Displacement based polytopal elements a strain smoothing and scaled boundary approach

POEMS2019

Stéphane P.A. BORDAS \& Sundararajan NATARAJAN and many colleagues ;-)

 Slides can be downloaded here https://orbilu.uni.lu/handle/10993/37921

Stéphane P.A. BORDAS, University of Luxembourg and Cardiff University
Sundararajan NATARAJAN, IIT Madras, Chennai, India Marseille 20190503 https://conferences.cirm-math.fr/1954.html

IntuiSIM
 legato-team.eu
 Intuitive modelling \& SIMulation

One machine, one minute, three billion tetrahedra

Célestin Marot* I Jeanne Pellerin I Jean-François Remacle

${ }^{1}$ Université catholique de Louvain, iMMC, Avenue Georges Lemaitre 4, bte L4.05.02, 1348 Louvain-la-Neuve, Belgium

Correspondence

*Corresponding author: Email: celestin.marot@uclouvain.be

Summary

This paper presents a new scalable parallelization scheme to generate the 3D Delaunay triangulation of a given set of points. Our first contribution is an efficient serial implementation of the incremental Delaunay insertion algorithm. A simple dedicated data structure, an efficient sorting of the points and the optimization of the insertion algorithm have permitted to accelerate reference implementations by a factor three. Our second contribution is a multi-threaded version of the Delaunay kernel that is able to concurrently insert vertices. Moore curve coordinates are used to partition the point set, avoiding heavy synchronization overheads. Conflicts are managed by modifying the partitions with a simple rescaling of the space-filling curve. The performances of our implementation have been measured on three different processors, an Intel core-i7, an Intel Xeon Phi and an AMD EPYC, on which we have been able to compute 3 billion tetrahedra in 53 seconds. This corresponds to a generation rate of over 55 million tetrahedra per second. We finally show how this very efficient parallel Delaunay triangulation can be integrated in a Delaunay refinement mesh generator which takes as input the triangulated surface boundary of the volume to mesh.

One machine, one minute, three billion tetrahedra

Célestin Marot* | Jeanne Pellerin | Jean-François Remacle

One machine, one minute, three billion tetrahedra

Célestin Marot* | Jeanne Pellerin | Jean-François Remacle

One machine, one minute, three billion tetrahedra

Célestin Marot* | Jeanne Pellerin | Jean-François Remacle

One machine, one minute, three billion tetrahedra

Célestin Marot* | Jeanne Pellerin | Jean-François Remacle

Linear tetrahedral elements are limited -Stiff
-Locking

Alternative element technologies have been developed

Alternative elements - polyhedral - virtual elements, HHO, SBFEM, smoothed FEM...

Use polyhedra

Mesh generators...

Alíce

Geometry and Light
ALICE project-team
Bruno Lévy

3D NOffiset mixed-element mesh generator approach

Disme Erev

Claudio Lobos

Virtual elements

The hitchhiker's guide to the virtual element method
Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods (Natarajan, Ooi, Bordas)

Smoothed FEM

A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates (G.R. Liu, Nguyen et al)
On the approximation in the smoothed finite element method (SFEM) (Natarajan, Bordas)

Scaled boundary FEM

The scaled boundary finite-element method-a primer: derivations (Song, Wolf, 2000)

Smoothed polyhedral FEMs Francis, Natarajan, Lévy, Bordas, 2019

Research Article

Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods

Sundararajan Natarajan 《, Stéphane PA Bordas, Ean Tat Ooi

First published: 15 June 2015 | https://doi.org/10.1002/nme.4965 | Cited by: 22
Read the full text > \& PDF \sim TOOLS < SHARE

