicographic
closure is not the “boldest” form of rational defeasible entailment, as has been the con-
jecture in the literature.

Let CK be a function from U to N s.t. CK(v) = #{α |∼ β ∈ K | v  α → β}
(where #X denotes the cardinality of the set X). The goal is to refine the ordering on
U obtained from the minimal model RRC

K with CK: in comparing two valuations with
the same rank w.r.t. RRC

K , the one with a higher number will be viewed as more typical.
We define an ordering �KLC on U : v �KLC u if RRC

K (u) = ∞, or RRC
K (v) <

RRC
K (u), or RRC

K (v) = RRC
K (u) and CK(v) ≥ CK(u). Then let RLC

K be the ranked
interpretation obtained from �KLC , which we call the lexicographic ranked model of K.

Definition 11. The lexicographic closure |≈LC ofK is defined as follows:K |≈LC α |∼
β if RLC

K  α |∼ β.

Proposition 2. RLC
K is a K-faithful and rank preserving ranked model.

From this result it follows from Theorems 2 and 1 that lexicographic closure is
a rational and basic defeasible entailment relation. Lehmann [24, Theorem 3] already
showed that lexicographic closure satisfies RC Extension.

Example 4. Figure 3(a) depicts the minimal ranked model RRC
K of K = {p → b, b |∼

f, p |∼ ¬f, b |∼ w}, while Figure 3(b) depicts the lexicographic ranked model RLC
K

of K. From these two models we can see that p |∼ w (penguins usually have wings)
is not in the rational closure of K, but is in the lexicographic closure of K. This is
indicative of the difference between, what Lehmann refers to as Prototypical Reasoning
and Presumptive Reasoning [24]. Presumptive Reasoning states that properties of a
class are presumed to hold for all members of that class unless we have knowledge to
the contrary. Because birds usually have wings we assume that penguins, being birds,
usually have wings as well. Contrast this with Prototypical Reasoning which states that,
while typical members of a class are presumed to inherit the properties of that class, the
same does not hold for atypical members. According to Prototypical Reasoning, since
penguins are atypical members of the class of birds, they do not inherit the property
of having wings. Rational closure operates according to Prototypical Reasoning, while
lexicographic closure adheres to Presumptive Reasoning. ut

We have seen that lexicographic closure (|≈LC) can be generated from a K-faithful
rank preserving model. From Theorem 2 it then follows that there is a K-faithful base
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Fig. 3. Ranked models of the knowledge base in Example 4. 3(a) shows the minimal model K-
faithful ranked model RRC

K , while 3(b) depicts the lexicographic ranked model RLC
K .

rank preserving rank function r from which |≈LC can be generated. Furthermore, it can
be generated by DefeasibleEntailment, given K and r as input. We now show
how to construct the K-faithful base rank preserving rank function r mentioned above.

Definition 12. The lexicographic rank w.r.t. a knowledge baseK is defined as rLC
K (α) ≡def

min{RLC
K (v) | v ∈ JαK}.

Proposition 3. The lexicographic rank rLC
K w.r.t. a knowledge baseK isK-faithful and

base rank preserving.

Now we show rLC
K generates the same rational defeasible entailment relation as RLC

K .

Proposition 4. RLC
K  α |∼ β iff rLC

K (α) < rLC
K (α ∧ ¬β) or rLC

K (α) =∞.

Finally, DefeasibleEntailment computes the same (rational) defeasible en-
tailment relation as RLC

K does when given the input K and rLC
K .

Proposition 5. DefeasibleEntailment returns true when given the input K,
rLC
K , and α |∼ β iff rLC

K (α) < rLC
K (α ∧ ¬β), or rLC

K (α) =∞.

We conclude this section with an example which shows that lexicographic closure
is not (always) the “boldest” form of rational defeasible entailment.

