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ABSTRACT. Let G be a finitely generated multiplicative subgroup of Q× having rank r. The
ratio between nr and the Kummer degree [Q(ζm,

n
√
G) : Q(ζm)], where n divides m, is

bounded independently of n and m. We prove that there exist integers m0, n0 such that the
above ratio depends only on G, gcd(m,m0), and gcd(n, n0). Our results are very explicit and
they yield an algorithm that provides formulas for all the above Kummer degrees (the formulas
involve a finite case distinction).

1. INTRODUCTION

The aim of this paper is developing a theory that allows to explicitly compute the degree of
Kummer extensions. Let G be a finitely generated multiplicative subgroup of Q× having pos-
itive rank r and, without loss of generality, not containing−1. We are interested in the Kummer
extension

(1.1)
[
Q
(
ζM ,

N
√
G
)
: Q(ζM )

]
with N |M ,

where ζM is a root of unity of orderM , and where we are adding theN -th roots of all elements
of G. The maximal possible value for the Kummer degree (1.1) is N r, and in general this
degree is a divisor of N r. It is known (see [4, Theorem 3.1] for a direct proof) that the ratio
betweenN r and the Kummer degree (1.1) is bounded independently ofN andM . We interpret
this ratio as the failure of maximality for the Kummer degree.

We prove that there exist explicitly computable integersM0, N0 such that the failure of maxim-
ality for the Kummer degree only depends onM andN through gcd(M,M0) and gcd(N,N0).
We also present a strategy to provide formulas for the Kummer degree in (1.1): the input is the
groupG, and the output are formulas for allM,N with a finite case distinction. This algorithm
has been implemented in Sagemath by Tronto. Notice that the computation of one single de-
gree (i.e. fixing the parameters M,N and with M = N ) has also been obtained by Palenstijn
in his thesis [2] with a different method (namely with the theory of entanglement groups due
to Lenstra).

Let us now illustrate why the Kummer degree fails to be maximal. We may suppose without
loss of generality that N := `e for some prime number `. We distinguish two reasons for the
failure of maximality for the Kummer degree, namely the `-adic failure and the adelic failure.
The `-adic failure is due to divisibility properties involving the number `. For example, if
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G = 〈5`〉, then for all e > 1 we have[
Q
(
ζ`e ,

`e
√
5`
)
: Q(ζ`e)

]
= `e−1 .

The adelic failure is due to the fact that the square root of any rational number is contained in
some cyclotomic field. For example, if G = 〈5〉, we need to take into account that

√
5 lies in

Q(ζ5): [
Q
(
ζM ,

N
√
5
)
: Q(ζM )

]
=

{
N, if N is odd or 5 -M
N/2, otherwise.

The structure of the paper is as follows. In Section 2 we introduce the notation that is used in
the rest of the paper, and in particular we write A`(N) for the `-adic failure, and B(M,N) for
the adelic failure, and we consider the Kummer failure C(M,N) (see also Theorem 2.1 and
(2.2)), which is

C(M,N) :=
N r[

Q
(
ζM ,

N
√
G
)
: Q(ζM )

] = B(M,N) ·
∏
`|N

A`(N) .

Notice that knowing C(M,N) for every M,N with N | M is equivalent to knowing the
Kummer degrees that we are interested in. Also notice that the assumption that G is torsion-
free is not really necessary (see Remark 2.5).

Section 3 is devoted to studying the `-adic failure A`(N) for all odd prime numbers ` (notice
that it equals 1 for all but finitely many primes `). The 2-adic failure A2(N) is studied in
Section 4. The adelic failureB(M,N) is more complicated and is studied in the following two
sections. Then in Section 7 we prove in particular the following result:

Theorem 1.1. There are integers M0 and N0, depending only on G, such that for all in-
tegers N,M with N |M , the Kummer failure C(M,N) depends only on gcd(M,M0) and on
gcd(N,N0).

Finally, the last section is devoted to examples that give an insight on the case distinction in
our results.

2. THE FAILURE OF MAXIMALITY FOR KUMMER EXTENSIONS

We make use of the following standard notation for any positive integers N,M and any prime
number `: we denote by ζM a primitive M -th root of unity; v`(N) is the `-adic valuation
of N ; (N,M) or gcd(N,M) is the greatest common divisor of N and M , while [N,M ] or
lcm(M,N) is the least common multiple; for n > 1 we write `n ‖ N to mean v`(N) = n.

Let G be a finitely generated and torsion-free subgroup of Q× of positive rank r. We denote
the M -th cyclotomic field by QM := Q(ζM ) and, for N | M , the N -th Kummer extension of
QM related to G by QM,N := QM ( N

√
G).

Theorem 2.1 (see [4, Theorem 3.1] for a direct proof). Let G be a finitely generated and
torsion-free subgroup of Q× of positive rank r. For all integers M,N > 1 with N | M the
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Kummer failure

C(M,N) :=
N r

[QM,N : QM ]

is bounded independently of M,N .

Using arguments of elementary field theory and considering the prime factorization N =∏
` `

n, where n = v`(N), we can write

C(M,N) =
∏
`|N

`nr

[QM,`n : QM ]
=
∏
`|N

`nr

[Q`n,`n : Q`n ]
·
[Q`n,`n : Q`n ]

[QM,`n : QM ]
.

We then decompose the Kummer failure:

Definition 2.2. Let ` be a prime number. Let N > 1 with v`(N) = n. The `-adic failure
A`(N) at N is defined as

A`(N) := C(`n, `n) =
`nr

[Q`n,`n : Q`n ]
.

