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Abstract

Password-based Authenticated Key-Exchange (PAKE) protocols allow the establishment of se-

cure communications despite a human-memorable password being the only secret that is previ-

ously shared between the participants. After more than 25 years since the initial proposal, the

PAKE problem remains an active area of research, probably due to the vast amount of passwords

deployed on the internet as password-based still constitutes the most extensively used method

for user authentication. In this thesis, we consider the computational complexity approach to

improve the current understanding of the security provided by previously proposed PAKE pro-

tocols and their corresponding security models. We expect that this work contributes to the

standardization, adoption and more efficient implementation of the considered protocols.

Our first contribution is concerning forward secrecy for the SPAKE2 protocol of Abdalla and

Pointcheval (CT-RSA 2005). We prove that the SPAKE2 protocol satisfies the so-called notion of

weak forward secrecy. Furthermore, we demonstrate that the incorporation of key-confirmation

codes in the original SPAKE2 results in a protocol that provably satisfies the stronger notion of

perfect forward secrecy. As forward secrecy is an explicit requirement for cipher suites supported

in the TLS handshake, we believe our results fill the gap in the literature and facilitate the

adoption of SPAKE2 in the recently approved TLS 1.3.

Our second contribution is regarding tight security reductions for EKE-based protocols. We

present a security reduction for the PAK protocol instantiated over Gap Diffie-Hellman groups

that is tighter than previously known reductions. We discuss the implications of our results for

concrete security. Our proof is the first to show that the PAK protocol can provide meaningful

security guarantees for values of the parameters typical in today’s world.

Finally, we study the relation between two well-known security models for PAKE protocols.

Security models for PAKEs aim to capture the desired security properties that such protocols

must satisfy when executed in the presence of an adversary. They are usually classified into i)

indistinguishability-based (IND-based) or ii) simulation-based (SIM-based), however, controversy
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remains within the research community regarding what is the most appropriate security model

that better reflects the capabilities that an adversary is supposed to have in real-world scenarios.

Furthermore, the relation between these two security notions is unclear and mentioned as a gap in

the literature. We prove that SIM-BMP security from Boyko et al. (EUROCRYPT 2000) implies

IND-RoR security from Abdalla et al. (PKC 2005) and that IND-RoR security is equivalent to

a slightly modified version of SIM-BMP security. We also investigate whether IND-RoR security

implies (unmodified) SIM-BMP security.
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CHAPTER 1

Introduction

1.1 The Evolution of Cryptography

The most fundamental goal of cryptography is establishing secure communications in the presence

of an adversary. From history, we have learned that the design of cryptographic protocols is far

from being a trivial task: a large number of cryptographic mechanisms were proposed, believed to

be secure and then broken. To break this vicious cycle, the cryptographic community developed

a methodology to gain confidence in the security of a given protocol by performing a rigorous

analysis. This approach is commonly referred to as provable security or reductionist approach.

1.1.1 Ancient Cryptography

The desire of communicating securely is believed to be as old as the invention of the writing: We

know from history that cryptography started 4000 years ago, when ancient civilizations including

Egypt, China, Mesopotamia, developed mechanisms to protect the privacy of messages exchanged

so that only the legitimate recipient could read them – even if the message was intercepted by the

enemy. Examples of ciphers in the realm of ancient cryptography include Caesar and Vigenère

schemes and the well known Enigma machine.

Originally, cryptography was a discipline reserved exclusively for military and diplomatic

purposes. It was during the early 20th century when the development of cryptography received

a tremendous boost due to the invention and widespread of electronic communications, i.e. the

telegraph and the radio, as they are inexpensive and broadcast communication channels where

it is relatively simple to intercept the messages being transmitted [Riv, Kah96].

It is beyond doubt the influence that cryptography has had in shaping the history of humanity.

A noticeable example is the Second World War (WW2): it is estimated that cryptanalysis lead

1



2 CHAPTER 1. INTRODUCTION

by Alan Turing on the Enigma machine – the enciphering machine used by the German armed

forces – shortened the WW2 at least by two years saving countless lives.

The previously mentioned ciphers correspond to the so-called ancient cryptographic methods.

During this era, cryptography was merely an art: constructing ciphers and breaking them relied

on personal skills and creativity. Furthermore, a cipher was considered secure as long as no

attacks were found on it. This approach led to the proposal of a countless number of ciphers

which subsequently were found to be flawed. A remarkable example is the Vigenere cipher,

which was considered unbreakable for 300 years until Friedrich Kasiski published an attack in

1863. Similarly, the german army considered the Enigma machine unbreakable. Moreover, with

exception of the Enigma machine, the ciphers of this era were based on security through obscurity,

as it was believed that keeping the mechanisms for encrypting and decrypting secret from the

adversary would increase its security.

1.1.2 Modern Cryptography: A Computational Complexity Approach

We know from history that ad-hoc approach followed in ancient cryptographic methods is not

convincingly successful – every cipher corresponding to that realm of ancient cryptography can be

easily broken with modern technology or even by hand. The need of stronger security guarantees

motivated the transition to modern cryptography : cryptography evolved from being the art of

writing secret codes to a scientific discipline with fundamentals in mathematics, information

theory and computational-complexity theory.

Modern cryptography considers the dimension of computational resources available to the

adversary. Thus, a cryptographic protocol is secure if it is infeasible to break it for a computa-

tionally bounded adversary, i.e. it follows a computational complexity approach. This approach

was firstly suggested by Shannon in his work entitled “Communication Theory of Secrecy Sys-

tems”, for many considered the father of modern cryptography, as his work lead the transition

of cryptography to a scientific discipline.

It is also remarkable that modern cryptography expanded the applications of cryptography:

it transitioned from a discipline used only to protect the secrecy of military communication, to

one that incorporates broader security requirements – authentication, message integrity, non-

repudiation – with applications ranging from e-commerce, e-banking and instant messaging pro-

tocols to industrial secrets and even national security.

1.1.3 Provable Security

The development of cryptography has been largely influenced by the provable security approach

due to Goldwasser and Micali [GM84a], which generally speaking, is about the security that can

be proven.1 To demonstrate that a protocol is provably secure the following is needed:

1In fact, Katz and Lindell [KL07] consider that modern cryptography is characterized by its emphasis on
precise definitions, rigorous proofs of security and the fact that needed assumptions are clearly stated, i.e. they
consider that modern cryptography is about the security that can be proved.
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1. Define the adversarial capabilities. The only assumption one can make on the adversary

is about its computing capabilities, particularly, no assumption regarding the adversarial

strategy should be made [Gol06, Chapter 1].2

2. Define what it means for the protocol to be secure, or put differently, which adversarial

actions constitute a break on the protocol.

3. Finally, prove that protocol in question satisfies the given security definition – this is usually

done via the reductionist approach. This way, one shows that the only way to break the

protocol in question is by solving a problem assumed to be computationally hard.

Provable security is the approach that we followed in this work to gain confidence in the

security of the studied cryptographic protocols. Obviously, when considering this approach, the

hope is that the security definition is meaningful and that the underlying hardness assumption

holds, i.e. one should only rely on well studied hardness assumptions.

1.2 Session Key Generation Protocols

1.2.1 Motivation

The adoption of the internet has revolutionized the way we work, socialize and do business.

Nowadays, the world faces an impressive demand for internet-based solutions in the manner of e-

banking, information sharing, the Internet of Things (IoT), etc., whose demand is only expected

to grow over time. Nevertheless, together with the need to transmit data over the internet comes

the responsibility of protecting it. Then it is fundamental to guarantee the secrecy, authenticity

and integrity of online communications, where cryptography is at the core of the solution.

Encryption is the process of encoding information in such a way that only authorized parties

can read it. This authorization is done through the knowledge of a secret key, in such a way

that only those entities holding the decryption key can read the content of an encrypted mes-

sage. However, encryption by itself is useless without proper key distribution, i.e. an attacker

who manages to obtain the decryption key could read the entire communication. Session key

generation protocols provide an answer to the fundamental problem of key distribution.

A session key generation protocol is a cryptographic building block where two parties exchange

messages to jointly compute a high-entropy session key over an insecure network – the goal is

to use the established session key to build secure communications. Let us consider the following

scenario for the sake of clarity: suppose Bob uses a mobile banking application on a regular

basis to pay his bills. In an attempt to communicate securely with his Bank, a naive Bob locally

generates a session-key and sends it to the Bank through a public network. The problem with

this approach is that an adversary could easily capture the session key while it is in transit. A

2Computing capabilities usually refer to computational time and space. However, in the context of (Password)
Authenticated Key-Exchange protocols, it is also important to define the attack interfaces that the adversary has,
for instance, she can manipulate the network traffic, she can learn the established session keys or she may corrupt
users.
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better approach is when Bob and his Bank jointly execute a session key generation protocol,

which allows them to agree on a shared strong cryptographic key per-session only known to the

two of them.

Finally, we would like to highlight that session key generation protocols play a fundamental

role in today’s communication. Probably the most well-known example is the TLS standard,

which stands as the most widely used cryptographic protocol – it is estimated that over 80% of

the internet traffic is TLS-encrypted [moz].

1.2.2 Set-up Assumptions

To authenticate legitimate parties, session key generation protocols assume that some initial

configuration is available, otherwise, there is always the chance of an adversary masquerading as

an honest user without being detected. These set-up assumptions come in the following fashion:

• Something the user is. This corresponds to bio-metric authentication, such as fingerprint

or facial recognition.

• Something the user has. This corresponds to Authenticated Key-Exchange (AKE)

protocols, where the users hold a high-entropy long-term key – either symmetric or public-

key. The long-term key is usually stored in an electronic device, such as a smart card or a

token.

• Something the user knows. This is a human memorable secret, such as a password or

a PIN code. This category corresponds to Password Authenticated Key-Exchange (PAKE)

protocols and is the topic in this thesis.

1.3 An Overview of PAKEs

Password Authenticated Key Exchange protocols (PAKEs) are cryptographic building blocks to

allow two users, who already share a password, to agree on a cryptographically strong session

key by exchanging messages over a hostile network. The fundamental requirements that these

protocols must satisfy are the following:

1. Secrecy of the session key: The established session key should be known only to legitimate

parties who participated in the protocol.

2. Entity Authentication: When the protocol finishes, legitimate parties should know who they

– presumably – share the session key with. This authentication could either be explicit or

implicit (we refer to Section 3.3 for in depth discussion).

3. Offiline dictionary attacks resistance: The execution of the protocol should not leake any

information that could allow an adversary to verify password guesses in an offline manner.

The first PAKE protocol is due to Bellovin and Merrit in 1992 [BM92], since then, it has

been an active research topic within the cryptographic community, resulting in the proposal of
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numerous PAKEs with enhanced efficiency and security properties. The development of PAKEs

was motivated by the need to establish secure communications – authenticated and encrypted –

in the setting where the participants previously share a password, for instance most of today’s

web authentication.

1.3.1 Security considerations for PAKEs

The design of PAKE protocols is a delicate task. Over the years, we have witnessed the repetition

of the same phenomenon: PAKEs were proposed, believed to be “secure” and broken later on.

The protocols which survive over the years are most frequently those which provide enough

evidence to satisfy a sound security definition. This approach permits to gain confidence regarding

the security guarantees offered by the protocol in question, however, it also opens the question

of what constitutes a “good” security definition.

A security model for PAKE protocols is a framework which allows us to define what it means

for a protocol to be secure. It first needs to define the setting in which a given protocol is to

be executed, for instance a PAKE is a 2-party protocol, executed in the multi-user setting and

with multiple user instances running simultaneously. It also needs to specify what the adversarial

capabilities are: certainly, the model should not assume anything about the adversarial strategy,

however, it can still describe what she is capable to fulfill, for instance she may be simply an

eavesdropper or she may actively interfere with the communication. Finally, the security model

needs to define what constitutes a break in the protocol.

The ultimate goal of a security model is to provide a meaningful definition of security by

considering reasonable adversarial capabilities. Nevertheless, the design of such models is far

from being a trivial task. Over the last two decades we have witnessed the evolution of security

models for PAKEs: it started in the year 2000 with the Find-then-Guess (FtG) model of Beralle

et al. [BPR00] and in parallel, the simulation-based model of Boyko et al. [BMP00], followed by

the Real-or-Random (RoR) model [AFP05], the Universally Composable (UC) extended to the

PAKE setting [CHK+05] and more recently, the strong augmented PAKE functionality of Jarecki

et al. [JKX18]. The basis of all the aforementioned security models is to capture resistance to

offline dictionary attacks under an adversary-controlled network, however, there are important

differences between them that result in different notions of security being modeled.

The design of security models is a continuous process. As the research community gains

a clearer understanding of security in the PAKE setting, new security models are proposed

to incorporate the new requirements. For example, the following security properties were not

considered in initial works:

• Forward secrecy: This property asks for the security of sessions which are established before

compromise of the user password. It went from being an optional property to an explicit

requirement. For instance, the newly accepted TLS 1.3 standard removed support for

cipher suites that do not satisfy this property (see Chapter 5).
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• Composition with symmetric-key encryption schemes: In practice, PAKEs are commonly

executed together symmetric-key schemes. The idea is to run a PAKE to establish a session

key and then use it to symmetrically encrypt the communication between the involved

parties. Thus, PAKEs need to compose securely with such encryption schemes [SL18].

• Pre-computation attacks resistance [JKX18]: Whenever the password file gets exposed due

to a security breach, the best one can expect is that it does not inmediately allows the

adversary to masquerade as a client. Put differently, in order to break a single password,

the adversary must perform an exhaustive search linear in the size of the dictionary and

this computation must occur only after the leakage of the password file.

1.4 Motivation and Research Objectives

Password-based authentication, despite its well-known vulnerabilities [AS99, Bon12], constitutes

still the most commonly used method for user authentication over the internet – probably because

it is simple to deploy while still providing an intuitive user experience. Therefore, passwords

are extensively used in login scenarios and the most common implementation is the so-called

password-over-TLS approach, where a client C authenticates to server S by sending its username

and password to the server. The communication is done over a TLS channel to protect the pass-

word while it is in transit, however, this approach is known to be vulnerable to phishing attacks

[CHVV03, EKSS09]. Regardless of how the passwords are stored at the server – cleartext, hashed

or hashed and salted – the previously described method of authentication requires the password

to be transmitted from the client to the server, which could potentially result in compromise of

the password. Fortunately, one can achieve with PAKEs the same login functionality of authenti-

cation, while intrinsically protecting the user password as it is never exposed during the protocol

execution.

Given the large scale of passwords deployed over the internet, together with the increasing

threat of phishing attacks, one could expect PAKEs to be widely deployed for website authen-

tication and benefit from enhanced security guarantees compared to the traditional approach.

Unfortunately, this is not the case. Most researchers and practitioners attribute this phenomenon

to patent rights: Lucent Technologies patented the method described in EKE, [BM92, BM93],3

while SPEKE was patented by Phoenix Technologies [Jab96]. Luckily for PAKEs, the patents

owned by Lucent Technologies expired in 2011 and in 2013, for the EKE protocol and its aug-

mented variant respectively, while the patent rights on SPEKE2 expired in 2017. We believe that

the patent expiration should motivate the deployment of PAKEs, considering that these proto-

cols fit amazingly in internet-based applications such as the Internet of Things (IoT), e-banking,

e-commerce, where password-based authentication mechanism is common and the establishment

3Moreover, the patents owned by Lucent Technologies seemed to also cover subsequently deployed protocols
including AuthA, PPK, PAK and SPAKE2 [BR00, Mac02a, AP05b], as they are variants of the original EKE
protocol but considering different instantiations of the encryption function. In fact, one of the motivations in
J-PAKE [HR10] was to circumvent the patent issue.
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of secure communication channels is required.

We consider the computational-complexity approach to analyze the security of the PAKE

protocols considered in this thesis. Our aim is to facilitate the adoption of PAKEs in real-world

applications. Particularly, our the research objectives are:

1. Investigate whether the SPAKE2 protocol [AP05b] provably satisfies some meaningful no-

tion of forward secrecy. This is a necessary condition for its adoption as cipher suite in the

recently approved TLS 1.3 standard.

2. Investigate the notion of tight security reductions for PAKE protocols and its relevance for

concrete security. In particular, we consider the instantiation of the PAK protocol [Mac02a]

over Gap Diffie Hellman groups.

3. Examine whether the simulation-based [BMP00] and indistinguishability-based [AFP05]

security notions for PAKEs are equivalent.

More concretely, when a protocol is to be used in real-world applications, it is fundamental to

consider i) its computational efficiency and ii) whether it satisfies a meaningful notion of security.

That being said, we believe that the previously mentioned objectives impacts positively on the

deployment of PAKEs in real-world applications:

• In our first result, we prove that the SPAKE2 protocol satisfies a meaningful notion of

forward secrecy. We believe this result fills the gap in the literature and facilitates the

adoption of the protocol in the TLS 1.3 standard as pre-shared key mechanism.

• In our second result, we provide a security reduction for the PAK protocol that is tighter

than previously known ones. Tight reductions are relevant when considering the concrete

security provided by the protocol in question. The reason is that non-tight reductions in-

duce a security degradation factor, which in practice has to be compensated by instantiating

the protocol with larger security parameters, resulting in less efficient implementations.

• For our final result, we examine the well-known SIM-based model [BMP00] and IND-

RoR model [AFP05]. Despite its technical differences, it seems that both models capture

a reasonable notion of security. However, a protocol designer intending to construct a

security proof for a new PAKE protocol, has to choose which model is more appropriate.

Then, establishing how these two security notions relate to one another, should guide the

protocol designer on how to make the choice.

1.5 Outline

The outline of this thesis the following:

Chapter 2: Preliminaries.

In this chapter we provide the computational complexity theoretic and cryptographic prelimi-

naries to make this thesis self-contained.
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Chapter 3: Password Authenticated Key-Exchange Protocols.

In this chapter, we provide an introduction to the PAKE problem followed by a discussion on

the strengths and weaknesses when passwords are used as authentication mechanisms.

Chapter 4: Security Models for Password Authenticated Key-Exchange Protocols.

In this chapter, we recall the widely known Find-then-Guess security model due to Bellare,

Pointcheval and Rogaway [BPR00]. This is the security model that we consider to construct the

security proofs for the PAK, SPAKE2 and PFS-SPAKE2 protocols considered in this work.

Chapter 5: Forward Secrecy for SPAKE2.

We consider the adoption of PAKE protocols in the recently approved TLS 1.3 standard. In

this TLS version, it is a requirement to provide forward secrecy for the established session keys.4

The IETF working group has recently considered the deployment of the SPAKE2 protocol as

pre-shared key mechanism in the TLS 1.3 standard, however, while the SPAKE2 protocol comes

with a security proof in the well-known Find-then-Guess model [BPR00], the security proof

does not consider any notion of forward secrecy. Our first contribution is to prove that the

original SPAKE2 protocol satisfies the so-called notion of weak forward secrecy. Additionally, we

demonstrate that when the original SPAKE2 protocol is enhanced with explicit authentication,

the resulting protocol provably satisfies the stronger notion of perfect forward secrecy.

The contents of this chapter have appeared in [BOS18].

Chapter 6: Tightly-Secure PAK(E).

We consider the PAK protocol [Mac02a] and present a tight security reduction when the protocol

is instantiated over Gap Diffie-Hellman groups. This has direct implications on the concrete

security provided by the protocol: Non-tight reductions induce a security degradation which must

be compensated by choosing a larger security parameter when the protocol is to be instantiated

– innevitably resulting in less efficient implementations.

The contents of this chapter have appeared in [BIO+18].

Chapter 7: On the Relation between SIM and IND-based models.

Security models for PAKEs are usually classified into i) indistinguishability-based (IND-based)

or ii) simulation-based (SIM-based). However, the relation between these two security notions is

unclear and mentioned as a gap in the literature. We prove that SIM-BMP security [BMP00] im-

plies IND-RoR security [AFP05] and that IND-RoR security is equivalent to a slightly modified

version of SIM-BMP security. We also investigate whether IND-RoR security implies (unmodi-

fied) SIM-BMP security.

The contents of this chapter have appeared in [BIOv17, BIOS19].

Chapter 8: Concluding Remarks and Future Directions.

We conclude our work and suggest open problems for future plans.

4 Forward secrecy guarantees that session keys derived from long-term keys – a password in this thesis – remain
secret to the adversary even if the long-term key material gets later compromised. It is a highly desired security
property particularly in PAKEs, considering that compromise of the password is unfortunately becoming more
and more common due to security breaches.



CHAPTER 2

Preliminaries

2.1 Introduction

When evaluating the security of a protocol in the computational model, the typical approach is

to demonstrate that breaking the protocol in question also solves some mathematical problem

believed to be hard. That mathematical problem is commonly referred to as computational hard-

ness assumption. In this chapter, we recall the necessary background concepts and definitions

that make this thesis self-content, taken from different sources including [KL07, Gol06, Gol08,

KKS13, BR05, Bai07, Poi05]. Particularly, we describe the mathematical definitions, crypto-

graphic primitives and computational hardness assumptions required to formally describe the

protocols and security analysis presented in subsequent chapters.

2.2 Mathematical Background

Next, we introduce the notation that we use throughout this thesis.

Notation. Let A,B be two sets. We write A ∩ B to denote their intersection, Ā for the

compliment of A and Pr [A ] to denote the probability that A occurs. We write d
$←− D for

sampling uniformly at random from set D and |D| to denote its cardinality. The output of

a probabilistic algorithm A on input x is denoted by y ← A(x), while y := F (x) denotes a

deterministic assignment of the value F (x) to the variable y. Let {0, 1}∗ denote the bit string of

arbitrary length while {0, 1}l stands for those of length l. When we sample elements from Zq,
it is understood that they are viewed as integers in [0 . . . q − 1], and all operations on these are

performed mod q. Finally, let κ be the security parameter, negl(κ) denote a negligible function

and π[A,B] denote the password shared between principals A and B.

9
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Definition 2.1. A group 〈G, ∗〉 is a set G equipped with a binary operation ∗, such that the

following properties are satisfied:

1. Closure. ∀a, b ∈ G, then it is the case that a ∗ b ∈ G.

2. Associativity. ∀a, b, c ∈ G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity. There exists an element e ∈ G which is neutral with respect to the operation, i.e.

∀a ∈ G we have a ∗ e = e ∗ a = a.

4. Invertibility. ∀a ∈ G there exists ã ∈ G such that a ∗ ã = ã ∗ a = e.

Definition 2.2. (Cyclic Group). A group is cyclic with generator g ∈ G if and only if the set of

elements comprising G is the set:

{ga : a ∈ Z}

Definition 2.3. A cryptographic hash function H : {0, 1}∗ → {0, 1}n is a deterministic function

satisfying the following requirements in the presence of a computationally bounded adversary:

1. Pre-image resistance: Given y = H(m), output m.

2. Collision resistant: Find two messages m1, m2 s.t. H(m1) = H(m2).

3. Second pre-image resistant: Given m1, find m2 s.t. H(m1) = H(m2).

Lemma 2.4. (Birthday Paradox Bound). Fix a positive integer N and sample q elements

y1, ..., yq uniformly and independently at random from a set of size N . Then the probability that

there exists different i, j such that yi = yj, i.e. at least one collision occurs, is upper bounded by:

coll(q,N) ≤ q2

2N

In cryptography, it is a good approach to define the adversary’s advantage ε(·) on breaking

the protocol as a function of the security parameter κ. At the same time, we want this advantage

to be too small to matter. More formally, we require ε(κ) to grow smaller than the inverse of

any polynomial, i.e. to be a negligible function of the security parameter. The underlying idea is

that an event that occurs with negligible probability, would be very unlikely to occur even when

the experiment is repeated a polynomial number of times.

Definition 2.5. A function ε : N → R is negligible if for every constant c ≥ 0 there exists an

integer N such that for every n > N it holds that ε(n) < n−c.

Definition 2.6. (Asymptotic Notation). Let f(n) and g(n) be functions that map from positive

integers to positive reals. Then f(n) = O(g(n)) means that there exists positive integers c and n′

such that for all n > n′ it holds that f(n) ≤ c · g(n).
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2.3 Complexity-based Cryptography

The foundations of modern cryptography rely on computational complexity theory. In this

section, we provide the basic notions of the latter that we consider essential for the completeness

of this thesis.

Computational complexity is the study of the resources needed by a machine to solve com-

putational problems. The considered resources are often time and memory. Generally speaking,

it aims to distinguish between those problems which are easy to compute from the hard ones.

Then, as modern cryptography is based on the gap between efficient algorithms given to le-

gitimate users and the computational infeasibility of breaking them, computational complexity

provides a foundation for the study of modern cryptography.

Running Time. This is the most studied resource in computational complexity. In this context,

the running time of an algorithm is a function of the length of its input, that indicates the number

of elementary operations – or bit operations – that have to be performed for each run of the

algorithm. Given an algorithm, its running time is a function of its input length expressing the

running time of the best known algorithm for solving the problem.

Probabilistic Algorithm. It is an algorithm A that has access to a random tape which is used

on its computation. The random tape corresponds to a random bit string – or coin tosses – that

can be modeled in the following way:

1. External coin tosses. A gets as additional input a random tape r. Then y := A(x, r),

denotes the output of A on input x and fixed coin tosses r.

2. Internal coin tosses: A has the ability to make internally coin tosses. Then the output of

A on input x, is denoted by y ← A(x). If we consider an algorithm running in polynomial

time, then it can toss at most a polynomial number of coins.

Efficient Algorithm. An algorithm is considered efficient if there exists a polynomial p(·) such

that its running time on input κ ∈ {0, 1}∗ is at most p(|κ|). This is typically adopted as the

criterion of efficiency in computational complexity. On the other hand, algorithms that do not

run in polynomial time are considered to be infeasible or intractable. We then use the term

efficient algorithm to refer to those running in probabilistic polynomial time.

Thus a probabilistic algorithm running in polynomial time is denoted as PPT.

Security Parameter. It is desired to design cryptographic protocols in a way that one can

configure its security strength. This is achieved by introducing some security parameter κ,

intuitively, the larger the κ, the bigger the security of the underlying protocol. Then, we can

consider the running time of an protocol to be a function of the security parameter κ, which is

fixed during the setup of the protocol. Thus, when we say that an algorithm runs in polynomial

time, we mean that its execution is bounded by some polynomial function in κ.1

1In this thesis, we consider the described protocols and adversaries as algorithms and we assume that they
receive as input the security parameter in unary encoding during its initialization, even if it is not made explicit.
Then the adversary is required to run in polynomial time.
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We recall now the fundamental notion of computational indistinguishability. Loosely speaking,

two distributions are computationally indistinguishable is no efficient algorithm can tell them

appart. The definition of computational indistinguishability is formulated by considering infinite

sequences of distributions. Such sequences are called probability ensembles.

Definition 2.7. (Probability Ensemble). Let I be a countable set. A probability ensemble in-

dexed by I is a collection of random variables {Xi}i∈I .

Let κ be the security paramter. Then an ensemble X = {Xκ}κ∈N is a sequence of random

variables X1, X2 · · · , one for each value of the security parameter, where the random variable Xκ

may corrrespond to the output of a cryptographic protocol, e.g. the session key for fixed κ.

Definition 2.8. (Computational Indistinguishability). Two probability ensembles X = {Xκ}κ∈N
and Y = {Yκ}κ∈N are computationally indistinguishable, if for all polynomial-time distinguishers

D there exists a negligible function negl(·) such that:

|Pr [D(1κ, Xκ) = 1 ]− Pr [D(1κ, Yκ) = 1 ]| ≤ negl(κ)

Asymptotic Security. From the security perspective, the goal in cryptography is to design

protocols which run in polynomial time, but have super-polynomial time security. In other

words, we require that for a sufficiently large security parameter, the chances of breaking the

scheme are too small to matter, i.e. a negligible function of the security parameter.

Concrete Security. When a cryptographic protocol is to be implemented, it is necessary to

provide a specific value to the security parameter considering i) the desired security that the

protocol aims to provide and ii) the efficiency of the protocol. The concrete security approach

quantifies the security guaranteed by a protocol by providing an upper bound on the success

probability of any adversary running for at most some specified amount of time.

The notion of reduction between two problems is essential when evaluating the security of

a protocol. Borrowed from computational complexity theory, a reduction from problem A to

problem B is an algorithm R that transforms A’s inputs into B’s inputs with the goal of solving

A, i.e. given x as input to A, the reduction produces an input R(x) to B – we expect R and B

to run in polynomial time. Then, R and B constitute a polynomial time algorithm for solving

A. Intuitively, this captures the idea that solving A cannot be harder than solving B.

Definition 2.9. (Reduction). A reduction from problem A to problem B, denoted by A ≤R B,

is an efficiently computable algorithm which transforms every instance of problem A into an

instance of problem B, and which can use the solution to the instance of B to obtain a solution

to the original instance of A.

Definition 2.10. (Random Self-Reducibility). Let problem P take as input x ∈ S, where S is the

space of inputs. P is random self-reducible if there exists an efficient algorithm that transforms

every instance of P with input x, into an instance of P with input r ← S, such that the answer

to P(x) can be derived in polynomial time from the answer P (r).
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2.4 Provable Security Approach

When evaluating whether a cryptographic protocol is secure, the fact that no attacks have been

found is considered as a first condition. However, there exists protocols that may take long time

– some of them even years – before being broken, for instance the Chor-Rivest public-key scheme

[CR85, CR88], based on the knapsack problem, survived for more than 10 years until it was broken

[Vau98]. Another remarkable example is the attack on the Needham-Schroeder protocol [Low95].

Therefore, the lack of attacks should never be considered as the only security validation. To gain

confidence in the security of a protocol, the cryptographic community proposed the so-called

provable security approach. It is a research direction which aims to mathematically demonstrate

that a property of a given protocol cannot be broken by the type of considered adversaries. Next,

we recall the approaches considered in provable security:

1. Symbolic model: Often called the Dolev-Yao model [DY83], it is an abstract model where

the underlying cryptographic primitives are assumed to be perfect and represented by

function symbols considered as black boxes, messages are terms on these primitives and

the adversary can compute only on these primitives. We refer to [CKW11] for a survey on

symbolic models.

2. Unconditional security: Aims to provide security for computationally unbounded adver-

saries. A remarkable example in this category is the one-time pad encryption scheme,

which satisfies Shanon’s theorem of perfect-secrecy [Sha49].

