
Bayesian Identification of Mean-Field Homogenization model parameters
and uncertain matrix behavior in non-aligned short fiber composites

Mohamed Mohamedoua, Kepa Zulueta Uriondob, Chi Nghia Chungc, Hussein Rappeld, Lars
Beexd, Laurent Adame, Aitor Arriagab, Zoltan Majorc, Ling Wua, Ludovic Noelsa,∗

aUniversity of Liege, Department of Mechanical and Aerospace Engineering, Computational & Multiscale Mechanics
of Materials, Allée de la découverte 9, B-4000 Liège, Belgium
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Abstract

We present a stochastic approach combining Bayesian Inference (BI) with homogenization the-

ories in order to identify, on the one hand, the parameters inherent to the model assumptions

and, on the other hand, the composite material constituents behaviors, including their variabil-

ity. In particular, we characterize the model parameters of a Mean-Field Homogenization (MFH)

model and the elastic matrix behavior, including the inherent dispersion in its Young’s modulus,

of non-aligned Short Fibers Reinforced Polymer (SFRP) composites. The inference is achieved by

considering as observations experimental tests conducted at the SFRP composite coupons level.

The inferred model and material law parameters can in turn be used in Mean-Field Homogeniza-

tion (MFH)-based multi-scale simulations and can predict the confidence range of the composite

material responses.

Keywords: Multiscale, Stochastic, Composites, Bayesian inference, Inverse identification method

1. Introduction

Short Fibers Reinforced Polymer (SFRP) composites can be produced at low cost using the

injection molding process, making them an increasingly popular material in several engineering
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applications. However, the numerical simulation of composite structural applications remains chal-

lenging because of the heterogeneous nature of the material itself. In order to be predictive, struc-

tural simulations should be informed from the scale corresponding to the material constituents: the

micro-structure geometrical parameters such as the inclusions aspect ratio, orientation and spatial

distributions, but also the micro-constituents material responses.

In order to consider the micro-structure response and evolution during structural studies, mul-

tiscale methods, and in particular homogenization methods, are now commonly used, see the

reviews in [1–3]. Among the different existing homogenization methods, Mean-Field Homogeniza-

tion (MFH) is a computationally efficient semi-analytical method for the modeling of multi-phase

composites. MFH methods extend the Eshelby single inclusion solution [4] to multiple-inclusion

interactions, such as in the Mori-Tanaka (M-T) scheme [5, 6] and in the self-consistent scheme [7, 8].

The methods were first derived for linear responses, but they can be extended to the non-linear

range by defining a Linear Comparison Composite (LCC) [9–11] as a virtual heterogeneous material

whose constituents linear behaviors correspond to the linearized behaviors of the real composite

material constituents at a given strain state. MFH has also been developed in the context of SFRP

by accounting for the misalignment of the fibers through their Orientation Distribution Function

(ODF). In that context, pseudo-grains of aligned inclusions are first defined and homogenized using

a M-T approach, and the different grain responses are then homogenized in a second step through

a Voigt, i.e. uniform strain, assumption weighted using the ODF [12–14].

Although MFH has been shown to predict accurate results in comparison with full-field simu-

lations at a much lower computation cost, for practical application the model parameters, fibers

aspect ratio distribution, volume fraction, ODF, fiber material response and matrix material re-

sponse, have to be identified first. This need, which is also a requirement for any other multiscale

method, is complexified by the fact that the local properties vary from one location to the other in

a component obtained by injection molding. Fibers ODF, or again volume fraction can be experi-

mentally measured [15, 16] at different Locations, but the process is time consuming and can only

be achieved once the component is manufactured and not at the design stage. As an alternative,

the fiber ODF and volume fraction can be predicted through the process numerical simulation

[16, 17]. However, the use of ODF in 2-step homogenization usually relies on the assumption that

the inclusions have a unique aspect ratio, which is not realistic. In that context an “effective”
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aspect ratio has to be defined by the user. Another difficulty is that material properties of the

constituents are not always predictable and usually require complex experimental characterization,

in particular in the non-linear regime. This is particularly true for a polymeric-based matrix phase

since its material response strongly depends on the manufacturing process conditions. Besides,

even for given environmental conditions, the material properties can vary by several percents. In

[18], the tensile modulus of polyamide 6 (PA06) measured at ambient temperature and at con-

stant loading rate of 5 mm·min−1 ranges from 1200 to 3400 MPa. For these reasons, the material

behavior of the matrix phase is generally obtained using an inverse identification process from

coupons experimental tests. However experimental measurements are entailed by uncertainties,

either because of the measurement devices themselves that introduce errors, or because of existing

natural deviations in the properties that are to be identified, which is the case for SFRP coupons.

As an example, in [18], tensile tests conducted on 30% of weight Glass fiber (GF) reinforced PA06

(PA06-GF30) lead to a Young’s modulus ranging from 6200 to 9500 MPa.

There is thus a need to couple multiscale methods with statistical identification methods. When

considering classical regression analyzes such as the Least Square Method (LSM), the confidence

intervals are usually estimated under a normal distribution assumption [19], and part of the exper-

imental test information is lost. On the contrary, Bayesian Inference (BI) [20] constitutes another

framework in which uncertainties in identified parameters naturally arise from the identification

process itself under the form of a Probability Density Function (PDF). Bayesian inference is struc-

tured around Bayes’ theorem, in which the sought so-called posterior distribution function of the

parameters to be identified is obtained from a prior distribution of the latter, which reflects the

initial believe or knowledge one has, that is corrected using a likelihood function constructed from

the different observation data, e.g. experimental results.

Starting from the work of [21], many works identified the parameters of material models through

BI: elasticity constants of glass-fiber reinforced epoxy [22] and of carbon-epoxy unidirectional lam-

inates [23] were inferred through vibration tests, and elasticity constants of graphite-epoxy lami-

nates were identified from the displacement field in [24] through static tests; in the non-linear range,

elasto-perfectly plastic model and cohesive zone parameters were inferred in [25], elasto-plastic ma-

terial model parameters in [26, 27], visco-elasticity constants in [28, 29] and a hyperelastic model

and its parameters in [30]; spatially varying, under the form of embedded inclusions, elasticity
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constants were identified in [31]; the list being non-exhaustive.