Notice that the integer A`(N) is a power of ` that depends on N only through its `-adic valu-
ation.

Definition 2.3. Let N > 1 with v2(N) = n, and let M > 1 with N |M . The adelic failure at
M,N is defined as the ratio

B(M,N) :=
[Q2n,2n : Q2n ]

[QM,2n : QM ]
.

Notice that the integer B(M,N) is a power of 2, and that we have

(2.1) B(M,N) = [Q2n,2n ∩QM : Q2n ] .

The ratio [Q`n,`n : Q`n ]/[QM,`n : QM ] equals 1 if ` is odd by [4, Lemma 3.5], so that we have

(2.2) C(M,N) = B(M,N) ·
∏
`|N

A`(N) .

Lemma 2.4 (cf. [4, Lemmas 3.2, 3.5]). Let ` be a prime number.

(1) The `-adic failure A`(N) is bounded independently of N . More precisely, there is an
integer n` > 0 (which depends only on G and `) such that for every N > 1 we have
A`(N) | `n` . The integer n` equals 0 for all but finitely many primes `.

(2) The adelic failure B(M,N) is bounded independently of M,N . More precisely, for
all M,N > 1 with N |M , we have B(M,N) | 2r, where r is the rank of G.

Notice that by Corollary 7.3 we have the following stronger statements:

(1) Let ` be a prime number. There is an integer α` such that A`(N) = α` for all N with
v`(N) > c`, where c` is some integer depending only on ` and G. We call α` the total
`-adic failure. The integer α` is a power of `, and we have α` = 1 for all but finitely
many primes `.
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(2) There is an integer β such that B(M,N) = β for all M,N with N |M , M0 |M and
N0 | N , where M0 and N0 are some integers depending only on G. We call β the total
adelic failure. In particular, β is a power of 2 and we have

β = [Q2n,2n ∩Q∞ : Q2n ]

for all sufficiently large n, where Q∞ is the compositum of all cyclotomic fields.

Notice that A`(`
n) is non-decreasing in n, and in particular we have α` = maxN A`(N).

Conversely, in general β cannot be expressed as the maximum value of B(M,N) over M,N .
For example, taking G = 〈2〉 and M = N = 2n, the right-hand side of (2.1) is 2 if n = 1, 2,
and it is 1 for n > 3 (

√
2 ∈ Q8 gives rise to a 2-adic failure instead).

In view of (2.2) we also define the total Kummer failure for G by

C0 := β ·
∏
`

α`,

where the product runs over all prime numbers `. In fact, the integerC0 is such thatC(M,N) =
C0 for all M,N with N |M , M0 |M and N0 | N , where M0 and N0 depend only on G.

Remark 2.5. To deal with a finitely generated subgroup G′ of Q× which is not torsion-free,
write G′ = 〈−1〉 ×G, where G is torsion-free. For M,N with N |M we have[

QM

( N
√
G′
)
: QM

]
=
[
Q[M,2N ]

( N
√
G
)
: Q[M,2N ]

]
·
[
Q[M,2N ] : QM

]
.

Therefore, the Kummer degree for G′ is the product of a Kummer degree for the torsion-free
group G times ϕ([M, 2N ])/ϕ(M) ∈ {1, 2}.

3. THE `-ADIC FAILURE FOR ` ODD

Let G be a finitely generated and torsion-free subgroup of Q× of rank r and let ` be an odd
prime number. In order to compute the `-adic failure A`(N), we show how to determine the
degrees [

Q`m
( `n
√
G
)
: Q`m

]
for all integers m > n > 1 using the results from [1, Section 3.3] which we recall in Proposi-
tion 3.1.

An element of Q× is called strongly `-indivisible if it is not an `-th power in Q×. We call
a1, . . . , ar ∈ Q× strongly `-independent if ae11 · · · aerr is strongly `-indivisible whenever the
integers e1, . . . , er are not all divisible by `. We now specialize results of [1] for the rational
numbers.

There is a basis g1, . . . , gr of G, which we call an `-good basis, such that

gi = b`
di

i

holds for some strongly `-independent elements b1, . . . , br of Q×, and for some non-negative
integers di. We refer to the tuple (d1, . . . , dr) as the d-parameters for the `-divisibility of G.
Up to reordering the elements of the basis, we choose the d-parameters to be a non-decreasing
sequence: then they are the same for every `-good basis of G.
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Proposition 3.1 (cf. [1, Example 21]). LetG be a finitely generated and torsion-free subgroup
of Q×. Let ` be an odd prime, and let d1, . . . , dr be the d-parameters for the `-divisibility of
G. Then we have

v`
(
[Q`m,`n : Q`m ]

)
=

r∑
i=1

max(n− di, 0) .

In particular, the total `-adic failure is α` = `
∑

i di .

Since the d-parameters for the `-divisibility of G are explicitly computable (cf. [1, Section
6.1]) , so is the `-adic failure for each odd prime `. The challenge is here computing the `-adic
failure for all primes ` at once with a finite procedure. We consider a basis g1, . . . , gr of G,
and we write the prime factorization of each generator gi as

gi = ±
s∏

j=1

p
eij
j

for some integers eij ∈ Z, where pj runs through the finitely many primes appearing in the
factorizations of the gi’s. We call (eij), which is an r × s matrix with r 6 s, the matrix of the
exponents.

Lemma 3.2. Let ` be an odd prime number and let (eij) be the matrix of the exponents of a
basis of G. If that matrix modulo ` has maximal rank, then the basis is an `-good basis of G
and the d-parameters for the `-divisibility are all zero.

