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Abstract. We define an ideal functionality FNHCD and a protocol ΠNHCD for
an updatable non-hiding committed database (NHCD). NHCD is described as
the task of storing a database into a suitable data structure that allows you to
efficiently prove in zero-knowledge (ZK) that a value is stored in the database
at a certain position. The database is non-hiding because both prover and ver-
ifier know its content. It is committed in the sense that only ZK proofs about
position-value pairs that are actually stored are possible. It is updatable because
its contents can be modified dynamically throughout the protocol execution.
The NHCD task is used implicitly as building block of privacy-preserving proto-
cols for e-commerce, smart billing and access control. In those protocols, this task
is intertwined with others. Our functionality FNHCD allows us to study construc-
tions for this task in isolation. Furthermore, it allows us to improve modularity in
protocol design, by using FNHCD as building block of those protocols along with
functionalities for other tasks.
Our construction ΠNHCD uses a non-hiding vector commitment (VC) scheme as
building block. Thanks to the efficiency properties of non-hiding VC schemes,
ΠNHCD provides ZK proofs whose computation cost (after initialization) and
whose size are both independent of the database size. Therefore, ΠNHCD is suit-
able for large databases. Moreover, the database can be updated dynamically and
very efficiently.

1 Introduction

Let us consider the following example of a two-party protocol between P0 and P1. P1

chooses a table Tbl of values and sends it to P0. This table consists of N entries of the
form [i, v], where i ∈ [1,N ] is the position and v is the value stored at that position. P0

receives as input a tuple (xi, xv) and a function f . Then P0 picks the table entry [i, v]
such that i = xi and computes y = f(v, xv). P0 sends a zero-knowledge (ZK) proof
to prove that y is correctly computed. This ZK proof must prove that P0 picks the entry
[i, v] from Tbl, along with proving the statements i = xi and y = f(v, xv).

This protocol, or slight variations of it, is a building block of several privacy-
preserving protocols, such as priced oblivious transfer (POT) [2,6,33] and protocols
for smart billing [20,32] and privacy-preserving access control [5,23]. For instance, in
POT, a seller sells N messages to a buyer, where each message mi is associated with
a price pi, for i ∈ [1, N ]. We can view the list of prices as a table Tbl of entries [i,
pi] that the seller sends to the buyer. The buyer has a deposit dep with the seller and



receives as input a message choice σ ∈ [1, N ]. We can view dep as xv and σ as xi.
To purchase the message mσ , the buyer must subtract pσ from her deposit dep. We can
view the function f as y = f(xv, v) = dep − pσ . The buyer must provide a ZK proof
that y = dep− pσ , where pσ is stored in the entry [σ, pσ] of Tbl.

In order to allow P0 to prove that she uses an entry [i, v] from Tbl, P1 has to
store Tbl into some data structure that allows for efficient ZK proofs. Several cryp-
tographic schemes can be used to implement this data structure. For instance, POT
protocols [6,33] frequently use a signature scheme with efficient ZK proofs of signa-
ture possession. The seller computes signatures si on tuples (i, pi) and sends them to
the buyer. In the ZK proof needed to purchase mσ , the buyer proves possession of a
signature sσ on [σ, pσ] in order to show that it is a valid table entry.

We note that the ZK proof computed by P0 contains two types of statements. On the
one hand, P0 must prove that she uses an entry [i, v] from a table Tbl provided by P1.
On the other hand, P0 must prove statements about both the position i (i = xi) and the
value v (y = f(v, xv)) that are taken from the table. The former is related to proving
that the witness of the ZK proof is stored in the data structure. The latter is related to
proving statements about the position and the value taken from the data structure.

Very frequently, in cryptographic protocol design, these two types of statements are
intertwined. I.e, protocols use ZK proofs that involve both statements to prove that the
witness is stored in a data structure and statements to prove something else about the
witness. To improve modularity in protocol design, we propose to separate those tasks.

An important feature that a cryptographic scheme used to implement the data struc-
ture must provide is that the data structure be efficiently updateable. For instance, in
POT, the seller would like to be able to update the price of a message at any time. How-
ever, some schemes do allow for efficient updates. For instance, if signature schemes are
used, each time prices are updated, a signature revocation mechanism would be needed
to revoke the signatures that sign old prices, which is inefficient.

Our Contribution: functionality FNHCD. We give a security definition for an updat-
able non-hiding committed database (NHCD) in Section 3. We define NHCD as the
two-party task of storing a table Tbl and proving that an entry [i, v] is stored in Tbl.
The database is non-hiding in the sense that both P1 and P0 know its content. It is
committed in the sense that it is not possible to prove that [i, v] is stored in Tbl if that
is not the case. It is updatable because the entries of Tbl can be modified dynamically
throughout the protocol execution. We define security in the universal composability
(UC) framework [11]. Therefore, we describe an ideal functionality FNHCD.

In the UC framework, modular protocol design can be achieved by describing hy-
brid protocols. In a hybrid protocol, the protocol building blocks are described by their
ideal functionalities, and parties in the real world invoke those ideal functionalities. We
show how to use FNHCD as building block in a protocol where FNHCD handles the
tasks of storing a table Tbl and proving that an entry [i, v] is stored in Tbl, while the
ideal functionality FR

ZK for zero-knowledge is used to prove further statements about
the position i and the value v. One challenge when defining a hybrid protocol in the UC
model is to ensure that two functionalities receive the same input. To this end, FNHCD

uses the method proposed in [7], which consists in receiving committed inputs produce



by a functionality FNIC for non-interactive commitments. We show how to use FNHCD

as building block in a protocol designed modularly in Section 5.
The advantages of our modular design are threefold. First, it simplifies the secu-

rity analysis because security proofs in the hybrid model are simpler and because, by
separating the handling of the database from ZK proofs about other statements, each
building block becomes simpler to analyze. Second, it allows multiple instantiations by
replacing each of the ideal functionalities by any protocols that realize them. Third, it
allows the study of the task of creating an updatable non-hiding committed database in
isolation, which eases the comparison of different constructions for it.

Our Contribution: construction ΠNHCD. In Section 4, we propose ΠNHCD, a construc-
tion that securely realizes FNHCD. ΠNHCD is based on non-hiding vector commitments
(VC) [26,12]. A non-hiding VC scheme allows us to compute a commitment com to a
vector x = (x[1], . . . ,x[N ]). To open the value x[i] committed at position i, a witness
wi is computed.

ΠNHCD works as follows. P1 sends a table Tbl to P0, and both P1 and P0 map Tbl
to a vector x and compute a commitment com to x. To update an entry [i, v] to [i, v′],P1

sends [i, v′] to P0, and both P1 and P0 run the update algorithm of the non-hiding VC
scheme on input com to obtain a commitment com ′ to a vector x′ such that x′[i] = v′,
while the other positions remain unchanged. To prove in zero-knowledge that an entry
[i, v] is in Tbl, a party computes a witness wi and computes a ZK proof of knowledge
of (wi, i, v) that satisfy the verification algorithm of the non-hiding VC scheme.

We describe an efficient instantiation of ΠNHCD that uses a non-hiding VC scheme
based on the DHE assumption, similar to the mercurial VC scheme in [26]. The size
of the public parameters of the scheme grows linearly with N . The size of com and
wi is constant and independent of i and N . The computation cost of com and wi grows
linearly withN . However, the cost of updating com and wi grows only with the number
of updated positions and is independent of N . Also, after wi is computed, it can be
reused to compute multiple ZK proofs. In our efficiency analysis in Section 4.3, we
show that the size of a ZK proof that [i, v] ∈ Tbl is independent of the size of the
database. Moreover, when wi is already computed (after the first proof for position i),
the computation cost is also independent of N .

Our construction can be regarded as an efficient way of implementing an OR proof,
i.e., a ZK proof for a disjunction of statements. Namely, proving that an entry [i, v] is
in Tbl is equivalent to computing an OR proof where the prover proves that he knows
at least one of the table entries. Typically, the size of an OR proof would grow with
N , while our proof is of size independent of N . In fact, our construction is suitable for
tables Tbl of large sizes N and outperforms other existing ZK proofs for large datasets.
We compare our construction with related work more in detail in Section 6.

Outline of the Paper. We summarize the UC framework in Section 2.1, and we depict
FNHCD in Section 3. In Section 4, we describe ΠNHCD and its instantiation. We show
how to use FNHCD as building block in a protocol designed modularly in Section 5. We
analyze related work in Section 6.



