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Linear tetrahedral elements are limited 
-Stiff  
-Locking  
-… 

Alternative element technologies have been  
developed
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Alternative elements - polyhedral - virtual elements, HHO, 
SBFEM, smoothed FEM…
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The hitchhiker's guide to the virtual element 
method 
Virtual and smoothed finite elements: A connection 
and its application to polygonal/polyhedral finite 
element methods (Natarajan, Ooi, Bordas)

Use polyhedra Mesh generators…
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Avoid meshing complex/evolving interfaces through unfitted methods

Real-time Error Control for Surgical Simulation, HP Bui et al, IEEE Trans. Biomed. 
Eng., 2016.

Corotational Cut Finite Element Method for real-time surgical simulation: application to 
needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE] 2018.

Controlling the Error on Target Motion through Real-time Mesh Adaptation: 
Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.

Implicit boundaries and error control for real time simulations

Deep brain stimulation simulationLiver 
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Handling interfaces numerically

no mesh 
calculation

stress analysis

mesh

Couple geometry & analysis Decouple geometry from analysis

Isogeometric analysis Implicit interfaces/unfitted

Generalisation: geometry independent field approximation (GIFT)
Atroshchenko et al, 2018, CMAME
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Immersed collocation  
generalized FD

https://orbilu.uni.lu/handle/10993/37921
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Formulation

Governing equations

Test & Trial functions Space

Weak form

ℒu = f in Ω
u(x) = g(x) on ∂Ω

𝒰h ⊂ 𝒰 = {u ∈ H1(Ω) such that u |∂Ω = g}
𝒱h ⊂ 𝒱 = {v ∈ H1(Ω) such that v |∂Ω = 0}

find uh ∈ 𝒰h : ∀vh ∈ 𝒱h a(uh, vh) = ℓ(vh)

uh = ∑
I

ψIuI vh = ∑
I

ψIvI

Approximate solutions

https://orbilu.uni.lu/handle/10993/37921
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• Length and area measures: 
- Wachspress interpolants (1975)

• Natural Neighbour interpolants: 
- Sibson interpolant (1980), 
- Laplace interpolant

• Harmonic
- Waren et al, (1996, 2007)

• Maximum entropy approximants (Sukumar 2013)

• Mean value coordinates Floater et al., (2003, 2005)

Shape functions

 16

FE implementation
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• Length and area measures: 
- Wachspress interpolants (1975)

• Natural Neighbour interpolants: 
- Sibson interpolant (1980), 
- Laplace interpolant

• Harmonic
- Waren et al, (1996, 2007)

• Maximum entropy approximants (Sukumar 2013)

• Mean value coordinates Floater et al., (2003, 2005)

No explicit 
form ava

ilable
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FE implementation

Shape functions
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Fracture analysis
T3

Poly
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10 S. NATARAJAN, ET AL.,
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Figure 5. Cantilever beam: (a) Geometry, length L and rectangular cross-section of wdith 2a and height
2b. For the present study, the following dimensions are considered: L = 5, a = b = 1 and (b) A structured

hexahedral mesh (4×4×20).

(a) 50 elements (b) 100 elements

(c) 300 elements (d) 2000 elements

Figure 6. Random closed pack centroid Voronoi tessellation.

3.3. Cantilever beam under end torsion

In this example, an elastostatic problem involving a rectangular beam in a state of pure torsion is
considered. The beam is discretized with structured hexahedral elements and polyhedral elements.
Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Cantilever Beam - Torsion

https://orbilu.uni.lu/handle/10993/37921
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SEMI-ANALYTICAL FORMULATION OVER ARBITRARY POLYHEDRA 13

(a)

(b)

Figure 9. Deformed shape for prismatic beam in a state of pure torsion for a representative hexahedral and
polyhedral mesh.

APPENDIX A

The equilibrium equation defined for a domain Ω bounded by a closed surface Γ is
LT

σ =b (51)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Figure 7. Convergence for cantilever beam problem under shear load. m is the average slope.

The domainΩ is same as the previous example. The material is assumed to be isotropic with Young’s
modulus, E = 1 N/m2, Poisson’s ratio ν = 0.3 and shear modulus G = E/(2(1 + ν)). The beam is
subjected to a end torque and a constant β is defined which is proportional to the total torque applied
to the beam. The exact displacement solution for this boundary value is []:

ux = −βyz

uy = βxz

uz = β

[

xy +
∞
∑

n=1

32a2(−1)n

π3(2n− 1)3
sin

(

(2n− 1)
πx

2a

) sinh((2n− 1)πy2a )

cosh((2n− 1)πy2a )

]

(49)

The exact Cauch stress field is given by:

σxx = σxy = σyy = σzz = 0

σxz = Gβ
∞
∑

n=1

16a(−1)n

π2(2n− 1)2
cos

(

(2n− 1)
πx

2a

) sinh((2n− 1)πy2a )

cosh((2n− 1)πy2a )

σyz = Gβ

[

2x+
∞
∑

n=1

16a(−1)n

π2(2n− 1)2
sin

(

(2n− 1)
πx

2a

) cosh((2n− 1)πy2a )

cosh((2n− 1)πy2a )

]

(50)

The infinite series in Equations (49) - (50) is truncated at n = 30. The exact solution for the
displacement is prescribed on the surface at z = L and at z = 0, surface tractions are applied which
are consistent with the exact stress field. The convergence of the proposed technique over structured
hexahedral elements and arbitrary polyhedron with mesh refinement is studied. The error in L2

for both the meshes are shown in Figure (8) and it can be seen that the proposed approach yields
optimal convergence rate. Figure (9) shows the deformed shape for a sample mesh with hexahedral
and polyhedral elements.. The oscillations that is seen for the case of polyhedral mesh could be
attributed to the fact that the refinement is not structured.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Conventional FE

22 S. NATARAJAN ET AL.,
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Figure 19. Convergence of the total strain energy with mesh refinement for a femur.