Proof. The matrix of the exponents has maximal rank r over Z/`Z if and only if the vectors
vi = (ei,1, . . . , ei,s) are linearly independent over Z/`Z. This means that if

∑
i xivi ≡ 0 mod

` for some integers xi, then ` | xi for every i. So the linear independence of the vectors vi is
equivalent to the following condition: if there are some integers xi such that

g :=
∏
i

gxi
i = ±

∏
j

p
∑

i xieij
j

with ` |
∑

i xieij for all j, so that g is an `-th power in Q, then ` | xi for all i. By definition,
this means that the gi’s are strongly `-independent, which implies that the d-parameters are all
zero. �

The matrix of the exponents modulo ` has maximal rank r for all but finitely many odd primes
`, and the set of exceptions is easily computable. In particular, for all but finitely many primes
` the d-parameters are all zero, which gives

[Q`m,`n : Q`m ] = `n for all m > n > 1

by Proposition 3.1. Now consider one of the remaining odd primes `. We can apply the
algorithm described in [1, Section 6.1] to compute an `-good basis for G and the d-parameters
for the `-divisibility. Applying Proposition 3.1 we can then compute A`(N) for every N .
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4. THE 2-ADIC FAILURE

Let G be a finitely generated and torsion-free subgroup of Q× of rank r. In this section we
show how to compute the degrees [

Q2m
( 2n
√
G
)
: Q2m

]
for all integers m > n > 1. In Theorem 4.2 we recall from [1, Section 3.3] parametric
formulas for these degrees: form > 2 we can work over Q4 and apply the formula (4.2), while
for m = n = 1, we can make use of Eq. (4.3).

Let K be either Q× or Q×4 . An element of K is called strongly 2-indivisible in K if it is not
a square in K× times a root of unity in K. Elements of K× are strongly 2-independent if the
product of any nonempty subset of them is strongly 2-indivisible. We recall results of [1] for
K.

We consider a finitely generated and torsion-free subgroup G of K× and a basis g1, . . . , gr of
G. We can write

(4.1) gi = ζ2hi · b
2di
i

for some strongly 2-indivisible elements b1, . . . , br of K×, for some non-negative integers di
and for some roots of unity ζ2hi in K of order 2hi . We refer to bi as the strongly 2-indivisible
part of gi.

(1) We call g1, . . . , gr a 2-good basis of G if the bi’s are strongly 2-independent. Recall
from [1, Theorem 14] that a 2-good basis of G always exists.

(2) For a 2-good basis ofG, we refer to the tuple (d1, . . . , dr;h1, . . . , hr) as the parameters
for the 2-divisibility ofG inK. We call d1, . . . , dr the d-parameters and h1, . . . , hr the
h-parameters. Up to reordering the elements of the basis, we choose the d-parameters
to be a non-decreasing sequence. Then the d-parameters are the same for every 2-good
basis.

(3) Given a basis of G written as in (4.1), the following are equivalent:
(a) The strongly 2-indivisible parts b1, . . . , br are strongly 2-independent.
(b) The sum

∑
i di is maximal (among all possible bases for G).

(c) The strongly 2-indivisible parts b1, . . . , br generate a torsion-free subgroup ofK×

of rank r and whose d-divisibility parameters are all zero.

Notice that the parameters for the 2-divisibility ofG are explicitly computable by the algorithm
described in [1, Section 6.1].

Remark 4.1. Let G be a finitely generated and torsion-free subgroup of Q×, and suppose that
G contains negative elements. Then there is a 2-good basis of G such that exactly one of the
generators is negative. Indeed, consider any 2-good basis. If g is one of the negative generators
with the highest d-parameter, then we can simply multiply all other negative generators by g
(notice that we do not decrease their 2-divisibility).

Theorem 4.2 ([1, Theorem 18, Lemma 19]). Let G be a finitely generated and torsion-free
subgroup of Q× of rank r. Let m > n be positive integers.
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• If m > 2, we have

(4.2) v2

([
Q2m

( 2n
√
G
)
: Q2m

])
= max{hi + ni : 1 6 i 6 r} ∪ {m} −m+ rn−

r∑
i=1

ni ,

where ni = min(n, di) and (d1, . . . , dr;h1, . . . , hr) are the parameters for the 2-
divisibility of G in Q4.
• If m = n = 1, we have

(4.3)
[
Q
(√
G
)
: Q
]
= e

[
Q4

(√
G
)
: Q4

]
,

where e = 2 if G contains minus a square in Q× and e = 1 otherwise.

Notice that to compute the divisibility parameters of G over Q4 one only needs to take into
account that, up to squares in Q×, only the elements ±2 are strongly 2-indivisible over Q but
not over Q4. Nevertheless, in [5] we show in a more general setting that one can compute the
degrees in (4.2) using the parameters over Q and certain properties of G.

5. THE INTERSECTION BETWEEN KUMMER EXTENSIONS AND CYCLOTOMIC FIELDS

This section is devoted to studying the intersection

Q2m
( 2n
√
G
)
∩Q∞ ,

where n 6 m are positive integers, and where Q∞ denotes the compositum of all cyclotomic
fields.

Notation. If {gi} is a basis of G, then we write gi = gi,di to display the d-parameter for the
2-divisibility of gi in Q.

Firstly we deal with the case G ⊆ Q×+.

Theorem 5.1. Let G be a finitely generated and torsion-free subgroup of Q× of positive rank.
Suppose that G contains only positive elements. Then for every 2-good basis {gi,di} we have

(5.1) Q2m,2n ∩Q∞ = Q2m

(
g
1/2di+1

i,di
: 0 6 di 6 n− 1

)
for all positive integers m > n. Writing gi,di = b2

di

i , where the bi’s are strongly 2-independent
positive rational numbers, we then have

(5.2) Q2m,2n ∩Q∞ = Q2m

(√
bi : 0 6 di 6 n− 1

)
.