3. Computational security: Introduced by Goldwasser and Micali [GM84a], the objective of

this approach is to provide security for all adversaries running in polynomial time – more

precisely, the adversary is an algorithm modeled as a probabilistic Turing Machine.

In this thesis we consider the computational model. It is rooted in the framework of complexity

theory and security proofs in this model naturally follow the reductionist approach. A security

proof consists of providing an efficient reduction from a well-studied computational problem to

an attack against the protocol in question. If we conjecture that the chances of an efficient

algorithm in solving the well-studied problem are a negligible function of the security parameter,

then the chances of an efficient adversary in breaking the protocol are also a negligible function

of the security parameter.

Remark 2.11. Probably, the major drawback of the reductionist approach is that there could

be the case that a security proof has not practical impact on the exact security provided by the

protocol. For instance, even when there exists a polynomial-time reduction, it could be the case

that the protocol is broken withing few hours, while the reduction, which leads to an algorithm

solving the hard problem, requires a hundred years to run. The reason is that such reductions

are only meaningful when sufficiently large parameters are used, furthermore, the security in the

computational model does not answer the question of how large is sufficiently large. On the other

hand, when a protocol is to be deployed, it is necessary to provide a concrete value for the security
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parameter taking into consideration the desired security level and the efficiency of the protocol.

This motivates the need of tight security reductions (see Chapter 6).

Frequently, it is the case that security in the computational model follows either the game-

based or the simulation-based approach:

• Game-based: Security is define as game played between the adversary and some challenger.

The game explicitly defines a winning condition for the adversary, e.g. in the PAKE setting,

it is to distinguish real session keys from random strings. When proving security in a game-

based definition, the goal is to show that the advantage of the adversary on winning the

game is negligible. Security models in this approach include [BPR00, AFP05].

• Simulation-based: Also referred as real world - ideal world paradigm, security is defined as

being infeasible for an adversary to distinguish whether she interacts with the real protocol

or with an idealized protocol that is secure by definition. Security models following this

approach include [CHK+05, Can01, Sho99, BMP00].

2.4.1 Proof Structure using Sequences of Games

In this section we recall the so-called sequence of games approach. It is a well-known technique

for organizing computational proofs introduced by Shoup [Sho04] and revisited in [BR06], it is

specially relevant when considering game-based definitions. One of the strengths of this approach

is that it is widely applicable, for instance it may be used when considering the random oracle

model, standard model, common reference string (CRS) model, in the public-key or symmetric-

key setting – even when the shared-key is a password – thus it provides an unifying methodology

for various proofs.

The notion of security is defined via a security game played between a challenger and an

adversary, both of them are modeled as probabilistic processes and the whole experiment is

modeled as a probability space. The security of a protocol is associated with a particular event

S, which corresponds to an adversary winning the game. Then a protocol is secure if for all

adversaries Pr [S ] is negligibly close to some target probability, typically 0 or 1/2. 2.

This approach introduces a sequence of games G0, · · ·Gi · · ·Gn together with an associated

event Si for each game. The initial game G0 corresponds to the original security experiment

with respect to some protocol and adversary, then by definition Pr [S ] = Pr [S0 ]. The final

game Gn defines a secure and idealized execution environment where Pr [Sn ] is exactly the

target probability and should be straight forward to compute. Then, intermediate games Gi are

obtained from previous ones by transitions such that Pr [Si ] and Pr [Si+1 ] are negligibly close.

Thus it follows that Pr [S ] is negligible close to the target probability and security is proved. As

noted in [Sho04], transitions between games fall in the categories described in Figure 2.1.

2This is slightly different in PAKEs, where one has to incorporate the password defect into the security definition
(see Chapter 4).
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Transitions based on indistinguishability. Two consecutive games, Gi and Gi+1,

are defined in such a way, that if the adversary is able to distinguish between them, then

it is possible to obtain an algorithm that is able to distinguish between two distributions

assumed to be computationally indistinguishable, i.e. a contradiction.

Transitions based on failure events. Two consecutive games, Gi and Gi+1, are

identical unless some bad event F occurs, then it follows that Si ∩ F̄ ⇐⇒ Si+1 ∩ F̄ .

From Shoup’s Difference Lemma, in order to show that |Pr [Si ]−Pr [Si+1 ]| is negligible,

it it is sufficient to demonstrate that Pr [F ] is negligible.

Bridging step. This is corresponds to a transition where the game is simply formulated

in a different way, such that Pr [Si ] = Pr [Si+1 ]. Reasons for making a bridging step

include i) obtaining an equivalent game but simpler to analyse and ii) preparation for

one of the above type of transitions.

Figure 2.1: Transitions when using sequences of games.

Lemma 2.12. (Difference Lemma.) Let A,B and F be events defined in some probability space

such that A ∩ F̄ = B ∩ F̄ . Then |Pr [A ]− Pr [B ]| ≤ Pr [F ].

2.4.2 Idealized Models

The aim of cryptography is to develop protocols that can be used in practice. Nowadays, a

cryptographic protocol is more likely to be standardized if i) it is provably secure and i) it can

be efficiently implemented in the real world. Furthermore, it would be ideal to provide proofs of

security which rely only on well-studied hardness assumptions. Unfortunately, most of the times

such proofs can only be formulated for complex protocols which usually cannot be efficiently

implemented. As solution, the cryptographic community has proposed some ideal models which

permit to simplify the construction of protocols and its proof of security. More concretely, it

places additional assumptions on the adversary by demanding that attacks on certain primitives

are only generic. A generic attack against a primitive is one that runs independently of the

details of how that primitive is implemented.

Standard Model

This is the model of computation where the only accepted assumption corresponds to the ad-

versary being computationally bounded, where the security of a protocol relies only on some

hardness assumption without any trusted setup. While ideal from the security perspective, pro-

tocols proven secure in this model tend to be inefficient in practice [GL01a].

Random Oracle Model

Formalized by Bellare and Rogaway [BR93b], the random oracle model is an idealized model

where one assumes that a hash function is replaced by a random function that is publicly available
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– known as the random oracle. In this model, the adversary cannot compute hash values herself,

instead, she must query the random oracle. This strategy allows to provide security proofs for

protocols which otherwise would be difficult to prove in the standard model.

When the security of a protocol is analyzed in the ROM, one has to assume that attacks

on the protocol – if any – are independent of any particular instantiation of the hash function.

Then, if there exists an attack to the protocol due to a weakness in the chosen hash function,

one could simply replace the flawed one by a stronger candidate. There exists criticisms to the

ROM [CGH04], mostly because it seems very difficult to build a truly random oracle. However,

this model allows to provide security arguments for protocols which would be hard to prove in

the standard model. In defense of the ROM, Katz and Lindell make the following statement: “A

proof in the random oracle model is significantly better than no proof at all” [KL07, Chapter 13].

2.4.3 Computational Complexity Assumptions

Let G be an algorithm which on input a security parameter κ, outputs the description of a

multiplicative group G of prime order q along with a generator g ∈ G, i.e. (G, q, g)← G(κ). We

assume that the description of the group G and its generator g is public information which the

adversary receives as input. Let GT be a multiplicative group of prime order q.

Definition 2.13. (Discrete Logarithm (DL) Problem). Given gx compute x. Let the advantage

of an algorithm A in solving the DL problem be:

AdvDL
G (A) = Pr

[
x

$←− Zq : x = A(gx)
]

DL assumption: There exist sequences of cyclic groups G, indexed by a security parameter κ,

such that for all A running in time t polynomial in κ, AdvDL
G (A) is a negligible function.

Definition 2.14. (Computational Diffie-Hellman (CDH) Problem). Given (gx, gy) compute gxy,

where {gx, gy, gxy} ∈ G. Let the advantage of an algorithm A in solving the CDH problem be:

AdvCDH
G (A) = Pr

[
(x, y)

$←− Z2
q : gxy = A(gx, gy)

]
.

CDH assumption: There exist sequences of cyclic groups G, indexed by a security parameter κ,

such that for all A running in time t polynomial in κ, AdvCDH
G (A) is a negligible function.

Note: In this thesis, we usually write DH(·) to the denote the solution to the CDH problem, i.e.

DH(gx, gy) = gxy.

Definition 2.15. (Computational Square Diffie-Hellman (CSDH) Problem). Given gx compute

gx
2

, where {gx, gx2} ∈ G. Let the advantage of an algorithm A in solving the CSDH problem be:

AdvCSDH
G (A) = Pr

[
x

$←− Zq : gx
2

= A(gx)
]
.
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Under the CSDH assumption there exist sequences of cyclic groups G indexed by κ s.t. ∀A
running in time t polynomial in κ, AdvCSDH

G (A) is a negligible function.

The equivalence between the CDH and CSDH problems is shown in [BCP04].

Claim 2.16. AdvCSDH
G (B) ≥ AdvCDH

G (BA), where B and BA are PPT algorithms running in time

t.

Claim 2.17. AdvCDH
G (B) ≥ (AdvCSDH

G (BA))2, where B and BA are PPT algorithms running in

time t and t′ = 2t+O(texp) respectively, and texp denotes the time for exponentiation in G.

Definition 2.18. (Decision Diffie-Hellman (DDH) Problem). Distinguish (gx, gy, gxy) from

(gx, gy, gz), where {gx, gy, gxy, gz} ∈ G. Let the advantage of a algorithm A in solving DDH

problem be:

AdvDDH
G (A) =

∣∣∣Pr
[

(x, y)
$←− Z2

q : 1 = A(gx, gy, gxy)
]
− Pr

[
(x, y, z)

$←− Z3
q : 1 = A(gx, gy, gz)

]∣∣∣ .
DDH assumption: There exist sequences of cyclic groups G, indexed by a security parameter κ,

such that for all A running in time t polynomial in κ, AdvDDH
G (A) is a negligible function.

Definition 2.19. (Bilinear map). A bilinear map is a function e : G × G → GT such that the

following properties are satisfied:

• Bilinear: ∀ u, v ∈ G, a, b ∈ Zq, e(ua, vb) = e(u, v)ab.

• Non-degenerate: e(g, g) generates GT .

• Computable: ∀ u, v ∈ G, a, b ∈ Zq, there is an efficient algorithm to compute e(ua, vb).

Definition 2.20. (Bilinear Group). G is a bilinear group if there exists group GT and a bilinear

map e : G×G→ GT .

Gap Diffie-Hellman (Gap-DH) groups are those where the DDH problem can be solved in

polynomial time but no PPT algorithm can solve the CDH problem with advantage greater than

negligible, e.g. bilinear groups from Def. 2.20. More formally:

Definition 2.21. (Gap-Diffie-Hellman (Gap-DH) Problem). Given (g, gx, gy) and access to a

Decision Diffie-Hellman Oracle (DDH-O) compute gxy.

Advgap−DH
G1

(A) = Pr
[

(x, y)
$←− Z2

q : DH(gx, gy) = ADDH-O(gx, gy)
]
.

Gap-DH assumption: There exists sequences of bilinear groups G indexed by κ, such that for all

PPT A, Advgap−DH
G1

(A) ≤ negl(κ), where κ is the security parameter.





CHAPTER 3

Password Authenticated Key-Exchange

Protocols

3.1 Introduction

It is undeniable that the internet has transformed the way we communicate and interact with

the rest of the world. On a regular basis, internet users consume services such as e-mail, e-

banking, e-commerce, social media and cloud storage. Nevertheless, these services are only

possible if mechanisms to establish secure communications are available: It is necessary to keep

the messages transmitted secret to potential adversaries, and to warranty that users and service

providers are who they claim to be. For instance, a user who uses his credit card to buy a

smart phone from Amazon, should be guaranteed that only Amazon has access to his credit card

details. Fortunately, the cryptography community has developed over the last three decades the

appropriate mechanism to tackle the described need.

3.2 Password Authenticated Key-Exchange protocols

A Password Authenticated Key-Exchange (PAKE) protocol is a cryptographic primitive that

allows two entities, who only share a password, to establish a high entropy secret key by ex-

changing messages over a hostile network. The motivation is the usage of the established session

key to protect the subsequent communication by building a secure channel between the parties

involved. Theoretically, they are fascinating, because of their ability to use a weak secret – such

as a password or a pin – to produce a strong cryptographic key in a provably secure way over an

insecure communications network.

19
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Similarly, Authenticated Key-Exchange (AKE) protocols allow the establishment of session

keys over insecure networks. The distinction between PAKEs and AKEs is given by the long-term

secret material: AKE protocols assume the existence either of shared high entropy symmetric keys

or public-key infrastructure (PKI), which in practice, places additional requirements regarding

the storage of such secret material or the need of trusted third parties (TTP) issuing the public-

key certificates. On the other hand, PAKEs have minimal requirements with respect to the

infrastructure required and the long-term secrets that users need to hold in order to succeed

– as only a shared password is needed to execute the protocol. Particularly, no assumption is

made regarding the quality of the shared secret, in fact, it could be as simple as a four-digit pin

number.

The fact that passwords constitute the most extended method for authentication together

with the minimal requirements in infrastructure, make PAKEs a promising primitive to be widely

deployed for the establishment of secure communications. The seminal work in this area is the

Encrypted Key-Exchange (EKE) protocol of Bellovin and Merritt in 1992 [BM92]. Their proposal

was the first to show that it is possible to design a password authentication mechanism that can

withstand offline dictionary attacks. Since then, numerous PAKE protocols have been proposed.

Among them, only a handful have been considered for use in real-world applications: EKE

[BM92], SPEKE [Jab96],1 SRP [Wu98], KOY [KOY01], Dragonfly [Har08], SPAKE2 [AP05b],

PPK and PAK [BMP00, Mac01b, Mac02a] and J-PAKE [HR10]. The PAK, J-PAKE, SRP

and Dragonfly protocols have been standardized in the form of RFC5683, RFC8236, RFC2945

and RFC7664 respectively by the Internet Engineering Task Force (IETF). In parallel, prominent

complexity-theoric security models for PAKEs have been proposed to get assurance on the claimed

security properties by performing a rigorous analysis of the protocol in question [BPR00, AFP05,

BMP00, CHK+05].

Need of session keys. The PAKE setting assumes the existence of a shared password between

two parties. Then one could question the need to execute a PAKE protocol to agree on a session

key, given the fact that there is already a shared secret, i.e. one could naively consider that

the shared password could be used directly to encrypt the conversation between the two parties,

say Alice and Bob. The notion of a session helps us to understand why the naive approach

is a bad idea. A session is a time frame for communication between two or more devices that

occurs during the span of a single connection. For instance, a session is established everytime

Bob inputs his PIN in an ATM; later on, another session is established when Bob pays with his

credit card. That being said, we can provide several reasons why PAKEs are a better choice:

• The encryption of a message using a password as secret key leads to off-line dictionary

attacks.

• It is desirable to limit the amount of ciphertext encrypted under the same key to prevent

1The SPEKE protocol [Jab96] is one of the most well-known PAKE designs. It has been proposed by Jablon
in 1996 and proven secure in the SIM-BMP model under the Random Oracle (RO) assumption by MacKenzie
[Mac01a]. SPEKE is practically relevant as it is specified in the ISO/IEC 11770-4 [ISO09] and IEEE P1363.2
[IEE02] standards.
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cryptanalysis.

• It is desired that each communication session is established with a different session key.

– This ensures independence across communication sessions or applications.

– It confines the exposure caused by the compromise of a session key.

– Session keys are created when required and deleted when the corresponding session

expires, i.e. there is no need to store them.

• Some security properties cannot be satisfied in the naive approach, e.g. forward secrecy.

3.2.1 Passwords and Dictionary Attacks

A password is a human memorable string typically used to authenticate a user to some server.

The advantages associated to passwords in authentication scenarios include:

• Usability: Passwords are simple to use, to set up and to remember by a user. Also, users

are very much used to passwords in login scenarios, where a server needs to verify that a

user is who he claims to be.

• No need of public-key infrastructure, which is a very good thing, since we know from

recent history that sometimes certification authorities are not as trusted as they should.

For instance, it was found that the certification authority Symantec had issued numerous

certificates that did not comply with the industry standards.

On the other hand, the main disadvantage of passwords is given by the limitation of the human

memory to remember long and random-looking strings, which forces users to choose passwords

which are not only straightforward to remember but also easy to guess [YBAG04] and frequently

re-used (highly correlated). Despite these notable disadvantages, passwords constitute still the

most widely used mechanism for human-computer authentication, and they are extensively used

in scenarios including simple e-mail access, internet banking or even national security.

The nature of passwords makes PAKE protocols vulnerable to dictionary attacks. In such

attacks, an adversary tries to break the security of the protocol by exhaustively enumerating all

possible passwords until a correct guess is found. This strategy might not be very successful on

AKE schemes where the legitimate entities share a high-entropy key as long-term secret. However,

in the PAKE setting the long-term secrets come from a small set of values, i.e. a dictionary, posing

a genuine security threat. We distinguish between two types of possible dictionary attacks: offline

and online dictionary attacks.

• In an offline dictionary attack, an adversary – who may be active or simply an eavesdropper

– obtains information about the password that allows her to launch an exhaustive offline

search. For example, consider an insecure protocol that leaks the hash of the user’s password

H(π) during its execution, where H(·) is a standard hash function. Then, an eavesdropper
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who manages to obtain the H(π), could go offline and try different password candidates

{π1, π2, ...πn} until she finds the correct one by verifying that H(π) = H(πi).

• In an online dictionary attack, an attacker takes a candidate password from the password

dictionary, interacts with a legitimate party by running the protocol and verifies whether

the key-exchange succeeds for the candidate password or not. This verification occurs either

as part of the protocol execution or in higher layer applications that uses the established

session key. Since passwords come from a small set, this attack has a non-negligible chance

of success.

Online dictionary attacks cannot be entirely prevented, but their damaging effect can be

mitigated to some extent, for example by requiring users to choose strong passwords, limiting

the number of unsuccessful login attempts before the user account is blocked, or even using

machine learning to detect a pattern in login attempts that suggests an online dictionary attack

might be in progress. On the other hand, an offline dictionary attack occurs when the execution

of the protocol allows an adversary to launch an exhaustive offline search of the password. The

intuition of security requires PAKEs to be only vulnerable to online dictionary attacks, while

offline dictionary attacks have a devastating effect and must be prevented.

We would like to note that there exists a tremendous effort made by researchers and practi-

tioners to enhance the security provided by password-based authentication, either in client-side

or server-side. Recent works in this direction include: i) two-factor authentication mechanisms,

where a user who wishes to authenticate to some server needs to prove the knowledge of the

password and the possession of an auxiliary device [JKSS18], ii) password managers allow users

to store and retrieve high-entropy passwords based on a single master-password which the user

needs to remember [SJKS17], and iii) Juels and Rivest [JR13] propose the use of an auxiliary

server, called the Honey-Checker, to detect whenever the password file – stored at the server –

gets compromised, while the authors in [BRRS18] propose the adoption of a PAKE protocol into

the Honey-Cheker to protect the password while in transit to the server.

3.3 Security Properties in PAKE Protocols

A PAKE protocol is a two-party protocol that is executed in a concurrent scenario. This means

that each party is allowed to run multiple instantiations of the protocol simultaneously, i.e.

multiple sessions. To complicate things, it is a two-party protocol for honest users but executed

in a multy-party setting, which makes authentication and consistency essential requirements.

Authentication: At the end of the protocol execution, each principal should be able to verify

who they shared the session key with. PAKEs provide two kinds of authentication:

1. Implicit authentication: After completing a protocol run, a party U holds a session key sk.

Implicit authentication guarantees that only its intended partner could have computed the

same sk, or put differently, if U has not conversed with its intended partner, whoever it
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ran the protocol with will fail at computing the same session key sk that U holds. The key

confirmation typically occurs in higher application layers whenever the session key is used.

2. Explicit authentication: After successfully completing a protocol run, a party U gets the

guarantee that it conversed with its intended partner and that its partner has also computed

the correct session key. This is usually achieved by the incorporation of key confirmation

codes in the protocol description.

A session is simply one protocol run being attempted by an honest party. When a party U

completes one protocol execution, he is not only expected to hold a session key, it is crucial that

he knows who he shares the session key with and for which particular session. Then, U outputs

(sk, sid, pid), where sk denotes the established session key, sid is an unique session identifier and

pid is its partner identity, i.e. the user that U thinks he shares the session key with.

Consistency: At the end of the protocol, if two principals establish a common session key sk,

then both need a consistent view of who is their partner for that particular session [Kra03].

Concretely, if A outputs (skA, sidA, pidA = B) and B outputs (skB , sidB , pidB), if skA = skB

and sidA = sidB , then it must be the case that pibB = A.

Additionally, PAKE protocols need to satisfy the following properties [HR10]:

• Eavesdropping resistance: An adversary observing the execution of the protocol should not

gain any useful information from the communication.

• Offline Dictionary Attacks resistance: An adversary should not be allowed to verify pass-

word guesses without actively interacting with the honest users.

• Online Dictionary Attacks bound: An adversary should be limited to test at most one

password per session during an active attack.

• Known session key security: Compromise of a session key should not compromise other

session keys.

• Forward Secrecy: Compromise of long-term secret material should not compromise previ-

ously established session keys.

We distinguish between the so called perfect forward secrecy (PFS) and weak forward secrecy

(wFS). The notion of weak forward secrecy (wFS) protects session keys after compromise of

long-term key material, but only for those sessions created without the active participation of

the attacker [Kra05]. On the other hand, the stronger notion of perfect forward secrecy (PFS)

protects all session keys established before the compromise of the long-term keys, even if created

with the active intervention of the adversary (see Chapter 5 for a detailed discussion).

3.3.1 Augmented vs Balanced PAKEs

Dictionary attacks are certainly at the center of the discussion when evaluating the security

of PAKE protocols. Due to the nature of passwords, it is important to question whether some
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security can still be preserved even if the user password gets compromised – one could immediately

think of forward secrecy as an example, however, that is not the aim in this section. Obviously,

there is no hope of preventing an adversary, who manages to obtain the password in clear text,

from masquerading as a client to the server immediately after the password leakage and agreeing

on the same session key as the server. The question is whether compromise of some party

immediately reveals the corresponding passwords in clear text.

We consider the client - server setting where the server stores a password file which contains

the necessary password information for all clients. During the execution of a PAKE protocol,

the server retrieves the necessary password information from this file. Having such amount of

secret and valuable information concentrated in a single file makes it an attractive target for

adversaries, for instance, in 2012, 68 millions hashed passwords where stolen from Dropbox and

in the same year, 6 million passwords where stolen from Linkedin. In both cases, the strategy

followed by the companies was to ask the affected users to reset their password. Thus, it is

favorable to design PAKEs that still preserve some degree of security in case of compromise of

the password file. More concretely, it is highly desirable that compromise of the password file

does not immediately allow the adversary to masquerade as a user, i.e. the adversary should be

expected to perform an exhaustive offline dictionary attack in order to masquerade as a client to

the server during a PAKE execution.

In this section we consider the so-called resilience to server compromise, introduced by

Bellovin and Merrit [BM93]. This security property requires that, even if the password file

has been compromised, in order to masquerade as a user, the adversary needs to extract the

clear text password from the file and the cost of this computation per user should be linear in

the size of possible passwords – assuming passwords are uniformly distributed. For the sake of

clarity on this property, we consider a common login scenario (no PAKE involved): in case the

password file stores the passwords in clear text, once it is leaked, the adversary obtains the neces-

sary information to immediately masquerade as a client to the server. However, if the password

file stores salted passwords, the adversary is forced to perform an exhaustive offline dictionary

attack and the cost of such attack per user is linear in the size of the password dictionary, with the

hope that the compromise is detected by then and users can be asked to change their passwords.

Unluckily, for PAKEs, guaranteeing resilience to server compromise is not as straight forward as

simply storing salted passwords.

A PAKE protocol is said to be augmented if it is resilient to server compromise, and balanced

otherwise. In a balanced PAKE, all the information that a client needs to run the protocol

can be retrieved from the password file and directly inserted in the protocol execution, even if

hashed and salted passwords are stored in the file. Example of balanced PAKEs includes the

SPAKE2, PFS-SPAKE2, PPK and PAK protocols that we consider in this work. On the other

hand, in augmented PAKEs, the server does not store the password itself, but only a verifier

whose purpose is to check that the client uses the correct password. Example of augmented

PAKEs includes the PAK-Z [Mac02a] and VTBPEKE [PW17] protocols. Additionally, Gentry

et al. [GMR06] propose a general technique to transform any balanced PAKE into an augmented
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one with security in the UC framework.

Resistance to pre-computation attacks. So far, all the augmented PAKEs we have men-

tioned, are vulnerable to pre-computation attacks that may lead to the instantaneous compromise

of user passwords once the server gets compromised, i.e. while they do force the adversary to

compute an offline dictionary attack to extract the clear password from the password file, this

computation could be performed before the compromise of the server. More recently, Jarecki,

Krawczyk and Xu introduced the notion of strong augmented PAKE [JKX18], which is an aug-

mented PAKE with the extra requirement that pre-computation attacks are not allowed, i.e. the

exhaustive offline dictionary attack is only possible after the password file has been leaked. They

present a compiler that transform any augmented PAKE into a strong augmented PAKE with

security in the UC model.

3.4 Potential Application of PAKE protocols

We recall that the remarkable property provided by any PAKE protocol is the protection of the

user’s password. That being said, in the following sections we consider two scenarios where such

cryptographic protocols could be applied.

3.4.1 Establishment of secure channels

Probably, the most natural application of PAKEs is in building secure channels between two

principals who share a password. Considering that passwords constitute still the most widely

used method of authentication, where typically some user U shares a password with some server

S, the potential of PAKEs is fascinating. As a motivating example, let us consider the scenario

of a customer who uses his credit card in a card-present transaction. To validate the transaction,

the customer introduces his credit card and PIN in the payment terminal. The credit card

information, details of transaction and PIN are transmitted securely to the bank so it can accept

or reject the operation. One requirement to accept the transaction is the verification of the PIN:

the bank needs to verify that, whoever makes the transaction knows the PIN associated to the

credit card. This is where one could benefit from adopting PAKEs in such transactions: Since the

customer and bank share the PIN, they could run a PAKE protocol to establish a secure session

and then use that secure channel to transmit the necessary data. An interesting advantage

of such approach is given by the explicit authentication provided by PAKEs: the bank could

verify whether the user knows the correct PIN while intrinsically protecting it from potential

adversaries. In this case, the verification of the PIN occurs as part of the PAKE protocol in such

a way that it is not necessary to transmit it to the bank i.e. the PIN never leaves the payment

terminal.
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Figure 3.1: Traditional approach to login.

3.4.2 Login scenarios

Another setting where one could benefit from the deployment of PAKEs is in login systems. To

understand the advantage of using PAKEs for such purpose, we first look at the traditional login

approach which relies on a TLS connection.

Suppose some user U wants to authenticate to server S to access resources in S. The server

stores all password related information – for all clients – in the password file.2. Whenever the user

desires to authenticate himself to some server, he inputs his password directly into the server’s

web page. Concretely, the following occurs (see Figure 3.1):

1. User U visits the Server web page and a TLS connection is established. Frequently, the TLS

configuration that is used provides only unilateral authentication, as the client authenticates

the server using the server’s public-key certificate but not the other way around.

2. To verify that the user is who he/she claims to be, the user sends his credentials – user

name and password – to the server encrypted over the TLS-channel. This is meant to

protect the password while it is in transit.

3. The server decrypts the message and verifies that the received password matches with its

records.

Generally speaking, the concern with the aforementioned approach is that it relies on the user

to determine whether it is safe to input his password in the web page or not. For instance, let

us consider two realistic PKI failures that lead to compromise of the user’s password:

• A certification authority could issue bogus certificates. This is something that was already

observed in the Symantec scandal.

• In a phishing attack, an adversary may obtain a valid certificate and then trick a user to

visit the attackers web page.

The problem with traditional login is that the user sends his password to the server in order

to authenticate. The password is usually sent TLS-encrypted, however, due to real-world PKI

failures, there exist ways in which the adversary could capture the user’s password, for instance

2In order to avoid the immediate password leakage upon server compromise, it is recommended not to store
the passwords in clear text but rather salted and hashed, i.e. H(s, π), where π is the user password, s is a unique
per-password salt and H(·) is a hard-memory function like Scrypt [Per].
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Figure 3.2: The user password is exposed to the adversary in phishing attack.

Figure 3.3: The adoption of TLS + PAKE as login mechanism guarantees that the user password
is never exposed. If the user attempts to authenticate himself to a phisher, the PAKE execution
fails and the fisher does not learn the password.

phishing attacks. In fact, the user may observe in his browser “secure connection”, even if the

TLS connection was established with the adversary (see Figure 3.2).

Fortunately, PAKE protocols allow two principals to authenticate each other without exposing

the password. This property is what makes PAKEs suitable for login scenarios [OWT09, EKSS09].

The idea is as follows: First, establish a TLS-connection between client and server using the

server’s public-key certificate. Then, run a PAKE protocol inside the TLS-channel, this should

allow the server to authenticate the client with the advantage that the password is intrinsically

protected (see Figure 3.3).

Remark 3.1. Despite the clear advantages offered by PAKEs in login scenarios, there exists us-

ability concerns that prevent their adoption. The TLS + PAKE approach requires the integration

of PAKE protocols in the browser [EKSS09]. More concretely, this approach requires the design

of a secure area within the browser where the user inputs his password. This is probably the

biggest concern from the usability perspective, as it requires the users to change from typing their

credentials directly in the web page into an easy to identify secure area embedded in the browser.

Similarly, the TLS + PAKE approach would restrict internet companies from handling events

such as forgotten or mistyped passwords. Usually, each company has its own custom-made means

of handling such event, for instance, blocking the account after a number of failed attempts, ask-

ing security questions to recover the password, resetting the password, etc. These policies seem

difficult to implement if the authentication mechanism is executed directly with the browser.





CHAPTER 4

Security Models for Password

Authenticated Key-Exchange Protocols

4.1 Introduction

The design of PAKE protocols has proved to be a non-trivial task. In the past, protocols were

proposed and assumed to be secure if some people trying to break them did not succeed. We know

from history that the success rate of this approach is not impressive, consequently, PAKEs where

broken sometimes years after they were published [AP05a, Szy06, BŠŠ17, CH14, MPS00a, Pat97].

Thus, security models for (Password) Authenticated Key Exchange protocols emerged to get

assurance on the claimed security properties by performing a rigorous analysis.