2 Universally Composable Security

The universal composability framework [11] is a framework for defining and analyzing
the security of cryptographic protocols so that security is retained under arbitrary com-
position with other protocols. The security of a protocol is defined by means of an ideal
protocol that carries out the desired task. In the ideal protocol, all parties send their
inputs to an ideal functionality F for the task. The ideal functionality locally computes
the outputs of the parties and provides each party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an environment
Z in a real execution of ϕ against that of Z in the ideal protocol defined in Fϕ. The
environment Z chooses the inputs of the parties and collects their outputs. In the real
world, Z can communicate freely with an adversary A who controls both the network
and any corrupt parties. In the ideal world, Z interacts with dummy parties, who simply
relay inputs and outputs between Z and Fϕ, and a simulator S. We say that a protocol
ϕ securely realizes Fϕ if Z cannot distinguish the real world from the ideal world, i.e.,
Z cannot distinguish whether it is interacting with A and parties running protocol ϕ or
with S and dummy parties relaying to Fϕ.

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed to
invoke the ideal functionality G. For any protocol ψ that securely realizes the function-
ality G, the composed protocol ϕψ , which is obtained by replacing each invocation of
an instance of G with an invocation of an instance of ψ, securely realizes F .

In the ideal functionalities described in this paper, we consider static corruptions.
When describing ideal functionalities, we use the following conventions as in [7].

Interface Naming Convention. An ideal functionality can be invoked by using one or
more interfaces. The name of a message in an interface consists of three fields sep-
arated by dots, e.g., nhcd.setup.ini in the functionality FNHCD in Section 3. The
first field indicates the name of the functionality and is the same in all interfaces of
the functionality. This field is useful for distinguishing between invocations of dif-
ferent functionalities in a hybrid protocol that uses two or more different function-
alities. The second field indicates the kind of action performed by the functionality
and is the same in all messages that the functionality exchanges within the same
interface. The third field distinguishes between the messages that belong to the
same interface. A message nhcd.setup.ini is the incoming message received by the
functionality, i.e., the message through which the interface is invoked. A message
nhcd.setup.end is the outgoing message sent by the functionality, i.e., the message
that ends the execution of the interface. The message nhcd.setup.sim is used by the
functionality to send a message to the simulator, and the message nhcd.setup.rep
is used to receive a message from the simulator. A message ∗. ∗ .req is used by
the functionality to send a message to the simulator to request the description of
algorithms from the simulator, and the message ∗. ∗ .alg is used by the simulator to
send the description of those algorithms to the functionality.

Network vs local communication. The identity of an interactive Turing machine in-
stance (ITI) consists of a party identifier pid and a session identifier sid . A set of
parties in an execution of a system of interactive Turing machines is a protocol
instance if they have the same session identifier sid . ITIs can pass direct inputs



to and outputs from “local” ITIs that have the same pid . An ideal functionality
F has pid = ⊥ and is considered local to all parties. An instance of F with the
session identifier sid only accepts inputs from and passes outputs to machines with
the same session identifier sid . Some functionalities require the session identifier to
have some structure. Those functionalities check whether the session identifier pos-
sesses the required structure in the first message that invokes the functionality. For
the subsequent messages, the functionality implicitly checks that the session identi-
fier equals the session identifier used in the first message. Communication between
ITIs with different party identifiers must take place over the network. The network
is controlled by the adversary, meaning that he can arbitrarily delay, modify, drop,
or insert messages.

Query identifiers. Some interfaces in a functionality can be invoked more than once.
When the functionality sends a message ∗. ∗ .sim to the simulator in such an inter-
face, a query identifier qid is included in the message. The query identifier must
also be included in the response ∗. ∗ .rep sent by the simulator. The query identifier
is used to identify the message ∗. ∗ .sim to which the simulator replies with a mes-
sage ∗. ∗ .rep. We note that, typically, the simulator in the security proof may not be
able to provide an immediate answer to the functionality after receiving a message
∗. ∗ .sim. The reason is that the simulator typically needs to interact with the copy
of the real adversary it runs in order to produce the message ∗. ∗ .rep, but the real
adversary may not provide the desired answer or may provide a delayed answer.
In such cases, when the functionality sends more than one message ∗. ∗ .sim to the
simulator, the simulator may provide delayed replies, and the order of those replies
may not follow the order of the messages received.

Aborts. When an ideal functionality F aborts after being activated with a message
sent by a party, we mean that F halts the execution of its program and sends a
special abortion message to the party that invoked the functionality. When an ideal
functionality F aborts after being activated with a message sent by the simulator,
we mean that F halts the execution of its program and sends a special abortion
message to the party that receives the outgoing message from F after F is activated
by the simulator.

Delayed outputs. We say that an ideal functionality F sends a public delayed output
v to a party P if it engages in the following interaction. F sends to the simulator
S a note that it is ready to generate an output to P . The note includes the value v,
the identity P , and a unique identifier for this output. When S replies to the note by
echoing the unique identifier, F outputs the value v to P . A private delayed output
is similar, but the value v is not included in the note.

2.1 Modular Design and Ideal Functionality FNIC

In the UC framework, protocols can be described modularly by using a hybrid model
where parties invoke the ideal functionalities of the building blocks of a protocol. For
example, consider a protocol that uses as building blocks a zero-knowledge proof of
knowledge and a signature scheme. In a modular description of this protocol in the hy-
brid model, parties in the real world invoke the ideal functionalities for zero-knowledge
proofs and for signatures.



One challenge when describing a UC protocol in the hybrid model is to ensure,
when needed, that two or more ideal functionalities receive the same input. To address
this issue, we use the method proposed in [7]. In [7], a functionality FNIC for non-
interactive commitments is proposed. FNIC interacts with parties Pi and consists of
four interfaces com.setup, com.validate, com.commit and com.verify:

1. Any party Pi uses the com.setup interface to set up the functionality.
2. Any party Pi uses the com.commit interface to send a message cm and obtain a

commitment ccom and an opening copen . A commitment ccom consists of (ccom ′,
cparcom,COM.Verify), where ccom ′ is the commitment, cparcom are the public
parameters, and COM.Verify is the verification algorithm.

3. Any party Pi uses the com.validate interface to send a commitment ccom in order
to check that ccom contains the correct public parameters and verification algo-
rithm.

4. Any party Pi uses the com.verify interface to send (ccom, cm, copen) in order to
verify that ccom is a commitment to the message cm with the opening copen .

FNIC can be realized by a perfectly hiding commitment scheme, such as Pedersen com-
mitments [7]. In [7], a method is described to use FNIC in order to ensure that a party
sends the same input cm to several ideal functionalities. For this purpose, the party first
uses com.commit to get a commitment ccom to cm with opening copen . Then the party
sends (ccom, cm, copen) as input to each of the functionalities, and each functionality
runs COM.Verify to verify the commitment. Finally, other parties in the protocol re-
ceive the commitment ccom from each of the functionalities and use the com.validate
interface to validate ccom . Then, if ccom received from all the functionalities is the
same, the binding property provided by FNIC ensures that all the functionalities re-
ceived the same input cm . When using FNIC, it is needed to work in the FNIC||SNIC-
hybrid model, where SNIC is any simulator for a construction that realizes FNIC.

Our functionality FNHCD receives committed inputs as described in [7]. We depict
FNIC below.

Description of FNIC. COM.TrapCom, COM.TrapOpen and COM.Verify are ppt algo-
rithms.

1. On input (com.setup.ini, sid) from a party Pi:
– If (sid , cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom) is

already stored, include Pi in the set P, and send (com.setup.end, sid ,OK )
as a public delayed output to Pi.

– Otherwise proceed to generate a random qid , store (qid ,Pi) and send the mes-
sage (com.setup.req, sid , qid) to S.

S. On input (com.setup.alg, sid , qid ,m) from S:
– Abort if no pair (qid ,Pi) for some Pi is stored.
– Delete record (qid ,Pi).
– If (sid , cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom) is

already stored, include Pi in the set P and send (com.setup.end, sid ,OK ) to
Pi.



– Otherwise proceed as follows.
• m is (cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom).
• Initialize both an empty table Tblcom and an empty set P, and store (sid ,

cparcom,COM.TrapCom,COM.TrapOpen,COM.Verify, ctdcom).
• Include Pi in the set P and send (com.setup.end, sid ,OK ) to Pi.

2. On input (com.validate.ini, sid , ccom) from any party Pi:
– Abort if Pi /∈ P.
– Parse ccom as (ccom ′, cparcom ′,COM.Verify′).
– Set v ← 1 if cparcom ′ = cparcom and COM.Verify′ = COM.Verify. Other-

wise, set v ← 0.
– Send (com.validate.end, sid , v) to Pi.

3. On input (com.commit.ini, sid , cm) from any party Pi:
– Abort if Pi /∈ P or if cm /∈M, whereM is defined in cparcom .
– Compute (ccom, cinfo)← COM.TrapCom(sid , cparcom, ctdcom).
– Abort if there is an entry [ccom, cm ′, copen ′, 1] in Tblcom such that cm 6= cm ′.
– Run copen ← COM.TrapOpen(sid , cm, cinfo).
– Abort if 1 6= COM.Verify(sid , cparcom, ccom, cm, copen).
– Append [ccom, cm, copen, 1] to Tblcom.
– Set ccom ← (ccom, cparcom,COM.Verify).
– Send (com.commit.end, sid , ccom, copen) to Pi.