Proof. Notice that (5.2) is an immediate consequence of (5.1). The inclusion ⊇ in (5.1) holds
because the elements generating the field on the right-hand side lie in 2n

√
G, and they can be

expressed as the square root of some rational number times a root of unity of order dividing
2n.

Now we prove the inclusion ⊆ in (5.1). The left-hand side of (5.1) is a finite abelian exten-
sion of Q2m of exponent dividing 2n and hence by classical Kummer theory it is of the form
Q2m(H

1/2n), where H is a subgroup of Q×2m such that HQ×2
n

2m ⊆ GQ×2
n

2m . Therefore it is
sufficient to determine which 2n-th roots of elements of G lie in Q∞.
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The 2n-th root of a generator gi,di with di > n − 1 lies in the field on the right-hand side, so
we may suppose that n > 2 and reduce to study the elements of the form

g =
∏
i∈J0

gfii,0
∏
i∈J1

gfii,1 · · ·
∏

i∈Jn−2

gfii,n−2 ,

where Jd consists of the indices i such that the generator gi,di has divisibility parameter di =
d. Analogously, we may restrict to consider exponents fi that are positive integers such that
v2(fi) + di < n− 1. We are left to show that no such element has a 2n-th root which lies in a
cyclotomic field. We may rewrite

g =
∏
i

beii

such that v2(ei) < n− 1, and we conclude by the following Lemma. �

Lemma 5.2. Let b1, . . . , br be strongly 2-independent elements of Q×. If n > 2, then no 2n-th
root of a product of the form

g =
∏
i

beii with v2(ei) < n− 1 ∀i

belongs to a cyclotomic field.

Proof. For n = 2 we know that the product g, having odd exponents, is strongly 2-indivisible
in Q× and hence its fourth root does not lie in a cyclotomic field (which is an abelian extension
of Q) by [6, Theorem 2] (see also [4, Theorem 3.3]). Now suppose that n > 3. If v2(ei) = 0
for some index i we may reason as above, so suppose that all exponents ei are even and write
√
g =

∏
i b

ei/2
i where v2(ei/2) < n−2. The result for n−1 applied to

√
g gives that no 2n−1-

th root of this element belongs to a cyclotomic field, so we may conclude by induction. �

Theorem 5.3. Let G be a finitely generated and torsion-free subgroup of Q× of positive rank.
Suppose that G contains negative elements, and consider a 2-good basis {gi,di} such that
exactly one of the generators, say gj,x, is negative (cf. Remark 4.1). Then for all positive
integers m > n we have

(5.3) Q2m,2n ∩Q∞ = Q2v

(
g
1/2di+1

i,di
: 0 6 di 6 n− 1

)
,

where v = m if n > x+ 1, and v = max(m,n+ 1) if n 6 x.

Writing gi,di = ±b2dii , where the bi’s are strongly 2-independent positive rational numbers
(and where the sign is negative only for i = j), we have

(5.4) Q2m,2n ∩Q∞ = Q2v

(√
bi : 0 6 di 6 n− 1

)
,

if n 6= x+ 1, while for n = x+ 1 we have

(5.5) Q2m,2n ∩Q∞ = Q2m

(
ζ2x+2

√
bj ,
√
bi : 0 6 di 6 n− 1, i 6= j

)
.

Proof. First notice that (5.4) and (5.5) are equivalent to (5.3): for (5.4) with x 6 n this is
because we take the root of bj rather than that of gj , the ratio being a root of unity in Q2v .

The inclusion⊇ in (5.3) is similar to Theorem 5.1 and it is clear if one considers that, if n 6 x,
the 2n-th root of gj,x is a rational number times ζ2n+1 .
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Now we prove the inclusion ⊆. As in the proof of Theorem 5.1 we are left to detect which
2n-th roots of the elements of G are contained in a cyclotomic field.

If n = x+1, then the 2n-th root of the negative generator lies in a cyclotomic field and it equals
ζ2x+2

√
bj . The presence of gj in the expression of an element of G as a product of generators

does not change whether its 2n-th root lies in a cyclotomic field. So again we may reduce to
Theorem 5.1 to prove the inclusion ⊆ in (5.5).

If n > x+2, then the sign of an element of G does not influence whether the 2n-th root lies in
a cyclotomic field and we can proceed as in Theorem 5.1.

If n 6 x, then the 2n-th root of the negative generator only contributes by a root of unity ζ2n+1

and hence the presence of the negative generator in an expression for g ∈ G does not matter.
Again we may proceed as in Theorem 5.1. �

Remark 5.4. Consider the fields in (5.2), (5.4), and (5.5). To study the intersection on the left-
hand side we may suppose w.l.o.g. (up to squares in Q×) that the bi’s are positive squarefree
integers. The smallest cyclotomic field containing

√
bi is then Qbi if bi ≡ 1 mod 4, and Q4bi

otherwise. Let M := lcm{bi}, where i runs over the indices such that 1 6 di 6 n − 1 and
gi,di > 0.

(1) The smallest cyclotomic field containing (5.2) is Q2mM if bi ≡ 1 mod 4 for all 1 6
di 6 n− 1, and Q[2m,4M ] otherwise.

(2) If n 6 x, then the smallest cyclotomic field containing (5.4) is Q[2v ,M ] if bi ≡ 1 mod 4
for all 1 6 di 6 n− 1, and Q[2v ,4M ] otherwise.