Bellare and Rogaway introduced the first complexity-theoretic treatment of the notion of

security for AKE protocols [BR93a], commonly referred as the BR model. This approach requires

to define the capabilities of the adversary and what constitutes a break in the protocol, or put

in other words, the security properties that the protocol must satisfy when it is executed in

the presence of an adversary. Following the definition is a security proof to demonstrate that

the protocol in question satisfies it. The proof follows the complexity-theoretic methodology

[GM84b], where a reduction is demonstrated from a problem believed to be hard to the problem

of breaking the protocol.

The original work of Bellare and Rogaway considers the realistic scenario of concurrent ses-

sions running on a network fully controlled by the adversary. It focuses on the case where users

previously share a symmetric key as means of authentication. Subsequent works [BM97, BR95]

consider the public key and three party setting. The BR model was also extended to the password

setting in [BPR00, AFP05].
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4.1.1 Two Flavors of Security Models

There exists two main approaches to capture the security of protocols. Security models which

follow the original BR model are referred as indistinguishability based. The second approach is

the simulation based model, introduced for AKE protocols by Shoup [Sho99] and later extended

to the password setting in [BMP00]. We provide a sketch of both approaches:

• IND-based: Also known as game-based security. A protocol is secure, if under the allowed

adversary actions, it is computationally infeasible for an attacker A to distinguish an estab-

lished session key from a random string. Two examples of this approach are the IND-FtG

and IND-RoR security models [BPR00, AFP05].

• SIM-based: This approach defines two worlds: i) an ideal world, secure by definition, which

describes the service that is to be provided and ii) the real world which is the real protocol

execution against an attacker. Security in the SIM setting asks for the computational

indistinguishablity between ideal world and real world executions. Two examples of this

approach are the SIM-BMP and UC security models [BMP00, CHK+05].

In IND-based definitions, security is defined via a game played between the adversary and a

challenger and the goal of the adversary is to distinguish session-keys from random strings. We

have already described the methodology to construct security proofs for IND-based definitions

in Section 2.4.1. On the other hand, security proofs for SIM-based security definitions follow a

different approach: for all adversaries in the real world, one has to construct a simulator in the

ideal world that generates an execution computationally indistinguishable from the real one. We

refer to [Lin17] for an in-depth description of the simulation paradigm.

It is generally accepted that simulation-based models better capture the real-world security

requirements in cryptographic protocols. For instance, we now briefly look at the password

distribution and refer to Chapter 7 for an in-depth discussion.

Password Distribution. We know that users have the tendency to choose weak passwords.

Furthermore, i) some passwords are more likely to be chosen than others and ii) users tend

to re-use passwords – use the same password across multiple websites [WRBW16]. Usually,

simulation-based models do not make any assumption regarding the password distribution. On

the other hand, indistinguishability-based definitions assume that i) passwords are uniformly

distributed and ii) passwords are not correlated, which might not reflect the way passwords are

distributed in the real world.

While simulation based models may be better at capturing some security requirements, indis-

tinguishability based models are easier to work with and construct security proofs in. Therefore,

for the rest of this chapter and Chapters 5 and 6 we focus on indistinguishability-based models.

We discuss simulation based models again in more detail in Chapter 7.
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4.2 IND-based Find-then-Guess Security Model

Next we describe the well-known security model of Bellare, Pointcheval and Rogaway [BPR00],

which we use to prove the security of the SPAKE2 and PFS-SPAKE2 protocols in Chapter 5,

and of the PAK protocol in Chapter 6.

Frequently referred to as the Find-then-Guess (FtG) model, it is an extension of the Bellare

and Rogaway model [BR93a] to the password setting. It guarantees semantic security for the

targeted session key under the realistic scenario of an adversary having full control of the network,

concurrent executions of the protocol, users losing their session keys and forward secrecy. It also

incorporates the essential requirements that PAKE protocols must satisfy: i) an eavesdropper

adversary should not learn any information about the password, and ii) an adversary can verify

at most one password guess per session in an active attack.

In the FtG model, security is defined via a security experiment played between a challenger

CH and some adversary A. The task of CH is to administrate the security experiment while

keeping the appropriate secret information outside from A’s view. Roughly speaking, A wins the

experiment if she is able to distinguish the established session key from a random string.

We will start by formally defining PAKE protocols. This will be followed by an in-depth

description of the FtG security model.

PAKE protocol. A PAKE protocol is defined as a pair of algorithms (Gen,P). Gen is the

password generation algorithm. It takes as input the password dictionary D, a probability

distribution Q and initializes the protocol participants with passwords in D drawn from Q. P is

a probabilistic algorithm that defines how users respond to signals from the environment.

Participants and passwords. Each participant is either a client C ∈ C or a server S ∈ S.

Let U = C ∪ S denote the set of all (honest) users. Each client C holds a secret password πC

and server S holds a vector of passwords for all clients i.e. πS =< πC >C∈C such that for all

clients C then, πS [C] = πC . These passwords are assigned to users during the initialization of

the protocol by running the Gen algorithm. We consider the client - server scenario where there

is a single server S. For simplicity, the passwords are assumed to be independent and uniformly

distributed.

User Instances. The users might have more than one protocol execution running simultane-

ously, this is modeled by allowing each user an unlimited number of instances with which to

execute the protocol. Specifically, let Πi
U denote the i-th instance of user U ∈ U . In cases where

distinction matters, let Πi
C and Πj

S denote the i-th and j-th instance of client C ∈ C and server

S respectively.

Protocol execution. We assume the presence of a PPT adversary A with full control of the

network. This means that principals solely communicate through the adversary, and she may

delay, reorder, modify, drop messages sent by honest principals, or inject messages of her choice

in order to attack the protocol.
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The goal of A in the security experiment is to forge the semantic security of the established

session keys. More formally, we consider the interaction of two probabilistic algorithms: the

adversary A, and the challenger CH. The challenger internally simulates as many user instances

as A requests. The interaction between A and CH takes place via the following queries:

• Send(U, i,m): A message m is sent to instance Πi
U . The instance processes the input

message according to the protocol description P and outputs a response which is given to

A. To instruct client C to initiate a session with server S, the adversary sends a message

containing the name of the server to an unused instance of C, i.e. Send(C, i, S). In addition,

A is notified about any change on the instance’s state which include:

– continue: The instance Πi
U is ready to receive and process another message.

– reject: Πi
U aborts the protocol execution without computing the session key. This is

due to receiving an unexpected message, for instance an invalid confirmation code.

– accept: Πi
U knows its partner identity pidiU , the session identifier sidiU and session

key skiU .1 However, Πi
U still expects to receive another message to fulfill the protocol

specification, usually a confirmation code.

– terminate: Πi
U holds pidiU , sidiU and skiU . It has completed the protocol execution

and will not send nor receive any other message.

• Execute(C, i, S, j): This query causes an honest run of protocol P between Πi
C and Πj

S .

The transcript of the execution is given to A.

• Reveal(U, i): The session key skiU held at Πi
U is given to A. For this query to be valid,

skiU must be already computed, i.e. Πi
U must be in accept or terminate state.

• Corrupt(U). The adversary obtains the password of user U . If U = C ∈ C, then A
receives πC , and if U = S ∈ S, then A receives πS =< πC >C∈C .

• Test(U, i): CH flips a bit b and answers the query as follows: if b = 1 A gets the session

key skiU , otherwise she receives a random string r
$←− {0, 1}κ, where {0, 1}κ denotes the

session key space. The adversary is allowed to ask this query only once.

The previously described queries model reasonable capabilities that the adversary may have in

the real world. The underlying motivation is that the protocol in question should remain secure

even in the presence of such a powerful adversary. Next we mention the security properties

captured by each query:

1. Send query. It models the fact that the network may be under full control of the adversary

– or shortly, the adversary is the network. Certainly, this is powerful query that covers

numerous attacks that the adversary may try to perform, for instance impersonation, replay

and man-in-the-middle attacks, just to mention a few.

1The partner identity pidiU , the session identifier sidiU and session key skiU , were introduced and discussed
previously in Section 3.3.
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2. Execute query. This query models eavesdropper adversaries, who may passively observe

honest executions of the protocol. This query can certainly be modeled via Send queries,

however, it seems to be a better approach to model passive adversaries via Execute queries

for PAKE protocols. The reason is that, the non-negligible term in the advantage function

models online-dictionary attacks. This term increases linearly with the number of Send

queries asked by the adversary (see Definition 4.1 and 4.2). Clearly, there cannot be an

online dictionary attacks if the adversary is merely eavesdropping the conversation. Then

modeling honest executions via Send queries would unnecessary increase the non-negligible

term in the advantage function.

3. Reveal query. It models the compromise or poor management of established session keys.

The idea is that leakage of session keys should not result in the compromise of other

established session keys, also known as known session-key independence.

4. Corrupt query. This query models the compromise of the long-term secret, which due to

security breaches, is reasonable to consider it as a legitimate adversarial capability. This

query, together with the freshness condition, are necessary to model the security property

of forward secrecy.

5. Test query. This is the only query that does not correspond to an adversarial capability

in the real world. Instead, this query measures the success of the adversary on breaking

the protocol in question. As we will see shortly, this query is meaningful only if certain

constraints are placed on the target instance of the query.

Accepting and terminating. In the FtG model from [BPR00], an instance Πi
U accepts when-

ever it holds a session key skiU , a session ID sidiU and a partner ID pidiU .2 An instance Πi
U

terminates if it holds skiU , sidiU , pidiU and additionally, it is not expected to send nor to receive

any more messages. The difference between both states is determined by the protocol design. For

instance, in the PAK protocol (see Figure 6.1), once a server instance sends the second message,

it is his duty to compute the skiU , sidiU , pidiU and accept – therefore it is eligible to a Reveal

query, nevertheless, it still needs to receive a last message to terminate. On the other hand, when

considering the PFS-SPAKE2 protocol (see Figure 5.5), the server is not asked to compute the

session key unless it has received the last message.

Next we provide definitions that will help to provide a meaningful definition of security. Con-

cretely, the partnering and freshness definitions permit to appropriately define the advantage

function by removing the scenarios where the adversary could trivially win the security experi-

ment by using the previously described queries. In addition, the partnering definition helps us

to incorporate the consistency property into the model (see Section 3.3).

Partnering. Two instances, Πi
C and Πj

S , are partnered if both accept, each one has computed

the session key, session identifier and partner identity. Specifically, the client and server instance

hold (skiC , sid
i
C , pid

i
C) and (skjS , sid

j
S , pid

j
S) respectively such that:

2Note that the meaning of “accept” in this context is different from the usage of “accept” in other settings
such as computational complexity.
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1. skiC = skjS , sidiC = sidjS , pidiC = S, pidjS = C and

2. no other instance accepts with the same session id sid, except with negligible probability.

As said before, there exists scenarios where an adversary could trivially win the security

experiment, for instance, by making a Test query to some instance Πi
U followed by a Reveal query

targeting the same instance or its partner. The notion of freshness – together with the definition

of partnering – allow us to prevent such simplistic scenarios from happening. The idea is to give

credit to A only if the instance target of the Test query is fresh.

We define two notions of freshness depending on weather perfect forward secrecy (PFS) of

weak forward secrecy (wFS) is required.

PFS-Freshness. An instance Πi
U is PFS-fresh unless:

• A Reveal query was made to Πi
U or its partner or

• There was a Corrupt(U’) and a Send(U, i,m) query, Πi
U does not have a partner and the

corruption of any user U ′ occurs before the Test query.

wFS-Freshness. An instance Πi
U is wFS-fresh unless:

• A Reveal query was made to Πi
U or its partner or

• There was a Corrupt(U ′) and a Send(U, i,m) query, Πi
U does not have a partner and the

corruption of any user U ′ occurs at any time.

The first flavour of freshness models perfect forward secrecy. The intuition is to consider as

legitimate target of a Test query those instances whose session keys were negotiated before the

corruption of any principal. This definition is similar to that of [BPR00] and is typically used in

the client-server setting [Mac02a, ACP05], where compromise of the server results in compromise

of the passwords for all clients. The only difference to [BPR00] is that our definition also considers

an instance to be fresh if it has a partner (regardless of any corruption), i.e. whenever the session

key is the result of untampered communication between honest instances.

The second variant of freshness models weak forward secrecy, which does not guarantee the

secrecy of those sessions keys which were negotiated with an active intervention of the adver-

sary (determined via partnering) and somebody has been corrupted either before or after the

establishment of the session key.

It was previosly noted in [HR10], that a passive adversary does not benefit from corrupting a

user. A similar reasoning is considered in our definitions of PFS-Freshness and wFS-Freshness,

particularly, we consider a session fresh if it has a partner, i.e. regardless of any Corrupt query

(obviously, the condition regarding Reveal queries must be preserved).

After asking a number of queries as described in the protocol execution paragraph, the ad-

versary A outputs a bit b′. We say that A wins the security experiment if the single Test query

was directed to a PFS-fresh instance and b′ = b. Let SuccPFS-FtG
P be the event that this occurs.
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Advantage of the adversary. The advantage of A on attacking the protocol P is defined as

follows:

AdvPFS-FtG
P (A) = 2 · Pr

[
SuccPFS-FtG

P (A)
]
− 1 (4.1)

Definition 4.1. (PFS-FtG security). Protocol P is FtG secure and satisfies perfect forward

secrecy if for all PPT adversaries making at most nse Send queries, there exists a negligible

function ε(·) such that:

AdvPFS-FtG
P (A) ≤ nse

|D|
+ ε(κ),

where D is the password dictionary and κ is the security parameter.

We similarly define FtG security with weak forward secrecy, the only change is that the

adversary A must ask the the single Test query to a wFS-fresh instance.

Definition 4.2. (wFS-FtG security). Protocol P is FtG secure and satisfies weak forward secrecy

if for all PPT adversaries making at most nse Send queries, there exists a negligible function ε(·)
such that:

AdvwFS-FtG
P (A) ≤ nse

|D|
+ ε(κ),

where D the password dictionary and κ is the security parameter.

While online dictionary attacks cannot be entirely prevented, the adversary should be limited

to test at most one password per session during an active attack. Taking this into consideration,

the non-negligible term in the advantage function is an upper bound on the password guesses

the adversary is allowed to make during an active attack. It is a function on the number of Send

queries the adversary makes, as it takes at least one Send query to test one password per session.

It is easy to see that PFS-FtG → wFS-FtG security. Weak forward secrecy (wFS) protects

session keys established before the compromise of long-term key material, but only for those

sessions created without the active participation of the attacker [Kra05], while perfect forward

secrecy (PFS) protects all session keys established before the compromise, even if created with

the active intervention of the adversary.

Fact 4.3. This fact can be easily verified.

Pr [SuccFtGP (A)] = Pr [SuccFtGP ′ (A)] + ε ⇔ AdvFtG
P (A) = AdvFtG

P ′ (A) + 2ε. (4.2)





CHAPTER 5

Forward Secrecy for SPAKE2

5.1 Introduction

The Simple Password-based Encrypted Key-Exchange (SPAKE2) protocol, proposed by Abdalla

and Pointcheval [AP05b], is an efficient cryptographic protocol that allows two users to establish

a secure channel using only their shared password for authentication purposes. At the moment

of writing, it is being considered by the IETF working group for standardization and possible

integration in the TLS 1.3 standard. Although it has been proven secure in the Find-then-Guess

model of Bellare, Pointcheval and Rogaway [BPR00], whether it satisfies some meaningful notion

of forward secrecy remains an open question.

In this chapter, we prove that the SPAKE2 protocol satisfies the so-called weak forward

secrecy introduced by Krawczyk [Kra05]. Furthermore, we demonstrate that the incorporation

of key-confirmation codes in SPAKE2 results in a protocol that provably satisfies the stronger

notion of perfect forward secrecy. As forward secrecy is an explicit requirement for cipher suites

supported in the TLS handshake, we believe this work could fill the gap in the literature and

facilitate the adoption of SPAKE2 in the recently approved TLS 1.3.

5.1.1 SPAKE2 Protocol

The SPAKE2 protocol, proposed by Abdalla and Pointcheval [AP05b], is a one-round PAKE

protocol proven secure in the Find-then-Guess (FtG) model of Bellare et al. [BPR00] without

considering any notion of forward secrecy. It is a simple, yet efficient protocol that, in addition

to the pre-shared password, requires the protocol participants to share two Common Reference

Strings (CRS) prior to the protocol execution. The adoption of the CRS yields to an elegant

construction that does not require full domain hash functions, which are hard to implement

37
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efficiently in practice. On the other side, the CRS requires extra security assumptions that

might be easy to satisfy in some scenarios but very restrictive in others [GL01b]. Also, as it is a

one-round protocol, only implicit authentication can be satisfied. Fortunately, the incorporation

of key-confirmation codes allows the protocol participants to explicitly authenticate each other.

This is a well-known technique described in more detail in [KJP06] and in Chapter 40 of [Vac13].

More recently, the Internet Engineering Task Force (IEFT) community has revisited the de-

ployment of the SPAKE2 protocol: i) as a stand alone specification [LK18], ii) as pre-authentication

mechanism in the Kerberos protocol [MSHH18] and iii) its adoption in the TLS 1.3 proto-

col, specifically in the handshake stage when pre-shared keys for authentication are available

[BF18, Res18] (a shared password in this setting). The discussion of forward secrecy in SPAKE2

has been a common factor in the aforementioned Internet Drafts (I-D).

5.1.2 PAKEs adoption in TLS

Nowadays, the TLS protocol is the de-facto standard to protect internet communications. It

consists of two stages: first the Handshake protocol allows the two parties to agree on a session

key, secondly, the Record protocol uses the previously negotiated session keys to protect the mes-

sages exchanged between the parties. Most of the TLS implementations provide only unilateral

authentication, where client C authenticates server S by means of public-key infrastructure (PKI)

during the handshake, usually identity disclosure of client to server is not supported.

While the server-authenticated approach might be sufficient for scenarios like internet surfing,

it is certainly inadequate for email access, internet banking and social media login applications,

where a client C has to authenticate to a server S to gain access to resources in S. The naive

approach of client authentication requires C to send his/her user name and password – either in

clear or hashed – to S which it verifies against its records. This approach lets the client’s password

exposed and vulnerable to a number of attacks: eavesdropping, offline dictionary, and phishing

attacks. The first two kinds of attacks can be prevented if the client sends his user/password

through a server-authenticated TLS channel, however, it seems harder to counter the latter

attack even if a TLS channel is available. The problem with phishing attacks is the following:

an adversary can clone a legitimate website and fool the client to visit the fake website. To

make things worse, the adversary can manage to obtain a valid public-key certificate from a

certification authority (CA) for her illegitimate web page. Indeed, the client may see on his web

browser “secure connection” as a TLS connection may be established between the client and the

cloned website controlled by the adversary (a typical client should not be expected to verify the

certificate details). Then the client inputs his credentials to login and the adversary simply learns

the user/password combination.

Fortunately, PAKEs stand as a strong candidate for scenarios where two parties require to

mutually authenticate each other while intrinsically protecting their shared password. In fact,

the Secure Remote Password (SRP) protocol [Wu98] has been incorporated into previous versions

of TLS and standardized in the form of RFC5054 [TWMP07]. Specifically, the SRP protocol was
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made available as a cipher suite for the key negotiation phase i.e. the TLS handshake. Similarly,

the IETF is currently considering the adoption of SPAKE2 in TLS 1.3 [BF18], in particular in

the TLS handshake, for scenarios where authentication is made using pre-shared keys available

between the Client and Server, i.e. a password in this particular case.

In the recently approved TLS 1.3, it has explicitly been a design goal to provide forward

secrecy for the session keys used to construct the TLS channel. Explicitly, static RSA and Diffie-

Hellman cipher suites were removed to favor public-key based key-exchange mechanisms that

guarantee forward secrecy. Therefore, formally proving that SPAKE2 satisfies some significant

notion of forward secrecy would increase its possibilities of acceptance into TLS 1.3.

5.1.3 Forward Secrecy

Forward secrecy is a security property that may be required in both AKE and PAKE protocols.

Over the last two decades, we have witnessed how the perception of forward secrecy has changed:

it evolved from being merely an optional security property – which was extra to the fundamental

properties of user authentication and secrecy of the session keys – into a highly desired property

which frequently is an explicit requirement.

Roughly speaking, forward secrecy ensures the protection of session keys even if the long-term

secret of the participants gets later compromised [DVOW92]. In practice, there are numerous

ways in which the long-term secret material could get compromised: i) the password file at the

server could get compromised, ii) via phishing attacks a client could reveal his password to some

malicious entity. Furthermore, users tend to choose similar passwords for different servers, say

a user U might choose similar looking or even the same password π for servers S1 · · ·Sn. Then,

it is fair to assume that compromise of the password π[U, Si] might also compromise π[U, Sj ].

Therefore, forward secrecy is a highly advisable property which has been explicitly a design goal

in relevant AKE and PAKE protocols [LMQ+03, Kra05, HR10, Mac02a] and more recently in

TLS 1.3 [Res18].1

The notion of forward secrecy appeared first in [DVOW92] and was later formalized in [Sho99,

CK01, Kra05, LLM07] for AKE and in [BPR00, KOY02] for PAKE protocols. It is indisputable

that this formalization enhanced the understanding of forward secrecy by identifying: i) means in

which a principal can get compromised and ii) the information leaked in such a case. It is usually

assumed that the adversary has full control of the network. However, the notion of weak forward

secrecy (wFS) protects session keys, which may be established before or after the compromise of

long-term key material, but only for those sessions created without the active participation of the

attacker [BPR00, Kra05].2 On the other hand, perfect forward secrecy (PFS) protects all session

keys established before the compromise of the long-term material, even if created by the active

intervention of the adversary.

1However, in TLS 1.3, there still remain some configurations that do not satisfy forward secrecy, for instance
in pre-shared key mode.

2To the best of our knowledge, the notion of wFS was first mentioned in [BPR00] and it was later formalized in
[Kra05], when Krawczyk acknowledged that the well-known HMQV protocol, a one-round AKE protocol, cannot
satisfy PFS but only wFS.
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It is generally accepted that PFS is difficult to satisfy in one-round protocols – which in-

evitably guarantee only implicit authentication. For instance, Krawczyk [Kra05] states that PFS

cannot be satisfied by one-round protocols using public-key encryption as authentication mech-

anism. Therefore Krawczyk proposed the notion of weak Forward Secrecy (wFS) as an attempt

to satisfy some notion of security in the HMQV protocol [Kra05] when the long-term material

is compromised – but only for those sessions established without the active participation of the

adversary. Krawczyk’s argument was later generalized in [GKR10] as “PFS is impossible for

one-round protocols when the information transmitted between the parties is computed without

access to the parties’s long-term secrets”. In separate work, Bellare et al. [BPR00] followed by

Boyd and Nieto [BN11] demonstrate that 2-flow protocols cannot satisfy PFS if the internal state

and the long term key is leaked as a result of a corruption.

It seems that the arguments in [BPR00, Kra05] have lead researchers to mistakenly assume

that PFS cannot be satisfied for “any” one-round key-exchange protocol. For instance, when

LaMacchia et al. introduced the so-called eCK model [LLM07], the authors recalled Krawczyk’s

argument as “no two-round AKE protocol can achieve PFS”, while in fact, Krawczyk’s argument

refers only to one-round AKEs where authentication is achieved by encrypting the protocol

messages under the public-key of the recipient.

PFS and key-confirmation: The authors in [BPR00, Mac02a, Sho99] demonstrated that

PFS can be satisfied when explicit authentication is added to protocols that initially satisfy

only wFS. The idea is the following: Suppose P is a 2-flow PAKE protocol satisfying only

implicit authentication. The adversary sends the first message to Bob masquerading as Alice,

Bob computes the session key, sends back the second message and finishes his protocol execution.

Then the adversary waits for the leakage of the long-term key and that could possibly help her to

compute the same session key as Bob. For this scenario, the notion of PFS requires the adversary

not to learn Bob’s session key, which can be easily avoided by requiring key-confirmation, since

then Bob will not accept the session key before he authenticates his communication partner.

5.1.4 Our contribution

We propose a new version of SPAKE2 which we name PFS-SPAKE2. This is essentially SPAKE2

but incorporating key-confirmation codes inspired by the work of [Mac02a]. This well-known

approach allowed us to meet the PFS requirement in a provably secure way, even in the case of

active adversaries, making it a suitable candidate for standardization and adoption in the TLS

1.3 protocol. In addition, we prove that the original SPAKE2 satisfies weak forward secrecy.

5.2 The SPAKE2 Protocol

SPAKE2 is an efficient one-round PAKE protocol by Abdalla and Pointcheval [AP05b] and proven

secure in the Find-then-Guess model of Bellare, Pointcheval and Rogaway [BPR00].
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Client C Server S

Initialization

Public: G, g, M,N ∈ G; H : {0, 1}∗ → {0, 1}κ

Secret: π ∈ Zq, π 6= 0

x
$←− Zq, X := gx y

$←− Zq, Y := gy

X∗ := X ·Mπ Y ∗ := Y ·Nπ

C,X∗

S, Y ∗

σ := ( Y
∗

Nπ )x σ := ( X
∗

Mπ )y

sk := H(C, S,X∗, Y ∗, σ, π) sk := H(C, S,X∗, Y ∗, σ, π)

Figure 5.1: SPAKE2 protocol.

5.2.1 Protocol description

In Figure 5.1 we recall the technical description of the SPAKE2 protocol.

The protocol is a conversation between two principals, usually a Client and a Server, who wish

to agree on a high-entropy session key. Before the protocol is run, there is an initialization phase

where a password π is assigned to each pair (C, S) of Client and Server. This constitutes the

only secret that protocol participants are required to share in advance. Additionally, before any

protocol execution, public parameters must be published and accessible to protocol participants.

These parameters include the description of group G, hash function H and two common reference

strings M,N ∈ G. The secret password of the participants is encoded in Zq, which can be easily

achieved by standard encoding techniques: an 8-character password can be represented in 56 bits

while an element in Zq is usually 160-bits long.

When the protocol starts, the client outputs a group element X∗ and sends it to the server.

The term X∗ is derived from the product of two group elements, X ∈R G and Mπ ∈ G , this

construction guarantees that for an observer, the term X∗ looks like a random group element.

In parallel, the server outputs a group element Y ∗, constructed in a similarly to the client’s X∗

term, and sends it to the client. Upon reception of the corresponding Y ∗ and X∗, C and S

proceed to compute σ, which will constitute the shared secret of the session, and subsequently

to compute the session key sk. The session keys will match for C and S provided that they share

the same password π.

We stress that SPAKE2 has optimal round complexity [KV11]. It is a one-round protocol as

each party sends only one message and they could be sent simultaneously. More concretely, the

server computes his Y ∗ term without waiting for the reception of the client’s X∗ term as they

are independent. The same reasoning applies when the client outputs his X∗ term. Nevertheless,

in practice, both parties need some type of signal that triggers the protocol execution; usually

for the client it an user instruction while for the server the signal is typically the reception of the
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client’s message.

5.2.2 Security of SPAKE2

The SPAKE2 protocol is already proven secure in the FtG model [AP05b]. However, the original

proof does not provide any security on previously established session keys in case of password

leakage. Favorably, as the following theorem states, the SPAKE2 protocol satisfies weak forward

secrecy in the FtG model (see Definition 4.2 from Chapter 4) assuming the CDH and CSDH

problems are hard in G.

Theorem 5.1. (Security in the wFS-FtG Model). Let P be the protocol specified in Figure 5.1

instantiated in group G and with passwords uniformly distributed over dictionary D. Let A be

an adversary that runs in time t polynomial in κ, makes at most nex, nse, nro queries of type

Execute, Send and random oracle. For all such adversaries A:

AdvwFS-FtG
P (A) ≤ nse

|D|
+O

(
(nse + nex)(nse + nex + nro)

q
+

nro ·AdvCDH
G (BA) + nsenro ·AdvCDH

G (B̂A) + (nro)
2AdvCSDH

G (B̃A)

)
,

where BA, B̂A are CDH-solvers and B̃A is a CSDH-solver algorithm, running in time t′ =

O(t+ (nse + nex + nro) · texp) and where texp is the time for an exponentiation in G.

We prove Theorem 5.1 using the sequence of games approach described by Shoup in [Sho04]:

We introduce a sequence of protocols P0 . . .P7, where P0 is the original protocol and P7 is a

protocol that allows only online dictionary attacks, while showing that the transition between Pi

and Pi+1 is indistinguishable for a computationally bounded adversary. In Figure 5.2, we provide

an overview of the required games for the security proof of SPAKE2.

We proceed to detail the previously described games and show that Pi and Pi+1 are compu-

tationally indistinguishable. In particular, we show that the success probability of A in Gi is at

most negligible more than that of Gi+1. To simplify the notation, we write SuccFtGPi instead of

SuccwFS-FtG
Pi to denote the success probability of A winning in game Gi.

Due to similarities with the PPK security proof, we borrow from [Mac02a] the proof structure

and necessary nomenclature that will allow us to prove the security of the protocol by sequence

of games. We say “in a CLIENT ACTION k to Πi
C” to refer to “in a Send query directed to

the client instance Πi
C that results in CLIENT ACTION k procedure being executed” and “in

a SERVER ACTION k” to refer to “in a Send query directed to the server instance Πj
S that

results in SERVER ACTION k procedure being executed”. A client instance Πi
C is paired with

server instance Πj
S if there was a CLIENT ACTION 0 to Πi

C with output 〈C,X∗〉, a SERVER

ACTION 1 to Πj
S with input 〈C,X∗〉 and output 〈S, Y ∗〉 and a CLIENT ACTION 1 to Πi

C with

input 〈S, Y ∗〉. A server instance Πj
S is paired with client instance Πi

C if there was a CLIENT

ACTION 0 to Πi
C with output 〈C,X∗〉 and a SERVER ACTION 1 to Πj

S with input 〈C,X∗〉
and output 〈S, Y ∗〉.
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Game G0 : Execution of original protocol.

This game corresponds to the original security experiment.

Game G1 : Force uniqueness of honest instances.

An instance outputs random values X∗ and Y ∗ which hopefully have not been previ-

ously observed, otherwise it draws random values again until the previous condition is

satisfied.

Game G2 : Simulation without using the password.

From this game, we give credit to A on winning the experiment only if she asks the

random oracle to compute the session key. Additionally, honest instances’ response to

Send and Execute queries is independent of the user’s password unless some bad event

happens.