4. On input (com.verify.ini, sid , ccom, cm, copen) from any party Pi:
– Abort if Pi /∈ P or if cm /∈ M or if copen /∈ R, whereM and R are defined

in cparcom .
– Parse ccom as the tuple (ccom ′, cparcom ′,COM.Verify′). Abort if the param-

eters cparcom ′ 6= cparcom or COM.Verify′ 6= COM.Verify.
– If there is an entry [ccom ′, cm, copen, u] in Tblcom, set v ← u.
– Else, proceed as follows:
• If there is an entry [ccom ′, cm ′, copen ′, 1] in Tblcom such that cm 6= cm ′,

set v ← 0.
• Else, proceed as follows:
∗ Set v ← COM.Verify(sid , cparcom, ccom ′, cm, copen).
∗ Append [ccom ′, cm, copen, v] to Tblcom.

– Send (com.verify.end, sid , v) to Pi.

3 Ideal Functionality for a Non-Hiding Committed Database

We depict the functionality FNHCD for a non-hiding committed database. FNHCD in-
teracts with two parties P0 and P1 and consists of the interfaces nhcd.setup, nhcd.write
and nhcd.prove.

1. P1 uses nhcd.setup to send a table Tbl of N entries of the form [i, v] to FNHCD.
FNHCD stores Tbl and sends Tbl to P0. The simulator S also learns Tbl.

2. P1 uses nhcd.write to send a position i and a value vw to FNHCD. FNHCD updates
Tbl to contain value vw at position i and sends i and vw to P0. The simulator S also
learns i and vw .



3. Pb (b ∈ [0, 1]) uses nhcd.prove to send a position i and a value vr to FNHCD,
along with commitments and openings (ccomi , copeni) and (ccomr , copenr ) to
the position and value respectively. FNHCD verifies the commitments and checks
that there is an entry [i, vr ] in the table Tbl. In that case, FNHCD sends ccomi and
ccomr to P1−b. The simulator S also learns ccomi and ccomr . Neither P1−b nor S
learn (i, copeni) or (vr , copenr ).

FNHCD stores a database in the form of a table Tbl of entries [i, v], where i is the
position and v the value stored at that position. P1 sets up the table and can update any
table entries. FNHCD sends Tbl and its updates to P0, i.e. the table is not hidden from
P0. It would be possible to define a functionality FNHCD where both P1 and P0 can
set up and update the table, but we restrict them to one party for simplicity and because
our applications do not require it.
FNHCD allows both P0 and P1 to send to the other party two commitments ccomi

and ccomr that commit to a position i and a value v such that [i, v] ∈ Tbl. FNHCD

checks that ccomi and ccomr indeed commit to a table entry. Committed inputs to
FNHCD are needed to use FNHCD as building block of a hybrid protocol along with
FNIC, as described in Section 5. For simplicity, FNHCD restricts ccomi and ccomr to
contain the same parameters and verification algorithm, which means that they must be
produced by the same instance of FNIC.
FNHCD stores a counter c0 for P0 and a counter c1 for P1. These counters are used

to check that P0 and P1 have the same version of Tbl. When P1 initiates the nhcd.write
interface, c1 is incremented. WhenFNHCD sends the table update toP0,FNHCD checks
that c1 = c0 + 1 and then increments c0. In the nhcd.prove interface, FNHCD checks
that the counters of both parties are equal, which ensures that they have the same table.

The session identifier sid is of the form (P0,P1, sid
′). Including the identities in

sid ensures that every party P1 can initiate an instance of FNHCD with any other party
P0. Query identifiers qid are created by FNHCD to communicate with the simulator S
in the interfaces nhcd.write and nhcd.prove. In the nhcd.setup interface it is not needed
because this interface can only be invoked once.

When receiving a message, FNHCD checks that each input belongs to its correct
domain and aborts if that is not case. FNHCD also aborts if a message is received at an
incorrect moment in the protocol. For example, FNHCD aborts if P1 invokes nhcd.write
before invoking nhcd.setup.

Description of FNHCD. FNHCD is parameterised by a universe of values Uv and by
a maximum table size N . FNHCD interacts with a party P0 and a party P1. In the
following, b ∈ [0, 1].

1. On input (nhcd.setup.ini, sid ,Tbl) from P1:
– Abort if sid /∈ (P0,P1, sid

′) or if (sid ,Tbl′, c1) is already stored.
– Abort if Tbl does not consist of N entries of the form [i, v].
– Abort if for i = 1 to N , v /∈ Uv for any entry [i, v] in Tbl.
– Initialize a counter c1 ← 0 for P1 and store (sid ,Tbl, c1).
– Send (nhcd.setup.sim, sid ,Tbl) to S.

S. On input (nhcd.setup.rep, sid) from S:



– Abort if (sid ,Tbl, c1) is not stored, or if (sid ,Tbl, c0) is already stored.
– Initialize a counter c0 ← 0 for P0 and store (sid ,Tbl, c0).
– Send (nhcd.setup.end, sid ,Tbl) to P0.

2. On input (nhcd.write.ini, sid , i, vw ) from P1:
– Abort if (sid ,Tbl, c1) is not stored.
– Abort if i /∈ [1,N ], or if vw /∈ Uv .
– Increment c1 and update c1 and the table entry [i, vw ] in (sid ,Tbl, c1).
– Create a fresh qid and store (qid , i, vw , c1).
– Send (nhcd.write.sim, sid , qid , i, vw ) to S.

S. On input (nhcd.write.rep, sid , qid) from S:
– Abort if (qid , i, vw , c

′
1) or (sid ,Tbl, c0) are not stored, or if c′1 6= c0 + 1.

– Increment c0 and update c0 and the table entry [i, vw ] in (sid ,Tbl, c0).
– Delete the record (qid , i, vw , c

′
1).

– Send (nhcd.write.end, sid , i, vw ) to P0.
3. On input (nhcd.prove.ini, sid , ccomi , i, copeni , ccomr , vr , copenr ) from Pb:

– Abort if (sid ,Tbl, cb) is not stored.
– Abort if i /∈ [1,N ], or if vr /∈ Uv , or if [i, vr ] is not stored in Tbl.
– Parse ccomi as (ccom ′i, cparcomi ,COM.Verifyi).
– Parse ccomr as (ccom ′r, cparcomr ,COM.Verifyr).
– Abort if cparcomi 6= cparcomr , or if COM.Verifyi 6= COM.Verifyr, or if
COM.Verifyi is not a ppt algorithm.

– Abort if 1 6= COM.Verifyi(cparcomi , ccomi , i, copeni).
– Abort if 1 6= COM.Verifyr(cparcomr , ccomr , vr , copenr ).
– Create a fresh qid and store (qid , ccomi , ccomr ,Pb, cb).
– Send (nhcd.prove.sim, sid , qid , ccomi , ccomr ) to S.

S. On input (nhcd.prove.rep, sid , qid) from S:
– Abort if (qid , ccomi , ccomr ,Pb, c′b) or (sid ,Tbl, c1−b) are not stored, or if

c′b 6= c1−b.
– Delete the record (qid , ccomi , ccomr ,Pb, c′b).
– Send (nhcd.prove.end, sid , ccomi , ccomr ) to P1−b.

4 Construction ΠNHCD for a Non-Hiding Committed Database

4.1 Building Blocks of Construction ΠNHCD

Non-Hiding Vector Commitments A non-hiding vector commitment (VC) scheme [12]
allows one to succinctly commit to a vector x = (x[1], . . . ,x[n]) ∈ Mn such that it is
possible to compute a witness w to x[i], with the size of w independent of i and n. The
scheme consists of the following algorithms.

VC.Setup(1k, `). On input the security parameter 1k and an upper bound ` on the size
of the vector, generate the parameters of the vector commitment scheme par , which
include a description of the message spaceM.

VC.Commit(par ,x). On input a vector x ∈ Mn (n ≤ `), output a commitment com
to x.



VC.Prove(par , i,x). Compute a witness w for x[i].
VC.Verify(par , com, x, i,w). Output 1 if w is a valid witness for x being at position i

and 0 otherwise.
VC.ComUpd(par , com, j, x, x′). On input a commitment com with value x at position

j, output a commitment com ′ with value x′ at position j. The other positions remain
unchanged.

VC.WitUpd(par ,w , i, j, x, x′). On input a witness w for position i valid for a commit-
ment com with value x at position j, output a witness w ′ for position i valid for a
commitment com ′ with value x′ at position j.

A non-hiding VC scheme must be correct and binding [12]. We give the definition of
those properties in Section B.1.

Ideal Functionality FCRS.Setup
CRS Our protocol uses the functionality FCRS.Setup

CRS for
common reference string generation in [11]. FCRS.Setup

CRS interacts with any parties P
that obtain the common reference string, and consists of one interface crs.get. A party
P uses the crs.get interface to request and receive the common reference string crs
from FCRS.Setup

CRS . In the first invocation, FCRS.Setup
CRS generates crs by running algorithm

CRS.Setup. The simulator S also receives crs .