(a) (b)

Figure 20. von Mises equivalent stress contour for a femur.

multiscale simulation of cutting in non-linear materials with applications to surgical simulation and

Copyright c� 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme

Polygonal FE
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FE approach

Francis et al, CMAME, 2019
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• Sub- triangulation

• Green - Gauss quadrature

• Conforming interpolant quadrature

• Complex mapping

• Nodal quadrature

• Strain smoothing

Numerical integration

Bilinear form

a(uh, vh) = ∫Ωh

∇Φ ⋅ ∇Φ dΩ
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FE implementation
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Plate/Shell analysis

6 publications
2 grant proposals (1 ARC DP)

1 PhD project
3 undergraduate projects
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Numerical integration

11

IMAM 

Institute of Mechanics and Advanced Materials

Numerical integration - Subtriangulation

Ref:

1. IJNME, v61, 2004, pp2159.

2. IJNME, v61, 2004, pp2045

Sub triangulation

Moment fitting

Complex mapping

Homogeneous Numerical integration

Green-Gauss quadrature

https://orbilu.uni.lu/handle/10993/37921
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Strain smoothing

4 S. NATARAJAN, S. BORDAS, E.T. OOI

• investigate connections between the strain smoothing technique and the VEM.
• propose a new stabilization for the SFEM with one subcell inspired from the VEM, and which

is applicable to arbitrary polygon and polyhedra.
• to discuss the connection between the hourglass stabilization in the FEM [50], the stabilization

matrix of VEM and the stabilization introduced in the SFEM by increasing the number of
subcells.

• to study the accuracy and the convergence properties of the SFEM with the new stabilization
technique.

Throughout this paper, SFEM stands for the cell-based smoothed finite element method unless
mentioned otherwise.

1.3. Outline

The paper is organized as follows. Section 2 revisits the basics of the cell-based smoothed finite
element method as applied to 2D and 3D elasticity. Section 3 briefly reviews the virtual element
method. The similarity between the SFEM and the VEM is discussed in Section 4. Some numerical
examples are analyzed to demonstrate the accuracy and the convergence properties of the cell-based
smoothed finite element method in Section 5 with a few problems taken from linear elasticity. The
major conclusions and future research directions are summarised in the final section.

2. OVERVIEW OF THE SMOOTHED FINITE ELEMENT METHOD

2.1. Background

The strain-smoothing method (SSM) was proposed in [28] where the strain is written as the
divergence of a spatial average of the standard (compatible) strain field –i.e. symmetric gradient
of the displacement field. In the cell-based SFEM, the elements are divided into subcells as shown
in Figure (2). The strain field ε̃hij , used to compute the stiffness matrix is computed by a weighted

average of the standard strain field εhij . At a point xC in an element Ωh,

ε̃hij(xC) =

∫

Ωh

εhij(x)Φ(x − xC)dx (1)

where Φ is a smoothing function that generally satisfies the following properties [51]

Φ ≥ 0 and

∫

Ωh

Φ(x)dx = 1 (2)

Φ =
1

AC
in ΩC and Φ = 0 elsewhere (3)

To use Equation (1), the subcell containing point xC must first be located in order to compute the
correct value of the weight function Φ.

The discretised strain field is computed, through the so-called smoothed discretised gradient
operator B̃, defined by (see Figure (3) for a schematic representation of the construction)

ε̃h(xC) = B̃C(xC)q (4)

where q contains unknown displacements coefficients defined at a node of a finite element. This
definition is similar to the conventional FEM. The smoothed element stiffness matrix for element e
is computed by the sum of the contributions of the subcells (Figure (3))‡

K̃e =
nc
∑

C=1

∫

ΩC

B̃T
CDB̃CdΩ =

nc
∑

C=1

B̃T
CDB̃C

∫

ΩC

dΩ =
nc
∑

C=1

B̃T
CDB̃CAC (5)

‡The subcells ΩC form a partition of the element Ωh.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2013)
Prepared using nmeauth.cls DOI: 10.1002/nme

Strain written as the divergence of a spatial average of the standard 
(compatible) strain field
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Stiffness matrix

CONNECTION BETWEEN THE SFEM AND THE VEM

Figure 3. Calculation of the smoothed discretized gradient operator.

where ˆ is a smoothing function that generally satisfies the following properties [52]

ˆ > 0 and
Z
!h
ˆ.x/dx D 1 (2)

ˆ D 1

AC
in !C and ˆ D 0 elsewhere (3)

To use Equation (1), the subcell containing point xC must first be located in order to compute the
correct value of the weight function ˆ.

The discretized strain field is computed, through the so-called smoothed discretized gradient
operator QB, defined by (see Figure 3 for a schematic representation of the construction)

Q"h.xC / D QBC .xC /q (4)

where q contains unknown displacements coefficients defined at a node of an FE. This definition is
similar to the conventional FEM. The smoothed element stiffness matrix for element e is computed
by the sum of the contributions of the subcells (Figure 3)§

QKe D
ncX
CD1

Z
!C

QBT
CD QBC d! D

ncX
CD1
QBTCD QBC

Z
!C

d! D
ncX
CD1
QBTCD QBCAC (5)

where nc is the number of the smoothing cells of the element. The strain displacement matrix QBC
is constant over each !C and is of the following form

QBC D
! QBC1 QBC2 QBC3 ! ! ! QBCn

"
(6)

where for all shape functions I 2 ¹1; : : : ; nº, the 3 # 2 submatrix QBCI represents the contribution
to the strain displacement matrix associated with shape function I and cell C and writes (Figure 3)

§ The subcells!C form a partition of the element!h.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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Figure 3. Calculation of the smoothed discretized gradient operator.
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Z
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where nc is the number of the smoothing cells of the element. The strain displacement matrix QBC
is constant over each !C and is of the following form

QBC D
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"
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§ The subcells!C form a partition of the element!h.
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Plate/Shell analysis

Shear locking
3D consistency

Complex formulation

Developed a numerical technique for plate/shell analysis
Adaptable for a wide range of applications 

Able to describe nonlinear through-thickness behaviour
Able to achieve high efficiency & accuracy 

Simple and elegant to facilitate implementation
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Strain smoothing - features

+ Insensitive to mesh distortion (No isoparametric mapping)

+ Derivatives of shape functions not required

+ Insensitive to locking for low number of subcells

- Rank deficiency when using one sub-cell

+ Better for triangular elements

+ When combined with enrichment techniques - avoids integration of 
stress singularity

+ Decreases the complexity of sub-division in XFEM
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Apply strain smoothing technique over each subcell to compute the 
stiffness matrix.