(3) If n > x + 1, then the smallest cyclotomic field containing (5.4) is Q[2m,M,bj ] if bi ≡
1 mod 4 for all 1 6 di 6 n− 1, and Q[2m,4M,bj ] otherwise.

(4) Now consider the field (5.5), and let b := ζ2x+2

√
bj .

• If x = 0, then the smallest cyclotomic field containing b =
√
−bj is Qbj if −bj ≡

1 mod 4, and Q4bj otherwise.
• If x > 1 and 2 - bj , then the smallest cyclotomic field containing b is Q2x+2bj .
• If x = 1 and 2 | bj , then the smallest cyclotomic field containing b = ζ8

√
bj is

Q2bj , as ζ8
√
2 = ζ4 + 1.

• If x > 1 and 2 | bj , then the smallest cyclotomic field containing b is Q2x+1bj

because Q8(ζ2x+2

√
2) = Q2x+2 (recall that

√
2 ∈ Q8).

Hence in each of these cases the smallest cyclotomic field containing the field (5.5) is
given by composing the above cyclotomic fields with QM or Q4M (according to the
other bi’s) and with Q2m .

6. THE ADELIC FAILURE

In this section we show how to compute the degrees B(M,N) for M,N with N | M (see
(2.1)). Set n := v2(N). We begin with two important remarks whose proof is straight-forward
and is left to the reader:
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Remark 6.1. Let G be as in Theorem 5.1. We use the same notation, and in particular each
generator of G is written as gi = b2

di

i . Let m > n > 1 and T > 1. Let

S := {bi : 0 6 di 6 n− 1} ,

C :=

{
y ∈ Z : y ≡

∏
i

beii mod Q×2 , bi ∈ S , ei ∈ {0, 1} , y squarefree

}
,

and define H as the following subgroup of Q×:

• if 8 | T , then H = 〈y ∈ C : y | T 〉,
• if 4 ‖ T , then H = 〈y ∈ C : y | T , 2 - y〉,
• if 4 - T , then H = 〈y ∈ C : y | T , y ≡ 1 mod 4〉.

That is, the generators y for H are exactly those y ∈ C such that
√
y ∈ QT . In particular we

have that Q(
√
H) ⊆ QT . We then have

Q2m,2n ∩QT = Q2w
(√
H
)
,

where w := min(m, v2(T )).

Remark 6.2. Let G be as in Theorem 5.3, and keep the same notation. Let m > n > 1 and
T > 1.

(1) If n 6 x, define S , C and H as in Remark 6.1. Then we have

Q2m,2n ∩QT = Q2w
(√
H
)
,

where w := min(v, v2(T )).
(2) If n > x + 2, or if n = x + 1 and m > n + 1, define S, C and H as in Remark 6.1

(notice that bj ∈ S). Then we have

Q2m,2n ∩QT = Q2w
(√
H
)
,

where w := min(m, v2(T )).
(3) If m = n = x+ 1, consider (5.5).
• If n = 1, then

√
−bj can be treated as the other bi’s. More precisely, we let S be as

in Remark 6.1, but we replace bj by −bj . Define C and H as before. Then we have

Q2m,2n ∩QT = Q
(√
H
)
.

• If n > 2 and 2n+1 - T , or if n = 2 and 4 - T , define

(6.1) S := {bi : gi > 0, 0 6 di 6 n− 1} ,
and C and H analogously to the previous remark. Then we have

Q2m,2n ∩QT = Q2w
(√
H
)
,

where w := v2(T ).
• If n = 2 and 4 ‖ T , define S as in (6.1), and C and H analogously to Remark 6.1.
Set

(6.2) C′ := {z ∈ Z : z ≡ bjy mod Q×2, y ∈ C, z squarefree} ,

H ′ :=
〈
ζ4z : z ∈ C′, z even,

z

2
| T
〉
.
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Then we have
Q2m,2n ∩QT = Q4

(√
〈H,H ′〉

)
.

• If n > 2 and 2n+1 | T , define S as in (6.1), C and H as in Remark 6.1, C′ as in (6.2),
and set

H ′ :=
〈
ζ2nz : z ∈ C′, z | T

〉
.

Then we have
Q2m,2n ∩QT = Q2n

(√
〈H,H ′〉

)
.

In the computation of the adelic failure B(M,N) we will only need to use Remarks 6.1 and
6.2 with n = m and v2(T ) > n. The case distinction simplifies as follows.

Remark 6.3. Let M,N be integers with N |M , and set n := v2(N). Let G be as in Theorem
5.1 and keep the same notation of Remark 6.1 (here T =M ). Then we have

B(M,N) =
[
Q2n

(√
H
)
: Q2n

]
.

Let G be as in Theorem 5.3, and keep the same notation of Remark 6.2 case by case (here
T =M ).

(1) If n 6 x, then B(M,N) = [Q2w(
√
H) : Q2n ], where w = min(n+ 1, v2(M)).

(2) If n > x+ 2, then B(M,N) = [Q2n(
√
H) : Q2n ].

(3) If n = x+ 1, we have:

• if n = 1, then B(M,N) = [Q(
√
H) : Q];

• if n = v2(M) > 2, then B(M,N) = [Q2n(
√
H) : Q2n ];

• if n = v2(M) = 2, then B(M,N) = [Q4(
√
〈H,H ′〉) : Q4];

• if n > 2 and v2(M) > n+ 1, then B(M,N) = [Q2n(
√
〈H,H ′〉) : Q2n ].

The next proposition is used to compute the adelic failure.