Description of FCRS.Setup
CRS . FCRS.Setup

CRS is parameterized by a ppt algorithm CRS.Setup.
FCRS.Setup

CRS interacts with any parties P that obtain the common reference string:

1. On input (crs.get.ini, sid) from any party P:
– If (sid , crs) is not stored, run crs ← CRS.Setup and store (sid , crs).
– Create a fresh qid and store (qid ,P).
– Send (crs.get.sim, sid , qid , crs) to S.

S. On input (crs.get.rep, sid , qid) from the simulator S:
– Abort if (qid ,P) is not stored.
– Delete the record (qid ,P).
– Send (crs.get.end, sid , crs) to P .

Ideal Functionality FAUT Our protocol uses the functionality FAUT for an authen-
ticated channel in [11]. FAUT interacts with a sender T and a receiver R, and consists
of one interface aut.send. T uses the aut.send interface to send a message m to FAUT.
FAUT leaks m to the simulator S and, after receiving a response from S, FAUT sends
m toR. S cannot modify m . The session identifier sid contains the identities of T and
R.

Description of FAUT. FAUT is parameterized by a message spaceM.

1. On input (aut.send.ini, sid ,m) from a party T :
– Abort if sid 6= (T ,R, sid ′) or if m /∈M.
– Create a fresh qid and store (qid ,R,m).
– Send (aut.send.sim, sid , qid ,m) to S.

S. On input (aut.send.rep, sid , qid) from S:
– Abort if (qid ,R,m) is not stored.
– Delete the record (qid ,R,m).
– Send (aut.send.end, sid ,m) toR.



Ideal Functionality FR
ZK for Zero-Knowledge Let R be a polynomial time com-

putable binary relation. For tuples (wit , ins) ∈ R we call wit the witness and ins the
instance. Our protocol uses the ideal functionality FR

ZK for zero-knowledge in [11].
FR

ZK is parameterized by a description of a relation R, runs with a prover P and a veri-
fier V , and consists of one interface zk.prove. P uses zk.prove to send a witness wit and
an instance ins to FR

ZK. FR
ZK checks whether (wit , ins) ∈ R, and, in that case, sends

the instance ins to V . The simulator S learns ins but not wit .

Description of FR
ZK. FR

ZK is parameterized by a description of a relation R. FR
ZK inter-

acts with a prover P and a verifier V .

1. On input (zk.prove.ini, sid ,wit , ins) from P:

– Abort if sid 6= (P,V, sid ′) or if (wit , ins) /∈ R.
– Create a fresh qid and store (qid , ins).
– Send (zk.prove.sim, sid , qid , ins) to S.

S. On input (zk.prove.rep, sid , qid) from S:

– Abort if (qid , ins) is not stored.
– Parse sid as (P,V, sid ′).
– Delete the record (qid , ins).
– Send (zk.prove.end, sid , ins) to V .

4.2 Construction ΠNHCD

We describe a construction ΠNHCD that securely realizes the functionality FNHCD.
Our construction uses the non-hiding VC scheme (VC.Setup, VC.Commit, VC.Prove,
VC.Verify, VC.ComUpd, VC.WitUpd) and the functionalities FVC.Setup

CRS , FAUT and
FR

ZK described in Section 4.1. FVC.Setup
CRS is parameterized by the algorithm VC.Setup of

the non-hiding VC scheme.
In the nhcd.setup interface, P1 receives a table Tbl and sends it to P0 by using

FAUT. Both P1 and P0 map Tbl to a vector x and run VC.Commit to get a commitment
com to x. com is used to store Tbl. A position in the vector commitment corresponds
to a position in Tbl, and the value committed to in that position corresponds to the value
stored in Tbl in that position.

In the nhcd.write interface, P1 receives a position i and a value vw and sends them
to P0 by using FAUT. Both P1 and P0 update x and run VC.ComUpd to update the
vector commitment com . If a witness wi is already stored, P1 and P0 run VC.WitUpd
to update it.

In the nhcd.prove interface, P0 (or P1) receives a position i and a value vr , along
with their respective commitments and openings (ccomi , copeni) and (ccomr , copenr ).
If a witness wi for i is not stored, P0 (or P1) run VC.Prove to compute it. Then P0 (or
P1) proves in zero-knowledge that the commitments ccomi and ccomr commit to a
position i and a value vr such that x[i ] = vr , where x is the vector committed in com .



Description of ΠNHCD. Construction ΠNHCD uses a non-hiding VC scheme with algo-
rithms (VC.Setup,VC.Commit,VC.Prove,VC.Verify,VC.ComUpd,VC.WitUpd) and
the ideal functionalities FVC.Setup

CRS , FAUT and FR
ZK. The constant N denotes the size

of the array, and the universe of state values Uv is given by the message space of the
vector commitment scheme. In the following, b ∈ [0, 1].

1. On input (nhcd.setup.ini, sid ,Tbl), P1 and P0 do the following:
– P1 aborts if sid /∈ (P0,P1, sid

′) or if (sid , par , com,x, c1) is already stored.
– P1 aborts if Tbl does not contain N entries of the form [i , v ] or if, for i = 1 to
N , v /∈ Uv .

– P1 sends (crs.get.ini, sid) to FVC.Setup
CRS and receives (crs.get.end, sid , par)

from FVC.Setup
CRS . To compute par , FVC.Setup

CRS runs VC.Setup(1k,N ).
– P1 initializes a counter c1 ← 0 and a vector x such that x[i ] = v for i = 1 to

N , where [i , v ] ∈ Tbl. P1 runs com ← VC.Commit(par ,x).
– P1 stores (sid , par , com,x, c1).
– P1 sets sidAUT ← (P1,P0, sid

′) and sends (aut.send.ini, sidAUT,Tbl) to
FAUT.

– P0 receives (aut.send.end, sidAUT,Tbl) from FAUT.
– P0 aborts if (sid , par , com,x, c0) is already stored.
– P0 sends (crs.get.ini, sid) to FVC.Setup

CRS and receives (crs.get.end, sid , par)

from FVC.Setup
CRS .

– P0 initializes a counter c0 ← 0 and a vector x such that x[i ] = v for i = 1 to
N , where [i , v ] ∈ Tbl. Pb runs com ← VC.Commit(par ,x).

– P0 stores (sid , par , com,x, c0).
– P0 outputs (nhcd.setup.end, sid ,Tbl).

2. On input (nhcd.write.ini, sid , i , vw ), P1 and P0 do the following:
– P1 aborts if (sid , par , com,x, c1) is not stored.
– P1 aborts if i /∈ [1,N ] or if vw /∈ Uv .
– P1 sets c′1 ← c1 + 1.
– P1 sets x′ ← x and x′[i ]← vw .
– P1 computes com ′ ← VC.ComUpd(par , com, i ,x,x′).
– P1 replaces the stored tuple (sid , par , com,x, c1) by (sid , par , com ′,x′, c′1).
– For j = 1 to N , if (sid , j,wj) is stored, P1 computes w ′j ← VC.WitUpd(par ,
wj , j, i ,x[i ],x′[i ]) and replaces (sid , j,wj) by (sid , j,w ′j).

– P1 sets sidAUT ← (P1,P0, sid
′) and sends (aut.send.ini, sidAUT, 〈i , vw , c′1〉)

to FAUT.
– P0 receives (aut.send.end, sidAUT, 〈i , vw , c′1〉) from FAUT.
– P0 aborts if (sid , par , com,x, c0) is not stored.
– P0 aborts if c′1 6= c0 + 1.
– P0 aborts if i /∈ [1,N ] or if vw /∈ Uv .
– P0 sets x′ ← x and x′[i ]← vw .
– P0 computes com ′ ← VC.ComUpd(par , com, i ,x,x′).
– P0 replaces the stored tuple (sid , par , com,x, c0) by (sid , par , com ′,x′, c′1).
– For j = 1 to N , if (sid , j,wj) is stored, P0 computes w ′j ← VC.WitUpd(par ,
wj , j, i ,x[i ],x′[i ]) and replaces (sid , j,wj) by (sid , j,w ′j).



– P0 outputs (nhcd.write.end, sid , i, vw ).
3. On input (nhcd.prove.ini, sid , ccomi , i , copeni , ccomr , vr , copenr ), Pb and P1−b

do the following:
– Pb aborts if (sid , par , com,x, cb) is not stored.
– Pb parses ccomi as (ccom ′i, cparcomi ,COM.Verifyi) and ccomr as (ccom ′r,
cparcomr ,COM.Verifyr).

– Pb aborts if cparcomi 6= cparcomr , or if COM.Verifyi 6= COM.Verifyr, or if
COM.Verifyi is not a ppt algorithm, or if 1 6= COM.Verifyi(cparcomi , ccomi ,
i, copeni), or if 1 6= COM.Verifyr(cparcomr , ccomr , vr , copenr ).