CONNECTION BETWEEN THE SFEM AND THE VEM 5

(b)

One Subcell n subcells

6 Triangular subcells

4 quadrilateral subcells

(a)

Figure 2. Subdivision of an element into subcells: (a) quadrilateral element and (b) arbitrary polygon.

Figure 3. Calculation of the smoothed discretized gradient operator.

where nc is the number of the smoothing cells of the element. The strain displacement matrix B̃C

is constant over each ΩC and is of the following form

B̃C =
[

B̃C1 B̃C2 B̃C3 · · · B̃Cn

]

(6)

where for all shape functions I ∈ {1, . . . , n}, the 3× 2 submatrix B̃CI represents the contribution
to the strain displacement matrix associated with shape function I and cell C and writes (see Figure
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Apply strain smoothing over each subcell to compute the stiffness 
matrix.
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is

dj D
#
1dj

2dj
3dj

$
D
#
!a;j .

1r/ !a;j .2r/ !a;j .3r/
$T
: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:

QB.kr/ D
# QB1.kr/ QB2.kr/ " " " QBn.kr/

$
; k D 1; 2; 3; (28)

where the nodal matrix evaluated at the k-th interior subcell Gauß point is

QBa.kr/ D

2
64
kd1 0

0 kd2
kd2

kd1

3
75 (29)
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Remark 1
When CS is performed over the entire element, a stabilization term is required to eliminate additional
spurious energy modes [2, 8, 16].

4.2. Linear smoothing

In the proposed LS scheme, the smoothing function f is the linear polynomial basis

f .x/ D Œ1 x1 x2!T; (24)

whose derivative (ıij is the Kronecker delta symbol) is

f;j .x/ D Œ0 ı1j ı2j !T: (25)

In two dimensions, the expanded version of Equation (16) is
Z
!hC

"a;1 dV D
Z
"hC

"an1 dS; (26a)

Z
!hC

"a;1x1 dV D
Z
"hC

"ax1n1 dS !
Z
!hC

"a dV; (26b)

Z
!hC

"a;1x2 dV D
Z
"hC

"ax2n1 dS; (26c)

for "a;1, and
Z
!hC

"a;2 dV D
Z
"hC

"an2 dS; (26d)

Z
!hC

"a;2x1 dV D
Z
"hC

"ax1n2 dS; (26e)

Z
!hC

"a;2x2 dV D
Z
"hC

"ax2n2 dS !
Z
!hC

"a dV (26f)

for "a;2.
Subcells are used to integrate Equation (26) (in the proposed method, we use triangular subcells).

A representative polygon and its integration subcells are shown in Figure 6. Let the coordinates of
the m-th interior subcell Gauß point be defined as mr D .mr1;mr2/ and its associated Gauß weight
as mw; the coordinates and the Gauß weight of the g-th Gauß point that is located on the k-th edge
of the subcell is gk s D

!g
k s1;

g
k s2

"
and g

kv, respectively; and the unit outward normal to the k-th
edge of the subcell is denoted by kn D .kn1; kn2/. In two dimensions, three interior Gauß points
(ngp D 3 ) per subcell are required to compute the smoothed element stiffness matrix Equation (18).
Using numerical integration in Equation (26) leads to the following system of linear equations:

Wdj D fj ; j D 1; 2 (27a)

where

W D

2
64

1w 2w 3w
1w 1x1

2w 2x1
3w 3x1

1w 1x2
2w 2x2

3w 3x2

3
75 ; (27b)
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pentagon and the quadratic shape function. The intermediate shape function !I is also shown to not
possess the Kronecker delta property.

4. STIFFNESS MATRIX FOR POLYTOPES USING STRAIN SMOOTHING

The next step in the process is to compute the modified strain-displacement matrix to build the
stiffness matrix Equation (5). To this end, we rely on the smoothed finite element method (SFEM),
which has its origin in the stabilized conforming nodal integration (SCNI) [1] for meshfree methods,
where the strain field is sampled at the nodes by smoothing the nodal strain on the boundary of a
representative nodal volume (‘the smoothed domain’). In particular, we focus our attention on the
cell-based smoothing technique. In the CSFEM, the elements are divided into subcells as shown
in Figure 4. In this paper, we use triangles in two dimensions and tetrahedra in three dimensions.
The strain smoothing technique is then applied within each subcell to evaluate the modified strain.
For simplicity of the notation, the derivation of the smoothing scheme is given in detail only for
two-dimensions. The Cartesian coordinate system is chosen, where for convenience x ! x1 and
y ! x2. In addition, nj (j D 1; 2 ) is the j -th component of the unit outward normal to a cell
edge in the Cartesian coordinate system. The discrete strain field Q"hij that yields the modified strain-
displacement matrix QB that is used to build the stiffness matrix is computed by a weighted average
of the standard strain field "hij in each subcell "hC , as follows:

Q"hij .x/ D
Z
!hC

"hij .x/f .x/dV ; (15)

where f is a smoothing function. On writing Equation (15) at the basis functions derivatives level,
its right-hand side can be expressed in terms of the divergence theorem, as follows:

Z
!hC

#a;jf .x/ dV D
Z
"hC

#af .x/nj dS "
Z
!hC

#af;j .x/ dV: (16)

(a)

(b)

Figure 4. Representative subdivision of an element into subcells: (a) arbitrary polygon (b) hexahedron.
Note that the polygon/polyhedron can be subdivided into subcells of any shape. However, for simplicity we

employ triangles in two dimensions and tetrahedra in three dimensions.
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pentagon and the quadratic shape function. The intermediate shape function !I is also shown to not
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which has its origin in the stabilized conforming nodal integration (SCNI) [1] for meshfree methods,
where the strain field is sampled at the nodes by smoothing the nodal strain on the boundary of a
representative nodal volume (‘the smoothed domain’). In particular, we focus our attention on the
cell-based smoothing technique. In the CSFEM, the elements are divided into subcells as shown
in Figure 4. In this paper, we use triangles in two dimensions and tetrahedra in three dimensions.
The strain smoothing technique is then applied within each subcell to evaluate the modified strain.
For simplicity of the notation, the derivation of the smoothing scheme is given in detail only for
two-dimensions. The Cartesian coordinate system is chosen, where for convenience x ! x1 and
y ! x2. In addition, nj (j D 1; 2 ) is the j -th component of the unit outward normal to a cell
edge in the Cartesian coordinate system. The discrete strain field Q"hij that yields the modified strain-
displacement matrix QB that is used to build the stiffness matrix is computed by a weighted average
of the standard strain field "hij in each subcell "hC , as follows:
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Note that the polygon/polyhedron can be subdivided into subcells of any shape. However, for simplicity we

employ triangles in two dimensions and tetrahedra in three dimensions.
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Remark 1
When CS is performed over the entire element, a stabilization term is required to eliminate additional
spurious energy modes [2, 8, 16].