Game G3 : Randomized session keys for passive adversaries.

Consider a session that is honestly established via an Execute query. From this game,

H(·) queries – targeting a session established via an Execute query – are answered with

a random string independently of any previously observed messages.

Game G4 : Check for successful password guesses.

Before any Corrupt query, if the adversary guesses the correct password and successfully

impersonates either a client or server instance, then the protocol stops and the adversary

automatically wins.

Game G5 : Randomized session keys for paired instances.

Consider a session that is established by the adversary faithfully forwarding messages

between the involved instances. From this game, H(·) queries – targeting such honestly

established session – are answered with a random string independently of any previously

observed messages.

Game G6 : Prevent testing more than one password per client or server

instance.

In this game we restrict the adversary from testing two different passwords, say π1 and

π2, during active attack against a server or client instance.

Game G7 : Internal password oracle.

This game considers an ideal protocol P7 that admits only online dictionary attacks.

Figure 5.2: Sequence of games for proving SPAKE2 security.
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The following events correspond to an adversary A testing password candidates in client and

server instances. We hope the relation between the games described in Figure 5.2 with their

matching event becomes clear, in particular, G3 corresponds to testexecpw, G4 to correctpw,

G5 to pairedpwguess, and G6 to doublepwclient and doublepwserver event. We recall that

we usually write DH(X,Y ) to denote gxy, where X = gx, Y = gy and gxy ∈ G.

• testpw(C, i, S, π): Adversary A makes i) an H(C, S,X∗, Y ∗, σ, π) query, ii) a CLIENT

ACTION 0 to Πi
C with output 〈C,X∗〉 and iii) a CLIENT ACTION 1 to Πi

C with input

〈S, Y ∗〉, where σ = DH(X∗/Mπ, Y ∗/Nπ). The associated value to this event is either the

skiC or the output of the H(·) query, whichever is set first.

• testpw(S, j, C, π): A makes an H(C, S,X∗, Y ∗, σ, π) query and a SERVER ACTION 1

to Πj
S with input 〈C,X∗〉 and output 〈S, Y ∗〉, where σ = DH(X∗/Mπ, Y ∗/Nπ). The

associated value to this event is either the skjS or the output of the H(·) query, whichever

is set first.

• testexecpw(C, i, S, j, π): A makes both i) an H(C, S,X∗, Y ∗, σ, π) query, where σ =

DH(X∗/Mπ, Y ∗/Nπ) and ii) an Execute(C, i, S, j) which produces X∗, Y ∗. The associ-

ated value to this event is the established sk.

• pairedpwguess: A testpw(S, j, C, πc) event occurs for a server instance Πj
S that is paired

with a client instance Πi
C . The associated value to this event is the established sk.

• doublepwclient: Before any Corrupt query, testpw(C, i, S, π1) and testpw(C, i, S, π2)

events both occur, for some C, i, S, π1 and π2, where π1 6= π2.

• doublepwserver: Before any Corrupt query, both testpw(S, j, C, π1) and testpw(S, j, C, π2)

occurs, for some S, j, C, π1 and π2, where π1 6= π2.

• correctpw: Before any Corrupt query, either a testpw(C, i, S, πc) or a testpw(S, j, C, πc)

event occurs, for some C, i, S, j, where πc is the correct password.

Throughout the proof, unless the contrary is explicitly stated, the challenger – sometimes

referred to as the simulator – sets the CRS as follows as follows M := gm, N := gn, where

M,N ∈ G and (m,n)
$←− Z2

q, i.e. we assume the simulator knows the discrete logarithm of the

CRS to base g. We are now ready to detail the security proof of the SPAKE2 protocol.

Game G0 : Execution of original protocol.

As part of the security experiment, the challenger simulates honest users and instances to the

adversary. In this particular game, the simulated instances behave according to the original

protocol description.

This game is identical to the original security experiment and we assume the random oracle

model. The challenger simulates to the adversary i) honest instances and ii) the hash function

H(·), which A is given oracle access to. We maintain a list ∆ro in order to answer H(·) oracle

queries consistently. See Figure 5.3.
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Rule H: For a hash query H(q), such that q is found in ∆ro, look for the (q, r) record

and answer with r. Otherwise, define r according to the following rule and add the

record (q, r) to ∆ro:

• Choose a random string r
$←− {0, 1}κ.

Figure 5.3: Simulation of H(·) random oracle queries.

Game G1 : Force uniqueness of honest instances.

The challenger simulates honest instances to the adversary and generates the X∗ and Y ∗ terms

according to the description of the protocol. Let G1 be as G0, except that if any of the X∗ or

Y ∗ collide with previously generated ones, then the challenger draws random values again until

he arrives at X∗ and Y ∗ that have not been seen before. It is easy to see that the probability of

collision is bounded by the birthday paradox, then:

Pr
[

SuccFtGP0
(A)

]
≤ Pr

[
SuccFtGP1

(A)
]

+O
(

(nse + nex)(nse + nex + nro)

q

)
P1 guarantees that for any client instance Πi

C that accepts with some session identifier sid,

there exists at most one server instance Πj
S that accepts with the same sid. The implication is

that P1 rules out the possibility of an instance Πi
C sharing the same sid and sk with two instances

Πj
S and Πj′

S , which would allow the adversary to trivially win the security experiment since by

the second requirement of the partnering definition would not be satisfied: A could fairly make

a Reveal query to Πj
S or Πj′

S and win the game. A similar reasoning applies when considering a

server instance Πj
S accepting with some sid.

Game G2 : Simulation without password.

The idea of this game is that, unless some bad event occurs, the protocol can be simulated

without requiring any password. In particular, there is an internal oracle H∗ – not available to

the adversary – which instances use to compute their session keys. See Figure 5.4. A bad event

is either a testpw(C, i, S, πc), a testpw(S, j, C, πc) or a testexecpw(C, i, S, j, πc) event. For

simplicity, we can think of the first two events as the scenario where A correctly guesses the

password πc and derives the correct session key by successfully impersonating a principal in an

online attack. The third event corresponds to the case where A knows πc and is able to compute

a session key that was established via Execute queries (more details in G3).

Let P2 be a protocol identical to P1, except that, unless backpatching is required, honest

instances compute the session key by making a query of the form H∗(C, S,X∗, Y ∗), i.e. the

resulting session key is independent of the password πc and the shared secret σ. Whenever A
asks a H(·) oracle query, the simulator checks if any of the previously mentioned bad events

occurs, and in such a case, it does backpatching to provide consistent views to the adversary.

• In an Execute(C, i, S, j) query set X∗ := gτ [C,i] and Y ∗ := gτ [S,j], with τ [·] $←− Zq and
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Rule H∗: For a hash query H∗(q), such that q is found in ∆∗ro, look for the (q, r)

reccord and answer with r. Otherwise define r according to the following rule and add

the record (q, r) to ∆∗ro:

• Choose a random string r
$←− {0, 1}κ.

Figure 5.4: Simulation of internal oracle H∗(·).

skiC ← skjS := H∗(C, S,X∗, Y ∗).

• In a CLIENT ACTION 0 to Πi
C , set X∗ = gτ [C,i], for τ [C, i]

$←− Zq.

• In a SERVER ACTION 1 to Πj
S , set Y ∗ = gτ [S,j], where τ [S, j]

$←− Zq and skjS :=

H∗(C, S,X∗, Y ∗).

• In a CLIENT ACTION 1 to Πi
C proceed as follows:

– If Πi
C is paired with Πj

S then set skiC ← skjS .

– Else if this query triggers a testpw(C, i, S, πc) event, then set skiC to the associated

value of the event testpw(C, i, S, πc,).

– Else set skiC := H∗(C, S,X∗, Y ∗).

• In an H(C, S,X∗, Y ∗, σ, π) query made by the adversary A, in case it triggers a testpw

(C, i, S, πc) for some unpaired Πi
C , or if it triggers testpw(S, j, C, πc) for some unpaired

Πj
S , or if it triggers testexecpw(C, i, S, j, πc) event for some Πi

C and Πj
S instances, or if

there is some Πj
S paired with some Πi

C and pairedpwguess(S, j, C, πc) is triggered, then

answer with the associated value of the corresponding event, i.e. the already established

session key via the internal oracle. Otherwise answer according to Rule H.

Claim 5.2. For all adversaries A,

Pr
[

SuccFtGP1
(A)

]
= Pr

[
SuccFtGP2

(A)
]
.

Proof. It follows from the construction that P2 and P1 are perfectly indistinguishable. We make

the following observations:

1. In a SERVER ACTION 1 to Πj
S , in P1 the skjS is generated at random and independent of

any previous messages since the H(·) query that determines the session key is new, while

in P2 the skjS is also generated at random and independent of previous messages using the

internal oracle H∗(·).

2. In a CLIENT ACTION 1 to Πi
C :
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• If Πi
C is paired with Πj

S , then in P1, skiC = skjS as both instances query the random

oracle H(·) with the same arguments to establish the session key, while in P2, skiC is

copied from skjS .

• If Πi
C is not paired with a server instance, then either i) a testpw(C, i, S, πc) event

occurs, in which case skiC is set identically in P1 and P2 using the H(·) oracle in both

cases, or ii) in P1, skiC is independent from previous messages, and in P2, skiC is also

independent but set using the internal oracle H∗.

3. For all H(·) queries, either:

• The queries are new, in which case they are answered according to Rule H.

• Either testpw(C, i, S, πc), testpw(S, j, C, πc) or testexecpw(C, i, S, j, πc) event oc-

curs, in which case the H(·) are answered according to the associated value of the

event i.e. the previously established session keys which in fact were established using

H∗(·).

Thus, in G2, the simulator provides identical views to the adversary to those from G1. Note

that the simulator not only knows πc but also the discrete logarithm of M,N,X∗ and Y ∗, and

with this information he can determine whenever one of the previously mentioned bad events

occurs.

Game G3 : Randomized session keys for passive adversaries.

Consider an adversary A that eventually asks an Execute(C, i, S, j) query, resulting in the X∗

and Y ∗ messages being exchanged and sk established at Πi
C and Πj

S instances. From this game,

whenever A makes a H(C, S,X∗, Y ∗, σ, π) oracle query, the simulator does not check whether the

testexecpw(C, i, S, j, πc) event occurs (no need to do backpatching as in G2). It simply answers

the H(·) query with Rule H from Figure 5.3, i.e. a random string independent of the established

sk and of any previously exchange messages.

Let F2 and F3 denote the event that for some C, S, i, j, the testexecpw(C, i, S, j, πc) event

occurs in P2 and P3 respectively.

Claim 5.3. For all adversaries A,
∣∣Pr
[

SuccFtGP2
(A)

]
− Pr

[
SuccFtGP3

(A)
]∣∣ ≤ Pr [F3 ].

Proof. P2 and P3 behave identically, unless F2, respectively F3, occurs. The main observation is

that the events F2 and F3 are triggered. Then, Pr [F2 ] = Pr [F3 ] and to conclude the proof we

apply Shoup’s Difference Lemma [Sho04].

Next we will demonstrate that the probability of testexecpw(C, i, S, j, πc) event happening

is bounded by the CDH assumption.

Claim 5.4. For all PPT adversaries A running in time t, there exists a CDH-solver BA with

running time t′ = O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP2
(A)

]
≤ Pr

[
SuccFtGP3

(A)
]

+ nro ·AdvCDH
G (BA).
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Proof. Let ε be the probability that F3 occurs in P3. We build an adversary BA whose goal is

to solve the CDH problem using adversary A as a subroutine and whose success probability is

at least ε/nro. On input (A = gα, B = gβ), BA simulates P3 to A with the following changes:

1. For every Execute(C, i, S, j) query made by A, set X∗ = A · grC,i , Y ∗ = B · grS,j and

skiC ← skjS := H∗(C, S,X∗, Y ∗), where rC,i, rS,j
$←− Zq are known to the simulator.

2. For every H(C, S,X∗, Y ∗, σ, πc) query, where the X∗ and Y ∗ terms are generated via an

Execute(C, i, S, j) query and πc corresponds to the password shared between C and S, then

add γ to the set S-DH, where:

γ =

(
σ ·Bmπc−rC,i ·Anπc−rS,j
DH(grC,i−mπc , grS,j−nπc)

)

3. When A finishes, the set S-DH contains at most nro elements, where each item is a possible

solution to DH(A,B). Then BA picks γ
$←− S-DH as its output and hopes that it is the

correct one.

Conditional on F3 occurring, BA has probability at least 1/nro to find the correct value of

DH(A,B). Then, ε ≤ nro ·AdvCDH
G (BA).

We make the assumption that even if A distinguishes P2 from P3, she still runs in time t. One

can observe that G3 guarantees forward secrecy for those sessions where A act as eavesdropper.

It implies that an adversary who knows the password but passively observes the execution of the

protocol, cannot derive the correct session key, even if she manages to corrupt some users.

Game G4 : Check for successful password guesses.

The purpose of this game is to acknowledge successful online dictionary attacks, in such a case,

the protocol stops and the adversary automatically wins. Let P4 be defined exactly as P3, except

that if the correctpw event occurs, then the protocol stops and the adversary wins. It follows

immediately that:

SuccFtGP3
(A) ≤ SuccFtGP4

(A)

Notice that from this game, unless the correctpw event occurs, session keys for unpaired

instances will be established according to internal oracle H∗, i.e. independent of both the previous

transcript of the protocol and H(·) queries. Following the same reasoning, H(·) queries for

unpaired instances, will always be answered according to Rule H, i.e. with a fresh value and

independently of previously made H∗(·) queries (because P5 stops in case the correctpw event

occurs). Obviously, this explanation holds before somebody gets corrupted.

Game G5 : Randomized session keys for paired instances.

This game captures a similar idea to that of G3. The difference is that here we consider a session

that is honestly established via Send queries, by A faithfully forwarding messages between the
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involved instances. The underlying notion is that for such sessions, A cannot distinguish the

established session key from a random string.

Let P5 be identical to P4 except that, in a H(C, S,X∗, Y ∗, σ, πc) query, in the case when X∗,

Y ∗ corresponds to some Πj
S paired with some Πi

C , the simulator does not verify if pairedpwguess

occurs. Let F4 and F5 denote the event that, during the execution of G4, respectively G5, the

following conditions are met: there are a client instance Πi
C outputting X∗, a server instance

receiving X∗ and outputting Y ∗, and, before any successful online dictionary attack to Πi
C , there

is a H(C, S,X∗, Y ∗, DH(X∗ ·M−πc , Y ∗ ·N−πc), πc) query. Then:

Claim 5.5. For all adversaries A,
∣∣Pr
[

SuccFtGP4
(A)

]
− Pr

[
SuccFtGP5

(A)
]∣∣ ≤ Pr [F5 ].

Proof. Identical to that of Claim 5.3.

Claim 5.6. For all PPT adversaries A running in time t, there exists a CDH-solver B̂A with

running time t′ = O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP4
(A)

]
≤ Pr

[
SuccFtGP5

(A)
]

+ nse · nro ·AdvCDH
G (B̂A).

Proof. Let ε be the probability of F5 happening in P5. We build a CDH-solver algorithm B̂A,

which gets as input (A,B) ∈ G2 and outputs DH(A,B) with probability at least ε/(nro · nse).
When the simulation starts, B̂A sets M = gm and N = gn. Then she chooses at random a client

instance Πd
C , which she hopes will participate in the triggering of event F5, and simulates P5 to

A with the following changes:

1. In a CLIENT ACTION 0 query to Πd
C , set X∗ := A.

2. In a SERVER ACTION 1 query to Πj
S with input X∗, where there was a previous CLIENT

ACTION 0 query to Πd
C with output X∗, set Y ∗ = B · grS,j , with rS,j

$←− Zq, and set

skjS = H∗(C, S,X∗, Y ∗).

3. Test for testpw(C, d, S, πC) are not made.

4. In CLIENT ACTION 1 query to Πd
C with input Y ∗, if it is paired with Πj

S , set skdC ← skjS .

Else set skdC = H∗(C, S,X∗, Y ∗).

5. In a H(C, S,X∗, Y ∗, σ, πC) query made by A, where i) X∗ was generated by the Πd
C in-

stance, ii) Y ∗ was generated by an Πj
S instance and iii) Πd

C is paired with Πj
S , then answer

with Rule H.

6. When A finishes, for every H(C, S,X∗, Y ∗, σ, πC) query she made, where i) X∗ was gen-

erated by the Πd
C instance, ii) Y ∗ was generated by an Πj

S instance and iii) Πj
S is paired

with Πd
C , add γ to the set S-DH, where:

γ =
σ ·Anπc−r ·Bmπc
DH(gmπc , gnπc−r)

. (5.1)
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7. When A finishes, the set S-DH contains at most nro elements, where each item a possible

solution to DH(A,B). Then B̂A picks γ
$←− S-DH as its output and hopes that it is the

correct one.

We use Shoup’s convention, and think of G6 and the simulation as occurring on the same prob-

ability space. Then, conditional on F5, B̂A finds the correct value of DH(A,B) with probability

at least 1/nsenro. Then, AdvCDH
G (B̂A) ≥ Pr [ (F5) ]/nsenro.

Game G6 : Prevent testing more than one password per instance.

In PAKE protocols, the security intuition asks to limit the number of passwords that an adversary

may test per session. Ideally, she should be limited to verify at most one guess of a password per

session in an active attack. In this game we consider the aforementioned requirement.

Let P6 be a protocol identical to P5, except that if either doublepwserver or doublepw-

client event occurs, the protocol stops and the adversary fails. Let F5 = doublepwserver ∪
doublepwclient occurring in P5 and let F6 be defined similarly but for P6. It is easy to verify

by construction that SuccFtGP5
(A) ∧ ¬F5 ⇔ SuccFtGP6

(A) ∧ ¬F6.

Let P6 be a protocol identical to P5, except that if either the doublepwserver or dou-

blepwclient event occurs, the protocol stops and the adversary fails. Obviously, it follows by

construction that SuccFtGP5
(A) ∧ ¬F5 ⇔ SuccFtGP6

(A) ∧ ¬F6.

Claim 5.7. For all adversaries A,
∣∣Pr
[

SuccFtGP5
(A)

]
− Pr

[
SuccFtGP5

(A)
]∣∣ ≤ Pr [F6 ].

Proof. Identical to that of Claim 5.3.

Now we have to demonstrate that F6 = doublepwserver∪doublepwclient can occur with

only small probability. Following the reductionist approach, we first demonstrate that for all

adversaries A, the probability of the event doublepwserver occurring is bounded by the CSDH

assumption (see Def. 2.15).

Claim 5.8. For all PPT A running in time t, there exists a CSDH-solver B̃A running time

t′ = O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP4
(A)

]
≤ Pr

[
SuccFtGP5

(A)
]

+ (nro)
2 ·AdvCSDH

G (B̃A),

Proof. Let ε be the probability that the doublepwserver event occurs in P5. One can build a

CSDH solver B̃A using adversary A as a subroutine and has success probability ε/(nro)
2. On

input A = gα, B̃A simulates P6 to A with the following changes:

1. Set M ← g−α and N ← g−α−r, where r
$←− Zq is known to B̃A.

2. On a SERVER ACTION 1 to Πj
S with input 〈C,X∗〉, output Y ∗ = gy, for y

$←− Zq.

3. Checks for correctpw event are not made.
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4. When A terminates, the simulator selects at random a pair of random oracle queries

H(C, S,X∗, Y ∗, σ1, π1) and H(C, S,X∗, Y ∗, σ2, π2), where π1, π2 ∈ Z∗q and π1 6= π2, there

was a SERVER ACTION 1 to Πj
S with input 〈C,X∗〉 and output Y ∗. Then, the simulator

computes γ as possible solution to CSDH(A) as follows:

γ =
(
σπ2
1 · σ

−π1
2 · (X∗)y(π1−π2)

)φ
·A−r,

where φ is the multiplicative inverse of π1 · π2(π1 − π2) in Z∗q .

We now demonstrate that for all adversaries A, the probability of the event doublepwclient

occurring is bounded by the CSDH assumption.

Claim 5.9. For all PPT A running in time t, there exists a reduction from the CSDH problem

with running time t′ = O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP5
(A)

]
≤ Pr

[
SuccFtGP6

(A)
]

+ (nro)
2 ·AdvCSDH

G (B̃A),

where AdvCSDH
G (B̃A) is the advantage of a CSDH-solver algorithm running in time t′ = O(t +

(nse + nex + nro) · tex).

Proof. Similar to that of Claim 5.8

Game G7 : Internal password oracle.

In this game we estimate the probability of the correctpw event taking place, i.e. the probability

of the adversary on guessing the correct password πc during an active attack.

Let G7 be identical to G6, except that, in G7, there is an internal password oracle Opw that

handles all passwords. In particular, Opw is used to:

1. Generate all passwords during the initialization phase.

2. Answer Corrupt(U) queries.

3. Determine whether the correctpw event occurs.

On the initialization phase, the challenger uses Opw to assign a password π to each pair of

client C and server S, uniformly and at random from the password dictionary. When A makes

a Corrupt(U) query, the challenger forwards it to Opw, which returns a single password πc if U is

client and a vector of passwords πs =< πc >C∈C if U is the server. Finally, to determine if the

correctpw occurs, the challenger first makes a TestPw(π,C) to Oπ to determine if the adversary

has guessed the password πC of client C, it returns 1 if π = πc and 0 otherwise.

Claim 5.10. For all adversaries A, Pr
[

SuccFtGP6
(A)

]
= Pr

[
SuccFtGP7

(A)
]
.

Proof. By construction, G7 and G6 are statistically indistinguishable.

Claim 5.11. For all adversaries A,

Pr
[

SuccFtGP7
(A)

]
≤ 1

2
+

nse
2 · |D|

.
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Proof.

Pr
[

SuccFtGP7
(A)

]
= Pr

[
SuccFtGP7

(A) | correctpw
]
· Pr [ correctpw ]

+ Pr
[

SuccFtGP7
(A) | ¬correctpw

]
· Pr [¬correctpw ] (5.2)

From G6, we know that A can test at most one password per session during an active attack,

then it follows that Pr [ correctpw ] ≤ nse/|D|. We recall from P4 that A automatically wins the

experiment whenever the correctpw event occurs.

We now inspect the second term of Equation 5.2: if correctpw does not happen, then A
wins the security experiment if she makes a Test query to a wFS-fresh instance Πi

U and guesses

the hidden bit b used to answer the Test query. We show that the view of A is independent of

the bit b and thus Pr
[

SuccFtGP7
(A) | ¬correctpw

]
= 1/2:

1. The freshness condition prevents A from asking a Reveal query directed to Πi
U or its partner

(if it has one). Additionally, P1 guarantees the uniqueness of the session identifier sid for

honest instances. Otherwise, if two client instances accept with the same sid, then there is

a trivial attack using Reveal queries. Then, the output of Reveal queries is independent of

both skiU and the bit b.

2. We look at the output of H(·) queries. From G3 and G5, it follows that the output of H(·)
is independent from skiU for passive adversaries and paired instances, respectively. Also, as

consequence of G5 and unless correctpw occurs, the session key of an unpaired instance

is set using the internal oracle not accessible to A and independently of any H(·) query. It

then follows that, provided that correctpw does not happen, then skiU is independent of

H(·) queries.

Back to Equation 5.2 we obtain:

Pr
[

SuccFtGP7
(A)

]
=

1

2
+

nse
2 · |D|

Finally, we obtain:

AdvFtG
P7
≤ nse
|D|

.

�

5.3 PFS-SPAKE2

Inspired by MacKenzie’s work [Mac02a], we propose the adoption of key confirmation codes in

the original SPAKE2 protocol [AP05b] to achieve PFS in a provable secure manner.
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Client C Server S

Initialization

Public: G, g, M ∈ G; H1, H2, H3 : {0, 1}∗ → {0, 1}κ

Secret: π ∈ Zq, π 6= 0

x← Zq, X := gx

X∗ := X ·Mπ C,X∗ abort if X∗ /∈ G
y ← Zq, Y := gy

σ := ( X
∗

Mπ )y

abort if Y /∈ G S, Y, k k := H1(C, S,X∗, Y, σ, π)

σ := Y x

abort if k 6= H1(C, S,X∗, Y, σ, π)

k′ := H2(C, S,X∗, Y, σ, π)

sk := H3(C, S,X∗, Y, σ, π) k′ abort if k′ 6= H2(C, S,X∗, Y, σ, π)

sk := H3(C, S,X∗, Y, σ, π)

Figure 5.5: PFS-SPAKE2 protocol.

5.3.1 Protocol Description

In Figure 5.5 we provide the technical description of the proposed PFS-SPAKE2 protocol. Before

the protocol is executed, public parameters must be choosen and published. These parameters

include the description of group G, hash functions H1, H2, H3 and a single CRS M – which

we require to be choosen at random from G and its discrete logarithm to be kept secret. These

constraints on the CRS can be achieved either by having a third trusted party or by assuming a

public source of randomness to publicly derive M . Our protocol is instantiated over group G of

order q, a subgroup of Z∗p, where CDH assumption holds and p, q are safe prime numbers. The

protocol requires that passwords are encoded in Zq.
The session keys and key-confirmation codes are computed a function of: the identity of

users involved in the conversation, the conversation itself, the shared-secret agreed though the

conversation i.e. the Diffie-Hellman term, and finally the shared-password. This is a standard

yet powerful technique which first appeared in [BPR00] and was probably motivated by the fact

that at the end of the protocol, each user should know i) who they share the session key with

and ii) for which particular session. Then this technique permits, a user U to link the session key

with the identity of its partner for some particular session. Moreover, it is relevant when proving

the security in the random oracle model as it allows the simulator to observe which password the

adversary is testing and for which particular session.
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Table 5.1: Comparison with existing PAKEs for Client-Server scenarios.

Protocol Communicationa Computationb Rounds

/ Flows

Hardness

Asm.c
Forward

Secrecy

Key

Confirm.

EKE [BM92, BPR00] 2 ×G 4 exp., 2 enc. 1 / 2 CDH wFS No

PPK [Mac02a] 2 ×G 6 exp. 1 / 2 CDH - No

PAK [Mac02a] 2 ×G + 2κ 5 exp. 3 / 3 CDH PFS Yes

J-PAKEd [HR10] 12 ×G + 6 × Zq 28 exp. 2 / 4 DSDH PFS No

J-PAKE∗ [HR10] 12 ×G + 8 × Zq 28 exp. 3 / 6 DSDH PFS Yes

SPAKE2 [AP05b] 2 ×G 6 exp. 1 / 2 CDH wFS No

PFS-SPAKE2 2 ×G + 2κ 5 exp. 3 / 3 CDH PFS Yes

a Communication. G denotes a group element, Zq a scalar and κ a κ-bit string.
b Computation. Exp. denotes an exponentiation in G and enc. an encryption and decryption operation.
c Hardness Assumption. DSDH stands for Decision Square Diffie-Hellman.
d J-PAKE∗ is simply J-PAKE but with an extra round for key confirmation.

Comparison to existing PAKEs. Usually the efficiency of a PAKE protocol is defined by i) the

number of communication rounds until the protocol terminates, ii) the total number of messages

exchanged and iii) the computational cost of the protocol. Compared to the original SPAKE2

(see Figure 5.1), the proposed PFS-SPAKE2 protocol benefits from explicit authentication and

strong security guarantees for PFS. This improvement usually comes at the cost of increasing the

number of rounds and messages flows required and unfortunately our protocol is not an exception

[Mac02a, Kra05].

Additionally, the PFS-SPAKE2 protocol is slightly computationally more efficient than the

original version. The reason is that it requires the client to compute only three exponentiations

instead of four, particularly, in the new protocol the client does not need to computeNπ ∈ G. One

could argue that a similar reasoning can be applied to the server side too, however, we consider

that this is not the case. For efficiency reasons, the server could legitimately store for every

client the terms Mπ and Nπ together with the password in the database, then the previously

mentioned terms do not need to be computed for every protocol execution. Nevertheless, the

client is usually required to input his password for every protocol execution, so we cannot assume

that the terms Mπ and Nπ are stored at the client side.

In Table 5.1 we summarize a comparison of the PFS-SPAKE2 to other relevant PAKE proto-

cols with full security proofs (we consider the Client-Server setting for this purpose).3 Notably

J-PAKE satisfies PFS and requires only two communication rounds, though, it is computation-

ally more expensive than the PFS-SPAKE2 as the former requires 28 exponentiations while the

later only 5. Furthermore, J-PAKE with key confirmation requires the same number of commu-

3In this setting, the server usually stores some function f(·) of the password. In some protocols, this creates a
difference in the computational cost between the client and the server. The reason is that the server may store
f(π) in a way that can be inserted in a protocol execution, while the client needs to compute f(π) in every protocol
run. This difference is noticeable in i) PPK, PAK and ii) SPAKE2 and PFS-SPAKE2, as f(·) requires hashing
into groups for i) and group exponentiation for ii).
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Game G0 : Execution of original protocol.

Game G1 : Force uniqueness of honest instances.

Game G2 : Prevent lucky guesses on hash outputs.

Game G3 : No need to backpatch Hl(·) queries against Execute queries.

Game G4 : Check for successful password guesses.

Game G5 : Randomized session keys for paired instances.

Game G6 : Prevent testing more than one passwords per server instance.

Game G7 : Internal password oracle.

Figure 5.6: Sequence of Games for PFS-SPAKE2

nication rounds as PFS-SPAKE2. Aditionally, PAK and PFS-SPAKE2 are similar in terms of

efficiency, PFS and key-confirmation guarantees.

5.3.2 Security of PFS-SPAKE2

Next we prove the security of the PFS-SPAKE2 protocol in the FtG model and considering

perfect forward secrecy (see Definition 4.1 from Chapter 4).

Theorem 5.12. (Security in the PFS-FtG Model). Let P be the protocol specified in Fig. 5.5,

instantiated in group G and with passwords uniformly distributed over dictionary D. Let A be

an adversary that runs in time t polynomial in κ, makes at most nex, nse, nro queries of type

Execute, Send and random oracle. Then:

AdvPFS-FtG
P (A) ≤ nse

|D|
+O

(
(nse + nex)(nse + nex + nro)

q
+

nro ·AdvCDH
G (BA) + nsenro ·AdvCDH

G (B̂A) + (nro)
2 ·AdvCDH

G (B̃A)

)
,

where BA, B̂A and B̃A are CDH-solver algorithms running in time t′ = O(t+ (nse + nex + nro) ·
texp), where texp is the time for an exponentiation in G.