In the cited references, the identified parameters are related to either homogeneous or homog-

enized material models. Besides, the likelihood function is constructed by considering an error

function [23], usually a Gaussian noise [24–26, 28–31], which could be estimated from the experi-

mental device calibration, see the discussion in [26]. In that case, the underlying system is assumed

to be deterministic and BI is seen as an identification mean accounting for the experimental noise.

BI was also used to account for the insufficient available information when constructing a

stochastic model, such as polynomial-chaos-based stochastic methods [32, 33]. In this context,

the coefficients of the Polynomial Chaos Expansion (PCE) are themselves random variables in-

ferred using BI. Contrarily to the previously cited works, the system is considered explicitly as

stochastic, and BI is used to infer the variables describing this stochasticity. With a similar view of

characterizing a system stochasticity, material model parameters were considered as random vari-

ables following a Beta distribution in [34], and the distribution parameters were evaluated from

observations using BI.

In this work, we intend to use BI to identify, from experimental tests conducted at the coupon

level, the parameters of a micromechanics model that are either model related, resulting from model

assumptions and that cannot be measured because of their abstract definition, or physically-based

but that cannot be easily measured and can exhibit some variability. Among the first category,

although the ODF is experimentally measured, we need to infer the inclusion aspect ratio that can

be used in the model to predict results in good agreement with experimental observations. Among

the second category, we need to infer the matrix elasticity constants of a MFH model, in which case

direct measurements are not possible because the material is not at disposal. For the latter values,

their variability should also be captured during the identification process in order for the multiscale

model to be able to predict confidence ranges. The material system considered is a PA06 reinforced

by short E-glass fibers (GF). Tests are conducted on 40% of weight GF reinforced PA06 (PA06-

GF40) coupons extracted at different Locations and with different Directions from several plates

obtained by injection molding. Two approaches are successively considered for the BI. The first one

uses a Gaussian noise to define the likelihood function, assuming that the observed discrepancies

in the coupon tests result from experimental measurement errors. The second approach assumes

that the micro-structure is characterized by uncertainties and that the dominant one is the matrix
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phase elasticity constant. We then represent the latter by a Beta distribution whose parameters

are inferred from the experimental measurements. In order to assess the methodology, validation

tests are conducted on coupons that were not used during the BI. Using the MFH model with the

previously inferred parameters, we predict the confidence ranges corresponding to these validation

experiments. It is shown that the first BI approach based on a Gaussian noise is able to evaluate

an effective model-related parameter, i.e. the fibers aspect ratio, but not the variability observed

in the physical parameters, i.e. the matrix properties, and as a result cannot predict a confidence

range embedding the validation points, contrarily to the stochastic MFH obtained with the second

BI approach.

The organization of the paper is as follows. The two-step MFH model is described in Section

2. Section 3 details the manufacturing process, the microstructural analysis, and the tensile tests

of the composite coupons. It is then shown in Section 4 that to explain the discrepancies observed

at the coupons level, a deterministic Young’s modulus of the matrix phase cannot be considered.

The two BI approaches to evaluate the effective fiber aspect ratio and the matrix Young’s modulus

and its uncertainties are successively developed in Section 5, and then applied on the experimental

observations in Section 6, before drawing some conclusions in Section 7.

2. Mean-field homogenization for non-aligned fiber-reinforced composites
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Figure 1: Homogenization-based multiscale method.

In a homogenization-based multiscale approach, the macro-scale structure Ω defines a boundary-

value-problem (BVP) which is solved by considering homogenized material properties extracted,

at each (macro) material point X ∈ Ω of interest, from the resolution of a micro-scale BVP, see

Fig. 1. This micro-scale BVP is defined on a micro-scale volume ω which represents the different
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phases ωi of the material.

In order to define the micro-scale BVP, the relation between macro-strains εM and stresses σM

is transformed into a relation between the averaged values of the local strain tensor εm and of the

local stress tensor σm on ω, with

εM = 〈εm〉ω and σM = 〈σm〉ω , (1)

where 〈f(xxx)〉ω = 1
Vω

∫
ω f(x)dV , with Vω the volume of ω. The homogenized material tensor

CM = ∂σM
∂εM

also results from the micro-scale BVP resolution.

In this work we rely upon MFH to conduct multiscale analyzes of SFRP composites and present

first the general equations for two-phase linear composites with aligned uniform inclusions, before

summarizing the two-step homogenization method for non-aligned inclusions.

2.1. Mean-Field Homogenization (MFH) for two-phase linear composites

Considering a two-phase composite material with the respective volume fractions v0 + vI = 1,

where the subscript 0 refers to the matrix and the subscript I to the aligned inclusions, the volume

average over the micro-scale volume ω can be explicitly expressed in terms of the volume averages

over the two phases ω0 and ωI. Equations (1) thus become

εM = v0ε0 + vIεI and σM = v0σ0 + vIσI , (2)

where we have used •i to represent the volume average over the phase ωi, i.e. 〈•m〉ωi , for conciseness.

In the linear range, the phases responses are defined through the elastic stiffness tensors Cel
i

in phase ωi. The system of Eqs. (2) is then completed by assuming a relationship between the

average responses of the different phases using a strain concentration tensor Bε, i.e.

εI = Bε(I,Cel
0 , Cel

I ) : ε0 , (3)

where “I” represents the geometry of the inclusions.

Using the linear elastic constitutive model in the phases, the set of Eqs. (2) and (3) is rewritten

in a general constitutive expression for linear elastic composites as

σM = CM(I,Cel
0 ,Cel

I , vI) : εM , (4)

with

CM =
[
vICel

I : Bε(I,Cel
0 , Cel

I ) + v0Cel
0

]
:
[
vIBε(I,Cel

0 , Cel
I ) + v0I

]−1
. (5)
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2.2. Strain concentration tensor

Different assumptions can be considered to define the strain concentration tensor Bε(I,Cel
0 , Cel

I ).

In this work we will consider the following two

• The Mori-Tanaka [5] method (M-T) extends the single inclusion solution of Eshelby [4] to

multiple-inclusion interacting by assuming that the average strain in the matrix phase corre-

sponds to the strain at infinity of the single inclusion solution problem, i.e. for a two-phase

composite material

Bε(I,Cel
0 , Cel

I ) = {I + S : [(Cel
0 )−1 : Cel

I − I]}−1 , (6)

where the Eshelby tensor [4] S(I, Cel
0 ) depends on the geometry of the inclusion “I” and on

the elastic tensor of the matrix phase Cel
0 .