– Pb aborts if i /∈ [1,N ], or if vr /∈ Uv , or if x[i ] 6= vr .
– If (sid , i ,wi) is not stored, Pb runs wi ← VC.Prove(par , i ,x) and stores (sid ,

i ,wi).
– Pb sets wit ← (wi , i , copeni , vr , copenr ).
– Pb sets ins ← (par , com, cparcomi , ccom

′
i, ccom

′
r, cb).

– Pb sends (zk.prove.ini, sid ,wit , ins) to FR
ZK.

– P1−b receives (zk.prove.end, sid , ins) from FR
ZK.

– P1−b aborts if (sid , par , com,x, c1−b) is not stored.
– P1−b parses ins as (par ′, com ′, cparcomi, ccom

′
i, ccom

′
r, cb).

– P1−b aborts if cb 6= c1−b, or if par ′ 6= par , or if com ′ 6= com .
– P1−b sets ccomi ← (ccom ′i, cparcomi,COM.Verifyi) and ccomr ← (ccom ′r,
cparcomi,COM.Verifyi). (COM.Verifyi is part of the description of the rela-
tion R.)

– P1−b outputs (nhcd.prove.end, sid , ccomi , ccomr ).

Theorem 1. ΠNHCD securely realizes FNHCD in the (FVC.Setup
CRS , FAUT, FR

ZK)-hybrid
model if the non-hiding VC scheme (VC.Setup, VC.Commit, VC.Prove, VC.Verify,
VC.ComUpd, VC.WitUpd) is binding.

When P0 or P1 are corrupt, the binding property of the vector commitment scheme
guarantees that the adversary is not able to open the vector commitment to a position
and a value if that value was not previously committed at that position. We analyze in
detail the security of ΠNHCD in Section A.

4.3 Instantiation of Construction ΠNHCD and Efficiency Analysis

We show an instantiation of ΠNHCD based on a non-hiding VC scheme secure under
the DHE assumption, similar to the scheme in [26]. Let G, G̃ and Gt be groups of prime
order p. A map e : G × G̃ → Gt must satisfy bilinearity, i.e., e(gx, g̃y) = e(g , g̃)xy;
non-degeneracy, i.e., for all generators g ∈ G and g̃ ∈ G̃, e(g , g̃) generates Gt; and
efficiency, i.e., there exists an efficient algorithm G(1k ) that outputs the pairing group
setup (p,G, G̃,Gt, e, g , g̃) and an efficient algorithm to compute e(a, b) for any a ∈ G,
b ∈ G̃. We recall the Diffie-Hellman exponent (t-DHE) assumption.

Definition 1 (t-DHE). Let (p,G, G̃,Gt, e, g , g̃) ← G(1k) and α ← Zp. Given (p,G,
G̃,Gt, e, g , g̃) and a tuple (g1, g̃1, . . . , gt, g̃t, gt+2, . . . , g2t) such that gi = g(α

i) and g̃i
= g̃(α

i), for any p.p.t. adversary A, Pr[g(α
t+1) ← A(p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . ,

gt, g̃t, gt+2, . . . , g2t)] ≤ ε(k).



Let k ∈ N denote the security parameter. The scheme works as follows:

VC.Setup(1k, `). Generate groups (p,G, G̃,Gt, e, g , g̃) ← G(1k), pick α ← Zp and
compute (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`), where gi = g(α

i) and g̃i = g̃(α
i). Out-

put par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp).
VC.Commit(par ,x). Let |x| = n ≤ `. Output com =

∏n
j=1 g

x[j]
`+1−j .

VC.Prove(par , i,x). Let |x| = n ≤ `. Output w =
∏n
j=1,j 6=i g

x[j]
`+1−j+i .

VC.Verify(par , com, x, i,w). Output 1 if e(com, g̃i) = e(w , g̃) · e(g1, g̃`)
x, else 0.

VC.ComUpd(par , com, j, x, x′). Output com ′ = com · gx
′−x

`+1−j .

VC.WitUpd(par ,w , i, j, x, x′). If i = j, output w , else w ′ = w · gx
′−x

`+1−j+i .

Theorem 2. This non-hiding VC scheme is correct and binding under the `-DHE as-
sumption. This theorem is proven in Section B.2.

ZK proof for R. We show a ZK proof for the relation R required in ΠNHCD. R involves
proving knowledge of a position i, a value v and a witness w such that the verification
equation e(com, g̃i) = e(w , g)e(g1, g̃`)

v holds. Additionally, it involves proving that
the position i is committed in a commitment ccomi with opening copeni , and the value
v is committed in a commitment ccomr with opening copenr . Because α is secret, the
relation between g̃i = g̃α

i

and i is not efficiently provable. For this reason, we extend
the parameters of the vector commitment scheme with structure preserving signatures
(SPS) that bind i with g̃i. Concretely, we use the SPS scheme in [1] with algorithms
(KeyGen,Sign,VfSig) to sign tuples 〈g i, gsid , g̃i〉, where sid is the session identifier.

VC.Setup(1k, `). Generate groups (p,G, G̃,Gt, e, g , g̃) ← G(1k), pick α ← Zp, and
compute (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`), where gi = g(α

i) and g̃i = g̃(α
i). Com-

pute (sk , pk) ← KeyGen(grp, 2, 1). For i ∈ [1, `], run si ← Sign(sk , 〈g i, g`+1−i,
g̃i〉). Compute additional bases h ← G and h̃ ← G̃. Output the parameters par
= (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`, pk , s1, . . . , s`, h, h̃,M =
Zp,R = Zp).

Let (g , h) be the parameters of the Pedersen commitment scheme. Let (U1, V,W1,
W2, Z) be the public key of the signature scheme. Let (R,S, T ) be a signature on (g i,
gsid , g̃i). Following the notation in [9], we describe the proof as follows.

Ki, copeni , v, copenr , g̃i,w , R, S, T :

ccomi = g ihcopen ∧ ccomr = gvhcopenr ∧ (1)

e(R, V )e(S, g̃)e(g,W1)ie(gsid ,W2)e(g, Z)−1 = 1 ∧ (2)

e(R, T )e(U1, g̃i)e(g, g̃)−1 = 1 ∧ (3)

e(com, g̃i)
−1e(w , g̃)e(g1, g̃`)

v = 1 (4)

Equation 1 proves knowledge of the openings of the Pedersen commitments ccomi

and ccomr . Equation 2 and Equation 3 prove knowledge of a signature (R,S, T ) on a
message 〈g i, gsid , g̃i〉. Equation 4 proves that the value v in ccomr is equal to the value
committed in the position i of the vector commitment com .



Efficiency Analysis. We provide below the efficiency analysis of our construction.
We can conclude that, after setup, the computation and communication costs of the
nhcd.write and nhcd.prove interfaces are constant and independent of the size N of
Tbl, except for the computation cost of a witness wi , which is linear in N . When wi is
stored, it can be updated with constant cost.

Storage Cost. P0 and P1 store the common reference string par , whose size grows
linearly with N . Throughout the protocol execution, in addition to par , P0 and P1

also store the last update of the vector commitment com , the committed vector, and
the witnesses wi for i ∈ [1,N ]. In conclusion, the storage cost is linear in N .

Communication Cost. In the nhcd.setup interface,P1 sends Tbl toP0. The communi-
cation cost grows linearly with N . In the nhcd.write interface, P1 sends a position
and a value to P0. The communication cost is constant. In the nhcd.prove interface,
P0 (resp. P1) sends an instance and a ZK proof to P1 (resp. P0). The size of the
witness and of the instance is constant and independent of N . Therefore, the com-
munication cost of the proof is constant. In conclusion, after the setup phase, the
communication cost is constant.

Computation Cost. In the nhcd.setup interface, P0 and P1 compute the vector com-
mitment com with cost linear with N . In the nhcd.write interface, P0 and P1 up-
date com with constant computation cost. They also update the stored witnesses
wi . Each witness update requires constant computation cost. In the nhcd.prove in-
terface, if a witness wi is not stored, P0 (resp. P1) computes it with cost that grows
linearly with N . However, if wi is stored, the computation cost of the proof is con-
stant and independent of N .

5 Modular Protocol Design with FNHCD

We show how to use FNHCD as building block of a protocol described in the hybrid
model. As a simple example, we describe a two-party protocol between P0 and P1 for
the following task. P1 receives as input a table Tbl and sends it to P0. The table Tbl
consists of N entries of the form [i, v], where i ∈ [1, N ] is the position and v is the
value. P0 receives an input (xi, xv). P0 then has to prove in zero-knowledge that he
evaluates correctly a function f on input (xi, xv) and one of the table entries. Consider
for example the relation R:

R ={(wit , ins) : [i, v] ∈ Tbl ∧ i = xi ∧ y = f(xv, v)}

where the witness is wit = (xi, xv, i, v) and the instance is ins = (y,Tbl). I.e, P0 must
prove that y is the result of evaluating f on input xv and v, where v is the value stored
in the entry [i, v] ∈ Tbl such that i = xi. For simplicity, R does not specify where xi
and xv are stored, i.e. they could be messages in a commitment, ciphertext or signature,
and R could be extended accordingly to show that.