To prove the security of PFS-SPAKE2, we introduce a sequence of protocols P0 . . .P7, where

P0 is the original protocol and P7 allows only online dictionary attacks, while showing that the

transition from Pi to Pi+1 is computationally indistinguishable. Let Gi be the security game

associated to Pi. In Figure 5.6, we provide an overview of the required security games.

The security proof of PFS-SPAKE2 has some similarities with the PAK security proof. Then,

we borrow from [Mac02a] the proof structure and necessary nomenclature for our proof, which

we recall here:

We say “in a CLIENT ACTION k to Πi
C” to refer to “in a Send query directed to the client

instance Πi
C that results in CLIENT ACTION k procedure being executed” and “in a SERVER

ACTION k” to refer to “in a Send query directed to the server instance Πj
S that results in

SERVER ACTION k procedure being executed”.
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A client instance Πi
C is paired with server instance Πj

S , if there was a CLIENT ACTION 0 to

Πi
C with output 〈C,X∗〉, a SERVER ACTION 1 to Πj

S with input 〈C,X∗〉 and output 〈S, Y, k〉
and a CLIENT ACTION 1 to Πi

C with input 〈S, Y, k〉. A server instance Πj
S is paired with client

instance Πi
C if there was a CLIENT ACTION 0 to Πi

C with output 〈C,X∗〉 and a SERVER

ACTION 1 to Πj
S with input 〈C,X∗〉 and output 〈S, Y, k〉, additionally, if there is a SERVER

ACTION 2 with input k′, then there was a previous CLIENT ACTION 1 to Πi
C with input

〈S, Y, k〉 and output k′.

Next we define the events that will allow us to prove the security of the protocol. As in

[Mac02a], we make use of such events to formally define the bad scenarios which would increase

the chances of A in winning the game, or, put it differently, the scenarios which we aim to

show that can occur at most with negligible probability, for instance i) A testing more than one

password per server instance, ii) A computing the session key for sessions where A was merely

an eavesdropper. The events also help to identify whenever A has successfully impersonated an

honest party.

• testpw(C, i, S, π, l): Adversary A makes i) an Hl(C, S,X
∗, Y, σ, π) query for some l ∈

{1, 2, 3}, ii) a CLIENT ACTION 0 to Πi
C with output 〈C,X∗〉 and iii) a CLIENT ACTION

1 to Πi
C with input 〈S, Y, k〉, where X∗ = X ·Mπ and σ = DH(X,Y ). The associated

value to this event is the output of the Hl(·) query, or the k, k′, skiC values, respectively for

l = 1, 2, 3, whichever is set first.

• testpw(S, j, C, π, l): A makes an Hl(C, S,X
∗, Y, σ, π) for some l ∈ {1, 2, 3} and a SERVER

ACTION 1 to Πj
S with input 〈C,X∗〉 and output 〈S, Y, k〉, where X∗ = X · Mπ and

σ = DH(X,Y ). The associated value to this event is the output of the Hl(·) query, or the

k, k′, skjS values, respectively for l = 1, 2, 3, whichever is set first.

• testpw!(C, i, S, π): A CLIENT ACTION 1 with input 〈S, Y, k〉, causes a testpw (C, i, S, π, 2)

event to occurs, with associated value k.

• testexecpw(C, i, S, j, π): A makes i) an Hl(C, S,X
∗, Y, σ, π) for some l ∈ {1, 2, 3}, where

X∗ = X ·Mπ and σ = DH(X,Y ) and ii) previously an Execute(C, i, S, j) query which

produces the X∗, Y values. The associated value to this event is the k, k′, skjS values,

respectively for l = 1, 2, 3.

• correctpw: Before any Corrupt query, either a testpw!(C, i, S, πc) event occurs, for some

C, i, S, or a testpw(S, j, C, πc, l) event occurs for some S, j, C and l ∈ {1, 2, 3}, where πc is

the correct password.

• pairedpwguess: For some client and server instance Πi
C and Πj

S respectively, then events

testpw(C, i, S, πc, l) and testpw(S, j, C, πc, l) both occurs for l ∈ {1, 2, 3}, where Πi
C is

paired with Πj
S , and Πj

S is paired with Πi
C after its SERVER ACTION 1.

• doublepwserver: Before any Corrupt query, both a testpw(S, j, C, π1, l) and a testpw

(S, j, C, π2, l) event occurs, for some S, j, π1 and π2, with π1 6= π2 and l ∈ {1, 2, 3}.
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Rule H: For a hash query Hl(q), such that q and l are found in ∆ro, look for the

(l, q, r) row and answer with r. Otherwise, define r according to the following rule and

add the record (l, q, r) to ∆ro:

• Choose a random string r
$←− {0, 1}κ.

Figure 5.7: Simulation of H(·) random oracle queries.

In cases where it is clear enough, we write Hl(·) to refer to an oracle query of the form

Hl(C, S,X
∗, Y, σ, π). For easiness of the proof we assume that for each Hl(C, S,X

∗, Y, σ, π)

query made by A, with l ∈ {1, 2, 3}, then the corresponding Hl′(·) and Hl′′(·) are also made,

with l′, l′′ ∈ {1, 2, 3}\{l} and l′ 6= l′′. The simulator sets M := gm ∈ G, where m
$←− Zq, i.e.

the simulator knows the discrete logarithm of the CRS M to base g. In the following games, we

simply write SuccFtGPi instead of SuccPFS-FtG
Pi to denote the event that A wins in game Gi. We

are now ready to detail the security proof of the PFS-SPAKE2 protocol.

Game G0 : Execution of original protocol.

This game is identical to the original experiment. The challenger simulates to the adversary

i) honest instances and ii) hash function Hl, with l ∈ {1, 2, 3}, which A is given oracle access to.

As usual when relying on the random oracle model, we maintain a list ∆ro in order to answer

Hl(·) oracle queries consistently. See Figure 5.7.

Game G1 : Uniqueness of honest sessions.

During the interaction with adversary A, the challenger needs to simulate honest instances and

generate the X∗ and Y terms according to the protocol description. Let F1 be the event where

there is a collision between either an X∗ or Y value, with previously seen X∗ or Y values. If F1

occurs, the challenger draws random values again until he arrives at a X∗ or Y term that has

not been previously seen. It is easy to show that the probability of F1 occurring is bounded by

the birthday paradox. Then for all A:

Pr
[

SuccFtGP0
(A)

]
≤ Pr

[
SuccFtGP1

(A)
]

+O
(

(nse + nex)(nse + nex + nro)

q

)
.

Game G2 : Prevent lucky guesses on hash outputs.

This game forces the adversary to query the random oracle whenever she needs to compute an

Hl(·) function. As a result, this game rules out the possibility of A to output correct values k, k′

or sk without calling the corresponding Hl(·) random oracle.

A second intention in this game is to demonstrate that the protocol can be simulated without

requiring any password –unless some bad event occurs. There is an internal oracle H∗ which

instances use to compute their session keys independently of any password, see Figure 5.8. A

bad event is either a testpw(C, i, S, πc, l), a testpw(S, j, C, πc, l) or a testexecpw(C, i, S, j, πc)

event. For simplicity, we can think of the first two events as the scenario where A correctly
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Rule H∗: For a hash query H∗l (q), such that l, q is found in ∆∗ro, look for the (l, q, r)

record and answer with r. Otherwise, define r according to the following rule and add

the record (l, q, r) to ∆∗ro:

• Choose a random string r
$←− {0, 1}κ.

Figure 5.8: Simulation of internal oracle H∗(·).

guesses the correct password πc and derives the correct session key by successfully impersonating

a principal in an online attack. The third event corresponds to the case where A knows πc and

is able to compute a session key that was established via Execute queries (details follow in G3).

Let P2 be a protocol identical to P1, except that honest instances compute the session key by

making a query of the form H∗(C, S,X∗, Y ∗), i.e. the resulting session key is independent of the

password πc and the shared secret σ. Whenever A asks for a Hl(·) oracle query, the simulator

checks if any of the previously mentioned bad events occurs, in such a case, it does backpatching

to provide consistent views to the adversary. Next we detail the changes in P2.

• In an Execute(C, i, S, j) query set X∗ = gτ [C,i] and Y = gτ [S,j], where τ [·] $←− Zq. Set

k := H∗1 (v), k′ := H∗2 (v) and skiC ← skjS := H∗3 (v), where v = C||S||X∗||Y .

• In a CLIENT ACTION 0 query to Πi
C , set X∗ = gτ [C,i], where τ [C, i]

$←− Zq.

• In a SERVER ACTION 1 query to Πj
S , set Y = gτ [S,j] and k := H∗1 (C, S,X∗, Y ), where

τ [S, j]
$←− Zq .

• In a CLIENT ACTION 1 query to Πi
C proceed as follows:

– If Πi
C is paired with Πj

S , set k′ := H∗2 (v) and skiC := H∗3 (v), for v = C||S||X∗||Y .

– Else if this query triggers a testpw(C, i, S, πc, l) event, for some l ∈ {1, 2, 3}, then

set k′ and skiC to the associated value of the event testpw(C, i, S, πc, 2) and testpw

(C, i, S, πc, 3) respectively.

– Else Πi
C aborts.

• In a SERVER ACTION 2 query to Πj
S proceed as follows:

– If Πj
S is paired with Πi

C after some CLIENT ACTION 1 to Πi
C , then set skjS ← skiC .

– Else this query triggers a testpw(S, j, C, πc, l), with l ∈ {1, 2, 3}, set skjS to the

associated value of the event testpw(S, j, C, πc, 3).

– Else instance Πj
S aborts.

• In an Hl(C, S,X
∗, Y, σ, π) query made by A, if it triggers a testpw(C, i, S, πC , l), testpw

(S, j, C, πC , l) or testexecpw(C, i, S, j, πC) event, then output the associated value of the

corresponding event. Otherwise, answer according to Rule H.
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Claim 5.13. For all adversaries A,

Pr
[

SuccFtGP1
(A)

]
≤ Pr

[
SuccFtGP2

(A)
]

+
2 · nse

2κ
.

Proof. In CLIENT ACTION 1 to Πi
C in P1, the input value k determines whether the client

instance should terminate or abort. Ideally, an instance Πi
C terminates if i) it is paired with

another instance Πj
S or ii) a testpw(C, i, S, πC , l) event occurs, for l ∈ {1, 2, 3}. However, in

P1, an instance Πi
C could terminate if A produces the correct k value expected by Πi

C without

querying the random oracle. Let F1 be the event where in a CLIENT ACTION 1 to Πi
C , it termi-

nates such that i) Πi
C is not paired with Πj

S and ii) testpw(C, i, S, πC , l) event does not occur, for

l ∈ {1, 2, 3}, i.e. A luckly guessed the correct k value. Then Pr [F1 ] ≤ nse/2κ. Comparable to the

previous scenario, in SERVER ACTION 2 to Πj
S , the input k′ determines whether the instance

Πj
S should terminate or abort. For P1, let F2 be the event where in a SERVER ACTION 2 to Πj

S ,

it terminates such that i) Πj
S is not paired with Πi

C and ii) testpw(S, j, C, πC , l) event does not

occur, for l ∈ {1, 2, 3}, i.e. A luckily guessed the correct k′ value. Then Pr [F2 ] ≤ nse/2κ.

Game G3 : No need to backpatch Hl(·) queries against Execute queries.

This game shows that there is no need to backpatch Hl(·) queries to maintain consistent views

for sessions established via Execute queries. More formally, let P3 be identical to P2 except

that, in a Hl(C, S,X
∗, Y, σ, πC) query made by A, the simulator does not verify whether the

testexec(C, i, S, j, πC) event occurs or not. Let F2 and F3 denote the event that for some

C, i, S, j, the testexec(C, i, S, j, πC) event occurs in P2 and P3 respectively.

Claim 5.14. For all adversaries A,
∣∣Pr
[

SuccFtGP2
(A)

]
− Pr

[
SuccFtGP3

(A)
]∣∣ ≤ Pr [F2 ].

Proof. P2 and P3 are identical until the testexec(C, i, S, j, πC) event occurs. The observation

is that the events F2 and F3 are triggered as result of some interaction CH2 vs A and CH3 vs

A respectively, however by definition they are identical. Then it follows that Pr [F2 ] = Pr [F3 ]

and to conclude the proof we simply apply Shoup’s Difference Lemma [Sho04].

Next we will demonstrate that the probability of the event F3 happening is bounded by the

CDH assumption.

Claim 5.15. Given A running in time t, there exists a CDH-solver BA with running time

t′ = O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP2
(A)

]
≤ Pr

[
SuccFtGP3

(A)
]

+ nro ·AdvCDH
G (BA).

Proof. Let ε be the probability that F3 occurs in P2. We build an adversary BA whose goal is to

solve the CDH problem using adversary A as a subroutine and with success probability ε/nro.

On input two group elements (A,B) ∈ G2, BA simulates P3 to A with the following changes:
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1. For every Execute(C, i, S, j) query made by A, the simulator BA sets X∗ = A · gr1 , Y =

B · gr2 , where r1, r2
$←− Zq is known to the simulator. Then it sets k := H∗1 (v), k′ := H∗2 (v)

and skjS ← skiC := H∗3 (v), where v = C||S||X∗||Y .

2. For every Hl(C, S,X
∗, Y, σ, πC) query, where l ∈ {1, 2, 3}, X∗ and Y are generated via an

Execute(C, i, S, j) query, add γ to the set S-DH, where:

γ =
σ ·Bm·πC ·Mr2·πC

Br1 ·Ar2 · gr1r2

3. When A finishes, the set S-DH contains at most nro elements, where each item a possible

solution to DH(A,B). Then BA picks γ
$←− S-DH as its output and hopes that it is the

correct one.

The adversary A can only distinguish P2 from P3 once F3 has occurred, but this still happens

with probability ε ≤ nro ·AdvCDH
G (BA). We make the assumption that even if A distinguishes P2

from P3, she still runs in time t. We make the observation that G3 guarantees forward secrecy

for session keys established via Execute queries.

Game G4 : Check for successful password guesses.

Let P4 be identical to P3, except that if correctpw event occurs, the protocol stops and the

adversary automatically wins.

Claim 5.16. For all PPT adversaries A, Pr
[

SuccFtGP3
(A)

]
≤ Pr

[
SuccFtGP4

(A)
]
.

Proof. Obvious.

This game simply counts for an adversary who is successful in an online dictionary attack

by impersonating either a Client or the Server. The implication is that from P4, until either

correctpw event or a Corrupt query occurs, no unpaired client or server instance will terminate.

Game G5 : Randomized session keys for paired instances.

Let P5 be identical to P4 except that if the pairedpwguess event occurs the protocol stops and

the adversary fails.

In this game we will demonstrate that an adversary A who i) may actively corrupt any Client

or Server, i.e. A knows the corresponding correct password πC and ii) manages to compute

k, k′ or sk for paired instances Πi
C and Πj

S , is also a CDH-solver. Let F4 and F5 denote the

pairedpwguess event occurring in P4 and P5 respectively.

Claim 5.17. For all adversaries A, |Pr
[

SuccFtGP4
(A)

]
− Pr

[
SuccFtGP5

(A)
]
| ≤ Pr [F4 ].

Proof. Identical to Claim 5.14

Next we will demonstrate that the pairedpwguess event can happen at most with some

probability bounded by the CDH assumption.
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Claim 5.18. Given A running in time t, there exists CDH-solver B̂A with running time t′ =

O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP4
(A)

]
≤ Pr

[
SuccFtGP5

(A)
]

+ nse · nro ·AdvCDH
G (B̂A),

Proof. Let ε be the probability of pairedpwguess event happening. We build B̂A, a CDH-solver

that has success probability ε/(nse ·nro). On input (A = gα, B = gβ), B̂A first sets M = gm ∈ G
for m

$←− Zq, then he chooses d ∈ {1...nse} at random – a session target of the Test query – and

simulates P4 to A with the following changes:

1. In a CLIENT ACTION 0 query to Πd
C with input S, set X∗ ← A, where Πd

C is the client

instance that B̂A hopes it remains PFS-fresh.

2. In a SERVER ACTION 1 query to Πj
S with input 〈C,X∗〉, where there was previously a

CLIENT ACTION 0 query to Πd
C with input S and output 〈C,X∗〉, set Y = B ·grS,j , where

rS,j
$←− Zq.

3. In a CLIENT ACTION 1 query to Πd
C , if Πd

C is unpaired then it aborts an also B̂A stops

the simulation.

4. In a SERVER ACTION 2 query to Πj
S , if it was paired with Πd

C after its SERVER ACTION

1 but now is not paired, then Πj
S aborts. However, the simulation continues as the instance

Πd
C may still be target of the Test query.

5. For every Hl(C, S,X
∗, Y, σ, πC), made by A, with l ∈ {1, 2, 3} and where i) X∗ and Y

were generated by Πd
C and Πj

S respectively, ii) Πj
S was paired with Πd

C after its SERVER

ACTION 1 and iii) Πd
C was paired with Πj

S , then add γ to the set S-DH, where:

γ = σ ·Bm·πC ·MrS,j ·πC ·A−rS,j

6. When A finishes, the set S-DH contains at most nro elements, where each one is a possible

solution to DH(A,B). Then B̂A picks γ
$←− S-DH as its output.

In this reduction the simulator B̂A has to guess the client instance target of the Test query,

say Πd
C . The freshness requirement guarantees that a Corrupt query is only possible after the Test

query, directed to Πd
C (or its partner), has been placed. Following the reductionist approach, we

showed that the pairedpwguess event occurs at most with probability ε ≤ nse ·nro ·AdvCDH
G (B̂A).

Game G6 : Prevent testing more than one password per server instance.

In P6, we restrict an adversary, who tries to masquerade as a client, from testing two passwords

per session, say π1 and π2, in an online dictionary attack. Concretely, let P6 be identical to P5

except that if doublepwserver event occurs, then the protocol stops and the adversary fails.

Let F5 and F6 denote the doublepwserver event occurring in P5 and P6 respectively. By

definition, it follows that SuccFtGP5
(A) ∧ ¬F5 ⇔ SuccFtGP6

(A) ∧ ¬F6.

Claim 5.19. For all adversaries A,
∣∣Pr
[

SuccFtGP5
(A)

]
− Pr

[
SuccFtGP5

(A)
]∣∣ ≤ Pr [F6 ].
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Proof. Identical to Claim 5.14.

Next we will demonstrate that for all adversaries A, the probability of the event doublep-

wserver occurring is bounded by the CDH assumption.

Claim 5.20. Given A running in time t, there exists a CDH-solver B̂A with running time

t′ = O(t+ (nse + nex + nro) · texp) such that:

Pr
[

SuccFtGP5
(A)

]
≤ Pr

[
SuccFtGP6

(A)
]

+ (nro)
2 ·AdvCDH

G (B̃A).

Proof. We construct an algorithm B̃A that solves the CDH problem probability ε/(nro)
2, where

ε is the probability of pairedpwguess event occurring. On input (A,B) ∈ G2, B̃A simulates G5

to A with the following changes:

1. Set M := A

2. In a SERVER ACTION 1 to Πj
S with input 〈C,X∗〉 set Y ← B·gy, where y

$←− Zq, and sends

back 〈S, Y, k〉. From P4 it holds that no unpaired instances can terminate. Specifically,

unpaired client and server instances abort in CLIENT ACTION 1 and SERVER ACTION

2 respectively.

3. When A terminates, the simulator selects at random a pair of random oracle queries

Hl(C, S,X
∗, Y, σ1, π1) and Hl(C, S,X

∗, Y, σ2, π2), where π1 6= π2, there was a SERVER

ACTION 1 with input 〈C,X∗〉 and output 〈S, Y, k〉, and l ∈ {1, 2, 3}. Then computes γ as

possible solution to DH(A,B), where:

γ = A−y · (σ1/σ2)
φ
,

where φ is the multiplicative inverse of (π2 − π1) in Zq.

P6 and P5 are identical unless the doublepwserver event occurs, however, this only occurs

with probability ε ≤ n2ro·AdvCDH
G (t′). The quadratic degradation factor is due to the B̃A not having

other option rather than guessing two queries Hl(C, S,X
∗, Y, σ1, π1) and Hl(C, S,X

∗, Y, σ2, π2)

such that σ1 = DH (X∗/Mπ1 , Y ) and σ2 = DH (X∗/Mπ2 , Y ).

Game G7 : Internal password oracle.

In protocol P7, we consider an internal password oracle Oπ who handles every password request

and is only available to the challenger. Specifically, the challenger queries the Oπ to i) assign

passwords to users, ii) answer Corrupt queries and iii) determine if the correctpw event occurs.

Claim 5.21. For all adversaries A, Pr
[

SuccFtGP6
(A)

]
= Pr

[
SuccFtGP7

(A)
]
.

Proof. It follows from inspection.

Claim 5.22. For all adversaries A,

Pr
[

SuccFtGP7
(A)

]
≤ 1

2
+

nse
2 · |D|

.
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Proof.

Pr
[

SuccFtGP7
(A)

]
= Pr

[
SuccFtGP7

(A) | correctpw
]
· Pr [ correctpw ]

+ Pr
[

SuccFtGP7
(A) | ¬correctpw

]
· Pr [¬correctpw ]. (5.3)

We know from P6 that A can test at most one password per instance in an active attack. Then

in P7, Pr [ correctpw ] ≤ nse/|D|. We examine the second term of Equation 5.3. The security

experiment requires the adversary to make a Test query to some PFS-fresh instance Πi
U of his

choice. It is easy to show that the view of A is independent of the sk on which she is challenged:

i) P1 prevents two or more client or server instances accepting with the same sid, which would

violate the partnering definition allowing A to trivially win, ii) it follows from P4 that, before any

Corrupt query, only instances that are paired instances can reach terminate state – and therefore

be target of a Test query – and iii) from P5 it holds that for such paired instances, the view of A
is independent of sk for the session target of the Test query. In such a case, A can only succeed

with probability 1/2. We finally obtain Pr
[

SuccFtGP7
(A) | ¬correctpw

]
= 1/2.

�

5.4 Conclusion and Future Work

We proved that SPAKE2 protocol provably satisfies weak forward secrecy, however, proving per-

fect forward secrecy seems to be a harder task. Consider the following scenario: A masquerades

as a client and sends an arbitrary message X∗ to a server instance Πj
S , the later computes Y ∗,

its session key, answers back with Y ∗ and terminates. Now A makes a Test(S, j) query, receives

the challenge and then corrupts the tested server. This is a legitimate strategy for the adversary,

as corruption occurred after the Test query, then the instance Πj
S remains PFS-fresh or put dif-

ferently, the session key in the Πj
S instance should remain secret as it was established before the

password compromise – even if it was established with the adversary. The difficulty is that, even

though the proof shows that A cannot test two passwords per instance, in this particular scenario

the simulator cannot determine the password to which A committed in X∗ as she has not asked

for any random oracle query. This problematic scenario does not take place in the PFS-SPAKE2

protocol, due to the fact that an instance would not accept the session key (then it is not subject

to a Test query) unless it confirms that it was established with a legitimate partner.

As future work, we would like to study if the SPAKE2 and PFS-SPAKE2 protocols compose

securely with symmetric-key encryption schemes. This question has practical relevance, as in

TLS 1.3 the aforementioned primitives would be used not in stand alone operation but as a

combined system.





CHAPTER 6

Tightly-Secure PAK(E)

6.1 Introduction

We present a security reduction for the PAK protocol [BMP00, Mac01b, Mac02a] instantiated

over Gap Diffie-Hellman groups that is tighter than previously known reductions. We discuss

the implications of our results for concrete security. Our proof is the first to show that the

PAK protocol can provide meaningful security guarantees for values of the parameters typical in

today’s world.

6.1.1 Security Models and Reductions for PAKEs

When evaluating different PAKE designs, two main criteria are the protocol’s efficiency in terms

of computation and communication, and the security guarantees that the protocol provides. Of

these two criteria, the efficiency is easier to understand by just looking at the protocol description.

On the other hand, it is difficult to judge whether a protocol is secure. A necessary condition

for security is that no attacks on the protocol have been found so far, but most researchers agree

that this is not sufficient.

One way to rigorously discuss the security of PAKE protocols is to formally define a security

challenge: an interaction between two algorithms called a challenger and an adversary. The

interaction is designed to model the capabilities that a real world adversary is believed to have;

the success of an adversary in the security challenge corresponds to a successful attack on the

protocol. Several such security models have been introduced over the years. A few prominent

ones are the indistinguishability-based models of Bellare, Pointcheval and Rogaway [BPR00] and

Abdalla, Fouque and Pointcheval [AFP05], the simulation-based model of Boyko, MacKenzie and

Patel [BMP00], and the Universally Composable (UC) model of Canetti et al. [CHK+05].

65
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In this approach, the security of a protocol is established in the following way: given an

adversary A that runs in time t and has success probability ε in the security challenge, one

constructs an algorithm BA known as a reduction. BA runs A as a subroutine and solves some

known hard computational problem in time tR and with success probability εR. If it is widely

believed that it is impossible to solve the hard computational problem in time tR and with success

probability εR, then one can conclude that no adversary running in time t can have a probability

of ε to successfully attack the protocol.

The aforedmentioned way of analyzing the security of a given protocol is known as reductionist

approach or provable security, which results in theorems of the type: protocol P satisfies a given

security definition for all adversaries running in polynomial time and under the assumption that

some problem is hard to compute.

6.1.2 Concrete Security and Tight Reductions

Security Level. Given an instance of a protocol P, its associated security level is a measure

of the strength provided and it is relevant when investigating the concrete security provided

by such instance. The statement “an instantiation of P provides n bits of security” is usually

understood as “an adversary would have to do 2n operations to break the given instance of

P”. Expressed differently, it captures the notion that a particular instantiation of some protocol

P, which provides an n-bit security level, is as hard to break as some idealized cryptographic

function where the only attack possible is a brute force attack on a n-bit key space. Thus, it is

generally accepted that an attacker would require to perform T ≥ 2n operations to break P, or

alternatively, the success probability of any efficient attack is bounded by ε ≤ 2−n [MW18].

Security Parameter. Similarly, the security parameter κ allows us to tune the desired security

level of a protocol P when it is to be instantiated. Intuitively, the larger the security parameter

is, the more secure P is and unfortunately the less efficient it becomes. Therefore, the correct

selection of κ is decisive to achieve an appropriate balance between security and efficiency.

Provable security relies on complexity theory, thus it is natural to expect that security proofs

are expressed asymptotically : To prove that a protocol P is secure, it is enough to show the

existence of a polynomial time reduction R from a hard problem to P. The intuition behind it

is to demonstrate that the advantage of any adversary A on breaking P is a negligible function

of the security parameter κ. Then it is guaranteed that for sufficiently large κ, the advantage of

A on breaking P is sufficiently small. A legitimate question would be: how large does κ need to

be? As nicely explained in [MW18], the asymptotic approach per se only provides a qualitative

classification of protocols into secure and insecure ones.

Tight Reductions. A security reduction R not only gives confidence in the security of protocol

P, it also guides the choice of the security parameter κ when P needs to be instantiated. The

reason is the following: a reduction R reduces a problem C to breaking protocol P, by using an

adversary A against P as a subroutine with the goal of solving C. Let t and ε be A′s running

time and success probability respectively (both are functions of the security parameter). Then
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the running time and success probability of R are given by tR ≥ t and εR ≤ ε respectively. We

can observe that more resources are needed for solving C than for breaking P, this difference is

formalized by the tightness-gap introduced in [CKMS16]:

tR
εR

= γ · t
ε
,

where γ ≥ 1. A reduction is called tight if γ is a small constant, and loose otherwise.

Tight reductions are considered preferable over non-tight ones [Bel99]. The reason is that

when the reduction is tight, it is guaranteed that breaking the cryptographic system is at least as

hard as breaking a well studied hardness assumption, say ε ≈ εR. On the other side, when the

reduction is loose, it is possible that breaking P is substantially easier than solving the underlying

hardness assumption, i.e. ε ≤ γ · εR. That being said, tight reductions are also known as security

preserving while loose reductions introduce a security degradation factor γ.

The instantiation of a provably-secure protocol is a delicate task. Presumably, the first duty

is the analysis of the concrete security that the protocol aims to provide, and then translate

this into the selection of the security parameter κ in such a way that: i) it is guaranteed that a

reasonable adversary cannot break the protocol and ii) the protocol remains efficient enough to

be used in practice. It is in this this scenario where tight reductions are preferrable, since the

security parameter can be derived assuming that the security level of the protocol is equivalent

to that of the hardness assumption. On the other hand, when the reduction is not security

preserving, one has to compensate the security degradation factor – also known as tightness-gap

– by choosing larger κ, which unavoidably results in less efficient implementations.

6.1.3 Loose reduction in the PAK protocol

One of the PAKE protocols whose security has been studied in the provable security framework

is the PAK protocol [BMP00, Mac01b, Mac02a] (in Section 6.2 we provide a detailed descrip-

tion of it). It is a PAKE protocol with several desirable characteristics: low computation and

communication cost, and security proofs in two different security models: the simulation-based

model of Boyko, MacKenzie and Patel [BMP00] and the so-called Find-then-Guess (FtG) model

of Bellare, Pointcheval and Rogaway [BPR00]. A modified version of PAK has been used to

detect man-in-the-middle attacks against SSL/TLS without third-parties [DAT12], and a lattice-

based version of PAK has been used to provide security against quantum adversaries [DAL+17].

Moreover, variants of the PAK protocol have been included in IEEE standard [IEE02], while the

patent held by Lucent Technologies [Mac02b] has recently expired. Therefore, the PAK protocol

is a candidate for wide-scale practical deployment.

While there are security proofs for PAK in two different models, in both cases the reductions

are loose, meaning either that the running time tR of the reduction R is much larger than the

running time t of the adversary A or that the success probability εR of R is much smaller than

the success probability ε of A, or some combination of the two.
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A loose reduction is usually considered less than ideal. From a qualitative point of view, a

reduction gives the assurance that “breaking the protocol is at most a little easier than solving

the hard computational problem” [Ecr12]. However, if a reduction is loose, it leaves open the

possibility that “a little easier” is in fact “substantially easier”. From a quantitative point of

view, a loose reduction means that larger security parameters must be chosen to guarantee a

given level of security, which in turn increases the communication and computation cost of the

protocol. We illustrate the last point by looking in detail at the best previous result for PAK

[Mac02a, Theorem 6.9], which we reproduce here for convenience.