• The Voigt model assumes the same average strain in the different phases, i.e.

Bε = I , (7)

where (I)ijkl = 1
2 (δikδjl + δilδjk) is the identity fourth-order tensor.

2.3. MFH for multi-phase composite materials

2.3.1. Orientation Distribution Function (ODF)

For short-fiber reinforced composites produced by the injection molding process, although all

the fibers are made of the same material, the composite material cannot be considered as being

two-phase because of their misalignment and of the variation in their aspect ratio. In this work,

each fiber of diameters d is considered to be straight of length l and characterized by an aspect

ratio ar = l
d , while its orientation is characterized by a unit vector p along the fiber axis.

For a collection of fibers, the complete description of orientations is obtained through a prob-

ability density function πP (p), also called Orientation Distribution Function (ODF), such that

πP (p) dp is the probability of a fiber to be oriented between p and p+dp and we have
∮
πP (p) dp=1.

It is equivalent to the original expression written within the spherical coordinates∫ π

θ=0

∮ 2π

φ=0
πP (p(θ, φ)) sin(θ) dθ dφ = 1 , (8)

where θ is the polar angle and φ is the azimuthal angle. In practice, the ODF πP (p) is not

always directly available, and it is more common to have access to the ODF-weighted average of
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p⊗p, where the symbol ⊗ designates a tensor or dyadic product, which is called the second-order

orientation tensor

a =

∮
p⊗ pπP (p) dp . (9)

Although homogenization methods can be constructed around the knowledge of the orientation

tensor, see [13, 14, 35], since the ODF does not differentiate fibers of different aspect ratio values,

this requires the identification of an effective aspect ratio. Let us note that if the aspect ratio

distributions are different along the different directions p such an effective aspect ratio value is not

unique. In this work, we justify in Section 3 the use of a unique effective aspect ratio, which will

be inferred from the experimental measurements in Section 5.

However, in the context of homogenization, the volume fraction of the fibers of aspect ratio ar

along a direction p is more representative than the fibers count. We thus consider the variables

vf , ar, p as the volume of one fiber vf , its aspect ratio ar and its direction p whose probability

function πVf , Ar,P will be evaluated in the next Section. We can then define the volume fraction

v(ar,p)πAr,P (ar, p) of fibers having an aspect ratio between ar and ar + dar and oriented along a

direction between p and p+ dp with

v(ar,p) =

∫
R+ vfπVf |Ar,P (vf |ar, p) dvf∫ ∫

R+

∫
R+ vfπVf , Ar,P (vf , ar, p) dvf dar dp

. (10)

and with
∫ ∫

R+ v
(ar,p)πAr,P (ar, p) dar dp=1.

2.3.2. Two-step homogenization

Pseudo 
grains (𝑘)

𝜋𝑷(𝒑
(𝑘))

M-T

𝔹𝜀 (𝑘)

Voigt

𝔹𝜀 = 𝕀

ℂM ℂ0 , ℂI , 𝜋𝑷

𝒑(𝑘)

Figure 2: Two-step homogenization: the micro-scale volume element ω is first decomposed into a set of pseudo-grains

ω(k) homogenized using the M-T assumption; the homogenized composite material behavior is then obtained using

the Voigt assumption.

When considering such a material with inclusions having different orientations or shapes, one

could envisioned a direct (single step) homogenization based on an extension of Mori-Tanaka (M-

T). However, Benveniste et al. [36] proved that in linear elasticity the macro stiffness tensor has
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the required symmetries only if all the inclusions are aligned and similarly shaped. Otherwise, a

direct M-T homogenization should be avoided as it might lead to physically unacceptable results.

Accurate and physically acceptable results are thus provided by a two-step homogenization strategy

[12–14], as illustrated in Fig. 2. In this work we consider a two-step homogenization accounting

for the ODF, and which is based on:

• The decomposition in phases (pseudo-grains) ω(k) where the inclusions “I(k)” have the same

aspect ratio ar, and the same orientation defined by the direction p(k). Each phase is then

defined on the assumption that the inclusions see the same volume fraction of matrix v0;

• The homogenization on the aggregate of pseudo-grain ω(k), with the set of Eq. (2-3) rewritten

as

〈ε〉ω(k) = v0〈ε0〉ω(k) + vI〈εI〉ω(k) , (11)

〈σ〉ω(k) = v0〈σ0〉ω(k) + vI〈σI〉ω(k) , (12)

〈εI〉ω(k) = Bε
(

I(k), Cel
0 , Cel

I

)
: 〈ε0〉ω(k) , (13)

and the linear operator (5) rewritten as

C(k) =
[
vICel

I : Bε(I(k),Cel
0 , Cel

I ) + v0Cel
0

]
:
[
vIBε(I(k),Cel

0 , Cel
I ) + v0I

]−1
, (14)

completed by the M-T strain concentration tensor (6);

• The homogenization of all phase (pseudo-grain) ω(k) using Voigt strain concentration tensor

(7), in which case the set of Eq. (2-3) is rewritten as

〈ε〉ω(k) = 〈ε〉ω = εM ∀ω(k) , (15)

with the homogenized stress evaluated by

σM = 〈σ〉ω =

∮
〈σ〉ω(k)πP

(
p(k)

)
dp(k) '

∑
k

〈σ〉ω(k)πP

(
p(k)

)
∆p(k) , (16)

and the linear operator (5) by

CM =

∮
∂〈σ〉ω(k)

∂εM
πP

(
p(k)

)
dp(k) '

∑
k

C(k)πP

(
p(k)

)
∆p(k) . (17)
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2.3.3. Mathematical description of the fiber orientation

In practice, the ODF πP (p) is not directly available for short fiber reinforced composites ob-

tained using injection molding. Besides the second-order orientation tensor (9), in order to evaluate

the ODF function, one needs the ODF-weighted average of p⊗p⊗p⊗p, which is called the fourth-

order orientation tensor

A =

∮
p⊗ p⊗ p⊗ pπP (p) dp . (18)

However, the fourth-order orientation tensor A can only be deduced exactly from the second

orientation tensor a in the case of aligned or randomly oriented fibers. In this work, we consider

the interpolation method developed in [13, 14] and reported in Appendix A.