4.2. Linear smoothing

In the proposed LS scheme, the smoothing function f is the linear polynomial basis

f .x/ D Œ1 x1 x2!T; (24)

whose derivative (ıij is the Kronecker delta symbol) is

f;j .x/ D Œ0 ı1j ı2j !T: (25)

In two dimensions, the expanded version of Equation (16) is
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"an1 dS; (26a)
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for "a;2.
Subcells are used to integrate Equation (26) (in the proposed method, we use triangular subcells).

A representative polygon and its integration subcells are shown in Figure 6. Let the coordinates of
the m-th interior subcell Gauß point be defined as mr D .mr1;mr2/ and its associated Gauß weight
as mw; the coordinates and the Gauß weight of the g-th Gauß point that is located on the k-th edge
of the subcell is gk s D

!g
k s1;

g
k s2

"
and g

kv, respectively; and the unit outward normal to the k-th
edge of the subcell is denoted by kn D .kn1; kn2/. In two dimensions, three interior Gauß points
(ngp D 3 ) per subcell are required to compute the smoothed element stiffness matrix Equation (18).
Using numerical integration in Equation (26) leads to the following system of linear equations:

Wdj D fj ; j D 1; 2 (27a)

where

W D

2
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1w 2w 3w
1w 1x1

2w 2x1
3w 3x1
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2w 2x2

3w 3x2

3
75 ; (27b)
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pentagon and the quadratic shape function. The intermediate shape function !I is also shown to not
possess the Kronecker delta property.

4. STIFFNESS MATRIX FOR POLYTOPES USING STRAIN SMOOTHING

The next step in the process is to compute the modified strain-displacement matrix to build the
stiffness matrix Equation (5). To this end, we rely on the smoothed finite element method (SFEM),
which has its origin in the stabilized conforming nodal integration (SCNI) [1] for meshfree methods,
where the strain field is sampled at the nodes by smoothing the nodal strain on the boundary of a
representative nodal volume (‘the smoothed domain’). In particular, we focus our attention on the
cell-based smoothing technique. In the CSFEM, the elements are divided into subcells as shown
in Figure 4. In this paper, we use triangles in two dimensions and tetrahedra in three dimensions.
The strain smoothing technique is then applied within each subcell to evaluate the modified strain.
For simplicity of the notation, the derivation of the smoothing scheme is given in detail only for
two-dimensions. The Cartesian coordinate system is chosen, where for convenience x ! x1 and
y ! x2. In addition, nj (j D 1; 2 ) is the j -th component of the unit outward normal to a cell
edge in the Cartesian coordinate system. The discrete strain field Q"hij that yields the modified strain-
displacement matrix QB that is used to build the stiffness matrix is computed by a weighted average
of the standard strain field "hij in each subcell "hC , as follows:

Q"hij .x/ D
Z
!hC

"hij .x/f .x/dV ; (15)

where f is a smoothing function. On writing Equation (15) at the basis functions derivatives level,
its right-hand side can be expressed in terms of the divergence theorem, as follows:
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Figure 4. Representative subdivision of an element into subcells: (a) arbitrary polygon (b) hexahedron.
Note that the polygon/polyhedron can be subdivided into subcells of any shape. However, for simplicity we

employ triangles in two dimensions and tetrahedra in three dimensions.
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is
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#
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$
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#
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1r/ !a;j .2r/ !a;j .3r/
$T
: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:

QB.kr/ D
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$
; k D 1; 2; 3; (28)

where the nodal matrix evaluated at the k-th interior subcell Gauß point is
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:
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Remark 1
When CS is performed over the entire element, a stabilization term is required to eliminate additional
spurious energy modes [2, 8, 16].

4.2. Linear smoothing

In the proposed LS scheme, the smoothing function f is the linear polynomial basis

f .x/ D Œ1 x1 x2!T; (24)

whose derivative (ıij is the Kronecker delta symbol) is

f;j .x/ D Œ0 ı1j ı2j !T: (25)

In two dimensions, the expanded version of Equation (16) is
Z
!hC

"a;1 dV D
Z
"hC

"an1 dS; (26a)

Z
!hC

"a;1x1 dV D
Z
"hC

"ax1n1 dS !
Z
!hC

"a dV; (26b)

Z
!hC

"a;1x2 dV D
Z
"hC

"ax2n1 dS; (26c)

for "a;1, and
Z
!hC

"a;2 dV D
Z
"hC

"an2 dS; (26d)

Z
!hC

"a;2x1 dV D
Z
"hC

"ax1n2 dS; (26e)

Z
!hC

"a;2x2 dV D
Z
"hC

"ax2n2 dS !
Z
!hC

"a dV (26f)

for "a;2.
Subcells are used to integrate Equation (26) (in the proposed method, we use triangular subcells).

A representative polygon and its integration subcells are shown in Figure 6. Let the coordinates of
the m-th interior subcell Gauß point be defined as mr D .mr1;mr2/ and its associated Gauß weight
as mw; the coordinates and the Gauß weight of the g-th Gauß point that is located on the k-th edge
of the subcell is gk s D

!g
k s1;

g
k s2

"
and g

kv, respectively; and the unit outward normal to the k-th
edge of the subcell is denoted by kn D .kn1; kn2/. In two dimensions, three interior Gauß points
(ngp D 3 ) per subcell are required to compute the smoothed element stiffness matrix Equation (18).
Using numerical integration in Equation (26) leads to the following system of linear equations:

Wdj D fj ; j D 1; 2 (27a)

where

W D

2
64

1w 2w 3w
1w 1x1

2w 2x1
3w 3x1

1w 1x2
2w 2x2

3w 3x2

3
75 ; (27b)
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pentagon and the quadratic shape function. The intermediate shape function !I is also shown to not
possess the Kronecker delta property.