Proposition 6.4. Let H 6 Q× be a torsion-free and finitely generated subgroup. Assume that
H does not contain minus a square in Q×. Then we have[

Q2m
(√
H
)
: Q2m

]
=

{∣∣H∣∣ /2 if m > 3 and ∃ b ∈ H with b ≡ ±2 mod Q×2,∣∣H∣∣ otherwise,

where H is a complete set of representatives of HQ×2 in Q×/Q×2.

Proof. It is clear that we may replace H by any other subgroup H ′ 6 Q× such that HQ×2 =
H ′Q×2. Then we may suppose without loss of generality that H is generated by square-
free integers g1, . . . , gr, where

∣∣H∣∣ = 2r (notice that by hypothesis none of the gi’s can be
−1). Moreover, we can also suppose that the gi’s are strongly 2-independent, so that the d-
parameters for the 2-divisibility of H are all zero over Q.

Suppose first that m > 2. In this case we can work over Q4 and apply formula (4.2) from
Theorem 4.2. We just need to compute the parameters for the 2-divisibility of H over Q4. The
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only squarefree integers which are not strongly 2-indivisible over Q4 are ±2 and in particular
we have

(6.3) 2 = ζ−14 (1 + ζ4)
2 .

A simple computation shows that ifH contains an element of the form±2 times a square, then
we may change the basis to get g1 = ±2.

Therefore, if H does not contain ±2 times a square, we have that di = 0 and hi ∈ {0, 1} for
all i also over Q4, so that the formula (4.2) yields [Q2m(

√
H) : Q2m ] = 2r. Otherwise, only

the parameters corresponding to g1 = ±2 change from Q to Q4 (in view of (6.3) we get the
new parameters d1 = 1 and h1 = 2). Hence by (4.2) this degree will be 2r for m = 2 and 2r−1

for m > 3.

Now let m = 1. Since H does not contain minus a square, by (4.3) we get[
Q
(√
H
)
: Q
]
=
[
Q4

(√
H
)
: Q4

]
which is 2r by our previous computation. �

Corollary 6.5. Let G be a finitely generated and torsion-free subgroup of Q× of rank r. Then
the total adelic failure β for G is equal to

β =

{
2r−1 if there is g ∈ G of the form g = ±(2a2)2d

2r otherwise

where a ∈ Q× and where d is a non-negative integer.

Proof. We know that the adelic failure can only be a power of 2. By Remarks 6.1 and 6.2, for
n > 2 large enough, we have

Q2n,2n ∩Q∞ = Q2n
(√
H
)
,

where H := 〈b1, . . . , br〉, and the bi’s are the strongly 2-indivisible parts of the elements of
the 2-good basis of G chosen in Theorems 5.1 and 5.3. In particular the bi’s are strongly
2-independent over Q and form a 2-good basis of H . Therefore,

∣∣H∣∣ = 2r, where H is a
complete set of representatives of HQ×2 modulo Q×2. Hence by Proposition 6.4, the degree
of Q2n(

√
H) over Q2n is 2r−1 if H contains an element of the form 2 times a square, and 2r

otherwise.

By [5, Proposition 5] (where f = 2 in our setup) H contains an element of the form 2 times a
square if and only if there is an element in G which is equal to ±(2a2)2d . �

7. THE KUMMER FAILURE

In this section we prove Theorem 1.1 which states that, for a fixed group G, there are in-
tegers M0, N0 such that the Kummer failure C(M,N) only depends on gcd(M,M0) and
gcd(N,N0).
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Proposition 7.1. Fix a prime number `. There is some integer c` such that for all N > 1 the
`-adic failure A`(N) depends on N only through gcd(N, `c`). More precisely, we have

A`(N) = A`

(
gcd(N, `c`)

)
.

If ` is odd, then we may take for c` the maximum of the d-parameters for the `-divisibility of G.
If ` = 2, then we may take c2 = maxi(di + hi), where the di’s and the hi’s are the parameters
for the 2-divisibility of G over Q4.

Proof. Set n = v`(N). By definition A`(N) depends only on n and it is 1 if n = 0. We only
prove that, if c` is defined as in the statement, A`(N) is constant on {N : n > c`}, because it
is easy to check from our computations that in this case A`(N) = A`(gcd(`

c` , N)).

By Proposition 3.1, for ` odd we have

v`
(
[Q`n,`n : Q`n ]

)
= rn−

r∑
i=1

min(di, n) ,

where the di’s are the d-parameters for the `-divisibility of G. Therefore, if n > c` we obtain

v`
(
A`(N)

)
=

r∑
i=1

di .

For ` = 2 and n > 2, by formula (4.2) from Theorem 4.2, we have

v2
(
A2(N)

)
= n−max{hi +min(n, di) : 1 6 i 6 r} ∪ {n}+

r∑
i=1

min(di, n) .

If n > c2, then we clearly have

v2
(
A2(N)

)
=

r∑
i=1

di .

Now let ` = 2 and n = 1. If c2 > 1 the formula A2(N) = A2(gcd(2
c2 , N)) is obvious. If

c2 = 0 we have to prove A2(2) = A2(1), which means A2(2) = 1.

By Theorem 4.2, Eq. (4.3) we have [Q(
√
G) : Q] = [Q4(

√
G) : Q4] if G does not contain

minus a square in Q×. This is the case because the generators of G are strongly 2-independent
(c2 = 0 implies that di = 0 for all i). By Proposition 6.4 (where m = 2) we have [Q4(

√
G) :

Q4] = 2r. We conclude that A2(2) = 1. �

Proposition 7.2. There are integersM0, N0, withN0 |M0, such that for all integersM,N > 1
with N |M the adelic failure B(M,N) depends on M and N only through gcd(M,M0) and
gcd(N,N0). More precisely, we have

B(M,N) = B
(
gcd(M,M0), gcd(N,N0)

)
.