We describe a protocol for this task that uses FNHCD, FNIC and a functionality
FR′

ZK, where R′ is described below.

1. On input Tbl, P1 uses the nhcd.setup interface to send Tbl to FNHCD, which sends
Tbl to P0.



2. On input (xi, xv), P0 takes the entry [i, v] ∈ Tbl such that i = xi and computes
y = f(xv, v).

3. P0 uses the com.commit interface of FNIC on input i to obtain a commitment
ccomi with opening copeni . Similarly,P0 obtains fromFNIC a commitment ccomr

to v with opening copenr .
4. P0 uses the nhcd.prove interface to send (ccomi , i, copeni , ccomr , v, copenr ) to
FNHCD. FNHCD sends ccomi and ccomr to P1.

5. P1 uses the com.validate interface of FNIC to validate the commitments ccomi and
ccomr . Then P1 stores ccomi and ccomr and sends a message to P0 to acknowl-
edge the receipt of the commitments.

6. P0 parses the commitments ccomi and ccomr as (ccom ′i, cparcom,COM.Verify)
and (ccom ′r, cparcom,COM.Verify). P0 sets the witness wit ← (i , copeni , v,
copenr , xi, xv) and the instance ins ← (cparcom, ccom ′i, ccom

′
r, y). P0 uses the

zk.prove interface to send wit and ins to FR′

ZK, where R′ is

R′ ={(wit , ins) : i = xi ∧ y = f(xv, v) ∧
1 = COM.Verify(cparcom, ccomi, i , copeni) ∧
1 = COM.Verify(cparcom, ccomr, v, copenr) }

7. P1 receives ins from FR′

ZK. P1 checks that the commitments in ins are equal to the
stored commitments ccomi and ccomr . If they are equal, the binding property guar-
anteed by FNIC ensures that FNHCD and FR′

ZK received as input the same position
i and value v.

In this protocol, we have divided the proof required by relation R into two parts.
First, FNHCD proves that [i, v] ∈ Tbl, and then FR′

ZK proves that i = xi and y =
f(xv, v). FNIC ensures that both functionalities receive the same input [i, v].

Naturally, it would be possible to describe a non-modular protocol for a proof for
relation R, which would use a non-hiding VC scheme as building block. However, we
think that a modular design has two advantages. First, a modular design allows for a
simple security analysis. A security proof of a protocol described in the hybrid model is
much simpler than a proof that requires reductions to the security properties of different
cryptographic primitives. Moreover, each of the building blocks realizes a simpler task
and thus requires a simpler protocol with a less involved security analysis.

The second advantage applies in particular to the design of ZK proofs. Usually,
when a party in a protocol needs to compute a ZK proof, the relation R involves two
types of statements: statements about where the witness is stored (e.g. [i, v] ∈ Tbl),
and statements about predicates or conditions that are satisfied by the witness (e.g., i =
xi ∧ y = f(xv, v)). Very frequently, in existing protocols, both types of statements
are intertwined in the same relation. Commitment schemes are implicitly used in many
protocols as a zero-knowledge data structure to store witnesses and prove statements
about them. By splitting up the two types of statements with a modular design, we
facilitate the study in isolation of how to create efficient and secure zero-knowledge
data structures. Namely, different constructions for FNHCD can easily be compared in
terms of security and efficiency.



An important feature of FNHCD is that it allows us to prove statements not only
about the values stored but also about the positions where they are stored. Thanks to
that, it supports more involved data structures.FNHCD can be used to store tables where
each entry consists of a tuple of values rather than a single value. To prover that a table
entry is stored in the table, the prover proves statements about the positions where the
values are stored in order to show that they belong to the same entry. Other data struc-
tures can also be considered, by requiring the prover to prove the necessary statements
about the positions where values are stored.

6 Related Work

Accumulators. A cryptographic accumulator [4] allows one to represent a set X suc-
cinctly as a single accumulator value A. To prove that a value x ∈ X , a party computes
a witnessWx whose size is independent ofX . Some accumulator schemes are equipped
with efficient ZK proofs to prove knowledge of Wx such that x ∈ X .

Non-hiding VC schemes are similar to accumulator schemes that use a trusted setup
and are non-hiding [10,3,30,8], i.e., A does not hide X . (Recently, hiding accumula-
tors [14,17] have been proposed.) The instantiation of non-hiding VC schemes based
on the DHE assumption resembles the accumulator scheme in [8]. The main difference
between accumulators and non-hiding VC schemes is that, while accumulators allow us
to commit to a set, non-hiding VC schemes allow us to commit to a vector of messages,
where each message is committed at a specific position. This allows parties to prove
statements about the position i where a value v is stored, which is needed for FNHCD.

Vector Commitments. VC schemes [26,13] can be non-hiding and hiding, and can be
based on different assumptions such as CDH, RSA and DHE. We use a non-hiding VC
scheme based on DHE, which, although based on an assumption that is less standard
than CDH and RSA, has efficiency advantages. A mercurial VC scheme based on DHE
was proposed in [26], and subsequently non-hiding and hiding DHE VC schemes were
used in [24,19,23]. In our instantiation of ΠNHCD, we use a non-hiding VC scheme
based on DHE that is extended with a ZK proof of knowledge of a witness wi to prove
that a value v is stored at position i. For this proof, a signature scheme is used along
with the non-hiding VC scheme.

Polynomial commitments allow a committer to commit to a polynomial and open
the commitment to an evaluation of the polynomial. Polynomial commitments can be
used as vector commitments by committing to a polynomial that interpolates the vector
to be committed. In [21], a construction of polynomial commitments from the SDH
assumption is proposed. The polynomial commitment scheme from SDH has the disad-
vantage that efficient updates cannot be computed without knowledge of the trapdoor.
A further generalization of vector commitments and polynomial commitments are func-
tional commitments [25].

Zero-Knowledge Data Structures. Zero-Knowledge Sets (ZKS) [28] allow a prover P
to commit to a set X and to subsequently prove to a verifier V (non-)membership of
an element x in X . Zero-Knowledge Databases (ZKDB) are similar to ZKS but each



element x ∈ X is associated with a value v, in such a way that a proof that x ∈ X
reveals v to V. Both ZKS and ZKDB are two-party protocols between a prover and a
verifier. Zero-knowledge requires that proofs of (non-)membership reveal nothing else
beyond (non-)membership, not even the set size.

A ZKS with short proofs for membership and non-membership is proposed in [26]
and an updatable ZKDB with short proofs is proposed in [13]. In [21], constructions
for “nearly” ZKS and ZKDB, which do not hide the size of the set or database, are
given. In [18], a construction for zero-knowledge lists (ZKL) is proposed, where a list
is defined as an ordered set. In contrast to our work, existing constructions for ZKS,
ZKDB and ZKL are not updatable, with the exceptions of the ZKDB in [27,13].

The main difference between ZK data structures and our work is that ZK data struc-
tures hide the database content from the verifier, while in our work the database is
public. Another difference is that our database is oblivious in the sense that it provides
ZK proofs about a committed position i and value v, without revealing i or v. In exist-
ing ZK data structures, the prover reveals i and v along with the proof to the verifier.
This property allows our database to be used as building block in privacy-preserving
protocols where i and v must remain hidden from the verifier. As for modular design,
in those works a method to integrate modularly the proposed ZK data structures as
building blocks of other protocols is not given.

Zero-Knowledge Authenticated Data Structures. Authenticated data structures (ADS)
are a three-party protocol between a trusted owner, a trusted client and a server [34].
The owner uploads data to the server. The server receives queries from the client and
answers them. A secure ADS protects data authenticity when the server is adversarial.

Zero-knowledge ADS (ZKADS) provide privacy in addition to authenticity, i.e., the
client does not learn anything about the data structure besides what can be inferred from
the answers to the queries. The data owner is trusted. Most constructions for ZKADS
are not updatable (see [18] and references therein). Recently, an updatable ZKADS
for sets with proofs of membership [31], and an updatable ZKADS for lists, trees and
partially-ordered sets of bounded dimension [16] were proposed.

Our construction differs from ADS and ZKADS in that the prover is not split up
into a trusted data owner and a server. Unlike ZKADS, in our work the content of the
database is revealed to the verifier. Similarly to the case of ZK data structures, existing
ZKADS constructions are not oblivious, i.e., answers to queries are revealed in the
clear, and their use as building block of a protocol is not described.