4. STIFFNESS MATRIX FOR POLYTOPES USING STRAIN SMOOTHING

The next step in the process is to compute the modified strain-displacement matrix to build the
stiffness matrix Equation (5). To this end, we rely on the smoothed finite element method (SFEM),
which has its origin in the stabilized conforming nodal integration (SCNI) [1] for meshfree methods,
where the strain field is sampled at the nodes by smoothing the nodal strain on the boundary of a
representative nodal volume (‘the smoothed domain’). In particular, we focus our attention on the
cell-based smoothing technique. In the CSFEM, the elements are divided into subcells as shown
in Figure 4. In this paper, we use triangles in two dimensions and tetrahedra in three dimensions.
The strain smoothing technique is then applied within each subcell to evaluate the modified strain.
For simplicity of the notation, the derivation of the smoothing scheme is given in detail only for
two-dimensions. The Cartesian coordinate system is chosen, where for convenience x ! x1 and
y ! x2. In addition, nj (j D 1; 2 ) is the j -th component of the unit outward normal to a cell
edge in the Cartesian coordinate system. The discrete strain field Q"hij that yields the modified strain-
displacement matrix QB that is used to build the stiffness matrix is computed by a weighted average
of the standard strain field "hij in each subcell "hC , as follows:

Q"hij .x/ D
Z
!hC

"hij .x/f .x/dV ; (15)

where f is a smoothing function. On writing Equation (15) at the basis functions derivatives level,
its right-hand side can be expressed in terms of the divergence theorem, as follows:

Z
!hC

#a;jf .x/ dV D
Z
"hC

#af .x/nj dS "
Z
!hC

#af;j .x/ dV: (16)

(a)

(b)

Figure 4. Representative subdivision of an element into subcells: (a) arbitrary polygon (b) hexahedron.
Note that the polygon/polyhedron can be subdivided into subcells of any shape. However, for simplicity we

employ triangles in two dimensions and tetrahedra in three dimensions.
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representative nodal volume (‘the smoothed domain’). In particular, we focus our attention on the
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Remark 1
When CS is performed over the entire element, a stabilization term is required to eliminate additional
spurious energy modes [2, 8, 16].

4.2. Linear smoothing

In the proposed LS scheme, the smoothing function f is the linear polynomial basis

f .x/ D Œ1 x1 x2!T; (24)

whose derivative (ıij is the Kronecker delta symbol) is

f;j .x/ D Œ0 ı1j ı2j !T: (25)

In two dimensions, the expanded version of Equation (16) is
Z
!hC

"a;1 dV D
Z
"hC

"an1 dS; (26a)

Z
!hC

"a;1x1 dV D
Z
"hC

"ax1n1 dS !
Z
!hC

"a dV; (26b)

Z
!hC

"a;1x2 dV D
Z
"hC

"ax2n1 dS; (26c)

for "a;1, and
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!hC

"a;2 dV D
Z
"hC

"an2 dS; (26d)

Z
!hC

"a;2x1 dV D
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"hC

"ax1n2 dS; (26e)
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"ax2n2 dS !
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!hC

"a dV (26f)

for "a;2.
Subcells are used to integrate Equation (26) (in the proposed method, we use triangular subcells).

A representative polygon and its integration subcells are shown in Figure 6. Let the coordinates of
the m-th interior subcell Gauß point be defined as mr D .mr1;mr2/ and its associated Gauß weight
as mw; the coordinates and the Gauß weight of the g-th Gauß point that is located on the k-th edge
of the subcell is gk s D

!g
k s1;

g
k s2

"
and g

kv, respectively; and the unit outward normal to the k-th
edge of the subcell is denoted by kn D .kn1; kn2/. In two dimensions, three interior Gauß points
(ngp D 3 ) per subcell are required to compute the smoothed element stiffness matrix Equation (18).
Using numerical integration in Equation (26) leads to the following system of linear equations:

Wdj D fj ; j D 1; 2 (27a)

where

W D

2
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1w 2w 3w
1w 1x1

2w 2x1
3w 3x1

1w 1x2
2w 2x2

3w 3x2

3
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Remark 1
When CS is performed over the entire element, a stabilization term is required to eliminate additional
spurious energy modes [2, 8, 16].
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Subcells are used to integrate Equation (26) (in the proposed method, we use triangular subcells).

A representative polygon and its integration subcells are shown in Figure 6. Let the coordinates of
the m-th interior subcell Gauß point be defined as mr D .mr1;mr2/ and its associated Gauß weight
as mw; the coordinates and the Gauß weight of the g-th Gauß point that is located on the k-th edge
of the subcell is gk s D
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edge of the subcell is denoted by kn D .kn1; kn2/. In two dimensions, three interior Gauß points
(ngp D 3 ) per subcell are required to compute the smoothed element stiffness matrix Equation (18).
Using numerical integration in Equation (26) leads to the following system of linear equations:
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is

dj D
#
1dj

2dj
3dj

$
D
#
!a;j .

1r/ !a;j .2r/ !a;j .3r/
$T
: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:

QB.kr/ D
# QB1.kr/ QB2.kr/ " " " QBn.kr/

$
; k D 1; 2; 3; (28)

where the nodal matrix evaluated at the k-th interior subcell Gauß point is

QBa.kr/ D

2
64
kd1 0

0 kd2
kd2

kd1

3
75 (29)
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(a) (b)

(c) (d)

Figure 8. Representative polyhedral meshes for the linear and quadratic patch tests containing: (a) 10, (b)
20, (c) 100 and (d) 300 polygons.

Table II. Error in the L2 norm and H1 seminorm for the two-dimensional linear
patch test.

CS-Poly2D (linear) LS-Poly2D (linear)

Mesh L2 H1 L2 H1

a 1.7334!10!07 2.3328!10!05 5.3835!10!14 2.8388!10!11
b 1.6994!10!07 3.4094!10!05 1.9255!10!13 4.4373!10!11
c 7.2017!10!07 2.2573!10!04 2.0030!10!13 7.0017!10!11
d 7.4144!10!07 2.5773!10!04 2.9567!10!13 1.0199!10!10

Table III. Error in the L2 norm and H1 seminorm for the three-dimensional linear patch test.