Example 5. Consider the knowledge base K in Example 4 and let a K-faithful ranked
model R be as depicted in Figure 5 below. R is a refinement of the lexicographic ranked
model RLC

K in Figure 4. It can be shown that R is rank base preserving, and therefore
it generates a rational defeasible K-entailment relation |≈, and that |≈ strictly extends
lexicographic closure: If K |≈LC α |∼ β, then K |≈ α |∼ β, and there is at least one
defeasible implication α |∼ β such that K |≈ α |∼ β, but K 6|≈LC α |∼ β. For example,
observe that K |≈ b ∧ ¬f ∧ w |∼ ¬p, but K 6|≈LC b ∧ ¬f ∧ w |∼ ¬p ut
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Fig. 4. The ranked model R of Example 5.

6 Related Work

The original work in the KLM style [23] was inspired by the work of Shoham [28], and
investigated a class of non-monotonic consequence relations, where defeasible impli-
cation was viewed as a (non-monotonic) form of entailment. This approach was sub-
sequently adapted by Lehmann and Magidor [25] to the case where |∼ is viewed as
an object-level connective for defeasible implication, and where the focus then shifts
to defeasible entailment (i.e., |≈) for a logic language that extends propositional logic
with the defeasible implication connective |∼.

We are aware of four instances of defeasible entailment that have been studied:
ranked entailment [25] which is not LM-rational, rational closure [25, 4, 7, 21], and lex-
icographic closure [24] which are both regarded as appropriate forms of defeasible en-
tailment, and relevant closure [17] which is also not LM-rational.

Our investigation here is reminiscent of the AGM framework for belief change
[1, 19], where classes of belief change operators are studied. Rational closure can be
viewed as the defeasible entailment equivalent of full-meet belief contraction or revi-
sion since, by virtue of the property of RC Extension, it is the most conservative of
those defeasible entailment relations regarded as appropriate. The boldest forms of ra-
tional defeasible entailment can be seen as analogous to maxichoice belief contraction
and revision: maxichoice operators are obtained by imposing a linear ordering on the
propositional valuations that are counter-models of a belief set, while the boldest forms
of rational defeasible entailment are obtained by imposing a linear ordering on UKR , the
set of possible valuations w.r.t. a knowledge base K and then considering the defeasible
entailment relations generated from the base rank preserving K-faithful ranked models
obtained from such linear orderings.

Studies of defeasible entailment beyond the propositional case include versions of
defeasible implication in more expressive languages, most notably description logics [2,
3, 10, 14, 15, 20, 27, 26] and modal logics [8, 9, 11]. A different type of extension is one
in which defeasible implication is enriched by either introducing a notion of typicality
in propositional logic [5, 6, 4] or a notion of defeasible modality [12, 13].



7 Conclusion

The central focus of this paper is the question of determining what (defeasible) entail-
ment means for propositional logic enriched with a defeasible implication connective.
The short answer is that a defeasible entailment relation needs to be rational in a techni-
cal sense provided above. In arriving at this conclusion we have made a detour through
the more permissive class of basic defeasible entailment relations.

There are at least three lines of research to which the work in this paper can lead.
First is an analysis of concrete forms of rational defeasible entailment other than ratio-
nal and lexicographic closure. Secondly, both basic and rational defeasible entailment
is on the knowledge level [19] in the sense that the syntactic form of knowledge bases
are, for the most part, irrelevant. But there is a strong case to be made for defining
defeasible implication where syntax matters. This is analogous to the distinction be-
tween belief change on sets closed under classical consequence and base change [22],
where the structure of the set of beliefs of an agent plays a role. And although lexi-
cographic closure is an instance of rational defeasible entailment, it is an example of
a form of entailment where the structure of the knowledge base matters. We conjec-
ture that a syntax-based class of defeasible entailment will form a strict subclass of
the class of rational defeasible entailment relations, and that lexicographic closure will
be the strongest form of syntax-based rational defeasible entailment. Finally, we have
presented an algorithm for computing any rational defeasible entailment relation, but
the algorithm depends on the provision of a knowledge base K, as well as a function
that ranks all statements. With a syntax-based approach, it may be possible to use the
structure of K to rank statements, in the way that the BaseRank algorithm does in the
process of computing rational closure.
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