ZK proofs for large datasets. In most ZK proofs, the computation and communication
cost grow linearly with the size of the witness, which is inadequate for proofs about
datasets of large size N . However, there are techniques that attain costs sublinear in
N . Probabilistically checkable proofs [22] achieve verification cost sublinear in N , but
the cost for the prover is linear in N . In succinct non-interactive arguments of knowl-
edge [15], verification cost is independent of N , but the cost for the prover is still linear
in N . ZK proofs for oblivious RAM programs [29] consist of a setup phase where the
prover commits to the dataset, with cost linear in N for the prover and constant for
the verifier. After setup, multiple proofs can be computed about the dataset with cost
sublinear (proportional to the runtime of an ORAM program) for prover and verifier.



Our construction follows a similar approach to [29], i.e. at setup the table is com-
mitted, and then ZK proofs are computed. The cost at setup is linear inN for prover and
verifier. However, the verification cost of a ZK proof is constant an independent of N .
To compute a ZK proof, only the cost of computing a witness wi is linear in N , but we
note that wi only needs to be computed once and can after that be reused and updated
with cost independent of N . Therefore, computing a ZK proof has amortized constant
cost, which makes our construction a better candidate for proofs about large datasets.
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A Security Analysis of Construction ΠNHCD

To prove that ΠNHCD securely realizes FNHCD, we must show that for any environ-
ment Z and any adversary A there exists a simulator S such that Z cannot distinguish
whether it is interacting withA and the protocol in the real world or with S andFNHCD.
S thereby plays the role of all honest parties in the real world and interacts with FNHCD

for all corrupt parties in the ideal world.
S runs copies of the functionalities FVC.Setup

CRS , FAUT and FR
ZK. When any of the

copies of those functionalities aborts, S implicitly forwards the abortion message to A
if the functionality sends the abortion message to a corrupt party.

In Section A.1, we analyze the security of construction ΠNHCD when P0 is corrupt.
In Section A.2, we analyze the security of construction ΠNHCD when P1 is corrupt.

A.1 Security Analysis of Construction ΠNHCD when P0 is Corrupt

We first describe the simulator S for the case in which P0 is corrupt.

Initialization of S. S does the following:



– S sets c1 ← 0.
– S runs a copy of FVC.Setup

CRS on input (crs.get.ini, sid). When FVC.Setup
CRS sends

(crs.get.sim, sid , qid , par), S sends (crs.get.rep, sid , qid) to FVC.Setup
CRS , which

sends a message (crs.get.end, sid , par).

Honest P1 starts setup. On input the message (nhcd.setup.sim, sid ,Tbl) from func-
tionality FNHCD, S sets sidAUT ← (P1,P0, sid

′) and runs a copy of FAUT on
input (aut.send.ini, sidAUT,Tbl). When FAUT sends (aut.send.sim, sidAUT, qid ,
Tbl), S forwards it to A.

A concludes setup. On input (aut.send.rep, sidAUT, qid) from A, S sends the mes-
sage (nhcd.setup.rep, sid) to FNHCD. When FNHCD sends (nhcd.setup.end, sid ,
Tbl), S runs the copy of FAUT on input (aut.send.rep, sidAUT, qid). When the
copy of FAUT sends (aut.send.end, sidAUT,Tbl), S initializes a vector x such that
x[i ] = v for i = 1 to N , where [i , v ] ∈ Tbl. S runs com ← VC.Commit(par ,x)
and stores (sid , par , com,x, c1). S sends (aut.send.end, sid ,Tbl) to A.

A requests par . On input (crs.get.ini, sid) fromA, S runs a copy of FVC.Setup
CRS on that

input. When the copy of FVC.Setup
CRS sends (crs.get.sim, sid , qid , par), S forwards

that message to A.
A receives par . On input (crs.get.rep, sid , qid) from A, S runs a copy of FVC.Setup

CRS

on that input. When the copy of FVC.Setup
CRS sends (crs.get.end, sid , par), S sends

(crs.get.end, sid , par) to A.
Honest P1 starts a writing operation. On input from functionality FNHCD the mes-

sage (nhcd.write.sim, sid , qid , i, vw ), S sets sidAUT ← (P1,P0, sid
′), takes the

stored tuple (sid , par , com,x, c1), sets c′1 ← c1+1 and runs a copy ofFAUT on in-
put (aut.send.ini, sidAUT, 〈i , vw , c′1〉). When FAUT sends (aut.send.sim, sidAUT,
qid ′, 〈i , vw , c′1〉), S stores (sid , qid , i, vw , c

′
1, qid

′) and forwards that message to
A.

A receives a writing operation. On input the message (aut.send.rep, sidAUT, qid
′)

from A, if (sid , qid , i, vw , c
′
1, qid

′) is stored, S sends (nhcd.write.rep, sid , qid)
to FNHCD. When FNHCD sends (nhcd.write.end, sid , i, vw ), S runs the copy of
FAUT on input the message (aut.send.rep, sidAUT, qid

′). When the copy of FAUT

sends (aut.send.end, sid , 〈i , vw , c′1〉), S takes the stored tuple (sid , par , com,x,
c1), sets x′ ← x and x′[i ]← vw , computes com ′ ← VC.ComUpd(par , com, i ,x,
x′), and replaces the stored tuple (sid , par , com,x, c1) by (sid , par , com ′,x′, c′1).
S sends (aut.send.end, sid , 〈i , vw , c′1〉) to A.

Honest P1 starts a proof. On input from FNHCD the message(nhcd.prove.sim, sid ,
qid , ccomi , ccomr ), S does the following:

– S retrieves the stored tuple (sid , par , com,x, c1).
– S parses ccomi as (ccom ′i, cparcomi ,COM.Verifyi) and ccomr as (ccom ′r,
cparcomr ,COM.Verifyr).

– S sets ins ← (par , com, cparcomi , ccom
′
i, ccom

′
r, c1) and stores (sid , qid ,

ins).
– S sends (zk.prove.sim, sid , qid , ins) to A.

A receives a proof. On input (zk.prove.rep, sid , qid) from A, S does the following:

– S sends an abortion message to A if (sid , qid , ins) is not stored.



– S sends the message (nhcd.prove.rep, sid , qid) to FNHCD and receives the
message (nhcd.prove.end, sid , ccomi , ccomr ) from FNHCD.

– S deletes (sid , qid , ins).
– S sends (zk.prove.end, sid , ins) to A.

A starts a proof. On input (zk.prove.ini, sid ,wit , ins) from A, S runs a copy of FR
ZK

on that input. When the copy of FR
ZK sends (zk.prove.sim, sid , qid , ins), S stores

(sid , qid ,wit , ins) and sends (zk.prove.sim, sid , qid , ins) to A.
Honest P1 receives a proof. On input (zk.prove.rep, sid , qid) from A, S runs a copy

of FR
ZK on that input. When the copy of FR

ZK outputs (zk.prove.end, sid , ins), S
retrieves the stored tuple (sid , qid ,wit , ins) and parses the instance ins as (par ′,
com ′, cparcomi , ccom

′
i, ccom

′
r, c0). S sets the tuples ccomi ← (ccom ′i, cparcomi,

COM.Verifyi) and ccomr ← (ccom ′r, cparcomi,COM.Verifyi). S sends the mes-
sage (nhcd.prove.ini, sid , ccomi , i, copeni , ccomr , vr , copenr ) to the functionality
FNHCD. When FNHCD sends (nhcd.prove.sim, sid , qid , ccomi , ccomr ), S does
the following:

– S retrieves the stored tuple (sid , par , com,x, c1). If c0 6= c1, or if par ′ 6= par ,
or if com ′ 6= com , S sends FNHCD a message that makes FNHCD abort.

– Else, S retrieves the stored tuple (sid , qid ,wit , ins) and parses wit as (wi , i ,
copeni , vr , copenr ). S retrieves the stored tuple (sid , par , com,x, c1). If x[i ]
6= vr , S outputs failure.

– Else, S sends (nhcd.prove.rep, sid , qid) to FNHCD.

Theorem 3. When P0 is corrupt, ΠNHCD securely realizes FNHCD in the (FVC.Setup
CRS ,

FAUT,FR
ZK)-hybrid model if the non-hiding VC scheme with algorithms (VC.Setup,

VC.Commit,VC.Prove,VC.Verify,VC.ComUpd,VC.WitUpd) is binding.

Proof of Theorem 3. We show by means of a series of hybrid games that the environ-
ment Z cannot distinguish the real-world protocol from the ideal-world protocol with
non-negligible probability. We denote by Pr [Game i] the probability that the environ-
ment distinguishes Game i from the real-world protocol.

Game 0: This game corresponds to the execution of the real-world protocol. Therefore,
Pr [Game 0] = 0.

Game 1: Game 1 follows Game 0, except that Game 1 runs an initialization phase
to set a counter c1 and the parameters par . Game 1 stores a tuple (sid , par , com,
x, c1) at setup and updates that tuple each time P1 sends a valid write operation.
These changes do not alter the view of the environment. Therefore, |Pr [Game 1]−
Pr [Game 0]| = 0.