Theorem 6.1 (Theorem 6.9 in [Mac02a]). Consider the PAK protocol instantiated over a group

G = 〈g〉 of prime order q and with password dictionary of size |D|. Let A be an adversary that

runs in time t and performs at most nse, nex, nre, nco, nro queries of type Send, Execute, Reveal,

Corrupt, Random Oracle and a single Test query. Let Adv(A) be the advantage of this adversary

in the security challenge as defined in the Find-then-Guess model considering perfect forward

secrecy.1 Then for all adversaries A:

Adv(A) ≤ nse
|D|

+O
(
nse · (nro)2 ·AdvCDH

G (BA) +
(nse + nex)(nro + nse + nex)

q

)
, (6.1)

where BA is a CDH-solver algorithm, running in time t′ = O(t+ ((nro)
2 + nse + nex)texp), and

texp is the time required for an exponentiation in G.

We plug in some concrete values in the above theorem. For the order of the group q, we

use the recommended q ≈ 2256 for long-term security from [Ecr12, Chapter 7]. For the number

of random oracle queries, we take nro ≈ 263, the number of SHA1 computations performed in

the recent attack [SBK+17]. Next, we use the approximation that solving the discrete logarithm

problem in group G takes about
√
q ≈ 2128 operations [Len06, Section 7]. We see that with these

values of the parameters, we can estimate for all PPT adversaries

(nro)
2 ·AdvCDH

G (A) ≈ 1

and therefore the term

nse(nro)
2 ·AdvCDH

G (A) >> 1

makes the right hand-side of Equation 6.1 meaningless in bounding Adv(A), which, by definition,

is a number less than or equal to 1. This means that we cannot reasonably claim that the

security proof gives the guarantee “an adversary can essentially do no better than an online

dictionary attack”, except in the trivial case when the online dictionary attack itself succeeds

with probability close to one.

1We refer to Section 4.2 for a description of the Find-then-Guess model.
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6.1.4 Our contribution

We provide a tight reduction for PAK instantiated over Gap Diffie-Hellman groups; these are

groups in which solving the Decisional Diffie-Hellman problem is easy but solving the Compu-

tational Diffie-Hellman problem is equivalent to solving the Discrete Logarithm problem and

is believed to be hard [JN03]. We employ proof techniques that have been used previously in

[ACP05]. The formal statement of our result can be found in Theorem 6.2.

Theorem 6.2. (Security in the PFS-FtG Model). Consider the PAK protocol instantiated over

a Gap Diffie-Hellman group G1 = 〈g〉 of order q and with password dictionary of size |D|. Let

A be an adversary that runs in time t and performs at most nse, nex, nre, nco, nro queries of

type Send, Execute, Reveal, Corrupt, Random Oracle and a single Test query. Let Adv(A) be

the advantage of this adversary in the security challenge as defined in the FtG model considering

perfect forward secrecy. Then for all adversaries A:

Adv(A) ≤ nse
|D|

+ 8Advgap−DH
G1

(BA) +O
(

(nse + nex)(nro + nse + nex)

q

)
, (6.2)

where BA is a Gap-DH solver algorithm, running in time t′′ = O(t + (nro + nse + nex)texp +

(nse + nro)tddh), where texp and tddh denote the time required for an exponentiation in G1 and

deciding DDH in G1, respectively.

We perform a similar analysis of our result as in the previous section, using the same values

of q, and nro. Since t′′ << 2128 (assuming the most powerful adversaries today have t at most

≈ 280 to 285), we can assume that Adv
gap−DH
G1

(BA) / 2−35, assuming that BA can compute at most

285 operations. Furthermore, the term O ((nse + nex)(nro + nse + nex)/q) is negligible compared

to the other two terms. Thus, by using the tight reduction, we are able to obtain the following

guarantee: assuming that Advgap−DH
G1

(BA) / 2−35, then for all adversaries A with running time

t / 285, the advantage in breaking the PAK protocol instantiated over a Gap Diffie-Hellman

group of order ≈ 2256 is at most ≈ 2−30 higher than the advantage of breaking the protocol using

the best online dictionary attack for the given password distribution and login attempt policy.2

Furthermore, the reduction is security preserving, in the sense that if the group G1 provides l-bit

security level, then the instantiation of the PAK protocol offers also l-bit security level.

Thus, by relying on the Gap Diffie-Hellman assumption instead of the CDH assumption as

in [Mac02a] we are able to remove the degradation factors that cause the previous security proof

for PAK to fail to provide meaningful guarantees for typical values of the parameters in today’s

world.

Notation. In general, we use G to denote any cyclic group while G1 refers to a bilinear group.

Let H be a full-domain hash mapping {0, 1}∗ to G1. All remaining hash functions, H1, H2 and

H3, map from {0, 1}∗ to {0, 1}κ.

2We refer to [WW16, Figure 4] for an estimation of the advantage of online dictionary attacks as a function of
the number of guesses for two real-world password datasets.
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6.2 The PAK Protocol

In this section, we describe the PAK protocol from [Mac02a], whose mathematical description is

presented in Figure 6.1. A few other variants of PAK were developed in [Mac01b]. Originally,

the first proof of this protocol has been done in the simulation based model [BMP00].

6.2.1 Protocol description

Here, we make use of the same notation as in [Mac02a]. Now, we describe the protocol informally.

Before any protocol execution, public parameters are published and passwords are shared

between clients and servers during the initialization phase. More specifically, for efficiency reasons

and security in case of compromise of the password file, servers only keep the inverse element of

each password’s hash value.

The PAK protocol consists of three message rounds. In the first message round, the client

sends a group element m – generated by multiplying a random group element α with the mask

γ (also a group element) that is derived from the shared password π – along with its ID to the

server. In the second message round, upon receiving the message C,m, the server first checks with

the acceptable function if the received value m is an element of G1. Then, it selects a random

group element µ, removes the mask from the received m, and computes the shared secret σ,

confirmation codes k, k′, a session key sk and sets sid and pid values (thus accepting). Once all

these values are computed, the server sends µ and k to the client. Upon receiving the second

message, the client first checks if µ is a valid group element. If so, it computes the shared secret

and confirmation code k and checks the validity of the latter. If all checks are correct, the client

computes his confirmation code k′ and a session key sk, sets sid and pid values, and then it

sends k′ in the third message round and terminates. The server, once it receives the value k′ and

checks its validity, also terminates.

6.2.2 Instantiating the protocol over Gap Diffie-Hellman groups

Gap-DH groups were introduced in the pioneering work of Boneh, Lynn and Shacham [BLS01].

For instance, Gap-DH groups can be derived from the supersingular elliptic curve given by the

equation y2 = x3+2x±1 over the field F3l . It can be seen that for some values of l the number of

points in this curve divides 36l−1. The value 6 is called the multiplier that has to be neither too

small for the CDH problem to be hard, nor too big for the Decision Diffie-Hellman Oracle (DDH-

O) to be efficient. An example of DDH-O on this curve is the Weil pairing [Sil09]. Gap-problems

were also studied by Okamoto and Pointcheval [OP01].

In order to have efficient implementations of the PAK protocol, H : {0, 1}∗ → G1 must

be an efficiently computable function. We point the reader to [Mac01b, MJ16] for efficient

implementations of H. Note that it is crucial for such an algorithm to run in constant time,

otherwise timing attacks on a password are possible. For more details on pairings, we refer

readers to [GPS08].
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Initialization

Public: G1, g, q; H : {0, 1}∗ → G1;

H1, H2, H3 : {0, 1}∗ → {0, 1}k;

Client C Server S

Secret: π πS [C] = (H(πC))−1

x
$←− Zq

α := gx

γ := H(π)

m := α · γ C,m

abort if ¬acceptable(m)

y
$←− Zq

µ := gy

γ′ := πS [C]

σ := (m · γ′)y

k := H1(C, S,m, µ, σ, γ′)

k′′ := H2(C, S,m, µ, σ, γ′)

µ, k sk := H3(C, S,m, µ, σ, γ′)

abort if ¬acceptable(µ)

σ := µx

γ′ := γ−1

abort if k 6= H1(C, S,m, µ, σ, γ′)

k′ := H2(C, S,m, µ, σ, γ′)

sk := H3(C, S,m, µ, σ, γ′) k′

abort if k′ 6= k′′

Figure 6.1: The PAK protocol.
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G0 : Original protocol.

G1 : Force uniqueness of instances.

G2 : Forbid lucky guesses on hash outputs and backpatch for consistency.

G3 : Randomize session keys for Execute queries (Gap-DH).

G4 : Check password guesses.

G5 : Randomize session keys for paired instances (Gap-DH).

G6 : Forbid two password guesses per online attempt on server (Gap-DH).

G7 : Internal password oracle.

Figure 6.2: Description of games for the original PAK.

6.3 Proof of Security

In this section, we prove the security of the PAK protocol in the FtG model, considering perfect

forward secrecy (see Definition 4.1 from Chapter 4) and instantiated over Gap Diffie-Hellman

groups. Due to similarities with the proof of the original PAK protocol [Mac02a], we present an

overview for those security games that remain the same as in the original protocol and focus on

those that deviate from the original proof. In Figure 6.2 we provide the description of the game

hops and highlight those games which differ from the original security proof.

The main difference between the existing proof in the FtG model and our proof is that our

reduction algorithm makes use of a Decisional Diffie-Hellman Oracle (DDH-O). Such oracle is

available in gap groups, and it will output 1 on input (g, gx, gy, gz) if gz = DH(gx, gy) and 0

otherwise. This additional information can be leveraged – in games G3, G5 and G6 – to increase

the success probability and reduce the running time of the reduction compared to Theorem 6.9

in [Mac02a].

We borrow from [Mac02a] the proof structure and necessary nomenclature that will allow us

to prove the security of the PAK protocol instantiated over Gap Diffie-Hellman groups. First,

we introduce the terminology that deals with adversary’s actions and partnering.

We say “in a CLIENT ACTION κ query to Πi
C”, to refer to “in a Send query to Πi

C that

results in the execution of the CLIENT ACTION κ procedure” and “in a SERVER ACTION κ

query to Πj
S”, to refer to “in a Send query to Πj

S that results in the execution of the SERVER

ACTION κ procedure”. A client instance Πi
C is paired with a server instance Πj

S if there is a

CLIENT ACTION 0 query to Πi
C with input S and output 〈C,m〉, there is a SERVER ACTION

1 query to Πj
S with input 〈C,m〉 and output 〈µ, k〉 and there is a CLIENT ACTION 1 query to

Πi
C with input 〈µ, k〉. A server instance Πj

S is paired with client instance Πi
C whenever there is a

CLIENT ACTION 0 query to Πi
C with input S and output 〈C,m〉, there is a SERVER ACTION

1 query to Πj
S with input 〈C,m〉 and output 〈µ, k〉, and if there is a SERVER ACTION 2 query

to Πj
S with input k′, then there was previously a CLIENT ACTION 1 query to Πi

C with input

〈µ, k〉 and output k′.
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Next we describe those events taken from [Mac02a] which are required in our proof of security.

Similar to the security proof of SPAKE2 and PFS-SPAKE duly described in Section 5.2 and 5.3

respectively, we make use of the following events to describe the adversarial behavior which would

allow us to formally identify i) successful online dictionary attacks and ii) some “bad” events

which, if they happened, would cause a break on the security of the protocol. In particular, G3

corresponds to testexecpw, G5 to pairedpwguess, and G6 to doublepwserver event.

• testpw(C, i, S, π, l): for some m,µ and γ′, A makes i) an Hl(C, S,m, µ, σ, γ
′) query, ii) a

CLIENT ACTION 0 query to a client instance Πi
C with input S and output 〈C,m〉, iii)

a CLIENT ACTION 1 query to Πi
C with input 〈µ, k〉 and iv) an H(π) query returning

(γ′)−1, where the last query is either the Hl(·) query or the CLIENT ACTION 1 query,

σ = DH(α, µ), m = α · (γ′)−1 and l ∈ {1, 2, 3}. The associated value of this event is output

of the Hl(·) query, or the k, k′ or skiC value, whichever is set first.

• testpw!(C, i, S, π): for some k, a CLIENT ACTION 1 query with input 〈µ, k〉 causes a

testpw(C, i, S, π, 1) event to occur, with associated value k.

• testpw(S, j, C, π, l): for some m,µ, γ′ and k, A makes an Hl(C, S,m, µ, σ, γ
′) query, and

previously made i) a SERVER ACTION 1 query to a server instance Πj
S with input 〈C,m〉

and output 〈µ, k〉, and ii) an H(π) query returning (γ′)−1, where σ = DH(α, µ), m =

α·(γ′)−1 and ACCEPTABLE(m). The associated value of this event is k, k′ or skjs generated

by the server instance Πj
S .

• testpw!(S, j, C, π): SERVER ACTION 2 query to Πj
S is made with input k′, and previously

a testpw(S, j, C, π, 2) event occurs with associated value k′.

• testpw∗(S, j, C, π): testpw(S, j, C, π, l) event occurs for some l ∈ {1, 2, 3}.

• testpw(C, i, S, j, π) : both a testpw(C, i, S, π, l) and testpw(S, j, C, π, l) event occur, for

some l ∈ {1, 2, 3}, where Πi
C is paired with Πj

S , and Πj
S is paired with Πi

C after its SERVER

ACTION 1 query.

• testexecpw(C, i, S, j, π): for some m,µ and γ′, A makes an Hl(C, S,m, µ, σ, γ
′) query, for

l ∈ {1, 2, 3}, and previously made i) an Execute(C, i, S, j) query that generates m,µ, and

ii) an H(π) query returning (γ′)−1, where σ = DH(α, µ) and m = α · (γ′)−1.

• correctpw: before any Corrupt query, either a testpw!(C, i, S, πc) event occurs for some

C,i and S, or a testpw∗(S, j, C, πc) event occurs for some S, j, and C, where πc = π[C, S],

i.e. the correct password.

• doublepwserver: before any Corrupt query, both testpw∗(S, j, C, π) and a testpw∗

(S, j, C, π̂) events occur, for some S, j, C and π 6= π̂.

• pairedpwguess: a testpw(C, i, S, j, πc) event occurs, for some C, i, S and j.
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Rule H: In a hash query H(π), such that π is found in the list ∆ro, look for the

(π,Φ, ψ[π]) record and answer with Φ. Otherwise, define Φ according to the following

rule:

• Choose ψ[π]
$←− Zq and compute Φ := gψ[π]. Then write the record (π,Φ, ψ[π]) to

∆ro.

Figure 6.3: Simulation of H(·) random oracle queries.

Rule Hl: In a hash query Hl(ν), such that ν and l are found in ∆l
ro, look for the

(l, ν, r) row and answer with r. Otherwise, define r according to the following rule:

• Choose a random string r
$←− {0, 1}κ and write the record (l, ν, r) to ∆l

ro, where

{0, 1}κ denotes the session key space.

Figure 6.4: Simulation of Hl(·) random oracle queries, for l ∈ {1, 2, 3}.

Proof of Theorem 6.2: We will denote by Pi the protocol executed in game Gi, for i from 0 to

7. Before we start with the revised games, we will take a moment to describe how the simulator

answers H and Hl random oracle queries (see Figures 6.3 and 6.4). It is important to highlight

that, in an H(π) query returning Φ = gψ[π], the simulator has access to the discrete logarithm

of Φ, i.e. the ψ[π] value. To simplify the proof, we make the assumption that, whenever the

adversary makes an Hl query, it also makes Hl′ and Hl′′ queries such that {l, l′, l′′} = {1, 2, 3}.

Game G0 : Execution of the original protocol.

In this game, the challenger runs the original protocol P0 for the adversary A.

AdvFtG
P (A) = AdvFtG

P0
.

Game G1 : Force uniqueness of instances.

Let P1 be exactly the same as P0, except that if any of the values m and µ chosen by honest

instances collide with previously generated ones, the protocol aborts and the adversary fails.

The probability of this event happening is negligible in the security parameter and limited by

the birthday bound. More precisely, for all adversaries A:

AdvFtG
P0

(A) ≤ AdvFtG
P1

(A) +
(nse + nex)(nse + nex + nro)

q
.

Game G2 : Forbid lucky guesses on hash outputs and backpatch for consistency.

Let P2 be defined as P1, with the difference that now the simulator answers Send and Execute

queries without making any H or Hl random oracle queries. Furthermore, honest instances use
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Rule H∗l : For a hash query H∗l (ν), such that l, ν is found in ∆∗ro, look for the (l, ν, r)

record and answer with r. Otherwise, define r according to the following rule and add

the record (l, ν, r) to ∆∗ro:

• Choose a random string r
$←− {0, 1}κ.

Figure 6.5: Simulation of internal oracle H∗l (·).

an internal oracle to establish the confirmation codes and session keys values with a query of the

form H∗l (C, S,m, µ), duly described in Figure 6.5, i.e. independently of the correct password πc

and the shared secret σ. From start to finish, random oracle queries are backpatched – if needed

– to ensure consistency in the view of the adversary.

Next, we detail how the simulator responds to queries of the type Send and Execute.

• In an Execute(C, i, S, j) query set m = gτ [C,i], µ = gτ [S,j], k := H∗1 (ν), k′ := H∗2 (ν) and

skiC ← skjS := H∗3 (ν), where τ [·] $←− Zq and ν = C||S||m||µ.

• In a CLIENT ACTION 0 query to Πi
C , set m = gτ [C,i] where τ [C, i]

$←− Zq.

• In a SERVER ACTION 1 query to Πj
S , set µ = gτ [S,j], k := H∗1 (ν) and skjS := H∗3 (ν), for

τ [S, j]
$←− Zq and ν = C||S||m||µ.

• In a CLIENT ACTION 1 query to Πi
C proceed as follows:

– If Πi
C is paired with Πj

S , then set k′ := H∗2 (ν) and skiC ← skjS , for ν = C||S||m||µ.

– Else, if this query triggers a testpw(C, iS, πc, l) event, for some l ∈ {1, 2, 3} and πc

the shared password between C and S, then set k′ and skiC to the associated value of

the events testpw(C, i, S, πc, 2) and testpw(C, i, S, πc, 3) respectively.

– Otherwise Πi
C aborts.

• In a SERVER ACTION 2 query to Πj
S proceed as follows:

– If Πj
S is paired with Πi

C after a CLIENT ACTION 1 or if this query triggers a

testpw(S, j, C, πc, l) event, with l ∈ {1, 2, 3}, then terminate.

– Else abort.

• In a Hl(C, S,m, µ, σ, γ
′) query made by A, if it triggers a testpw(C, i, S, πc, l), testpw

(S, j, C, πc, l) or testexecpw(C, i, S, j, πc) event, then output the associated value of the

corresponding event. Otherwise, answer according to Rule Hl.

We note that the protocol can be simulated without requiring any password unless i) A suc-

cessfully impersonates a principal in an online dictionary attack or ii) A computes the session key

established via Execute queries; we make use of the of testpw(C, i, S, πc, l), testpw(S, j, C, πc, l)



76 CHAPTER 6. TIGHTLY-SECURE PAK(E)

or testexecpw(C, i, S, j, πc) events to formally describe such scenarios. In such a case, the sim-

ulator does backpatching to provide consistent views to the adversary, which is possible since it

has the necessary information to detect whenever such events occur, i.e. discrete logarithms and

access to a DDH oracle.

In addition, P2 forbids lucky guesses on hash functions. Specifically, in P1 there are cases

where an unpaired client instance Πi
C may accept a confirmation code k, but the adversary has

not asked the required random oracle queries to H1 and H2 in order to compute k, i.e. he

proactively produced the correct one. The probability of this event happening is O(nro + nse)/q.

A similar scenario occurs when considering an unpaired server instance. Then:

AdvFtG
P1

(A) = AdvFtG
P2

(A) +
O(nro + nse)

q
.

Game G3 : Randomize session keys for Execute queries.

Consider an adversary A who eventually makes an Execute(C, i, S, j) query, resulting in the

messages m and µ being exchanged and sk the session key established at Πi
C and Πj

S instances.

Let P3 be defined exactly as P2, except that whenever A makes an Hl(C, S,m, µ, σ, γ
′) query –

for l ∈ {1, 2, 3} and πc = π[C, S] the shared password between C and S – there is no check for

a testexecpw(C, i, S, j, πc) event. As a result of this change, even if testexecpw(C, i, S, j, πc)

event is triggered, the simulator will answer Hl(C, S,m, µ, σ, γ
′) queries with Rule H∗l , i.e. with

a random string independent of the established sk, the password and any previously exchanged

messages. Note that games P2 and P3 are indistinguishable if testexecpw does not occur.

Next we will demonstrate that the probability of testexecpw(C, i, S, j, πc) event happening

is bounded by the Gap-DH assumption.

Claim 6.3. For all adversaries A running in time t, there exists a Gap-DH solver algorithm BA

with running time t′′ = O(t+ (nro + nse + nex) · texp + nro · tddh), such that:

AdvFtG
P2

(A) ≤ AdvFtG
P3

(A) + 2Advgap−DH
G1

(BA).

Proof : Let ε be the probability that testexecpw occurs in P3. We build an algorithm BA whose

goal is to solve the Gap-DH problem using adversary A as a subroutine on a simulation of the

protocol P3 and with the same success probability ε. On input two group elements (X,Y ) ∈ G2
1,

BA simulates P3 to A with the following changes:

1. For every Execute(C, i, S, j) query, set m = X · gρi,C , µ = Y · gρj,S , where (ρi,C , ρj,S)
$←− Z2

q

are known to the simulator. Then set k := H∗1 (ν), k′ := H∗2 (ν) and skiC ← skjS := H∗3 (ν),

where ν = C||S||m||µ.

2. Each time A asks for a Hl(C, S,m, µ, σ, γ
′) query – where values m,µ were generated in

Execute(C, i, S, j) query, and a H(πc) query returned (γ′)−1 – BA calls DDH-O with input

(m · γ′, µ, σ). Once DDH-O returns 1, the “winning” Hl query is identified, BA computes
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Z value as follows:

Z = σ
(
Xρj,S · Y ρi,C · gρi,C ·ρj,S · µψ1[πc]

)−1
, (6.3)

and submits Z as solution to his (X,Y ) challenge and stops.

The advantage of BA in solving Gap-DH is equal to ε and the running time of the reduc-

tion is t′′ = O(t + (nse + nex + nro) · texp + nro · tddh), where texp and tddh represent the

time for an exponentiation and deciding DDH in G1 respectively. It follows immediately that

Pr
[

SuccFtGP2
(A)

]
≤ Pr

[
SuccFtGP3

(A)
]
+ε, and then by Fact 4.3 AdvFtG

P2
(A) ≤ AdvFtG

P3
(A)+2ε.

Game G4 : Check password guesses.

The challenger executes P3, except that if correctpw event occurs, then the protocol execution

aborts and the adversary succeeds.

As a consequence, before any Corrupt query, whenever the simulator detects (via oracle

queries) that the adversary uses the correct password to compute the confirmation codes k,

k′ or session key sk, the protocol will be aborted and the adversary will be deemed successful,

i.e., no unpaired client or server instance will terminate prior to correctpw event or Corrupt

query.

AdvFtG
P3

(A) ≤ AdvFtG
P4

(A).

Game G5 : Randomize session keys for paired instances.

Let P5 be identical to P4, except that in case the pairedpwguess event occurs, the protocol

stops and adversary fails.

In this particular reduction, we will show that an adversary A who i) can adaptively corrupt

users (thus knowing the password πc) and ii) manages to compute sk for paired instances Πi
C

and Πj
S , could be used as a subroutine to solve the Gap-DH problem.

Claim 6.4. For all adversaries A running in time t, there exists a Gap-DH solver algorithm B̂A

running in time t′′ = O(t+ (nse + nro + nexe) · texp + (nse + nro) · tddh) such that:

AdvFtG
P4

(A) ≤ AdvFtG
P5

(A) + 2Advgap−DH
G1

(B̂A).

Proof: If pairedpwguess does not occur, then games P4 and P5 are indistinguishable. Let ε be

the probability that pairedpwguess event occurs, when A is running in G5.

Next, we will construct an algorithm B̂A whose goal is to solve the Gap-DH problem using

adversary A as subroutine on a simulation of the protocol P5. On input (X,Y ) ∈ G2, B̂A

simulates P5 to A with the following changes:

1. In CLIENT ACTION 0 query to Πi
C and input S, set m = X · gρC,i where ρC,i

$←− Zq.

2. In SERVER ACTION 1 query to Πj
S and input 〈C,m〉, set µ = Y · gρS,j , where ρS,j

$←− Zq.

3. In CLIENT ACTION 1 to Πi
C and input 〈µ, k〉, if Πi

C is unpaired, B̂A first verifies k using

DDH-O and the list of random oracle queries. If k is correctly constructed (DDH-O outputs

1), Πi
C outputs k′ and terminates, or rejects otherwise.
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4. In SERVER ACTION 2 query to Πj
S with input k′, if Πj

S was paired after its SERVER

ACTION 1 but is now unpaired, then B̂A verifies k′. If k′ is correctly constructed, then

Πj
S terminates. Otherwise, it rejects.

5. After A terminates, the simulator selects queries of the form Hl(C, S,m, µ, σ, γ
′), for which

the following conditions are satisfied: i) m and µ generated by some instances Πi
C and Πj

S

respectively, ii) Πi
C is paired with Πj

S and Πj
S is paired with Πi

C after SERVER ACTION

1, iii) (γ′)−1 = H1(πc). For every such query, B̂A calls DDH-O with input (m · γ′, µ, σ).

Once DDH-O returns 1, B̂A computes Z value in the same way as for G3 (Equation 6.3),

submits it as solution for his challenge and stops.

The advantage of B̂A in solving Gap-DH is equal to ε and its running time is t′′ = O(t+(nse+

nro+nex) · texp+ (nse+nro) · tddh), where texp and tddh represent the time for an exponentiation

and deciding DDH in G1 respectively. It follows from Fact 4.3, AdvFtG
P2

(A) ≤ AdvFtG
P3

(A)+2ε.

Remark 6.5. To explain why the original reduction from [Mac02a] contains the term nse as

degradation factor, and how we can avoid such degradation in ours, consider the following sce-

nario:

Suppose that the adversary A against protocol P4 first makes a CLIENT ACTION 0 query

to Πi
C and receives as an answer m = X · gρC,i value in which Diffie-Hellman challenge X is

planted. Next, A obtains πc = π[C, S] via Corrupt(S) query. With this information, A may

decide to impersonate S to C by making a CLIENT ACTION 1 query with an input 〈µ, k〉 to

Πi
C . Since A knows the correct password, she could compute and send the correct confirmation

code k; however, A could also choose to send an incorrect one. Now, the simulator faces a

problem: Πi
C has to verify k and based on the verification outcome either accept or reject. Put

differently, the simulator is unable to verify whether testpw(C, i, S, πc, l = 2) is triggered; this

could be done by checking if σ = DH(α, µ), but the simulator does not know the discrete log of

X as it is his own challenge.

To circumvent this obstruction, the reduction in [Mac02a] has to guess an instance that will

be the target of the Test query: this provides guarantee that there won’t be any corruption before

session keys are accepted, and thus the simulator can safely plant the received Diffie-Hellman chal-

lenge (X,Y ) in the Test session. This technique yields a factor of nse in front of AdvCDH
G advantage

in Theorem 6.1. In contrast, by using Gap-DH groups, our simulator can query DDH-O with

input (α, µ, σ) to verify if σ = DH(α, µ) and check whether the event testpw(C, i, S, πc, l = 2)

is triggered or not. Hence, we can avoid guessing of the Test instance, which makes our reduc-

tion tight with respect to the success probability. Compared to [Mac02a], the running time of the

reduction algorithm has increased by an additive term (nse + nro)tddh, due to the invocation of

DDH-O needed for the simulator to identify correct random oracle queries.

Game G6 : Forbid two password guesses per online attempt on server.

In this game we restrict an adversary, who tries to masquerade as a client, from testing two pass-

words per session, say π1 and π2, in an online dictionary attack. Concretely, let P6 be identical
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to P5, except that if doublepwserver event occurs, the protocol halts and the adversary fails.

We assume that the check for doublepwserver occurs before the check for pairedpwguess.

Next we demonstrate that the probability of doublepwserver occurring is bounded by the

Gap-DH assuption.

Claim 6.6. For all adversaries A running in time t, there exists an Gap-DH solver algorithm

B̃A running in time t′′ = O(t+ (nse + nro + nexe) · texp + nro · tddh) such that:

AdvFtG
P5

(A) ≤ AdvFtG
P6

(A) + 4Advgap−DH
G1

(B̃A)

Proof: We construct an algorithm B̃A that attempts to solve the Gap-DH problem by running A
as a subroutine on a simulation of the protocol P6. On input two group elements (X,Y ) ∈ G2,

B̃A simulates P6 to A with the following changes:

1. In H(π) query, output Xψ1[π]gψ
′
1[π], where ψ1[π]

$←− {0, 1} and ψ′1[π]
$←− Zq.

2. In a SERVER ACTION 1 query to a server Πj
S with input 〈C,m〉 where acceptable(m) is

true, set µ = Y · gρ
′
S,j .

3. Once A terminates, the simulator B̃A creates a list Lc of Hl(C, S,m, µ, σ, γ
′) queries, with

l ∈ {1, 2, 3}, such that σ = DH(m · γ′, µ), which can be checked using his DDH ora-

cle. Then BA selects from the list Lc two different queries, say Hl(C, S,m, µ, σ, γ
′) and

Hl̂(C, S,m, µ, σ̂, γ̂
′), for l, l̂ ∈ {1, 2, 3} such that there was i) a SERVER ACTION 1 query

to a server instance Πj
S with input 〈C,m〉 and output 〈µ, k〉, ii) an H(π) query that returned

(γ′)−1, an H1(π̂) query that returned (γ̂′)−1 and iii) ψ1[π] 6= ψ1[π̂]. Then B̂A outputs:

Z =

(
σ · σ̂−1 · (γ′)−ρ

′
S,j · (γ̂′)ρ

′
S,j · Y ψ

′
1[π]−ψ

′
1[π̂]

)ψ1[π]−ψ1[π̂]

, (6.4)

where Z = DH(X,Y ).