Summary

We show both theoretically and numerically a connection between the smoothed finite element method (SFEM) and the virtual element method and use this approach to derive stable, cheap and optimally convergent polyhedral FEM. We show that the stiffness matrix computed with one subcell SFEM is identical to the consistency term of the virtual element method, irrespective of the topology of the element, as long as the shape functions vary linearly on the boundary. Using this connection, we propose a new stable approach to strain smoothing for polygonal/polyhedral elements where, instead of using sub-triangulations, we are able to use one single polygonal/polyhedral subcell for each element while maintaining stability. For a similar number of degrees of freedom, the proposed approach is more accurate than the conventional SFEM with triangular subcells. The time to compute the stiffness matrix scales with the $\mathcal{O}(d o f s)^{1.1}$ in case of the conventional polygonal FEM, while it scales as $\mathcal{O}(d o f s)^{0.7}$ in the proposed approach. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Copyright © 2015 John Wiley \& Sons, Ltd.

Avoid meshing complex/evolving interfaces through unfitted methods

Implicit boundaries and error control for real time simulations

Deep brain stimulation simulation

Real-time Error Control for Surgical Simulation, HP Bui et al, IEEE Trans. Biomed. Eng., 2016.
Controlling the Error on Target Motion through Real-time Mesh Adaptation:
Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.
Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE] 2018.

Handling interfaces numerically

Couple geometry \& analysis

Isogeometric analysis

Decouple geometry from analysis

Implicit interfaces/unfitted

Generalisation: geometry independent field approximation (GIFT) Atroshchenko et al, 2018, CMAME

Immersed collocation CAERDTP
 generalized FD

Formulation

Governing equations

$$
\begin{array}{ll}
\mathscr{L} u=f \quad \text { in } \quad \Omega \\
u(\mathbf{x})=g(\mathbf{x}) \quad \text { on } \quad \partial \Omega
\end{array}
$$

Test \& Trial functions Space

$$
\begin{aligned}
& \mathscr{U}^{h} \subset \mathscr{U}=\left\{u \in H^{1}(\Omega) \quad \text { such that }\left.\quad u\right|_{\partial \Omega}=g\right\} \\
& \mathscr{V}^{h} \subset \mathscr{V}=\left\{v \in H^{1}(\Omega) \quad \text { such that }\left.\quad v\right|_{\partial \Omega}=0\right\}
\end{aligned}
$$

Weak form

$$
\text { find } \quad u^{h} \in \mathscr{U}^{h}: \forall v^{h} \in \mathscr{V}^{h} \quad a\left(u^{h}, v^{h}\right)=\ell\left(v^{h}\right)
$$

Approximate solutions

$$
u^{h}=\sum_{I} \psi_{I} u_{I} \quad v^{h}=\sum_{I} \psi_{I} v_{I}
$$

Shape functions

- Length and area measures:
- Wachspress interpolants (1975)
- Natural Neighbour interpolants:
- Sibson interpolant (1980),

- Laplace interpolant
- Harmonic
- Waren et al, (1996,2007$)$
- Maximum entropy approximants (Sukumar 2013)
- Mean value coordinates Floater et al., $(2003,2005)$

Shape functions

- Length and area measures:
- Wachspress interpolants (1975)
- Natural Neighbour interpolants:
- Sibson interpolant (1980)
- Laplace interpolant
- Harmonic
- Waren et al, (1996,2007)
- Maximum entropy approximants (Sukumar 2013)
- Mean value coordinates Floater et al., $(2003,2005)$

Similar accuracy \& convergence to FEM

Cantilever Beam - Torsion

Conventional FE

Polygonal FE

FE implementation

Bilinear form

$$
a\left(u^{h}, v^{h}\right)=\int_{\Omega^{h}} \nabla \Phi \cdot \nabla \Phi \mathrm{~d} \Omega
$$

Numerical integration

- Sub- triangulation
- Green - Gauss quadrature
- Conforming interpolant quadrature
- Complex mapping
- Nodal quadrature
- Strain smoothing