Game 2: Game 2 follows Game 1, except that, whenP1 sends a proof, Game 2 creates
the messages (zk.prove.sim, sid , qid , ins) and (zk.prove.end, sid , ins) without in-
voking FR

ZK. These changes do not alter the view of the environment. Therefore,
|Pr [Game 2]− Pr [Game 1]| = 0.

Game 3: Game 3 follows Game 2, except that, when the adversary sends a valid proof
with witness wit and instance ins , Game 3 outputs failure if the values i and vr
in the witness are such that x[i ] 6= vr, where x[i ] is in the stored tuple (sid , par ,
com,x, c1). The probability that Game 3 outputs failure is bound by the following
claim.



Theorem 4. Under the binding property of the non-hiding VC scheme, we have
that |Pr [Game 3]− Pr [Game 2]| ≤ Advbin−vcA .

Proof of Theorem 4. We construct an algorithm B that, given an adversary that
makes Game 3 fail with non-negligible probability, breaks the binding property
of the vector commitment scheme with non-negligible probability. B behaves as
Game 3 with the following three modifications:

– When the challenger sends the parameters par , B stores par as common refer-
ence string in the copy of FVC.Setup

CRS .
– When the adversary sends a valid proof with witness wit = (wi , i , copeni , vr ,

copenr ) and instance ins = (par ′, com ′, cparcomi , ccom
′
i, ccom

′
r, c0) such

that the values i and vr in the witness fulfill x[i ] 6= vr , where x[i ] is in
the stored tuple (sid , par , com,x, c1), B runs w ′i ← VC.Prove(par , i ,x) and
sends (com, i , vr ,x[i ],wi ,w

′
i ) to the challenger.

This concludes the proof of Theorem 4.

The distribution of Game 3 is identical to our simulation. This concludes the proof of
Theorem 3.

A.2 Security Analysis of Construction ΠNHCD when P1 is Corrupt

We describe the simulator S for the case in which P1 is corrupt.

Initialization of S. S does the following:

– S sets c0 ← 0.
– S runs a copy of FVC.Setup

CRS on input (crs.get.ini, sid). When FVC.Setup
CRS sends

the message (crs.get.sim, sid , qid , par), S sends the message (crs.get.rep, sid ,

qid) to FVC.Setup
CRS , which sends a message (crs.get.end, sid , par).

A requests par . S proceeds as in the case where P0 is corrupt.
A receives par . S proceeds as in the case where P0 is corrupt.
A starts setup. On input (aut.send.ini, sidAUT,Tbl) from A, S runs a copy of FAUT

on input that message. When the copy of FAUT sends (aut.send.sim, sidAUT, qid ,
Tbl), S forwards that message to A.

Honest P0 receives setup. On input the message (aut.send.rep, sidAUT, qid) fromA,
S runs a copy of FAUT on input that message. When the copy of FAUT sends
(aut.send.end, sid ,Tbl), S sends an abortion message if (sid , par , com,x, c0) is
already stored. Otherwise S initializes a vector x such that x[i ] = v for i = 1 to
N , where [i , v ] ∈ Tbl, runs com ← VC.Commit(par ,x), and stores (sid , par ,
com,x, c0). S sends (nhcd.setup.ini, sid ,Tbl) to FNHCD. When FNHCD sends
(nhcd.setup.sim, sid ,Tbl), S sends (nhcd.setup.rep, sid) to FNHCD.

A starts writing operation. On input (aut.send.ini, sidAUT, 〈i , vw , c′1〉) from A, S
runs a copy of FAUT on input that message. When the copy of FAUT sends the
message (aut.send.sim, sidAUT, qid , 〈i , vw , c′1〉), S forwards that message to A.



A receives a writing operation. On input (aut.send.rep, sidAUT, qid) fromA, S runs
a copy of FAUT on input that message. When the copy of FAUT sends the message
(aut.send.end, sid , 〈i , vw , c′1〉), S sends an abortion message if (sid , par , com,x,
c0) is not stored, or if c′1 6= c0 +1, or if i /∈ [1,N ], or if vw /∈ Uv . Otherwise S sets
x′ ← x and x′[i ] ← vw , computes com ′ ← VC.ComUpd(par , com, i ,x,x′), and
replaces the stored tuple (sid , par , com,x, c0) by (sid , par , com ′,x′, c′1). S sends
the message (nhcd.write.ini, sid , i, vw ) to FNHCD. When FNHCD sends the mes-
sage (nhcd.write.sim, sid , qid , i, vw ), S sends the message (nhcd.write.rep, sid ,
qid) to FNHCD.

Honest P0 starts a proof. S proceeds as in the case where P0 is corrupt, with the roles
of P0 and P1 exchanged.

A receives a proof. S proceeds as in the case where P0 is corrupt, with the roles of P0

and P1 exchanged.
A starts a proof. S proceeds as in the case where P0 is corrupt, with the roles of P0

and P1 exchanged.
Honest P0 receives a proof. S proceeds as in the case where P0 is corrupt, with the

roles of P0 and P1 exchanged.

Theorem 5. When P1 is corrupt, ΠNHCD securely realizes FNHCD in the (FVC.Setup
CRS ,

FAUT,FR
ZK)-hybrid model if the non-hiding VC scheme with algorithms (VC.Setup,

VC.Commit,VC.Prove,VC.Verify,VC.ComUpd,VC.WitUpd) is binding.

The proof of Theorem 5 is very similar to the proof of Theorem 3 in Section A.1.
When honest P0 computes a proof, S sets the messages (zk.prove.sim, sid , qid , ins)
and (zk.prove.end, sid , ins) without invoking FR

ZK, but these changes do not alter the
view of the environment. When the adversary computes a proof, the binding property
of the vector commitment scheme ensures that the position and the value committed in
ccom ′i and ccom ′r are in the vector committed in the vector commitment com .

B Security for Non-Hiding Vector Commimtments

B.1 Security Definition for Non-Hiding Vector Commitments

Definition 2. A non-hiding vector commitment scheme must be correct and binding [12].

Correctness. Correctness requires that for par $←− VC.Setup(1k, `), x
$←− (x[1], . . . ,

x[n]) ∈ Mn, com ← VC.Commit(par ,x), i $←− [1, n] and w ← VC.Prove(par , i,
x), VC.Verify(par , com,x[i], i,w) outputs 1 with probability 1.

Binding. The binding property requires that no adversary can output a vector commit-
ment com , a position i ∈ [1, `], two values x and x′ and two respective witnesses
w and w ′ such that VC.Verify accepts both, i.e., for ` polynomial in k:

Pr

par
$←− VC.Setup(1k, `); (com, i, x, x′,w ,w ′)

$←− A(par) :
1 = VC.Verify(par , com, x, i,w) ∧ x 6= x′ ∧
1 = VC.Verify(par , com, x′, i,w ′) ∧ i ∈ [1, `] ∧ x, x′ ∈M

 ≤ ε(k) .



B.2 Security Analysis of the DHE Non-Hiding Vector Commitment Scheme

Theorem 6. The non-hiding vector commitment scheme is correct and binding under
the `-DHE assumption.

Proof. Correctness can be checked as follows:

e(com, g̃i)/e(w , g̃) =

=
e(g

∑n
j=1 x[j](α`+1−j), g̃(α

i))

e(g(
∑n

j=1,j 6=i x[j](α
`+1−j+i)), g̃)

=
e(g(

∑n
j=1 x[j](α`+1−j+i), g̃)

e(g(
∑n

j=1,j 6=i x[j](α
`+1−j+i)), g̃)

= e(g , g̃)x[i](α
`+1)

= e(g1, g̃`)
x[i] .

We show that this vector commitment scheme fulfills the binding property under
the `-DHE assumption. Given an adversary A that breaks the binding property with
non-negligible probability ν, we construct an algorithm T that breaks the `-DHE as-
sumption with non-negligible probability ν. First, T receives an instance (e,G, G̃,
Gt, p, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) of the `-DHE assumption. T sets par ←
(p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) and sends par to A. A returns
(com, i, x, x′,w ,w ′) such that VC.Verify(par , com, x, i,w) = 1, VC.Verify(par , com,
x′, i,w ′) = 1, i ∈ [1, `], x, x′ ∈M, and x 6= x′. T computes g`+1 as follows:

e(w , g̃)e(g1, g̃`)
x = e(w ′, g̃)e(g1, g̃`)

x′

e(w/w ′, g̃) = e(g1, g̃`)
x′−x

e((w/w ′)1/(x
′−x), g̃) = e(g1, g̃`)

e((w/w ′)1/(x
′−x), g̃) = e(g`+1, g̃) .

The last equation implies that g`+1 = (w/w ′)1/(x
′−x). T returns (w/w ′)1/(x

′−x) as a
solution for the `-DHE problem.
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