Once the second- and fourth-order tensors a and A have been evaluated, the ODF πP (p)

can be reconstructed using the method developed by Onat and Leckie [37] and summarized in

Appendix B. The ODF may be used to average either the stress tensor following Eq. (16) or the

linear operator following Eq. (18). Since in practice these integrals are computed numerically, a

discrete form of the ODF should be provided, in particular to evaluate ∆p(k). To this end, we have

implemented the algorithm that has been proposed by Weber et al. in [35], see Appendix C. In

this approach, the unit orientation vector p(θ(i), φ(j)) is viewed as the outer unit normal to a facet

(k), of surface S(θ(i), φ(j)) of the unit sphere described in the spherical coordinate system of polar

angle θ and azimuthal angle φ. In particular, the linear operator (18) is then evaluated as

CM ≈ 2

Nθ∑
i

N
(i)
φ∑
j

C(p(θ(i), φ(j)))πP

(
p(θ(i), φ(j))

)
S(θi, φj) , (19)

where Nθ and N
(i)
φ designate the total numbers of subdivisions along the θ and φ(θ) angles, re-

spectively.

3. Experimental tests

Table 1: PA06-GF constituents material properties. In [18] PA06 was tested at ambient temperature and a strain

rate of 5 mm·min−1. PA06 manufacturer value [38] at 23◦ is also reported.

Phase Density [Kg· m3] Young’s modulus [MPa] Poisson coefficient [-]

E-glass fiber [18] 2600 72000 to 73000 0.22

PA06 1130 [18] 1200 to 3400 [18] /3600 [38] 0.39 [39]

10



The material system considered in this work is a polyamide 6 (PA06) matrix reinforced by short

E-glass fibers (GF), with 40% of weight GF (PA06-GF40).

Concerning the GF, a good estimation of their mechanical properties can be found in the

literature and the values evaluated in [18] are reported in Table 1. Concerning the PA06 material,

on the one hand the in-situ properties of the composite material are not easily determined, and

on the other hand experimental tests show a large range as reported in [18], see Table 1. Besides,

manufacturer provided value [38] is above this observed range. For these two reasons, the purpose

of this paper is to infer them, including their variation range, from coupon tests. In this section,

we describe the manufacturing process of the coupons, their characterization in terms of micro-

structures, and finally the tensile tests that have been conducted.

3.1. Coupons manufacturing process
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Figure 3: Locations and geometries (in mm) of the tested coupons along (a) 0◦-traction; (b) 45◦-traction; and (c)

90◦-traction

The injection molding of composite 304.8×101.6×3.65 ± 0.02 mm3-plates has been performed

in an Engel Insert v200 Single machine. The 200-ton clamping force and 55 mm diameter screw

allowed the application of 110-bar injection pressure and 50-bar packing pressure on the plates.

Being the matrix a PA6, the nozzle temperature has been set at 270◦C and the mold’s temperature

at 90◦C. The plates have been injected in 2 seconds and the packing pressure has been applied

during 50 seconds.

Coupons were then cut from the plates along 3 different Directions, 0◦, 45◦ and 90◦, and

centered at 6 different Locations as illustrated in Fig. 3.

11



Table 2: Orientation tensor a at each Location for the PA06-GF40 material system. The standard deviation is

reported for Locations measured on several plates.

Location #1 #2 #3 #4 #5 #6

a11 0.712 0.653 ± 0.009 0.778 0.747 0.747 0.714 ± 0.017

a22 0.255 0.312 ± 0.008 0.172 0.204 0.191 0.248 ± 0.016

a33 0.033 0.035 ± 0.001 0.051 0.049 0.052 0.038 ± 0.002

a12 -0.015 -0.008 ± 0.008 0.004 0.0031 -0.066 -0.052 ± 0.007

a13 -0.001 -0.001 ± 0.001 -0.005 0.005 -0.003 0.001 ± 0.001

a23 0.005 -0.005 ± 0.001 0 0.003 0.002 -0.001 ± 0.001

3.2. Micro-structure characterization

First the fiber orientation, at the 6 different Locations illustrated in Fig. 3 of the PA06-GF40

plates, has been characterized by computed tomography technique. The Computed Tomography

(CT) is a nondestructive test for analyzing the microstructure of samples. It is based on the

difference in the density of the constituents of the material. An x-ray emitter attacks the sample

under analysis and the generated shadow is analyzed afterwards. The different gray shadows show

different material densities which allow the identification of the heterogeneity of the material. In

this project, a GE phoenix Nanoton 180 NF machine has been employed in order to scan 2 cubic-

microns material samples. The measurements have been conducted on volume of 2× 2× 3.2 mm3

at each of the 6 Locations. For Locations #2 and #6 they have been repeated on three different

plates. The second-order orientation tensors a deduced from the CT-scan samples are reported in

Table 2. It can be seen that Location #3 at border of the plate exhibits a better alignment (higher

a11) than Locations near the plate center.

Nevertheless, as explained in Section 2.3.1, applying the ODF in the two-step homogenization

process assumes that the populations of fibers have the same aspect ratio ar. When considering

Location #6 of Plate #3, analyzing the conditional distributions πAr|P (ar|p) of fiber aspect ratio

ar for different facet directions p in terms of the spherical polar angle θ and azimuthal angle φ,

see Figs. 4(a)-4(c), it appears that the fibers tend to have a higher aspect ratio when aligned in

the plate plane (θ = π
2 ). Since most of the fibers are aligned in this plane, see Table 2, and since

there is no obvious variation with respect to the angle φ, we can assume that the fiber aspect ratio

distribution for (θ = π
2 , φ = 0) is representative of the plate.
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Figure 4: Conditional distributions πAr|P of the fiber aspect ratio ar at Location #6, Plate #3, for different facet

orientations in terms of spherical polar angle θ and azimuthal angle φ
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Figure 5: Fiber aspect ratio distributions for different Plates and at different Plate Locations: (a) fiber aspect ratio

distribution πAr in terms of fibers count; and (b) distribution of volume fraction v(ar)πAr of inclusions of aspect

ratio ar.