Sub triangulation
Moment fitting
Complex mapping

Homogeneous Numerical integration
Green-Gauss quadrature

Strain smoothing

Strain written as the divergence of a spatial average of the standard (compatible) strain field

$$
\begin{gathered}
\tilde{\varepsilon}_{i j}^{h}\left(\mathbf{x}_{C}\right)=\int_{\Omega^{h}} \varepsilon_{i j}^{h}(\mathbf{x}) \Phi\left(\mathbf{x}-\mathbf{x}_{C}\right) \mathrm{d} \mathbf{x} \\
\Phi \geq 0 \text { and } \int_{\Omega^{h}} \Phi(\mathbf{x}) \mathrm{d} \mathbf{x}=1 \\
\Phi=\frac{1}{A_{C}} \text { in } \Omega_{C} \text { and } \Phi=0 \text { elsewhere }
\end{gathered}
$$

Stiffness matrix

$$
\tilde{\mathbf{K}}^{e}=\sum_{C=1}^{n c} \int_{\Omega_{C}} \tilde{\mathbf{B}}_{C}^{\mathrm{T}} \mathbf{D} \tilde{\mathbf{B}}_{C} \mathrm{~d} \Omega
$$

Strain smoothing variants

 LUXEMBOURG- node-based smoothing (NS-FEM)

- edge-based smoothing

- : field node \bigcirc : centroid of triangles
- cell-based smoothing

(b)

(d)
: field nodes O : virtual nodes to form the smoothing domains

$$
\overline{\boldsymbol{\varepsilon}}^{(k)}=\int_{\Omega_{k}^{s}} \varepsilon(\mathbf{x}) \Phi^{(k)}(\mathbf{x}) \mathrm{d} \Omega
$$

$$
\overline{\boldsymbol{\varepsilon}}^{(k)}=\frac{1}{A_{k}^{s}} \int_{\Omega_{k}^{s}} \partial \mathbf{u}^{h} \mathrm{~d} \Omega
$$

$$
\Phi^{(k)}(\mathbf{x})=\left\{\left.\begin{array}{ll}
1 / A_{k}^{s}, & \mathbf{x} \in \Omega_{k}^{s} \\
0, & \mathbf{x} \notin \Omega_{k}^{s}
\end{array} \right\rvert\,\right.
$$

Strain smoothing - features

+ Insensitive to mesh distortion (No isoparametric mapping)
+ Derivatives of shape functions not required
+ Insensitive to locking for low number of subcells
- Rank deficiency when using one sub-cell
+ Better for triangular elements
+When combined with enrichment techniques - avoids integration of stress singularity
+ Decreases the complexity of sub-division in XFEM

Apply strain smoothing technique over each subcell to compute the stiffness matrix.

Apply strain smoothing technique over each subcell to compute the stiffness matrix.

Apply strain smoothing over each subcell to compute the stiffness matrix.

Apply strain smoothing over each subcell to compute the stiffness matrix.

Francis et al., IJNME, 2017.

Linear Smoothing

Francis et al., IJNME, 2017.

Linear Smoothing

$$
\begin{aligned}
\tilde{\varepsilon}_{i j}^{h}(\mathbf{x}) & =\int_{\Omega_{C}^{h}} \varepsilon_{i j}^{h}(\mathbf{x}) f(\mathbf{x}) \mathrm{d} V \\
\int_{\Omega_{C}^{h}} \phi_{a, j} f(\mathbf{x}) \mathrm{d} V & =\int_{\Gamma_{C}^{\prime}} \phi_{a} f(\mathbf{x}) n_{j} \mathrm{~d} S-\int_{\Omega_{C}^{b}} \phi_{a} f_{j, j}(\mathbf{x}) \mathrm{d} V . \\
f(\mathbf{x}) & =\left[\begin{array}{lll}
1 & x_{1} & x_{2}
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