LS-H8 Mesh LS-Poly3D

Mesh L2 H1 (c.f. Figure 8) L2 H1

2!2!2 2.5242!10!16 2.4820!10!12 a 2.0280!10!12 3.3428!10!10
4!4!4 7.9454!10!16 4.9945!10!12 b 1.9218!10!12 1.7529!10!10
8!8!8 2.9384!10!16 1.0012!10!12 c 2.6660!10!12 4.9320!10!10
16!16!16 8.9235!10!16 2.0093!10!12 d 3.2074!10!12 3.1083!10!10
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(a) (b)

(c) (d)
Figure 7. Square domain discretized with polygonal elements. Representative meshes containing (a) 10, (b)

20, (c) 50 and (d) 100 polygons.

!
Ou
Ov

"
D
!
0:1C 0:1x C 0:2y
0:05C 0:15x C 0:1y

"
(32)

and in the three-dimensional case the following displacements are prescribed on the boundary:
0
@
Ou
Ov
Ow

1
A D

0
B@
0:1C 0:1x C 0:2y C 0:2´
0:05C 0:15x C 0:1y C 0:2´
0:05C 0:1x C 0:2y C 0:2´

1
CA : (33)

The exact solution to Equation (1) is u D Ou in the absence of body forces. The domain is dis-
cretized with arbitrary polygonal and polyhedral finite elements. Figure 7 shows a few representative
meshes used for the two-dimensional study, and Figure 8 shows a few representative meshes used
for the three-dimensional study. The performance of the LS over hexahedral elements is also stud-
ied using a structured mesh (2! 2! 2, 4! 4! 4, 8! 8! 8 and 16! 16 ! 16). The errors in the L2

norm and H 1 seminorm for the CS and LS schemes are shown in Table II for two-dimensions and
in Table III for three dimensions. It can be seen that the proposed LS scheme passes the linear patch
test to machine precision for both polygonal and polyhedral discretizations, contrary to the LS as
shown in [22].

5.2. Quadratic patch test

In the quadratic patch test, the following displacements are prescribed on the boundaries for the
two-dimensional case: !

Ou
Ov

"
D
!
0:1x2 C 0:1xy C 0:2y2
0:05x2 C 0:15xy C 0:1y2

"
; (34)
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norm and H 1 seminorm for the CS and LS schemes are shown in Table II for two-dimensions and
in Table III for three dimensions. It can be seen that the proposed LS scheme passes the linear patch
test to machine precision for both polygonal and polyhedral discretizations, contrary to the LS as
shown in [22].
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is

dj D
#
1dj

2dj
3dj

$
D
#
!a;j .

1r/ !a;j .2r/ !a;j .3r/
$T
: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:

QB.kr/ D
# QB1.kr/ QB2.kr/ " " " QBn.kr/

$
; k D 1; 2; 3; (28)

where the nodal matrix evaluated at the k-th interior subcell Gauß point is
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(a) (b)

(c) (d)

Figure 8. Representative polyhedral meshes for the linear and quadratic patch tests containing: (a) 10, (b)
20, (c) 100 and (d) 300 polygons.

Table II. Error in the L2 norm and H1 seminorm for the two-dimensional linear
patch test.

CS-Poly2D (linear) LS-Poly2D (linear)

Mesh L2 H1 L2 H1

a 1.7334!10!07 2.3328!10!05 5.3835!10!14 2.8388!10!11
b 1.6994!10!07 3.4094!10!05 1.9255!10!13 4.4373!10!11
c 7.2017!10!07 2.2573!10!04 2.0030!10!13 7.0017!10!11
d 7.4144!10!07 2.5773!10!04 2.9567!10!13 1.0199!10!10

Table III. Error in the L2 norm and H1 seminorm for the three-dimensional linear patch test.

LS-H8 Mesh LS-Poly3D

Mesh L2 H1 (c.f. Figure 8) L2 H1

2!2!2 2.5242!10!16 2.4820!10!12 a 2.0280!10!12 3.3428!10!10
4!4!4 7.9454!10!16 4.9945!10!12 b 1.9218!10!12 1.7529!10!10
8!8!8 2.9384!10!16 1.0012!10!12 c 2.6660!10!12 4.9320!10!10
16!16!16 8.9235!10!16 2.0093!10!12 d 3.2074!10!12 3.1083!10!10
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(a) (b)

(c) (d)
Figure 7. Square domain discretized with polygonal elements. Representative meshes containing (a) 10, (b)

20, (c) 50 and (d) 100 polygons.
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and in the three-dimensional case the following displacements are prescribed on the boundary:
0
@
Ou
Ov
Ow

1
A D

0
B@
0:1C 0:1x C 0:2y C 0:2´
0:05C 0:15x C 0:1y C 0:2´
0:05C 0:1x C 0:2y C 0:2´

1
CA : (33)

The exact solution to Equation (1) is u D Ou in the absence of body forces. The domain is dis-
cretized with arbitrary polygonal and polyhedral finite elements. Figure 7 shows a few representative
meshes used for the two-dimensional study, and Figure 8 shows a few representative meshes used
for the three-dimensional study. The performance of the LS over hexahedral elements is also stud-
ied using a structured mesh (2! 2! 2, 4! 4! 4, 8! 8! 8 and 16! 16 ! 16). The errors in the L2

norm and H 1 seminorm for the CS and LS schemes are shown in Table II for two-dimensions and
in Table III for three dimensions. It can be seen that the proposed LS scheme passes the linear patch
test to machine precision for both polygonal and polyhedral discretizations, contrary to the LS as
shown in [22].

5.2. Quadratic patch test

In the quadratic patch test, the following displacements are prescribed on the boundaries for the
two-dimensional case: !

Ou
Ov

"
D
!
0:1x2 C 0:1xy C 0:2y2
0:05x2 C 0:15xy C 0:1y2

"
; (34)
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cretized with arbitrary polygonal and polyhedral finite elements. Figure 7 shows a few representative
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norm and H 1 seminorm for the CS and LS schemes are shown in Table II for two-dimensions and
in Table III for three dimensions. It can be seen that the proposed LS scheme passes the linear patch
test to machine precision for both polygonal and polyhedral discretizations, contrary to the LS as
shown in [22].
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Test for linear consistency

Linear smoothing passes the patch test
Constant smoothing does not

LINEAR SMOOTHED POLYGONAL AND POLYHEDRAL FINITE ELEMENTS 1273

Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is

dj D
#
1dj

2dj
3dj

$
D
#
!a;j .