P6 is indistinguishable from P5 until the event doublepwserver occurs. Let the ε be the

probability that doublepwserver occurs when A is running in G5. When doublepwserver

occurs for two passwords π 6= π̂, the success probability of B̃A is ε/2 and its running time is

t′′ = O(t+ (nse + nro + nexe)texp + nro · tddh). Thus, it follows from Fact 4.3 that AdvFtG
P2

(A) ≤
AdvFtG

P3
(A) + 4Advgap−DH

G1
(B̃A).

DISCUSSION: This game shows that A’s probability of simultaneously guessing (discarding)

more than one password during a single online attempt on a server executing P6 is negligible.

In most PAKE proofs (in [Mac02a] too), this reduction typically brings the highest security

degradation: e.g. 1/(nro)
3 appears in the case of Dragonfly [LS15] and SPEKE [Mac01a]. In

contrast, our protocol only suffers from a constant loss (4) in the success probability.

The reason for 1/(nro)
2 degradation when using L-CDH in PAK reduction is the following:

B̃A has to compute a list of possible DH values and then choose at random an element from the
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list as possible solution to his CDH challenge. The list is computed as follows: for particular

pairs of queries Hl(C, S,m, µ, σ, γ
′) and Hl̂(C, S,m, µ, σ̂, γ̂

′), for l, l̂ ∈ {1, 2, 3}, B̃A computes Z

as in Equation 6.4 and adds it to his list of possible DH values. The size of the list is upper

bounded by (nro)
2, resulting in unfeasible running time for B̃A.

In contrast, by using Gap-DH groups, B̃A can identify the right pair of Hl queries (at the

cost of at most nrotddh in the running time) and then compute a single, correct Z value using

Equation 6.4. As a result, we can remove the quadratic factor in the running time of the reduction.

Game G7 : Internal password oracle.

In this final game we estimate the probability of the correctpw event occurring, i.e. the adver-

sary guessing the correct password πc.

Let P7 be as P6, except that there is an internal password oracle Opw which generates all

passwords during the initialization of the users. The simulator uses it to i) handle Corrupt queries

and ii) test whether correctpw occurs. More specifically, when A asks Corrupt(U), the query is

simply forwarded toOpw which returns πU if U ∈ Clients, otherwise returns 〈πU [C]〉C∈Clients. To

determine whether correctpw occurs, the simulator queries Opw with test(π,C), which returns

TRUE if π = πC and FALSE otherwise. By definition P6 and P7 are perfectly indistinguishable.

Then, it holds that AdvFtG
P6

(A) = AdvFtG
P7

(A).

Claim 6.7. For all PPT adversaries A, AdvFtG
P7

(A) ≤ nse/|D|.

Proof. Let ψ denote the correctpw event and ψc its complement. The probability that A
succeeds in G7 is given by:

Pr [SuccFtGP7
(A)] = Pr [correctpw] · Pr [SuccFtGP7

(A) | correctpw] +

Pr [¬correctpw] · Pr [SuccFtGP7
(A) | ¬correctpw]. (6.5)

We look at the first term of Equation 6.5. Since there are nse Send queries, the probabil-

ity of correctpw occurring is bounded by Pr [correctpw] ≤ nse/|D|. Additionally, it follows

from G4 that Pr [SuccFtGP7
(A) | correctpw] = 1. Now we look at the second term of Equation

6.5. Given that correctpw does not occur, A succeeds by making a Test query to a fresh in-

stance Πi
U and guessing the bit b used in the Test query. By examining Reveal and H3 queries

throughout the proof, it follows that the view of A is independent of the session key skiU , thus

Pr [SuccFtGP7
(A) | ¬correctpw] = 1/2. Putting everything together in Equation 6.5:

Pr [SuccFtGP7
(A)] ≤ 1

2
+

nse
2 · |D|

.

We finally obtain AdvFtG
P7

(A) ≤ nse/|D|.

�
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6.4 Conclusion

We proposed a new instantiation for the PAK protocol and showed that the security proof

from [Mac02a] can be adapted to cover our proposal. Our reduction to the Gap Diffie-Hellman

problem is significantly tighter than the previous reduction from the CDH problem. From a

theoretical point of view, this shows that the security of PAK is closely related to the security

of Gap-DH assumption. In terms of concrete security, the advantage of the tighter proof is

that it provides the guarantee that with typical values of the group size for today, even the

most computationally powerful adversaries today cannot do significantly better than an online

dictionary attack.

In Table 6.1 we compare the quality of the reduction when the PAK protocol is instantiated in

prime order groups G or Gap-DH groups G1. We observe that the running time of the reduction,

when considering Gap-DH groups, is less than when considering the instantiation over prime

order groups G, the reason is that t2 does not have the quadratic term (nro)
2, but instead only

an additive term (nse + nro)tddh. Probably more interesting, we obtained a tight-reduction with

respect to the success probability. Specifically, let εR and εA denote the success probability of the

reduction and the adversary A respectively. Let ψ = εA/εR be the degradation factor induced

by the reduction. When the PAK protocol is instantiated on Gap-DH groups, the degradation

factor is given by a constant c – exactly c = 8, however, when considering prime order groups as

in the original proposal, the degradation factor is O(nse · (nro)2).

Similar techniques could lead to tighter security proofs in other existing PAKE protocols, for

instance PPK [Mac02b], SPAKE2 [AP05b], PFS-SPAKE2 (Section 5.3).

Table 6.1: Comparison of the running time and success probability of the reduction algorithm
when using different variants of the CDH assumption in PAK. Variable t corresponds to the
running time of A, t1 = ((nro)

2 +nse+nex)texp) and t2 = (nro+nse+nex)texp)+(nse+nro)tddh,
where nro, nse, nex represent the number of random oracle, Send and Execute queries respectively,
texp represent the running time to compute an exponentiation – in G or G1 – tddh the time for
deciding DDH and c is a constant.

Assumption Group
Running time

Simulation

Degradation

Factor

CDH G O(t+ t1) O(nse · (nro)2)

Gap-DH G1 O(t+ t2) c





CHAPTER 7

On the Relation between SIM and

IND-based Security Models for PAKEs

7.1 Introduction

The cryptographic goal when designing PAKE protocols is to ensure that the attacker essen-

tially cannot do better than an online dictionary attack. This goal recognizes that while online

dictionary attacks cannot be avoided, offline dictionary attacks can and should be prevented.

Numerous PAKE protocols have been designed to meet this goal but have later been found to

be flawed [NCPW13, AP05a, Szy06, CH14, BŠŠ17]. Consequently, security models for PAKE

have been devised to get assurance on the claimed security properties by performing a rigorous

analysis.

We consider the provable security approach, where protocols are analyzed in a complexity-

theoretic security model: the goal being that no reasonable algorithm can violate security un-

der various hardness assumptions. The complexity-theoretic security models are classified into

indistinguishability-based (IND-based) and simulation-based (SIM-based). In the IND-based ap-

proach security means that no probabilistic polynomial-time (PTT) adversary can distinguish an

established session key sk from a random string, i.e. it guarantees semantic security on sk. The

SIM-based approach defines two worlds: an ideal world which is secure by definition and the real

world which is the real protocol execution against some PPT attacker. In the SIM-based setting,

security asks for the indistinguishability between the ideal world and real world executions.

When dealing with formal security modeling of PAKE, the difference between the two pre-

viously mentioned approaches, IND and SIM, has practical consequences. It is accepted that

IND-based models are easier to work with for protocol designers that wish to prove the security

83
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of their protocols. In fact, currently, most of the security proofs for PAKEs are constructed

under the IND-based models Find-then-Guess (IND-FtG) from [BPR00] and Real-or-Random

(IND-RoR) from [AFP05]. In contrast, constructing security proofs in SIM-based models is con-

sidered more challenging. Two SIM-based models for PAKE that have seen wider use are Boyko,

MacKenzie and Patel’s (BMP) model [BMP00] that is derived from Shoup’s SIM-based model for

AKE [Sho99] and the Universal Composability (UC) framework of Canetti et al. [CHK+05] that

follows the UC paradigm of Canetti [Can01]. While complex for constructing proofs of security,

it is fair to recognize that SIM-based security i) offers a more intuitive and natural approach to

defining security, ii) it is simpler to describe and interpret the security properties captured by the

model, iii) SIM-secure protocols are well suited to accommodate secure composition results, and

iv) it is possible to prove security of PAKE protocols even in the case of correlated passwords

that may come from arbitrary password distributions.

IND–RoR SIM–BMP

IND–FtG SIM–UC

Figure 7.1: Previously known relations between PAKE security definitions.

The known relations between PAKE security definitions are summarized in Figure 7.1. In

particular, to the best of our knowledge, no work has been done to formally analyze the relation

between the IND-RoR and SIM-BMP security notions for PAKE protocols.1 As we can see in

Figure 7.1, the only existing result that is known to hold between IND and SIM based definitions

is the one from [CHK+05]. There, the authors show that their SIM-UC definition implies the

IND-FtG definition from [BPR00].

In practical terms, the lack of comparison results between IND-based and SIM-based models

for PAKEs means that the security of PAKE protocols, such as SPEKE, that have been studied

in the SIM-BMP simulation model of [BMP00] can not be compared with other PAKE protocols

that are secure according to the SIM-UC or IND definitions.

Forward Secrecy. Commonly referred as Perfect Forward Secrecy (PFS), it is a security prop-

erty for AKE and PAKE protocols, which asks to preserve the secrecy of previously established

session-keys even if password-related information gets later compromised. It is a highly desir-

able security property specially for PAKEs as unfortunately, there exist in real life different

ways in which the adversary could obtain such password information e.g. via phishing attacks

a cheated client could reveal his password to some malicious entity or the data base storing

the client’s password at the server could get compromised resulting in massive password leakage

[Cam17, PG14, Ian12].

1The result by Shoup [Sho99] on the equivalence between IND-FTG model and SIM model for authenticated
key exchange with a high-entropy long-term secret does not carry over to the PAKE setting. The reason for this
is that there is a non-negligible upper bound on the advantage of the adversary in IND-based security definitions
for PAKE.
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The intuition of forward secrecy was first mentioned by Diffie et al. in [DVOW92]. It was later

formalized and incorporated in AKE [Sho99, LLM07, CK01, Kra05] and PAKE [BPR00, KOY02]

security models. This formalization enhanced the understanding of forward secrecy by identifying

distinct means in which a principal can get compromised and the information revealed to the

adversary in such a case. However, it produced a number of definitions and variations on forward

secrecy which might make it difficult to tell under which circumstances protocol “P” is fs-secure.

For example, just in [BPR00] the authors provide three different definitions for forward secrecy.

7.1.1 Our Contribution

Our contributions in this chapter can be summarized as follows:

• We first reconcile the syntactic differences between the IND-RoR and SIM-BMP models

for PAKE thus allowing honest comparison between them. More specifically, we slightly

modify the initialization procedure of the IND-RoR model [AFP05] such that it follows the

SIM-BMP model.

• We incorporate forward secrecy into the SIM-BMP and IND-RoR security models. We

consider only the weak corruption model as defined in [BPR00], which is the most used

type of forward secrecy.

• We prove that SIM-BMP security implies IND-RoR security and that IND-RoR security

is equivalent to a slightly modified version of SIM-BMP security adapted to the model of

[GL01a]. We also investigate whether IND-RoR security implies (unmodified) SIM-BMP

security.

7.1.2 Related Work

Within the AKE research community, it is often stated that there exist more security models than

AKE protocols. Thus, it seems convenient to establish how the most relevant security models

relate to one another. In this section, we recall the security models for AKEs and PAKEs which

we consider are the most relevant.

Authenticated Key Exchange (AKE). In 1993, Bellare and Rogaway formalize the notion

of security for AKE protocols [BR93a]. In their model, an AKE protocol is secure if, under

the allowed adversary actions, the established session key is computationally indistinguishable

from a random string – this corresponds to the IND-based approach. After this initial work,

numerous others have appeared studying the cryptographic security for AKE protocols following

the IND-based approach [CK01, LLM07, BR95, BM97, BFWW11, JKSS12]. It was believed that

the eCK model [LLM07] was stronger than the previously proposed CK model [CK01], however,

in an effort to understand the exact relation among these models, Cremers demonstrated that

they are incomparable [Cre11]. The first simulation (SIM) definition for AKE was given by

Bellare, Canetti and Krawczyk [BCK98]. In 1999, Shoup proposed another security model for

AKE protocols in the SIM-based setting [Sho99] and informally compared his model with the one
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from [BCK98]. In the same work, the author gave a sketch of a proof arguing that SIM-security

against both static and adaptive adversaries is equivalent to the corresponding IND-security

notions of [BR95]. Canetti and Krawczyk in [CK02] took SIM definitions further by expanding

the composition guarantees of AKE from [Sho99] to arbitrary protocols within the Universal

Composability (UC) framework of Canetti [Can01].

Password Authenticated Key Exchange (PAKE). The first adequate security models for

PAKE appeared in [BPR00] and [BMP00] around the same time. Both models were built upon

already existing AKE models. Although the SIM-based model from [BMP00] has been used to

prove secure several PAKE protocols (PAK [BMP00], RSA-based SNAPI [MPS00b], and SPEKE

[Mac01a]), it is the IND-FtG model from [BPR00] that has established itself as the model of choice

when analyzing PAKEs. Using the IND-FtG model, Katz et al. [KOY01] managed to achieve a

breakthrough: they have shown how one can efficiently realize PAKE without random oracles,

but instead relying on a common reference string (CRS). In more theoretical work, Goldreich and

Lindell [GL01a] proposed a PAKE in the standard model that follows the simulation tradition. A

few years later, Abdalla et al. [AFP05] showed that a stronger model than IND-FtG is necessary

when trying to achieve three-party PAKE. Hence, they proposed a new model, known as the

IND-RoR model, which is proven to be stronger than the IND-FtG model in the case of PAKE.

Recently, Škrobot and Lancrenon [SL18] have shown that the IND-FtG model may not be enough

when looking at composition between PAKEs and arbitrary symmetric key protocols (SKP).

However, on the positive side, they have shown that IND-RoR secure PAKE protocols with weak

forward secrecy can be safely composed with arbitrary, higher-level SKPs. For these reasons, the

IND-RoR model – enriched to handle forward secrecy – is considered the state-of-the-art model

and has been used in the analysis of most recent PAKE protocols [ABM15, LST16]. Another

prominent model in PAKE research is the Universal Composability (UC) framework for PAKE

of Canetti et al. [CHK+05]. This model has been recently extended to treat strong augmented

PAKEs [JKX18]. For more relevant papers on PAKE, we refer the reader to Pointcheval’s survey

[Poi12].

7.2 The Real or Random Security Model for PAKEs

The Real-or-Random (IND-RoR) security model for 2-party PAKE was introduced by Abdalla,

Fouque and Pointcheval in [AFP05]. It is a refinement of IND-FtG model in which the adversary

has access to multiple Test queries instead of a single one. In this section, we present a stronger

version of the original model that allows us to explicitly incorporate the requirement of forward

secrecy. Before we recall the IND-RoR model with forward secrecy, we introduce the notation

that will used in this chapter.

Notation. Adversaries (respectively, challengers) will be denoted A (resp. CH) in the IND-

RoR model and B (resp. RM) in the SIM-BMP model. We write A
c≡ B to denote two

computationally indistinguishable distributions.
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7.2.1 Description of the IND-RoR Model with Forward Secrecy

The so-called IND-RoR model of Abdalla et al. [AFP05], defines security via a game played

between a challenger CH and some adversary A whose goal is to distinguish real session keys

from random strings. It follows from the Find-then-Guess (IND-FtG) model of [BPR00], however,

the IND-RoR model allows A to ask multiple Test queries to different instances while the IND-

FtG restricts A to a single Test query. This simple yet important change results in the IND-RoR

model being strictly stronger than the IND-FtG model in the PAKE setting. This is in contrast

with the AKE scenario in which the two models are considered equivalent.

Recall that in [BPR00], several variants of the IND-FtG model are described: these mod-

els can be differentiated depending on the type of forward secrecy they are trying to capture.

Nevertheless, the original IND-RoR model from [AFP05] does not include any forward secrecy

requirement. In this section, we present an stronger version of the original IND-RoR model

to incorporate forward secrecy by following [KJP06, BPR00], which we will simply refer as

FS-IND-RoR to differentiate from the original IND-RoR model. In addition to the treatment of

forward secrecy, we will introduce a minor change to the IND-RoR and the SIM-BMP model to

allow for meaningful comparison between them. Otherwise, the models would be syntactically

incomparable. Whenever possible, we prefer to change the SIM-BMP model rather than the

IND-RoR since the latter is more widespread.

PROTOCOL PARTICIPANTS. Each participant in a two party PAKE protocol is either a client

C ∈ C or a server S. Let U = C
⋃
S denote the set of all (honest) participants. Additionally,

each initialized participant U is associated with a unique identifier idU . During the execution of

the protocol, there might be several running instances of each participant. A running instance i

of some participant U ∈ U is called an oracle instance and is denoted by Πi
U .

LONG-TERM SECRETS. Server S holds a password π for each client C, i.e. it holds a vector

L =< πi >i∈C . In the opposite direction, client C shares a single password π with server S.

For simplicity let π also denote the function assigning passwords to pair of users. We will refer

to π[idC , idS ] as the password shared between client C and server S. Note that π[idC , idS ] =

π[idS , idC ], while π[idC , idC ] is not allowed in the model. The passwords are assumed to be

independent and uniformly distributed.

PROTOCOL EXECUTION. Protocol P is an algorithm that describes how participants behave

in response to inputs from their environment. Each participant can run P in parallel with different

partners, which is modeled by allowing an unlimited number of instances of each participant to

be created. We assume the presence of an adversary A who has full control over the network.

She can enumerate, off-line, the words of the password directory D.

SECURITY EXPERIMENT IN FS-IND-ROR MODEL. Security in the IND-RoR model with

forward secrecy is defined via a game played between the challenger CH and adversary A. At

the beginning of the experiment, CH tosses a coin and sets b ∈ {0, 1} outside of A’s view. Then

A is given access to i) endless supply of user instances Πi
U and ii) oracle queries to control them.
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Oracle queries are answered by the corresponding Πi
U according to P . A’s goal is to find out

the value of the hidden bit b. Next, we summarize the oracle queries A can access during the

security experiment.

• Initialize user(U, idU , roleU ). The adversary A assigns the string idU as identity and

roleU ∈ {client, server} to user U ∈ U , subject to the restriction that idU has not been

already assigned to another user. There are two cases:

– If roleU = server we simply write S instead of U . Then, for every initialized client

C ∈ C with idC , a password is picked uniformly at random from the dictionary D and

assigned to the corresponding pair of client-server, i.e. π[idC , idS ]
$←− D.

– In case roleU = client we shall simply write C instead of U . Then, provided that S

has already been initialized with idS , do π[idC , idS ]
$←− D.

• Initialize user instance(U, i, roleiU , pid
i
U ). An instance i ∈ N of an initialized user U ∈ U

is created and denoted by Πi
U . It is assigned i) a role roleiU ∈ {open, connect} and ii) a

partner identity pidiU corresponding to the identity of some user U ′ that Πi
U is supposed

to communicate with in the future. The following constraint must hold:

– roleU and roleU ′ are complementary, i.e. roleU = server and roleU ′ = client or the

other way around.

User instances are modeled as state machines with implicit access to the protocol description

P and its corresponding password, i.e. some Πi
U with pidiU = idU ′ is given access to

π[U, pidiU ].

• Send(U, i,m). A sends message m to user instance Πi
U . The latter behaves according to

the protocol description, sends back the response m′ to A (if any) and updates its state as

follows:

– continue: Πi
U is ready to receive another message.

– reject: Πi
U aborts the protocol execution and sets the session key skiU =⊥. This can

be due to receiving an unexpected message m.

– accept: Πi
U holds pidiU , session identifier sidiU and skiU . However, Πi

U still expects to

receive another message to fulfill the protocol specification.

– terminate: Πi
U holds pidiU , sidiU and skiU . It has completed the protocol execution

and will not send nor receive any other message.

• Execute(U, i, U ′, j). The transcript of the execution is returned to A. It models the honest

execution of the protocol between Πi
U and Πj

U ′ .

• Corrupt(U). A learns the long-term secret information of some initialized user U . If

roleU = client, then A gets πU . Otherwise, if roleU = server, then A receives L =<

πi >i∈C .
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• Test (U, i). A asks for the session key of user instance Πi
U . Provided that statusiU =

terminate, CH responds as follows 2:

– If there was a Corrupt(U∗) query – where U∗ can be any user – and a Send query

directed to Πi
U before the sk is computed, then A gets the real sk of Πi

U . Otherwise:

– CH responds using the bit b. If b = 1 then A gets the real sk of Πi
U , if b = 0 she gets

a random string r
$←− {0, 1}κ, where κ denotes the length of session keys. To ensure

consistency, whenever b = 0 the same random string is returned for Test queries asked

to two partnered instances.

Matching Instances. Two instances, Πi
U and Πj

U ′ , are matching instances if:

• pidiU = idU ′ , pid
j
U ′ = idU

• Users have complementary roles, i.e. one has role client and the other has role server.

• User instances have complementary roles, i.e. one instance has the role open and the other

connect.

Partnering. Two matching instances Πi
U and Πj

U ′ are partners if both instances accept – each

holding pidiU , sidiU , skiU and pidjU ′ , sid
j
U ′ , sk

j
U ′ respectively – and the following holds:

• sidiU = sidjU ′ and skiU = skjU ′

• No oracle besides Πi
U and Πj

U ′ accepts with some sid′ = sidiU , except with negligible

probability.

Advantage of the adversary. During the experiment, A is allowed to ask several Test queries

directed to different oracle instances Πi
U in the terminate state. All these queries are answered

depending on the bit b chosen at the beginning of the experiment with either the real session key

if b = 1 or a random string otherwise. At the end of the game, A outputs a bit b′ and wins the

game if b′ = b, i.e. if she distinguished real session keys from random strings. The advantage of

A in the FS-IND-RoR security game for protocol P and passwords sampled uniformly at random

from dictionary D is defined as follows:

AdvFS−RoRP,D (A) := 2 · Pr (b′ = b)− 1. (7.1)

Definition 7.1. Protocol P is FS-IND-RoR secure if

1. (Completeness) If protocol messages are faithfully transmitted between two matching in-

stances then both instances accept and compute the same key.

2. (Bounded Adversary Advantage) For all PPT adversaries A:

AdvFS−RoRP,D (A) ≤ n

|D|
+ negl(κ) , (7.2)

2This is commonly referred as freshness condition.
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where n is an upper bound on the number of sessions initialized by A and κ is the security

parameter.

Remark 7.2. As we mentioned before, different flavors of forward secrecy exist in the literature,

e.g. just in [BPR00] the authors provide three particular definitions which could either weaken

or strengthen the security guaranteed by the model in case of compromise of long-term secret

information. While the intuition of forward secrecy and the security guarantee that it aims to

provide are understood, it is unclear which definition of forward secrecy is de facto the right one

for PAKE protocols. Therefore, to be explicit, we consider forward secrecy in the weak corruption

model described in [BPR00], where corruption of some principal leaks only its password to the

adversary, i.e. no internal state is revealed.3

In the Client-Server setting, it is reasonable to assume that compromise of the server leaks

the whole password data file to the adversary, even for asymmetric PAKEs. Thus, the model

pessimistically renders every instance, whose session key was negotiated after someone got cor-

rupted, as compromised and no security is guaranteed. Such a case is formalized in the Test

query, which is answered with the real session key, i.e. independently of the bit b, whenever

the previously mentioned scenario occurs. We note that it is possible to fine-tune the model by

distinguishing compromise of a server from a client’s one, however, it will place new cumber-

some conditions to the Test query making the analysis more complex and without gaining some

significant improvement.

Remark 7.3. When using passwords as means of authentication, there is a non-negligible proba-

bility of an adversary successfully impersonating an honest user by simply guessing its password.

This problem is unavoidable and inherent to PAKE protocols. Consequently, the security defini-

tion considers a PAKE protocol to be secure if only on-line dictionary attacks are possible, i.e.

the protocol should not leak any information that allows the adversary to obtain the password in

an off-line manner.

7.3 Security in the Simulation Model

Security in the simulation approach, also known as real-ideal paradigm, was first described in the

seminal work of Goldreich, Micali and Wigderson on secure multi-party compuation [GMW87].

Their intuition is the following: To evaluate the security of a cryptographic protocol for some

functionality – say password-based authenticated key-exchange – one first defines an ideal world

that accomplishes the functionality in a secure way. Thus the ideal world contains the specifica-

tion and security requirements that the given functionality must fulfill. It is defined via a trusted

party who receives inputs from the users, locally computes the outputs according to the specified

functionality, and finally delivers to each user the corresponding value. Then, a protocol is secure

3We note that the definition of forward secrecy in the weak corruption model – used in this Chapter – is
different to that of weak forward secrecy (see Chapters 4 and 5).
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in the real-ideal paradigm, if whatever the adversary can do in the real execution of the protocol,

can also be done in the ideal world, which is secure by definition.

When dealing with passwords as long-term secret information for authentication, the security

model has to acknowledge the non-negligible probability of an adversary guessing the correct

password and successfully impersonating an honest user. There are two ways to incorporate this

defect due to the low entropy of passwords in the SIM-based security model; the first approach

is considered in [BMP00, CHK+05] while the second in [GL01a, NV08]:

1. Incorporate the non-negligible probability of an adversary guessing the password into the

ideal world, by explicitly allowing the ideal world adversary to verify the guess of a can-

didate password. Then one defines a protocol to be secure if the real world execution is

computationally indistinguishable from an execution in the ideal world.

2. Do not allow password guessing in the ideal world, but relax the requirement of indistin-

guishability between the real world and ideal world transcripts. One defines a protocol to

be secure as one whose real-world execution is distinguishable from an execution in the

ideal world with probability at most n/|D|+negl(κ), where n is the number of active user

instances and D is the dictionary. Keep in mind that we make use of this approach in

Section 7.4 when we prove Theorem 7.12.

For now we consider only the first approach. We adapt the original SIM-BMP model of Boyko

et al. [BMP00] to account for scenarios where forward secrecy is required. For clarity, we refer to

the later simulation model with forward secrecy as FS-SIM-BMP to distinguish from the original

one. The inclusion of this security property in the SIM-BMP model allows us to provide a fair

comparison to the IND-RoR model with forward secrecy as described in Section 7.2, otherwise,

the models would be incomparable simply because they aim for different security guarantees. We

consider forward secrecy in the weak corruption model as described in [BPR00, Sho99] for this

task.

7.3.1 The Ideal World

The ideal world (IW ) model describes the service that a PAKE aims to provide, i.e. to allow

parties to jointly compute a high entropy secret session key, which can be used later in higher

level applications. In the IW there are no messages flowing around the network nor cryptography.

The session keys are chosen at random by a trusted party and delivered out-of-band to the honest

users. More formally, the ideal world involves interaction between a trusted entity called ideal

world Ring Master and an ideal world adversary, denoted by RM∗ and B∗ respectively. The

ring master is similar to the challenger in the FS-IND-RoR experiment. The details of the ideal

world execution follow.

PROTOCOL PARTICIPANTS: As defined in the FS-IND-RoR model.

LONG-TERM SECRETS: The FS-SIM-BMP model does not make any assumption on the pass-

word distribution. However, to allow a fair comparison to the FS-IND-RoR model, we assume
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the passwords to be independent and uniformly distributed.

PROTOCOL EXECUTION: There is no protocol execution in the ideal world. The session key

of an instance is generated by the RM∗ when B∗ asks that instance the start session query.

Additionally B∗ is given access to the following oracles:

• Initialize user(U, idU , roleU ). Identical to that in the FS-IND-RoR model.

[Transcript:(“init. user”, U, roleU )]

• Initialize user instance(U, i, roleiU , pid
i
U ). Identical to that in the FS-IND-RoR model.

[Transcript: (“init. inst.”,U, i, pidiU )]4

• Abort user instance (U, i) Adversary B∗ asks RM∗ to abort user instance Πi
U . We say

then that Πi
U is aborted.

[Transcript: (“abort. user inst.”,U, i)]

• Test instance password (U, i, π′). For user instance Πi
U and password guess π′, B∗ queries

if π′ equals π(U, pidiU ). If this is true, the query is called successful guess on {U, pidiU}.

This query can be asked only once per user instance. The user instance must be initialized

and not yet engaged in a session, i.e. no start session operation has been performed for

that instance. Note that B∗ is allowed to ask a test instance password query to an instance

that is aborted. This query does not leave any records in the transcript.

• Corrupt(U). B∗ learns the long-term secret information of some initialized user U . If

roleU = client, then B∗ gets πU . Otherwise, if roleU = server, then B∗ receives L =<

πi >i∈C .

[Transcript: (“Corrupt”,U, πU )]

• Start session(U, i). B∗ specifies that a session key for user instance Πi
U must be generated,

by specifying one of the three connection assigments available:

– open for connection from (U ′, j). This operation is allowed if: c1) roleiU = open

and user instances Πi
U and Πj

U ′ are matching instances, c2) Πj
U ′ has been initialized

and not aborted, c3) no other instance is open for connection from Πj
U ′ and c4) no

test instance password operation has been performed on Πi
U . Then RM∗ generates

session key skiU at random. Then Πi
U is said to be open for connection from Πj

U ′ .

– connect to (U ′, j). This operation is allowed if: c1) roleiU = connect and user

instances Πi
U and Πj

U ′ are matching instances, c2) Πj
U ′ has been initialized and not

aborted, c3) Πj
U ′ was open for connection from Πi

U after Πi
U was initialized and Πj

U ′

4Note that the original SIM-BMP model [BMP00] also places roleiU in the transcript, but we have chosen to
remove it. This is because in the ideal world, from two partnered instances, the one with the role “open” will
always start session first. On the other hand, in the real world, the adversary is free to choose which instance
is assigned role “open” and which “connect”. Thus, a real world adversary could make an honest execution
of a protocol between an instance with role “connect” that terminates first, and an instance with role “open”
that terminates second. Such a transcript, which constitutes an honest execution of a protocol, would not be
simulatable in the ideal world if the roles “open” and “connect” are placed in the transcript.
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is still open for connection and c4) no test instance password operation has been

performed on Πi
U . TheRM∗ sets skiU = skjU ′ and Πj

U ′ is no longer open for connection.

– expose (U, i, sk). B∗ assigns session key sk of his choice to user instance Πi
U . This

connection assignment is allowed if at least one of the following conditions hold: i)

there has been a successful test instance password on Πi
U or ii) there was a Corrupt

query, directed to any user, before the start session operation.