$$
\mathbf{W d} \mathbf{d}_{j}=\mathbf{f}_{j}, \quad j=1,2
$$

$$
\mathbf{W}=\left[\begin{array}{ccc}
{ }^{1} w & { }^{2} w & { }^{3} w \\
{ }^{1} w^{1} x_{1}{ }^{2} w^{2} x_{1}{ }^{3} w^{3} x_{1} \\
{ }^{1} w^{1} x_{2}{ }^{2} w^{2} x_{2}{ }^{3} w^{3} x_{2}
\end{array}\right] \quad \mathbf{f}_{1}=\left[\begin{array}{l}
\sum_{k=1}^{3} \sum_{g=1}^{2} \phi_{a}\left(\frac{\left.k_{k}^{g} s\right)}{}{ }_{k} n_{1}{ }_{k}^{g} v\right. \\
\sum_{k=1}^{3} \sum_{g=1}^{2} \phi_{a}\left({ }_{k}^{g} s\right){ }_{k}^{g} s_{1} s_{1} n_{1} \frac{g}{k} v-\sum_{m=1}^{3} \phi_{a}\left({ }^{m} \mathbf{r}\right)^{m} w \\
\sum_{k=1}^{3} \sum_{g=1}^{2} \phi_{a}\left({ }_{k}^{g} s\right){ }_{k}^{g}{ }_{k} s_{2} k n_{1}{ }_{k}^{g} v
\end{array}\right]
$$

Test for linear consistency

$\binom{\hat{u}}{\hat{v}}=\binom{0.1+0.1 x+0.2 y}{0.05+0.15 x+0.1 y}$

(a)

(c)

(b)

(d)

	CS-Poly2D (linear)			LS-Poly2D (linear)	
Mesh	L^{2}	H^{1}		L^{2}	H^{1}
a	1.7334×10^{-07}	2.3328×10^{-05}		5.3835×10^{-14}	2.8388×10^{-11}
b	1.6994×10^{-07}	3.4094×10^{-05}		1.9255×10^{-13}	4.4373×10^{-11}
c	7.2017×10^{-07}	2.2573×10^{-04}		2.0030×10^{-13}	7.0017×10^{-11}
d	7.4144×10^{-07}	2.5773×10^{-04}		2.9567×10^{-13}	1.0199×10^{-10}

Test for linear consistency

| | CS-Poly2D (linear) | | | LS-Poly2D (linear) | |
| :--- | :---: | :---: | :--- | :--- | :---: | :---: |
| Mesh | L^{2} | H^{1} | | L^{2} | H^{1} |
| a | 1.7334×10^{-07} | 2.3328×10^{-05} | | 5.3835×10^{-14} | $2.8388 * 10^{-11}$ |
| b | 1.6994×10^{-07} | 3.4094×10^{-05} | | 1.9255×10^{-13} | 4.4373×10^{-11} |
| c | 7.2017×10^{-07} | 2.2573×10^{-04} | | 2.0030×10^{-13} | 7.0017×10^{-11} |
| d | 7.4144×10^{-07} | 2.5773×10^{-04} | | 2.9567×10^{-13} | 1.0199×10^{-10} |

Linear smoothing passes the patch test Constant smoothing does not

Test of linear consistency - 3D

$$
\left(\begin{array}{c}
\hat{u} \\
\hat{v} \\
\hat{w}
\end{array}\right)=\left(\begin{array}{c}
0.1+0.1 x+0.2 y+0.2 z \\
0.05+0.15 x+0.1 y+0.2 z \\
0.05+0.1 x+0.2 y+0.2 z
\end{array}\right)
$$

	LS-H8		Mesh	LS-Poly3D		
Mesh	L^{2}	H^{1}		(c.f. Figure 8)	L^{2}	H^{1}
$2 \times 2 \times 2$	2.5242×10^{-16}	2.4820×10^{-12}		a		2.0280×10^{-12}