Since there exists a distribution of aspect ratio, it is not obvious which value should be used

during the MFH process, see Section 2.1. The distribution πAr|P (ar|p) cannot directly be used in

a two-step homogenization process since it is related to a fiber count, and not to a fiber volume

fraction, in which case the effect of the small fibers would be overestimated. One could account for

the difference of volume values for the different aspect ratio values in order to define the volume

fraction of pseudo-grains of different aspect ratio values. However, we note that the definition of

the ODF would not be fully compatible since it is also based on a fiber count. In that case it would

be more meaningful to consider the distribution v(ar)πAr =
∫
v(ar,p)πAr,P (ar, p) dp of the volume

fraction of inclusions having an aspect ratio ar, obtained from Eq. (10) and illustrated in Fig. 5(b).

Besides, it is an overwhelming process, both during the model definition and resolution. Instead,

in this paper we define an effective value ar, which should be inferred from experimental data. We
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consider it as a unique value since, on the one hand, we have justified that the distribution for

(θ = π
2 , φ = 0) is representative of a given Plate and since, on the other hand, the aspect ratio

distribution πAr|P (ar|p) is found to be insensitive to the Plate and Plate Location, see Fig. 5(a).

We also note that during injection molding there exists a skin core effect such that the orien-

tation tensor is not uniform across the plate thickness. Since in this work we use a two-step MFH

process, see Section 2.1, in which different orientation populations are clustered depending on their

orientation before applying a Voigt assumption (identical strain), only the average orientation ten-

sor across the plate thickness is required. Indeed, evaluating the different orientation tensors across

the thickness and then performing several MFH would lead to the same results.

Table 3: Measured fiber mass fraction mI and deduced fiber volume fraction vI at each Location for the PA06-GF40

material system. Their standard deviations are also reported.

Location #1 #2 #3 #4 #5 #6

mI (%) 39.85± 0.07 40.19± 0.31 39.26± 0.05 39.55± 0.25 39.21± 0.09 39.32± 0.18

vI (%) 22.36± 0.03 22.60± 0.14 21.93± 0.02 22.14± 0.11 21.90± 0.04 21.97± 0.08

The mass fraction mI of fibers has been measured at each Location of the PA06-GF40 plates

using the pyrolysis technique by considering three through the thickness samples from three differ-

ent Plates. The volume fraction vI is then deduced from the densities reported in Table 1, and is

reported in Table 3.

3.3. Tensile tests

The tensile tests have been performed in a MTS Insight electromechanical actuator. This

vertical machine is capable of applying up to 100 kN force for performing quasi static tests. The

strain measurements, were carried out by means of a MTS Clip On extensometer. The machine is

equipped with mechanical grips for holding the specimens. In the case of a load cell of the testing

machine, the relative error of the resolution is 0.01%. In the case of the extensometer used for

measuring the strain the error of resolution is below 0.009%.

Tests were conducted at 23◦C at a strain rate of 1 mm·min−1. For each Location and Direction

couple illustrated in Fig. 3, three coupons of dimensions reported in Fig. 3 were extracted from

different composite Plates and tested under uni-axial tension. The extracted composite material

Young’s modulii for the PA06-GF40 material system are reported in Table 4. We note that the
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Table 4: Measured composite Young’s modulii Ec (GPa) for different Plates, at different Locations and for different

loading Directions.

Material PA06-GF40

Location #1 #2 #3 #4 #5 #6

0◦ 12.089 - 11.663 11.370 11.658 11.292

11.470 - 12.114 11.756 10.525 11.301

13.526 - 12.032 11.891 10.441 10.772

45◦ - 7.264 - 6.393 - 6.993

- 7.043 - 6.291 - 7.776

- 8.076 - 7.733 - 7.322

90◦ - 7.339 - 6.020 - 6.348

- 7.915 - 5.672 - 6.289

- 7.803 - 5.750 - 6.073

measurement errors due to the load cell and extensometer cannot explain the discrepancy observed

in these values.

4. Micro-mechanical parameters uncertainty impact

In this section, we estimate the impact of the discrepancy observed on different measured micro-

mechanical model parameters on the prediction of the composite Young’s modulus using the MFH

framework presented in Section 2, including the effective aspect ratio ar to be inferred. It is shown

that the discrepancy observed in Table 4 can only result either from experimental measurement

errors or from the existence of variability in the matrix Young’s modulus.

We consider the composite Young’s modulus observations E
(m)
c reported in Table 4, where (m)

indexes all the ncoupons coupons cut at different Locations (i), with i = 1..npos and npos = 6,

and along different Directions ψ(j) with j = 1..n
(i)
dir and n

(i)
dir up to three. Considering the micro-

structure parameters measured in Section 3.2 and assuming a value of the effective aspect ratio ar,

we can evaluate the corresponding matrix Young’s modulii following the MFH model:

E
(m)
0c = (EMFH)−1

(
E(m)
c ; ψ(j), I(i), v

(i)
I

)
∀i ∈ [1..npos] and j ∈ [1..ndiri ] , (20)

where E
(m)
c is the measured Young’s modulus, and where “I(i)” represents the inclusions in the

different pseudo-grains at Location i. We note that the transformation (EMFH)−1 always exists
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Figure 6: Effect of the micro-structural parameter on the matrix Young’s modulus E0 identification. “Original data”

refers to the case of average microstructural parameters with an effective aspect ratio ar = 16; “vI +σσ” refers to the

case in which the volume fraction has been increased by its standard deviation; “a + σa” refers to the case in which

the orientation tensor has been modified by its standard deviation; ar + 4 refers to the case in which the effective

aspect ratio has been modified. The symbol “4” refers to the values extracted at Location #1, “◦” at Location #2,

“?” at Location #3, “�” at Location #4, “∇” at Location #5, and “♦” at Location #6. The red color refers to

loading along the 0◦-Direction, blue along the 45◦-Direction, and yellow along the 90◦-Direction.

since EMFH is monotonically increasing with E0.