[Transcript: (“start session”, U, i)]

• Application (f, U, i). The adversary specifies an efficiently computable function f and a

user instance Πi
U for which a session key skiU has already been established. It gets back

f({skiU}, R), where R is a global random bit string which user instances are given access

to. R is not correlated to the established session keys and usually is referred to as the

environment.

[Transcript: (“application”, f, f(skiU , R))]

• Implementation. This is a do nothing operation. B∗ is allowed to place implementation

operations without taking any effect in the ideal world. It is needed to allow B∗ to construct

transcripts that are equivalent to those in the real world.

[Transcript: (“impl”, cmmt)]

Transcript. Some of the previously mentioned queries are recorded in a transcript. Let IWT ∗

denote the transcript generated by B∗.

Remark 7.4. The SIM-BMP model handles on-line dictionary attacks, which are unavoidable

and inherent to PAKEs, by introducing the notion of passwords and specifically the Test instance

password query in the ideal world definition. This approach places the fundamental requirement

that an active adversary can test at most one password per protocol execution. In fact, provided

that the PAKE in question should be deemed SIM-BMP secure, the test instance password allows

the simulator to create ideal world transcripts which are computationally indistinguishable from

real world ones.

In a more general sense, the expose connection assignment is allowed whenever the adversary

could compute by his own the session key shared with some instance Πi
U , e.g. a successful online

dictionary attack or a Corrupt query asked before the connection assignment. This is similar to

the freshness condition defined for IND-based models, which prevents the adversary from winning

the experiment by trivial means.

The purpose of running PAKE protocol is to later use the established session keys in higher-

level application protocols, e.g. the construction of secure communication channels is their most

natural application. However, partial information about the established session key could poten-

tially be leaked to the adversary through the usage of such keys, e.g. cryptanalysis, side channel

attacks, etc. The application query models the ability of the adversary to get any information

she wishes about the environment and the established session keys. The function f is defined by

B∗, the only constraint is that it must be efficiently computable.
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7.3.2 The Real World

The real-world (RW ) describes the scenario where a PAKE protocol runs. There is a real world

Ring Master (RM), whose role is similar to the role of the challenger in the FS-IND-RoR

experiment, and a real-world adversary B who tries to attack the PAKE.

PROTOCOL PARTICIPANTS: Identical to IW .

LONG-TERM SECRETS: Identical to IW .

PROTOCOL EXECUTION: The same as in the FS-IND-RoR model. Also, user instances are

defined as state machines with implicit access to idU , pidiu and the corresponding password. The

communication between the instances is entirely controlled by B via the following queries:

• Initialize user(U, idU , roleU ). Identical to that in the FS-IND-RoR model.

[Transcript:(“init. user”, U, roleU )]

• Initialize user instance(U, i, roleiU , pid
i
U ). This is identical to that in the FS-IND-RoR

model.

[Transcript: (“init. inst.”,U, i, pidiU )]

• Send(U, i,m). The same as in the FS-IND-RoR model except that the following is added

to the transcript:

[Transcript: (“impl”, “msg”, U, i,m,m′, stateiU )]. Additionally, the following record is added

to the transcript depending on stateiU .

If stateiU = “terminate” add (“start session”, U, i).

If stateiU = “abort” add (“abort”, U, i).

• Corrupt(U). The same as in IW .

[Transcript: (“Corrupt”,U, πU )]

• Application(f, U, i). The same as in IW .

[Transcript: (“application”, f, f(skiU , R))]

Transcript. Let RWT be the transcript generated by B. This is a sequence of records describing

the actions of B when interacting with the real world protocol. RM generates B’s random tape

and places it in the first record of the transcript.

[Transcript: (“impl”, “random tape”, rt)].

Definition 7.5. A protocol is FS-SIM-BMP secure if

1. (Completeness) If protocol messages are faithfully transmitted between two matching in-

stances then both instances accept and compute the same key.

2. (Simulatability) for every efficient real-world adversary B, there exists an efficient ideal

world adversary B∗, such that RWT
c≡ IWT ∗. Alternatively:

∀B ∃B∗ ∀D : |Pr [ 1← D(RWT ) ]− Pr [ 1← D(IWT ∗) ]| ≤ negl(κ). (7.3)
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7.4 Relations between FS-IND-RoR and FS-SIM-BMP

In this section, we establish the relations between FS-IND-RoR and FS-SIM-BMP security models

for PAKEs. We start by showing that FS-SIM-BMP security implies FS-IND-RoR security.

Table 7.1: Correspondence of A’s and B’s queries.

FS-IND-RoR FS-SIM-BMP

Initialize user Initialize user
Initialize user instance Initialize user instance

Send Send
Execute Send
Corrupt Corrupt
Test Application

Theorem 7.6. (FS-SIM-BMP Security ⇒ FS-IND-RoR Security). For any PAKE protocol P

secure in the SIM-BMP model with forward secrecy, P is also secure in the IND-RoR model with

forward secrecy.

Proof. We demonstrate that if protocol P satisfies FS-SIM-BMP security, then the advantage of

any adversary A in the FS-IND-RoR experiment is bounded by n/|D|+ negl(κ), where n is an

upper bound on the number of sessions initialized by A.

For clarity the proof is divided in two parts which we summarize here:

1. First we build a real-world adversary BA from A. The intention is to generate a real-

world transcript RWT according to the FS-SIM-BMP model but following A’s commands.

Additionally, since P is FS-SIM-BMP secure, the simulatability definition guarantees the

existence of an ideal-world transcript IWT ∗ that is computationally indistinguishable from

the RWT . Moreover, we show that one can use the previously generated RWT to instan-

tiate again A and obtain identical executions of the previously simulated experiment to A.

The same reasoning applies when initializing A according to IWT ∗.

2. We build a distinguisher DA using A as a subroutine, whose goal is to tell apart RWT

from IWT ∗ transcripts. The distinguisher looks at whether A wins his security challenge

when initialized with the given transcript. From this, we can bound the advantage of A in

the FS-IND-RoR experiment to at most n/|D|+ negl(κ).

Concrete details of Part 1 and Part 2 follow:

Part 1. We construct BA using an A as a subroutine, where BA uses his own RM to answer

A’s queries. BA can perfectly simulate the FS-IND-RoR experiment to A (see Table 7.1). The

objective is to generate a transcript RWT from the interaction RM vs BA. The resulting

transcript will be used in the second part of the proof.
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Next we detail the construction of BA, however, a reader familiar with FS-SIM-BMP and

FS-IND-RoR security models could simply go to Table 7.1 and notice that BA can perfectly

simulate the FS-IND-RoR experiment to A.

• The interaction RM vs BA starts when the former initializes BA with random tape rtB -

as described in Section 7.3. Next BA, who simulates the challenger CH in the FS-IND-RoR

game, generates a uniformly distributed bit-string rtA and initializes A with random tape

rtA.

• BA sets b
$←− {0, 1} outside A’s view.

• BA uses his RM to answer A’s queries: When A makes Initialize user, Initialize user instance

or Send queries, BA simply forwards them to his RM and its response (if any) is forwarded

back to A. Execute queries asked by A are converted into Send queries appropriately. See

Table 7.1.

• BA answers A’s Test query using his Application query and the bit b. If there was a Corrupt

and a Send query, then BA uses his Application query to reveal skiU . Otherwise, if b = 1

then BA uses his Application query to reveal skiU , however, if b = 0, then BA generates a

random string r ← {0, 1}κ and gives it to A. In order to avoid strategies where A could

trivially win the game, whenever b = 0 the same r is returned for Test queries asked to two

partnered instances. 5

• The experiment continues and A is allowed to make more queries as she wishes. Eventually,

A outputs her guess b′ and the FS-IND-RoR game finishes.

• BA makes an Application query and writes in the transcript the string “b, rtA”. For the

sake of the proof, it is not necessary to write the bit b′ in the transcript.

The real-world transcript created is RWT . Furthermore, the FS-SIM-BMP definition guarantees

the existence of a corresponding ideal-world transcript IWT ∗, i.e. ∀B ∃B∗ such that RWT
c≡

IWT ∗.

Remark 7.7. Given either RWT or IWT ∗, it is possible create instances of A as needed,

simulate to A the FS-IND-RoR experiment and obtain identical executions as recorded in the

corresponding transcript. The reason is that A can be initialized with random tape rtA contained

in the transcript, and then A’s behavior is deterministic and known in advance – given the

corresponding transcript. Rewinding the adversary to a specific state is a standard proof technique

[CGJ+99]. However, our requirement is simpler since we only need to initialize and run A from

the beginning.

Part 2. We use sequence of games and the previously generated transcript to demonstrate

that FS-SIM-BMP Security ⇒ FS-IND-RoR Security.

5In order to achieve sound simulation, we assume that partnering information is publicly computable
[BFWW11].
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Let G0 be the experiment where A is initialized according to the real-world transcript RWT ,

i.e. a real-world adversary BA is simulating the FS-IND-RoR experiment to A. Let S0 be

the event where A outputs b′ = b in G0. It holds that Pr [S0 ] = Pr [A wins | t = RWT ].

Similarly, let G1 be the experiment where A is initialized according to the ideal-world transcript

IWT ∗. Let S1 be the event where A wins his FS-IND-RoR experiment in G1; then it holds that

Pr [S1 ] = Pr [A wins | t = IWT ∗ ].

We first analyze the term Pr [A wins | t = IWT ∗ ]. Provided that FS-SIM-BMP security

holds, we will then show that A can not notice the transition from G0 to G1, and this will give

us a bound on the advantage of A in the FS-IND-RoR experiment.

We consider now the experiment G1 and examine how the keys in IWT ∗ were generated. Let

γ be the event that at least one sk is generated via expose connection assignment as a result of

a test instance password query that occurs during the execution of B∗ interacting with RM∗,
i.e. a successful online dictionary attack. Let β be the complement of γ, i.e. the event that no

successful password guess occurred during the interaction of B∗ and RM∗.

Claim 7.8. Pr [ γ ] ≤ n/|D|.

Proof. For a single user instance, by definition of the ideal world, the probability of a successful

password guess by B∗ is 1/|D|. We apply the union bound, and get that if there are at most n

instances, Pr [ γ ] ≤ n/|D|. �

Claim 7.9. Pr [ b = b′ | β ] = 1/2.

Proof. Given than β occurs, the session keys placed in IWT ∗ were generated either by i) expose

connection assignment – provided that there was a Corrupt query before the connection assign-

ment – or ii) open or connect connection assignment. Then, whenever A makes a Test query to

an instance whose session key was generated via case i), the simulator answers with the real sk

computed at the tested instance, i.e. the answer is independent of the bit b by definition of the

FS-IND-RoR experiment. Similarly, whenever A makes a Test query to an instance whose session

key was generated via case ii), the simulator answers with a random string independent of the

bit b. Therefore, the view of A is independent of the hidden bit b so Pr [ b = b′ | β ] = 1/2. �

Using Claim 7.8 and Claim 7.9 we get:

Pr [A wins | t = IWT ∗ ] = Pr [ (b′ = b) | γ ] · Pr [ γ ] + Pr [ (b′ = b) | β ] · Pr [β ]

Pr [A wins | t = IWT ∗ ] ≤ n

|D|
· Pr [ (b′ = b) | γ ] +

1

2
·
(

1− n

|D|

)
Finally, by considering that Pr [ (b′ = b) | γ ] ≤ 1 we obtain:

Pr [A wins | t = IWT ∗ ] ≤ 1

2
+

n

2 · |D|
. (7.4)
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Equation 7.4 expresses the observation that, by construction of the ideal-world, an adversary

cannot do better than online dictionary attacks.

Now, we build a PPT algorithm DA whose aim is to distinguish real-word from ideal-world

transcripts. DA gets as input a transcript t ∈ {RWT, IWT ∗}, and uses it to initialize a PPT

adversary A and simulate a FS-IND-RoR experiment to A. The simulation will be either G0 or

G1. If SIM-security holds, then DA cannot distinguish real world and ideal world transcripts,

and so A cannot win his FS-IND-RoR experiment with advantage greater than n/|D|+negl(κ).

In more details, on input some transcript t, DA proceeds as follows:

• Look for the last record of the transcript containing the string “b, rtA”.

• DA “simulates” the challenger in the FS-IND-RoR experiment and initializes A on random

tape rtA. Since A is given rtA, she behaves (deterministic) the same way as recorded in

the transcript t. Every query asked by A can be answered by DA by just reading t.

• Eventually A outputs her guess b′ and DA proceeds as follows: If b = b′ DA outputs “1”

and if b 6= b′ it outputs “0”. Additionally, when a bad event occurs, e.g. A cannot be

initialized, or her queries cannot be answered by reading t, then D outputs ⊥.

A wins her FS-IND-RoR game whenever she outputs b′ = b. In such a case, DA outputs “1”

by construction. Then it is true that:

Pr [ 1← D(RWT ) ] = Pr [S0 ].

and

Pr [ 1← D(IWT ∗) ] = Pr [S1 ].

From Equation 7.3 of FS-SIM-BMP security we know the following holds:

|Pr [ 1← D(RWT ) ]− Pr [ 1← D(IWT ∗) ]| ≤ negl(κ). (7.5)

Then it holds that |Pr [S0 ]− Pr [S1 ]| ≤ negl(κ). By definition of G0 and G1:

|Pr [A wins | t = RWT ]− Pr [A wins | t = IWT ∗ ]| ≤ negl(κ). (7.6)

The term Pr [A wins | t = RWT ] is actually the probability of A winning on a perfectly

simulated FS-IND-RoR experiment. We combine with Equation 7.4 and get:

Pr [A wins | t = RWT ] ≤ 1

2
+

n

2 · |D|
+ negl(κ)

We obtain that, if FS-SIM-BMP-security holds, then ∀ PPT A AdvFS−RoRP,D (A) ≤ n/|D| +
negl(κ), proving that FS-SIM-BMP ⇒ FS-IND-RoR. �

Now we investigate the reverse, i.e. whether FS-IND-RoR security also implies FS-SIM-BMP

security. We obtain the following result:
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Theorem 7.10. If P is not FS-SIM-BMP secure, then ∃A s.t. AdvFS−RoRP,D (A) > nA/|D|+ ω,

where nA is the number of explicit password guesses of A and ω is a non-negligible function of

the security parameter.

Proof. We build a FS-IND-RoR adversary AB, as the sequential composition of two adversaries:

A1 and AB2 . First, AB invokes A1. A1 tries a number of online dictionary attacks. If one of these

is successful, then AB can win the FS-IND-RoR experiment. If none of the online dictionary

attacks is successful, then AB invokes AB2 . Next, we describe the details of A1 and AB2 .

i) Construction of A1. Let A1 be an adversary who tries to masquerade user U to user V nA

times. Each time, A1 chooses a new candidate password and runs the protocol with V . If

one of the password guesses is successful, then A1 can win the FS-IND-RoR experiment. By

construction,

Pr [A1 wins ] =
nA
|D|

. (7.7)

ii) Construction of AB2 . We have assumed that FS-SIM-BMP security does not hold. Then

∃B ∀B∗ ∃D s.t.:

|Pr [ 1← D(RWT ) ]− Pr [ 1← D(IWT ∗) ]| > ω , (7.8)

where ω is non-negligible term.

Let AB2 be an adversary in the FS-IND-RoR experiment which uses B and D as subroutine.

The game AB2 vs CH proceeds as follows:

• At the beginning of the experiment, CH chooses a bit b at random and outside AB2 ’s view.

• AB2 uses B as subroutine and answers B’s queries as follows: When B asks for Initialize user,

Initialize user instance, Send or Corrupt queries, AB2 simply forwards them to her CH and its

response (if any) is forwarded back to B.

• AB2 uses her Test query to answer B’s Application queries. When B asks for an application

of the efficiently computable function f on skiU and a global random string R, AB2 asks

Test(U, i) to her CH, obtains skiU , computes f(skiU , R) and sends the result to B.

Claim 7.11. The transcript produced by AB2 is either RWT or IWT ∗.

Proof. B’s actions produce a transcript t. Consider the following scenario: B asks an Application

query and AB2 answers it by asking a Test query to his own challenger. Without loss of generality,

let us consider fresh instances, i.e. those where we give credit to the adversary if he answers with

b′ = b: If b = 1, AB2 ’s Test queries are answered with real session keys, else if b = 0 AB2 gets

a random string taken from the session key space. Therefore, AB2 ’s answer to B’s Application

queries is either a function of the real session key or a function of a random string. Looking

at the definition of the real and ideal-world transcripts, we conclude that whenever b = 1 the

transcript generated is real-world while if b = 0 the transcript is ideal world. The reason is that in

the real-world, the user instances compute their sk’s according to the description of the protocol
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and only such computed sk’s are placed transcript. However, in the ideal-world, the session keys

placed in the transcript are i) random strings provided that freshness condition is satisfied or ii)

no restriction about sk provided that freshness is not satisfied, i.e. the simulator is given the

freedom to specify the session key as he wishes. �

LetD be the PPT distinguisher whose existence is guaranteed by the negation of FS-SIM-BMP

security.6 Next, AB2 invokesD(t) and simply forwardsD’s output to her own CH. By construction,

AB2 wins whenever D is able to distinguish real-world from ideal-world transcripts. Therefore:

Pr
[
AB2 wins

]
= Pr [ b = 1 ] · Pr [ 1← D(RWT ) ] + Pr [ b = 0 ] · Pr [ 0← D(IWT ∗) ] ,

which using Equation 7.8 gives:

Pr
[
AB2 wins

]
>

1

2
+ ω. (7.9)

We build A as the sequential composition of A1 and AB2 . It follows that:

Pr
[
AB wins

]
= Pr [A1 wins ] + Pr

[
AB2 wins

]
− Pr [A1 wins ] · Pr

[
AB2 wins

]
,

which from Equations 7.7 and 7.9 yields:

Pr
[
AB wins

]
>

nA
2 · |D|

+
1

2
+ ω

AdvFS−RoRP,D (AB) >
nA
|D|

+ ω, (7.10)

where ω is a non-negligible function. �

Unfortunately, Theorem 7.10 is not enough to demonstrate that FS-IND-RoR security im-

plies FS-SIM-BMP security. The reason is that the total number of instances initialized by our

construction of A is nA +nB , where nA is the number of explicit password guesses of subroutine

A1 and nB is the number of instances initialized while subroutine AB2 is simulating the real world

ring master to B. Therefore, proving by contradiction that FS-IND-RoR⇒ FS-SIM-BMP would

require AdvFS−RoRP,D (A) > (nA + nB)/|D|+ ω.

We recall from Section 7.3 that there are two ways to take account of online dictionary attacks

in SIM-based security models for PAKEs:

1. Include a test instance password query in IW and require computational indistinguishability

of RWT and IWT ∗.

2. Do not include a test instance password in IW but allow a non-negligible bound on the

distinguishability of RWT and IWT ∗.

6Without loss of generality, we can assume D is more likely to output 1 on a real world than on an ideal world
transcript; otherwise, flip the output bit of D.
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The SIM-based model Boyko, MacKenzie and Patel [BMP00] follows the first style. We

modify it so it follows the second style. We call the modified model FS-SIM-BMP’. The only

changes are the following:

1. Remove the test instance password query from IW in FS-SIM-BMP.

2. Relax the requirement of indistinguishability between real and ideal world.

FS-SIM-BMP’ security. Protocol P is FS-SIM-BMP’ secure if it satisfies completeness and

additionally for all Real World adversaries B, there exits an Ideal World adversary B∗ such that

for all distinguishers D:

|Pr [ 1← D(RWT ) ]− Pr [ 1← D(IWT ∗) ]| ≤ n

|D|
+ negl(κ), (7.11)

where n is an upper bound on the number of sessions initialized by B.

Next, we show that FS-IND-RoR security implies FS-SIM-BMP’ security.

Theorem 7.12. (FS-IND-RoR Security ⇒ FS-SIM-BMP’ Security). If protocol P is secure in

the IND-RoR model with forward secrecy, then P is also secure in the SIM-BMP’ model with

forward secrecy.

Proof. This is a proof by contradiction and the strategy is similar to the one employed in Theorem

7.10.

We assume that FS-SIM-BMP’ security does not hold. Then ∃B ∀B∗ ∃D s.t.:

|Pr [ 1← D(RWT ) ]− Pr [ 1← D(IWT ∗) ]| > n

|D|
+ ω, (7.12)

where n is an upper bound on the number of sessions initialized and ω is a non-negligible function.

Then, we build an adversaryAB using B andD as subroutines such thatA breaks FS-IND-RoR

security. We construct AB from B and D in exactly the same way as we built AB2 from B and D
in the proof of Theorem 7.10.

Using the same analysis as in the proof of Theorem 7.10, we get:

Pr
[
AB wins

]
= Pr [ b = 1 ] · Pr [ 1← D(RWT ) ] + Pr [ b = 0 ] · Pr [ 0← D(IWT ∗) ] ,

which using Equation 7.12 gives:

Pr
[
AB wins

]
>

1

2
+

n

2 · |D|
+ ω ,

And finally from Equation 7.1:

AdvFS−RoRP,D (AB) >
n

|D|
+ ω,

but ω is not negligible, a contradiction. �
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Now, we investigate the reverse, i.e. whether FS-SIM-BMP’ security implies FS-IND-RoR

security. We obtain the following result:

Theorem 7.13. (FS-SIM-BMP’ Security⇒ FS-IND-RoR Security). If protocol P is SIM-BMP’

secure with forward secrecy, then for all PPT A, AdvFS−RoRP,D (A) ≤ 2 · n/|D|+ negl(κ).

Proof. We follow the same argument as in the proof of Theorem 7.6 up to Equation 7.5, which we

simply update according to the FS-SIM-BMP’ security definition given in Equation 7.11. Hence:

|Pr [A wins | t = RWT ]− Pr [A wins | t = IWT ∗ ]| ≤ n

|D|
+ negl(κ). (7.13)

It is easy to see that Pr [A wins | t = IWT ∗ ] = 1/2 since A cannot gain any information

about the hidden bit b. However, Pr [A wins | t = RWT ] = 1/2+1/2 ·AdvFS−RoRP,D (A) as result

of A running on a perfectly simulated FS-IND-RoR experiment. Following Equation 7.13 we

obtain:

AdvFS−RoRP,D (A) ≤ 2 · n
|D|

+ negl(κ)

The guarantee that ∀A, AdvFS−RoRP,D (A) ≤ 2 · n/|D|+negl(κ) means that protocol P satisfies

the definition of FS-IND-RoR security (Definition 7.1) with a degradation factor c = 2. A similar

constant factor appears in the reduction used in [AFP05] to prove that IND-RoR security implies

IND-FtG security.

Using the results of Theorem 7.6 and Theorem 7.12, as well as the previously known relation

IND-RoR ⇒ IND-FtG [AFP05], we obtain the following corollaries:

Corollary 7.14. SIM-BMP Security ⇒ SIM-BMP’ Security

Corollary 7.15. SIM-BMP Security ⇒ IND-FtG Security

We make the observation that Corollary 7.15 holds when the Corrupt query is removed from

the SIM-BMP and IND-FtG models. The reason is that in [AFP05], the relation IND-RoR ⇒
IND-FtG is proven without considering any notion of forward secrecy, while the IND-RoR model

that we consider has forward secrecy incorporated. Nevertheless, it seems reasonable to assume

that IND-RoR with forward secrecy implies IND-FtG with forward secrecy.

The question of whether SIM-BMP’ Security⇒ SIM-BMP Security remains open. Note that

SIM-BMP’ ⇒ SIM-BMP would imply that the three security notions IND-RoR, SIM-BPM and

SIM-BMP’ are equivalent. A similar reasoning can be applied when considering forward secrecy

in the aforementioned security models.
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7.5 Conclusion and Future Work

Although PAKE is a widely studied primitive and found in real-world security protocols, a clear

relation between its major security notions (IND and SIM) was missing in the literature. In this

work, we aimed at filling this gap. We have summarized the relations obtained in this work in

Figure 7.2.

SIM–BMP ′ FS–SIM–BMP ′

IND–RoR SIM–BMP FS–IND–RoR FS–SIM–BMP

IND–FtG SIM–UC

Figure 7.2: Relations between PAKE security definitions. On the left side, we consider secu-
rity models without forward secrecy , then the results follow from previously known relations
[CHK+05, AFP05] and our results [BIOv17]. The right side of the figure, we show the rela-
tions between the SIM-BMP and IND-RoR model when forward secrecy is incorporated into the
underlying models [BIOS19].

During our work on this topic, we identified some delicate definitional issues veiled under the

many subtleties of the security notions for PAKE. We recall what we consider the most relevant:

• In IND-based models [BPR00, AFP05] the possible states in which a user instance could be

are continue, reject, accept and terminate. Roughly speaking, an instance is in accept state

whenever it has computed the sk but is still waiting to receive another message – typically a

confirmation code – to fulfill the protocol specification, while an instance in terminate state

means that it has computed the sk, has finished the protocol execution and is not sending

nor receiving any other message. Particularly in the IND-FtG model, a Reveal query can

be asked to instances in accept state while a Test query can only be directed to instances

in terminate state. The aforementioned distinction between accept and terminate states

does not exist in SIM-based models due to how the ideal world is modeled. The idea is the

following:

– In the SIM-BMP model, the Application query models the leakage of session keys

in higher level protocols. The implicit requirement is that the corresponding user

instance has terminated his protocol execution, which is modeled in the Ideal-World

via connection assignments.

– In the IND-FtG model, the Reveal query models i) the leakage of session keys in higher

level protocols and ii) leakage of session keys before the protocol is finished, i.e. accept

state.
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The aforementioned peculiarity is specially relevant for Corollary 7.14. In order for the

implication SIM-BMP ⇒ IND-FtG to hold, we require the Reveal (U, i) query in the IND-

FtG model to be legitimate only if the instance Πi
U is in terminate state. It might be a

minor difference between IND-based and SIM-based models, yet we consider it is worth

mentioning, specially because it is generally assumed that SIM-based security definitions

are stronger than their corresponding IND-based ones. However, as we have just explained,

there are technicalities that need to be addressed when formally stating the relation between

the security models.

• A more remarkable difference between IND and SIM models for PAKEs is how online

dictionary attacks are captured in the security model. In IND-based models, the advantage

of an adversary is formulated according to parameter n, which represents the number of

active instances created by the adversary in question. Note that such a definition does not

specify or take into account the fact that the adversary’s strategy is randomized, and thus

n may be a randomized function as well. For instance, an adversary could create a large

number of instances with negligible probability making the bound on its advantage grow.

The difference between models with an explicit formulation of a non-negligible bound on

the advantage and models without such an explicit formulation seems to be related to the

difficulty in proving IND-RoR ⇒ SIM-BMP. Another related issue is about the password

distribution and the correlation of passwords between users. We leave the quest for a more

precise definition that would take into account the above-mentioned remarks for future

work.

• The SIM-BMP model offers a more meaningful security definition by better capturing

the capabilities of an attacker against a PAKE protocol, for instance online dictionary

attacks. Additionally, the SIM-BMP model does not place any artificial constraints on

the passwords distribution, whereas the IND-RoR requires the passwords to be uniformly

distributed and independent. The last requirement might be difficult to satisfy in real

scenarios. In particular, it is known that certain passwords are more likely to be selected

than others and that users tend to choose similar passwords when connecting to different

services.

Finally, we demonstrated that the results obtained in [BIOv17] are still satisfied when the

corresponding security models incorporate forward secrecy as required security property.



CHAPTER 8

Concluding Remarks and Future

Directions

8.1 Summary

The overall goal of this work was to gain more clarity on the security provided by PAKE pro-

tocols, particularly EKE-based ones. We expect that this work leads to the standardization and

more efficient implementation of the considered protocols. Additionally, by establishing exact

relations between SIM-based and IND-based security notions for PAKEs, we aim to provide unity

across the underlying security models. The later permits a better understanding of the security

guarantees provided by protocols proven secure in such models.

We summarize our contributions as follows:

1. We formalized and incorporated the notion of weak forward secrecy to the Find-then-Guess

model (see Chapter 4). Then, we demonstrated that the original SPAKE2 protocol is secure

in the FtG model with weak forward secrecy in the random oracle model assuming the CDH

problem is intractable. Furthermore, the adoption of key-confirmation codes results in a

protocol that provably satisfies the stronger notion of perfect forward secrecy.

2. We provide an instantiation for the PAK protocol which allows us to construct a tight

security reduction from the Gap-CDH problem. This technique can be applied to other

EKE-based protocols – for instance PPK, SPAKE2 and PFS-SPAKE2 – to obtain tight

security reductions.

3. We established the relations between the IND-based and SIM-based security notions for

PAKEs. In particular, we first demonstrated that a protocol secure in the SIM-BMP
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model is also secure in the IND-RoR model. This result implies that protocols, which

were originally proven secure in the SIM-BMP model, allow for secure composition with

arbitrary symmetric-key encryption schemes [SL18]. We then demonstrated that IND-RoR

security implies security in a slightly modified version of the SIM-BMP model.

8.2 Future Directions

1. Our work from Chapter 5 can be extended in the following way:

• The SPAKE2 protocol is proven secure in the FtG model, however, it would be mean-

ingful to provide a security proof in a model that guarantees its composability with

symmetric-key encryption schemes, for instance the IND-RoR model.

• It remains an open question whether one-round PAKE protocols, which satisfy only

implicit authentication, may satisfy the stronger notion of perfect forward secrecy.

Considering algebraic adversaries for PAKEs is an interesting research direction that

might help to answer the previous question in the affirmative.

2. From Chapter 7, it remains as open question whether security in the RoR model implies

security in the original SIM-BMP model. The most important difference between these

notions of security is the approach to model online dictionary attacks. We leave as an open

problem the formulation of an alternative definition for online dictionary attacks that takes

into consideration the fact that the adversarial’s strategy is randomized.

3. For future work, it would be reasonable to transform the proposed protocols into strong

augmented PAKEs in the style of [JKX18] and benefit from stronger security guarantees.

This would require to first construct the augmented variant of underlying protocols with

security proofs in the UC model.

4. Finally, we noticed that open source, portable and efficient implementations of provably

secure PAKEs are mostly missing – probably due to previous patent issues. We believe

that providing such implementation in the form of cryptographic libraries could boost the

popularity and deployment of PAKEs in real-world applications.
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