1r/ !a;j .2r/ !a;j .3r/
$T
: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:

QB.kr/ D
# QB1.kr/ QB2.kr/ " " " QBn.kr/

$
; k D 1; 2; 3; (28)

where the nodal matrix evaluated at the k-th interior subcell Gauß point is
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(a) (b)

(c) (d)

Figure 8. Representative polyhedral meshes for the linear and quadratic patch tests containing: (a) 10, (b)
20, (c) 100 and (d) 300 polygons.

Table II. Error in the L2 norm and H1 seminorm for the two-dimensional linear
patch test.

CS-Poly2D (linear) LS-Poly2D (linear)

Mesh L2 H1 L2 H1

a 1.7334!10!07 2.3328!10!05 5.3835!10!14 2.8388!10!11
b 1.6994!10!07 3.4094!10!05 1.9255!10!13 4.4373!10!11
c 7.2017!10!07 2.2573!10!04 2.0030!10!13 7.0017!10!11
d 7.4144!10!07 2.5773!10!04 2.9567!10!13 1.0199!10!10

Table III. Error in the L2 norm and H1 seminorm for the three-dimensional linear patch test.

LS-H8 Mesh LS-Poly3D

Mesh L2 H1 (c.f. Figure 8) L2 H1

2!2!2 2.5242!10!16 2.4820!10!12 a 2.0280!10!12 3.3428!10!10
4!4!4 7.9454!10!16 4.9945!10!12 b 1.9218!10!12 1.7529!10!10
8!8!8 2.9384!10!16 1.0012!10!12 c 2.6660!10!12 4.9320!10!10
16!16!16 8.9235!10!16 2.0093!10!12 d 3.2074!10!12 3.1083!10!10
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Figure 8. Representative polyhedral meshes for the linear and quadratic patch tests containing: (a) 10, (b)
20, (c) 100 and (d) 300 polygons.
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Figure 7. Square domain discretized with polygonal elements. Representative meshes containing (a) 10, (b)

20, (c) 50 and (d) 100 polygons.
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and in the three-dimensional case the following displacements are prescribed on the boundary:
0
@
Ou
Ov
Ow

1
A D

0
B@
0:1C 0:1x C 0:2y C 0:2´
0:05C 0:15x C 0:1y C 0:2´
0:05C 0:1x C 0:2y C 0:2´

1
CA : (33)

The exact solution to Equation (1) is u D Ou in the absence of body forces. The domain is dis-
cretized with arbitrary polygonal and polyhedral finite elements. Figure 7 shows a few representative
meshes used for the two-dimensional study, and Figure 8 shows a few representative meshes used
for the three-dimensional study. The performance of the LS over hexahedral elements is also stud-
ied using a structured mesh (2! 2! 2, 4! 4! 4, 8! 8! 8 and 16! 16! 16). The errors in the L2

norm and H 1 seminorm for the CS and LS schemes are shown in Table II for two-dimensions and
in Table III for three dimensions. It can be seen that the proposed LS scheme passes the linear patch
test to machine precision for both polygonal and polyhedral discretizations, contrary to the LS as
shown in [22].

5.2. Quadratic patch test

In the quadratic patch test, the following displacements are prescribed on the boundaries for the
two-dimensional case: !

Ou
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"
D
!
0:1x2 C 0:1xy C 0:2y2
0:05x2 C 0:15xy C 0:1y2

"
; (34)
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is

dj D
#
1dj

2dj
3dj

$
D
#
!a;j .

1r/ !a;j .2r/ !a;j .3r/
$T
: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:

QB.kr/ D
# QB1.kr/ QB2.kr/ " " " QBn.kr/

$
; k D 1; 2; 3; (28)

where the nodal matrix evaluated at the k-th interior subcell Gauß point is
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(a) (b)

(c) (d)

Figure 8. Representative polyhedral meshes for the linear and quadratic patch tests containing: (a) 10, (b)
20, (c) 100 and (d) 300 polygons.

Table II. Error in the L2 norm and H1 seminorm for the two-dimensional linear
patch test.

CS-Poly2D (linear) LS-Poly2D (linear)

Mesh L2 H1 L2 H1

a 1.7334!10!07 2.3328!10!05 5.3835!10!14 2.8388!10!11
b 1.6994!10!07 3.4094!10!05 1.9255!10!13 4.4373!10!11
c 7.2017!10!07 2.2573!10!04 2.0030!10!13 7.0017!10!11
d 7.4144!10!07 2.5773!10!04 2.9567!10!13 1.0199!10!10

Table III. Error in the L2 norm and H1 seminorm for the three-dimensional linear patch test.

LS-H8 Mesh LS-Poly3D

Mesh L2 H1 (c.f. Figure 8) L2 H1

2!2!2 2.5242!10!16 2.4820!10!12 a 2.0280!10!12 3.3428!10!10
4!4!4 7.9454!10!16 4.9945!10!12 b 1.9218!10!12 1.7529!10!10
8!8!8 2.9384!10!16 1.0012!10!12 c 2.6660!10!12 4.9320!10!10
16!16!16 8.9235!10!16 2.0093!10!12 d 3.2074!10!12 3.1083!10!10
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Figure 7. Square domain discretized with polygonal elements. Representative meshes containing (a) 10, (b)

20, (c) 50 and (d) 100 polygons.

!
Ou
Ov

"
D
!
0:1C 0:1x C 0:2y
0:05C 0:15x C 0:1y

"
(32)

and in the three-dimensional case the following displacements are prescribed on the boundary:
0
@
Ou
Ov
Ow

1
A D

0
B@
0:1C 0:1x C 0:2y C 0:2´
0:05C 0:15x C 0:1y C 0:2´
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The exact solution to Equation (1) is u D Ou in the absence of body forces. The domain is dis-
cretized with arbitrary polygonal and polyhedral finite elements. Figure 7 shows a few representative
meshes used for the two-dimensional study, and Figure 8 shows a few representative meshes used
for the three-dimensional study. The performance of the LS over hexahedral elements is also stud-
ied using a structured mesh (2! 2! 2, 4! 4! 4, 8! 8! 8 and 16! 16 ! 16). The errors in the L2

norm and H 1 seminorm for the CS and LS schemes are shown in Table II for two-dimensions and
in Table III for three dimensions. It can be seen that the proposed LS scheme passes the linear patch
test to machine precision for both polygonal and polyhedral discretizations, contrary to the LS as
shown in [22].