Considering the different Locations, the matrix Young’s modulii E
(m)
0c are reported in Fig. 6

under the label “Original data”. It can be seen that, for an aspect ratio ar = 16, the identified

values range from about 2.8 GPa to a bit more than 4 GPa, which is a range to be compared

with the value provided by the manufacturer (3.6 GPa [38]) and which is of comparable width and

order of magnitude as the one reported in Table 1. The only values out of that range correspond

to the loading along the 90◦-Direction at Location #2, and one value at Location #1 along the

0◦−Direction. However these measurements are not reliable, see Table 4, since for Location #2,

the composite Young’s modulii along the 90◦-Direction are larger than along the 45◦-Direction,

and since for Location #1, one coupon Young’s modulus is 10% higher. A more complete micro-

characterization should be performed on these samples, and for these reasons, in the following we

will not consider them. Besides, we note that considering only the 0◦-Direction, the red symbols,

spans a range from 2.8 GPa to 3.8 GPa. Similarly, considering the tests conducted at Location

#4 in all the Directions, the “�” symbols, spans a range from 3.1 GPa to almost 4.1 GPa. Such

a range can thus only be explained by a variability in the matrix properties or in the multiscale

model parameters.
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We then add successively to the volume fraction and to the ODF the measured standard devi-

ations reported in Table 3. We also increase the effective aspect ratio ar to 20. The corresponding

matrix Young’s modulii E
(m)
0c are reported in Fig. 6, and it can be seen that the range of variation is

not strongly affected by the uncertainties on the other micro-structural parameters, in comparison

with the uncertainties on E
(m)
0c . The main affecting parameter is the aspect ratio ar, which tends

to widen the range of Young’s modulus when increased.

5. Bayesian inference of the model parameters

Following the analysis in Section 4, the discrepancy observed in Table 4 can only result either

from experimental measurement error or from the existence of variability in the matrix Young’s

modulus. However, as detailed in Section 3.3, the measurement errors due to the load cell and

extensometer remain lower than 0.01%, motivating the identification of the matrix Young’s modulus

discrepancy. Nevertheless, the effective ratio ar to be used in the multiscale model should also be

inferred.

Therefore, after having briefly recalled Bayes’ theorem, the model parameter, i.e. the aspect

ratio, and the physical parameter, i.e. the matrix Young’s modulus, are inferred, first assuming

the existence of a Gaussian noise as done in several references for parameters identification [24–

26, 28–31], and then by assuming the existence of stochasticity in the matrix Young’s modulus.

5.1. Bayesian inference (BI) theory

Bayesian inference is a statistical analysis approach based on Bayes’ theorem according to

which the posterior probability of a random parameters vector x ∈ Rn for given observations of

another random vector y ∈ Rm is proportional to the prior probability of the parameters vector x

multiplied by the likelihood of y given observations of the random vector x:

π(x|y) =
π(x)π(y|x)

π(y)
, (21)

where π(•) (π(•|•)) denotes a (conditional) Probability Density Function (PDF).

When applying Bayes’ theory in the context of parameters identification, π(x) is the prior

distribution and reflects the initial believe or knowledge one has on x. The conditional PDF

π(y|x) is the law of observation or likelihood function, which is constructed from the different

observation data. The conditional PDF π(x|y) is the posterior distribution of the random vector
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x that accounts for the observation data. Finally π(y) is the PDF of the observation data. Since

the latter is a constant for given observations, we simply write

πpost(x|y) ∝ π(y|x)πprior(x) , (22)

where we have added the subscripts “prior” and “post” to the corresponding distributions. In

order to evaluate the posterior distribution (22), it is common to use MCMC techniques, which are

analogous to a random walk in the parameter space x ∈ Rn. This work uses the adaptive variant

[40] of the Metropolis algorithm [41], which is summarized in Appendix D.

Two cases are now considered to build the likelihood function.

5.2. Error-based inference

In the present context, the values to be inferred are the matrix Young’s modulus E0 and the

effective aspect ratio ar to be used in the 2-step MFH process, i.e. x = [E0, ar]. The only a priori

known information about the matrix Young’s modulus is related to experimental measurements

range and the average value provided by the manufacturer as reported in Table 1, and to the

inverse identification conducted in Fig. 6. Since physically the value should remain positive and

cannot be much larger than a few GPa we use a Gamma distribution as prior with

Γα, β, a, c(y) =

(y−a
c

)α−1
βαe−β(

y−a
c )

cΓ(α)
, (23)

where Γ(α) is the normalization constant, a is the lower bound and c allows defining the distribution

independently of the variable units. We consider the Gamma distribution Γ1.75, 0.5, 0.1GPa, ,1GPa with

its shape and rate parameters such that its expectation corresponds to the average value provided

by the manufacturer. Considering the model aspect ratio, the a priori known information comes

from the CT scan in terms of v(ar)πAr since the distribution in terms of volume fraction is more

meaningful than in terms of fiber counts. This distribution is illustrated in Fig. 5(b) in which a

Gamma-distribution approximation is also displayed. A lower bound has been introduced in the

latter distribution since the aspect ratio is defined such that ar ≥ 1. Eventually, the prior reads

πprior ([E0, ar]) = Γ1.75, 0.5, 0.1GPa, ,1GPa × Γ3.53, 0.133, 1, 1 . (24)

The random observation y = Êc gathers the experimental measurements E
(i,j,k)
c reported in

Table 4, where i = 1..npos refers to the plate Location from which the coupons are cut, j = 1..n
(i)
dir
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refers to the Direction ψ(j) along which the coupon is cut at Location (i), and where k = 1..n
(i, j)
sample

refers to the number of samples cut along Direction ψ(j) at Location (i).

Besides, the composite material Young’s modulus along Direction ψ(j) at Location (i) can be

evaluated from the MFH model described in Section 2, following

E
(i,j)
MFH ([E0, ar]) = EMFH

(
E0, I(i)(ar); ψ

(j), v
(i)
I

)
, (25)

with the inclusions I(i) in the different pseudo-grains and the fiber volume fraction v
(i)
I evaluated at

Location # (i). The composite material Young’s modulus is then written as the sum of the MFH

prediction and an error, or noise, n(i,j) which is related to the Location and loading Direction, with

E(i,j)
c = E

(i,j)
MFH ([E0, ar]) + n(i,j) . (26)

Since the different measurements on the coupons (k) are independent, one can write the likelihood

function for the tests along Direction ψ(j) at Location (i) as

π
(
Ê(i,j)
c |[E0, ar]

)
=

n
(i, j)
sample∏
k=1

πn(i,j)

[
E(i,j,k)
c − E(i,j)

MFH ([E0, ar])
]
, (27)

where Ê
(i,j)
c gathers the observation E

(i,j,k)
c with k = 1..n

(i, j)
sample. Finally, since the coupons for

different Directions and at different Locations are obtained from different plates, the measurements

are considered as independent, and the likelihood function of Eq. (22) thus reads

π
(
Êc|[E0, ar]

)
=

npos∏
i=1

n
(i)
dir∏
j=1

n
(i, j)
sample∏
k=1

πn(i,j)