Test of linear consistency - 3D

	LS-H8			Mesh	LS-Poly3D	
Mesh	L^{2}	H^{1}			L^{2}	H^{1}
$2 \times 2 \times 2$	2.5242×10^{-16}	2.4820×10^{-12}		a	2.0280×10^{-12}	3.3428×10^{-10}
$4 \times 4 \times 4$	7.9454×10^{-16}	4.9945×10^{-12}		b	1.9218×10^{-12}	1.7529×10^{-10}
$8 \times 8 \times 8$	2.9384×10^{-16}	1.0012×10^{-12}	c	2.6660×10^{-12}	4.9320×10^{-10}	
$16 \times 16 \times 16$	8.9235×10^{-16}	2.0093×10^{-12}	d	3.2074×10^{-12}	3.1083×10^{-10}	

Linear smoothing passes the patch test, also in 3D

Cantilever bending

Cantilever bending

Cantilever bending

Cantilever bending

SBFEM

- A "niche" technique developed originally for dynamic soilstructure interaction analysis by Song and Wolf @EPFL
- Has been applied to several other fields such as fracture mechanics, fluid mechanics, fluid-structure interaction, acoustics, electromagnetism, etc.
- A semi-analytical procedure
- Only the boundary is discretized
- No requirement for fundamental solutions
- Appeared first in 1997, CMAME

PDE on

 interior

CARDIFF UNIVERSITY prifysgol CARDY官

Conceptual comparison

 LUXEMBOURG

CARDIFF UNIVERSITY PRIFYSGOL
CAERDYV

Conceptual comparison

FEM
 BEM
 SBFEM

Reduction of spatial dimension by one
Analytical solution inside the domain
No fundamental solution
No discretisation of material interfaces
Symmetric static and dynamic stiffiness matrix

Straightforward calculation of SIF
Seamless integration with FEM
Arbitrary approximation orders in neighbouring domains

Scaled boundary FEM

Scaling requirement on geometry: whole boundary should be directly visible from the scaling centre

Geometry $\quad \mathbf{x}=\mathbf{N}(\eta) \mathbf{x}_{b}$
Displacements $\quad \mathbf{u}(\xi, \eta)=\mathbf{N}(\eta) \mathbf{u}(\xi)$

$$
\text { Strain } \quad \boldsymbol{\varepsilon}(\xi, \eta)=\mathbf{B}(\eta) \mathbf{u}(\xi)
$$

Stiffness matrix

SBFEM
 equations

$\mathbf{K}=\int_{\partial \Omega} \mathbf{B}^{\mathrm{T}} \mathbb{C} \mathbf{B} \mathrm{d} \Omega$

Plate with internal holes

ANSYS
 13,650 nodes

Quadtree

ANSYS
 13,650 nodes

Quad tree

6,619 nodes

Quadtree

CARDIFF UNIVERSITY nayyscol CARDY

Displacement compassion

Quad tree
6,619 nodes

Extension to polyhedra

Adapted mesh is obtained before any simulation is performed

using the eigenvalues
 of the Hamiltonian

Novel error indicator

BENCHMARKING ADVANCED DISCRETISATION TECHNIQUES: PART I. MESH BURDEN ALLEVIATION WITH APPLICATIONS TO CAD-ANALYSIS TRANSITION, FRACTURE MECHANICS AND HIGHER-ORDER PDES

TRACK NUMBER 20
Elena Atroshchenko, Stéphane Bordas, Franz Chouly, Daniel Dias-Da-costa, Jakub Lengiewicz, Sundararajan Natarajan, Timon Rabezuk, Chongmin Song, Satyendra Tomar, Giulio Ventura, Eric Wyart

Key words: verification and validation, benchmarking, mesh-burden, IGA, XFEM, embedded discontinuities,

Abstract

The last 50 years have seen the birth of a large number of "special" approximation methods aiming at complementing finite difference and finite element methods and alleviating their intrinsic difficulties. Major advances have been made, and yet, it is not always obvious to identify the most relevant advantavew and drawhaele ofo min.................t.

Legato-team

University of Luxembourg