In particular, keeping the notation of Sections 4 and 5, we may take:
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• N0 = 2n0 , where

n0 = max{3, x+ 2, d1 + 1, . . . , dr + 1}

where x is the d-parameter for the 2-divisibility of the only negative basis element, or
−1 if there is no such element.
• M0 = lcm{N0, b

′
1, . . . , b

′
r}, where the b′i’s are positive squarefree integers such that

bi ≡ b′i mod Q×2 (recall that the bi’s are positive rational numbers).

Proof. Let M0 and N0 be as above and set n = v2(N). Suppose first that G contains no
negative elements: we are in the setup of Theorem 5.1 and Remark 6.1. Since G ⊆ Q×+, we
need to compare

B(M,N) =
[
Q2n

(√
H
)
: Q2n

]
and

B
(
gcd(M,M0), gcd(N,N0)

)
=
[
Q2e
(√
H
)
: Q2e

]
,

where e := min(n, n0). Notice that the groups H are the same because we have the same sets
S and C for both failures, and for every y ∈ C we have

√
y ∈ QM if and only if

√
y ∈ Q(M,M0).

By Proposition 6.4 we easily deduce that [Q2n(
√
H) : Q2n ] = [Q2e(

√
H) : Q2e ].

Now suppose that G contains negative elements: we are in the setup of Theorem 5.3 and
Remark 6.2. For B((M,M0), (N,N0)) we find the same case distinction of Remark 6.3 for
B(M,N). Again, the sets S, C, and H (as well as C′ and H ′) are the same in both cases.
Notice that v2(M0) = n0.

• If n 6 x, then we have

B(M,N) =
[
Q2u

(√
H
)
: Q2n

]
and

B
(
gcd(M,M0), gcd(N,N0)

)
=
[
Q2w

(√
H
)
: Q2n

]
,

where u := min(n + 1, v2(M)) and w := min(v2((N,N0)) + 1, v2((M,M0))).
Since (N,N0) = 2n and n0 > x + 2 > n, we easily see that w = u, so that
B((M,M0), (N,N0)) = B(M,N).
• If n > x+2, thenB((M,M0), (N,N0)) = [Q2e(

√
H) : Q2e ], where e = min(n, n0),

so that we can argue as in the case G ⊆ Q×+.
• If n = x+ 1, for all subcases the equality of the two failures follows directly because
v2((N,N0)) = n as n 6 n0.

�

Corollary 7.3. Let ` be a prime number.

(1) There is an integer c` (depending only on G and `) such that for all N > 1 with
v`(N) > c` we have A`(N) = A`(`

c`). We may take c` as in Proposition 7.1. Then
the total `-adic failure is given by α` = A`(`

c`).
(2) There are integersM0,N0 withN0 |M0 (depending only onG) such that for allN ,M

withN |M ,M0 |M andN0 | N we haveB(M,N) = B(M0, N0). We may takeM0,
N0 as in Proposition 7.2. Then the total adelic failure is given by β = B(M0, N0).
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Remark 7.4. With the notation of Proposition 7.1, if N` is a multiple of `c` , then we have

A`(N) = A`

(
gcd(N,N`)

)
for all N > 1 .

With the notation of Proposition 7.2, if M ′0 and N ′0 are multiples of M0 and N0, respectively,
and satisfy N ′0 |M ′0, then we have

B(M,N) = B
(
gcd(M,M ′0), gcd(N,N

′
0)
)

for all M,N > 1 with N |M .

Theorem 7.5. There are integers M0 and N0 such that, for all integers N,M with N |M , the
Kummer failure C(M,N) depends on M and N only through gcd(M,M0) and gcd(N,N0).
More precisely, we have

C(M,N) = C
(
gcd(M,M0), gcd(N,N0)

)
.

In particular, keeping the notation of the previous sections, we may take:

• N0 =
∏

` `
c` , where c` = maxi di if ` 6= 2, the di’s being the d-parameters for the

`-divisibility of G (notice that c` = 0 for all but finitely many primes `), and

c2 = max{3, d1 + h1 + 1, . . . , dr + hr + 1} ,
where di and hi are the parameters for the 2-divisibility of G over Q4.
• M0 = lcm{N0, b

′
1, . . . , b

′
r}, where the b′i’s are positive squarefree integers such that

bi ≡ b′i mod Q×2.

In particular, the total Kummer failure is given by C0 = C(M0, N0).

Proof. By (2.2) we have C(M,N) = B(M,N)
∏

`A`(N). Therefore it suffices to combine
Propositions 7.1 and 7.2 and to take into account the previous remark. �

8. EXAMPLES

In this last section we work out a few examples to illustrate the procedure described in the rest
of the article.

Example 8.1. Let G =
〈
54, 7

〉
. We compute the `-adic failure for all primes ` and the adelic

failure. For ` odd, the basis {54, 7} is an `-good basis consisting of strongly `-independent
elements. Therefore if ` 6= 2 we have A`(N) = 1 for all N > 1. For ` = 2, the basis {54, 7}
is 2-good over Q(ζ4) as 5, 7 are strongly 2-independent. Therefore G has parameters d1 = 2,
d2 = h1 = h2 = 0, which by Theorem 4.2 gives[

Q2n
(
G1/2n

)
: Q2n

]
= 22n−2 for all n > 2 ,

and [Q(
√
G) : Q] = 2. Hence the 2-adic failure is given as follows, where n = v2(N):

A2(N) =


1, if n = 0

2, if n = 1

4, if n > 2.