[
E(i,j,k)
c − E(i,j)

MFH ([E0, ar])
]
. (28)

Using Eq. (24) and Eq. (28), Bayes’ formula (22) thus reads

πpost([E0, ar]|Êc) ∝
npos∏
i=1

n
(i)
dir∏
j=1

n
(i, j)
sample∏
k=1

πn(i,j)

[
E(i,j,k)
c − E(i,j)

MFH ([E0, ar])
]
πprior ([E0, ar]) . (29)

What remains to be defined is the set of noise functions πn(i,j) . A Gaussian function is selected

as in several references [24–26, 28–31]:

πn(i,j) (y) = N0, σ2

E
(i,j)
c

(y) , with Nµ, σ2 (y) =
1

σ
√

2π
exp

[
−1

2

(
y − µ
σ

)2
]
. (30)
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The standard deviation is obtained from the experimental measurements as

σ
E

(i,j)
c

2 =
1

n
(i, j)
sample − 1

n
(i, j)
sample∑
k=1

(
E(i,j,k)
c − E

(
E(i,j)
c

))2
, and E

(
E(i,j)
c

)
=

1

n
(i, j)
sample

n
(i, j)
sample∑
k=1

E(i,j,k)
c .

(31)

We note that a noise function has to be defined for each couple (i, j) since the range of values of

the measured Young’s modulus is strongly affected by the loading direction.

5.3. Distribution inference

In the second approach, we assume that the matrix Young’s modulus is heterogeneous in nature

and is considered as a random variable. Physically the Young’s modulus should, on the one hand,

be strictly positive and, on the other hand, is known to be smaller than the glass fibers Young’s

modulus. Besides, numerically, the MFH process is only defined when the matrix Young’s modulus

is strictly positive and is numerically stable only if the matrix Young’s modulus is upper-bounded by

several times the inclusion Young’s modulus. Therefore, we consider the matrix Young’s modulus

as a random variable following a lower- and upper-bounded distribution, which is chosen in the

paper as a Beta distribution

E0 ∼ βα, β, a, b with βα, β, a, b(y) =
(y − a)α−1(b− y)β−1

(b− a)α+β−1B(α, β)
, (32)

where a and b define the function support, and B(α, β) is the normalization constant.

Because the model parameter is now seen as a random variable, the MFH model is now prob-

abilistic with

EMFH ∼ πEMFH
(E0; ψ, I(ar), vI) , and E0 ∼ βα, β, a, b (33)

where the inclusions I in the different pseudo-grains and the fiber volume fraction vI depend on

the plate Location and where ψ depends on the loading Direction. In this case, we assume that

the effective aspect ratio has already been estimated, e.g. using the error-based framework. This

way of proceeding is justified by the different nature of the two parameters: the effective aspect

ratio is a model parameter resulting from the model assumption and can thus be inferred as a

deterministic value, while the matrix Young’s modulus exhibits some variability that ought to be

captured.

Because of the probabilistic nature of the MFH model (33), it is not straightforward to evaluate

the likelihood using directly the measurements on the composite coupons as the observation data.
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Indeed, from a sampling of the 4 parameters of the Beta distribution, x = [α, β, a, b], to be

inferred, one can only deduce a distribution of the matrix Young’s modulus and not the Young’s

modulus of the composite response. This distribution should thus be sampled too in order to

perform the 2-step MFH and to evaluate the likelihood as in Section 5.2. This process would thus

require a double Monte Carlo sampling, e.g., involving repeated computations of the 2-Step MFH

model, which would not be computationally affordable. Instead, we consider as observation data

y = Ê0c, the matrix Young’s modulii obtained by inverting the MFH function from the experimental

measurements: Ec → E0c, following Eq. (20), leading to the observations E
(m)
0c where (m) indexes

all the ncoupons coupons cut at different Locations (i) and tested along the Direction ψ(j).

The values to be inferred are now the 4 parameters of the Beta distribution, x = [α, β, a, b].

Concerning the shape parameters α and β, since they should be strictly larger than one we consider

prior Gamma-distributions (23) in which we introduce the lower bound 1. Besides, since we do

not have other information, the shape and rate parameters of the prior Gamma-distributions are

chosen such that their variance is large (20000) enough not to bias the BI process. The support

bounds a and b should be strictly positive and the only other available information comes from the

experimental measurements range reported in Table 1 and from the inverse identification conducted

in Fig. 6. We thus also consider prior Gamma-distributions for the support bounds. Concerning

a, we introduce the lower bound 0.1 GPa in the prior Gamma-distribution in order to remain

strictly positive, and consider the shape and rate parameters of the prior Gamma-distribution so

that its expectation corresponds to 2 GPa, which is lower than the values obtained by the inverse

identification conducted in Fig. 6. Concerning b, we introduce the lower bound 2 GPa in the

prior Gamma-distribution since all the values are expected to be larger than that, and consider the

shape and rate parameters of the prior Gamma-distribution so that its expectation corresponds

to 5 GPa, which is larger than the (non-rejected) values obtained by the inverse identification

conducted in Fig. 6. Since we do not have prior knowledge on the correlation, we consider the

prior Gamma-distributions as uncorrelated and the global prior thus reads

πprior ([α, β, a, b]) = Γ2, 0.01,1, 1 × Γ2, 0.01, 1, 1 × Γ2, 1.05, 0.1 GPa, 1 GPa × Γ2, 0.665, 2 GPa, 1 GPa . (34)

Since the coupons for different Directions and at different Locations are obtained from different

Plates, the observations y = E0c are considered as independent, and the likelihood function is
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directly obtained from Eq. (32), i.e.

π
(
E

(m)
0c |[α, β, a, b]

)
= βα, β, a, b

(
E

(m)
0c

)
. (35)

Finally, Bayes’ formula (22) thus reads

πpost([α, β, a, b]|Ê0c) ∝
ncoupons∏
m=1

βα, β, a, b

(
E

(m)
0c

)
πprior ([α, β, a, b]) . (36)

6. Results

In this section the two Bayesian inference approaches presented in Section 5.2 and in Section 5.3

are applied on the experimental measurements performed on the PA06-GF40 plates and described

in Section 3 at the exception of measurements at Location #6, which will be further used for

validation purpose. In order to analyze the resulting distributions, we use the average value E (x|y)

and the maximum a-posteriori-probability (MAP) point, which is defined as

MAPx|y = arg max
x

πpost(x|y) . (37)

We consider both the MAP point and the average value since the MAP point is not always char-

acteristic of most of the majority of the distributions.