5.2. Quadratic patch test

In the quadratic patch test, the following displacements are prescribed on the boundaries for the
two-dimensional case: !
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; (34)
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Test of  linear consistency - 3D

Linear smoothing passes the patch test, also in 3D
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Figure 6. Schematic representation of a two-dimensional sub-triangulation for the linear smoothing scheme.
The geometric center of the polygon is used to sub-triangulate the polygon. The interior Gauß points are
depicted as ‘open’ squares, while the Gauß points on the cell’s edges are shown as ‘filled’ circles. The white
nodes are the nodes of the element. Note that the center of the polygon does not introduce an additional
node. It is introduced solely for the purpose of integration. The modified derivatives are computed at the

‘open’ squares.
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and the solution vector of the j -th basis function derivative evaluated at the three interior subcell
Gauß points is

dj D
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: (27e)

In the preceding equations, the index a runs through the nodes that define the polygonal element.
For a polygon of n sides, the modified derivatives given in Equation (27e) are used to evaluate the
modified strain-displacement matrix at the interior subcell Gauß points, as follows:
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where the nodal matrix evaluated at the k-th interior subcell Gauß point is
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Figure 16. Three-dimensional cantilever beam problem: (a) Geometry and boundary conditions and (b)
representative structured hexahedral mesh (4 ! 4 ! 20).
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where E is the Young’s modulus, ! Poisson’s ratio and I D 4ab3=3 is the second moment of
area about the x-axis. Two types of meshes are considered: (1) a regular hexahedral mesh and (2)
a random closed-pack Voronoi mesh. Four levels of mesh refinement are considered for both the
hexahedral mesh (2 ! 2 ! 10, 4 ! 4 ! 20, 8 ! 8 ! 40, 16 ! 16 ! 80) and the random Voronoi mesh.
A representative structured hexahedral mesh is presented in Figure 16(b) and Figure 17 depicts the
random Voronoi meshes. The length of the beam is L D 5 m and the shear load is taken as F D
1 N. Analytical displacements given by Equation (42) are applied on the beam face at ´ D L and
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(a) 50 elements (b) 100 elements

(c) 300 elements (d) 2000 elements

Figure 17. Random closed-pack centroid Voronoi tessellation.

Figure 18. Convergence results for the three-dimensional cantilever beam problem.

the beam is loaded in shear on its face at ´ D 0. All other faces are assumed to be traction free.
Figure 18 shows the relative error in the L2 norm and H 1 seminorm with mesh refinement. It can
be seen that the LS over hexahedral and polyhedral elements converges asymptotically with mesh
refinement and delivers optimal convergence rates.

5.5. Thick-walled cylinder subjected to internal pressure

In this example, consider a thick-walled cylinder subjected to internal pressure P . The internal and
external radius of the cylinder are denoted by as a and b, respectively. Because of symmetry, only
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• A “niche” technique developed originally for dynamic soil-
structure interaction analysis by Song and Wolf @EPFL

• Has been applied to several other fields such as fracture 
mechanics, fluid mechanics, fluid-structure interaction, 
acoustics, electromagnetism, etc.

• A semi-analytical procedure

• Only the boundary is discretized

• No requirement for fundamental solutions

• Appeared first in 1997, CMAME
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Scaled boundary FEM - advantages

FEM BEM SBFEM

Reduction of spatial dimension by one

Analytical solution inside the domain

No fundamental solution

No discretisation of material interfaces

Symmetric static and dynamic stiffness 
matrix
Straightforward calculation of SIF

Seamless integration with FEM

Arbitrary approximation orders in 
neighbouring domains 
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Geometry

Displacements

Strain

x = N(η)xb

u(ξ, η) = N(η)u(ξ)

ε(ξ, η) = B(η)u(ξ)

Scaling requirement on 
geometry: whole boundary 

should be directly visible from 
the scaling centre

K = ∫∂Ω
BTℂB dΩ

Stiffness matrix

Virtual work
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Fracture analysisO

Figure 1: Scaled boundary coordinate system for an arbitrary faceted polyhedron. O is the scaling center and (ξ, η, ζ)

are the scaled boundary coordinates.

The Cartesian coordinates x = [x y z]T of a point covered by a surface sector on the poly-

hedron boundary is related to the scaled boundary coordinates (ξ, η, ζ) by [12–14]

x(ξ, η, ζ) =ξNu(η, ζ)xb (5)

where xb are the nodal coordinates xb = [x1, y1, z1, x2, y2, z2, . . .]T andNu(η) is the shape function

matrix

Nu(η, ζ) =

⎡

⎢

⎢

⎢

⎣

N1(η, ζ) 0 0 N2(η, ζ) 0 0 . . .

0 N1(η, ζ) 0 0 N2(η, ζ) 0 . . .

0 0 N1(η, ζ) 0 0 N2(η, ζ) . . .

. . . Nn(η, ζ) 0 0

. . . 0 Nn(η, ζ) 0

. . . 0 0 Nn(η, ζ)

⎤

⎥

⎥

⎥

⎦

(6)

whereNi(η, ζ) are the shape functions and n is the number of nodes in a polyhedra. An infinitesimal

area dΩ in the scaled boundary coordinates is mapped to the Cartesian coordinates by the relation

[12]

dΩ = J(η, ζ)ξ2dξdηdζ (7)

where J(η, ζ) is the determinant of the Jacobian matrix J(η, η)

J (η, ζ) =

⎡

⎢

⎢

⎢

⎣

x (η, ζ) y (η, ζ) z (η, ζ)

x (η, ζ),η y (η, ζ),η z (η, ζ),η

x (η, ζ),ζ y (η, ζ),ζ z (η, ζ),ζ

⎤

⎥

⎥

⎥

⎦

(8)

5

u(ξ, η, ζ) = N(η, ζ)u(ξ)
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Novel error indicatorL-shape using linear elements

Figure: successive adaptive refinement

SBFEM polytree July 1, 2018 4 / 1

Numerical example
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Figure: Geometry and boundary conditions of L shape domain under pure mode-I
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Adapted mesh is obtained 
before any simulation

is performed

using the eigenvalues 
of the Hamiltonian
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L-shape convergence plots
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L-shape convergence plots
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