Next we compute the adelic failure. Let M,N > 1 be integers with N | M . We apply the
method outlined in Remark 6.1, and Proposition 6.4. It is trivial that B(M,N) = 1 if n = 0.
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Suppose that n = 1 or n = 2, so that S = {7}. Then we have H = 〈7〉 and so B(M,N) = 2
if 28 | M , and H = 〈1〉 so that B(M,N) = 1 otherwise. Suppose that n > 3, so that 8 | M
and S = {5, 7}. Then we have

• H = 〈1〉 and B(M,N) = 1 if 5 -M and 7 -M ,
• H = 〈5〉 and B(M,N) = 2 if 5 |M and 7 -M ,
• H = 〈7〉 and B(M,N) = 2 if 5 -M and 7 |M ,
• H = 〈5, 7〉 and B(M,N) = 4 if 35 |M .

Example 8.2. Let us compute the adelic failure for the group G = 〈−5, 7〉. Let M,N > 1 be
such that N |M and v2(N) > 1. Since the d-parameters for the 2-divisibility are both zero, if
v2(N) = 1 we have S = {−5, 7}, so that

• H = 〈1〉 and B(M,N) = 1 if 20 -M , 28 -M , and 35 -M ,
• H = 〈−5〉 and B(M,N) = 2 if 20 |M and 28 -M ,
• H = 〈7〉 and B(M,N) = 2 if 20 -M and 28 |M ,
• H = 〈−35〉 and B(M,N) = 2 if 35 |M and 4 -M ,
• H = 〈−5, 7〉 and B(M,N) = 4 if 140 |M .

On the other hand, if v2(N) > 2, then the fourth root of −5 does not lie in Q∞ but
√
5 lies in

Q(ζ5). Hence S = {5, 7} and since 4 |M we obtain exactly the same cases as in the previous
example for v2(N) > 3.

Example 8.3. Let us compute the adelic failure for the group G =
〈
5,−78

〉
. Let M,N > 1

be such that N | M and n := v2(N) > 1. The d-parameters for the 2-divisibility are d1 = 0
and d2 = 3. If n 6 3 then S = {5} and the 2n-th root of −78 yields a root of unity of order
2n+1. Thus we have

Q2n,2n ∩QM = Q2w
(√
H
)

where w = min(n+ 1, v2(M)) and H = 〈1〉 if 5 -M , H = 〈5〉 otherwise. Hence

• B(M,N) = 1 if 5 -M and v2(M) = n,
• B(M,N) = 2 if 5 |M and v2(M) = n,
• B(M,N) = 2 if 5 -M and v2(M) > n+ 1,
• B(M,N) = 4 if 5 |M and v2(M) > n+ 1.

If n = 4, then S = {5} and the 16-th root of −78 yields ζ32
√
7. Therefore v2(M) = 4 gives

• H = 〈1〉 and B(M,N) = 1 if 5 -M ,
• H = 〈5〉 and B(M,N) = 2 if 5 |M .

If v2(M) > 5, then we obtain

• 〈H,H ′〉 = 〈1〉 and B(M,N) = 1 if 5 -M and 7 -M ,
• 〈H,H ′〉 = 〈5〉 and B(M,N) = 2 if 5 |M and 7 -M ,
• 〈H,H ′〉 = 〈ζ167〉 and B(M,N) = 2 if 5 -M and 7 |M ,
• 〈H,H ′〉 = 〈5, ζ167〉 and B(M,N) = 4 if 35 |M .

If n > 5 we obtain again the same cases as in Example 8.1 for n > 3.
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Example 8.4. We compute the 2-adic and the adelic failure for the group G =
〈
2,−72

〉
. Let

N > 2 with n := v2(N) > 1. The parameters for the 2-divisibility of G over Q(ζ4) are
d1 = 1, h1 = 2, d2 = h2 = 1. Then applying formula (4.2) to compute the 2-adic Kummer
degrees over Q(ζ4), we find that A2(N) = 1 if n = 1, A2(N) = 2 if n = 2, and A2(N) = 4
if n > 3.

Let M > 1 be such that N | M . The d-parameters for the 2-divisibility of G over Q are
d1 = 0 and d2 = 1. Then for n = 1 we have S = {2} and, taking into account that the square
root of −72 yields ζ4, we obtain that B(M,N) = 1 if 2 ‖ M , B(M,N) = 2 if 4 ‖ M , and
B(M,N) = 4 if 8 |M .

If n = 2 and 4 ‖ M , then we need to take into account that ζ8
√
14 lies in Q(ζ28). We have

S = {2}, H = 〈1〉, and we obtain

• 〈H,H ′〉 = 〈1〉 and B(M,N) = 1 if 7 -M ,
• 〈H,H ′〉 = 〈ζ4 · 14〉 and B(M,N) = 2 if 7 |M .

If n = 2 and 8 |M , then S = {2}, H = 〈2〉, and we have

• 〈H,H ′〉 = 〈2〉 and B(M,N) = 2 if 7 -M ,
• 〈H,H ′〉 = 〈2, ζ4 · 7〉 and B(M,N) = 4 if 7 |M .

If n > 3, then S = {2, 7} and, since
√
2 ∈ Q(ζ8), we have

• H = 〈2〉 and B(M,N) = 1 if 7 -M ,
• H = 〈2, 7〉 and B(M,N) = 2 if 7 |M .

All these examples have been tested with the SageMath implementation [7].
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