6.1. Application of error-based inference
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Figure 7: Convergence study with respect to the MCMC iteration of the error-based BI when considering Location

#4: (a) Standard deviation of the posterior distribution, and (b) Trace of the inferred parameter.

We first apply Eq. (29) by considering successively coupons observations E
(m)
c at Location #3

for which 3 observations along the 0◦-Direction exist, and at Location #4 for which 9 observations

exist along the different loading Directions.
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Figure 8: Error-based BI, with (a) and (c) posterior marginal distributions πX|Êc
, and (b) and (d) randomly picked

realizations of (x|Êc) when considering the coupon measurements Êc from (a) Location #3, and (b) Location #4.

The convergence of the MCMC algorithm with respect to the iterations number, when consid-

ering the measurements from Location #4, is studied in Fig. 7, in terms of the standard deviation

of the posterior distribution, Fig. 7(a), and of the trace, i.e. the realizations in terms of the

iteration number, in Fig. 7(b). The standard deviation is found to converge after a few thousands

of iterations, and the trace has the typical fuzzy shape of a converged analysis.

The posterior marginal distributions πx|Êc are reported in Fig. 8, in which the matrix Young’s

modulus observations obtained using the change of variable (20), for an aspect ratio ar = 16, are

also reported for illustration purpose (they are not used in the error-based BI). When considering

only 3 observations along a unique Direction, it appears that the posterior distributions of the

matrix Young’s modulus and of the aspect ratio are wide enough so that the 3 experimental

observations are embedded by the matrix Young’s modulus distribution, see Fig. 8(a). The two

distributions are strongly correlated, see Fig. 8(b) and an effective aspect ratio ar as a model

parameter cannot be extracted. However, when considering observations from different loading
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directions, the set of realization points narrows, see Fig. 8(d). Nevertheless, as expected, when

increasing the number of observations, the posterior becomes more peaky, see Fig. 8(c), and some

observations are not included in the inferred distribution of the matrix Young’s modulus. The

MAP and average values are found to be the same since the distribution is (almost) Gaussian.

Besides, when increasing the number of observations, the MAP converges to the “unique” solution

of the maximum likelihood, which is also the mean value. In particular, an effective aspect ratio

ar of 16 can be extracted from the MAP value.

As a conclusion, on the one hand, the aspect ratio ar can be inferred from the previous analysis

and can be used in the subsequent analyzes, but on the other hand, the error-based inference cannot

capture the heterogeneity of the matrix behavior observed in the experimental measurements.

6.2. Application of distribution inference
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Figure 9: Convergence study with respect to the MCMC iteration of the distribution-based BI when considering the

Locations #1-#5 and all the possible loading Directions: (a) Standard deviation of the posterior distribution, and

(b) Trace of the inferred parameters.

We now apply Eq. (36) considering successively a single Location with one loading Direction,

and Locations #1-#5 with all the possible loading Directions altogether. For these analyzes, we

consider an aspect ratio ar = 16, following the argumentation of the previous Section.

First the convergence of the MCMC algorithm, when considering the measurements from all

the Locations and all the loading Directions, is assessed in Fig. 9. It can be seen that the standard

deviation of the posterior distribution, Fig. 9(a), converges with the number of iterations. The

trace, illustrated in Fig. 9(b), is typical from a converged analysis.
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Figure 10: Posterior distributions πx|Ê0c
of the distribution-based inferred parameters considering the measurements

Ê0c from (a) Location #3 only, and (b) Locations #1-#5.
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Figure 11: Randomly picked realizations of (x|Ê0c) for the distribution-based BI method considering Locations

#1-#5.

The posterior marginal distributions of the inferred parameters are illustrated in Fig. 10. When

the bound b of the support function tends to increase, this is compensated by high values of the

exponent parameter β, in particular when less observations E
(m)
0c are considered, as in Fig. 10(a).

This behavior is confirmed by Fig. 11, in which a few hundreds randomly picked realizations

of (x|Ê0c) are presented in order to study the dependency between the components: the main
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dependencies are observed between α and β, α and a, and β and b.
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Figure 12: Posterior marginal distributions πE0|Ê0c
of the distribution-based BI resulting matrix Young’s modulus

considering the measurements Ê0c from (a) Location #4 only, and (b) Locations #1-#5.

Finally the resulting posterior distributions πE0|Ê0c
of the matrix Young’s modulus are reported

in Fig. 12. Since this time we have inferred the parameters of the Young’s modulus Beta distri-

bution (32), the result of the BI is a set of Beta distributions, whose 95% Credible Region (CR)

is depicted in Fig. 12. Besides, the distribution corresponding to the average value E
(
x|Ê0c

)
of

the inferred parameters, and to the MAP (37) are also reported. It can be seen that the distribu-

tions embed all the experimental observations E
(m)
0c if one Location is considered, see Fig. 12(a),

but also when Locations #1-#5 are considered, see Fig. 12(b). When only a limited number of

observations is considered as in Fig. 12(a), the 95% CR is much wider as compared to the case in

which Locations #1-#5 are considered, see Fig. 12(b).

6.3. Validation

The parameters inferred using, first, the error-based approach in Section 6.2, for which E0 is

directly inferred, and, then, the distribution-based approach in Section 6.2, for which the param-

eters of the E0 distribution are inferred, are now used to predict the response uncertainty of the

PA06-GF40 plate measurements at Location #6. For the error-based BI, we use the parameters

inferred considering Location #4, while for the distribution-based BI we consider the Locations

#1-#5.

The predictions are reported in Fig. 13, where the experimental measurements of Section 3 are

also reported. On the one hand, the parameters inferred using the error-based BI do not lead to

composite materials responses embedding the experimental measurements. On the other hand, the

26



0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
εM [-]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

σ
M

[G
P

a]

E
(m)
c

95% CR
50% CR

(a) 0◦-loading; error-BI

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
εM [-]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

σ
M

[G
P

a]

E
(m)
c

95% CR
50% CR

(b) 45◦-loading; error-BI

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
εM [-]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

σ
M

[G
P

a]

E
(m)
c

95% CR
50% CR

(c) 90◦-loading; error-BI

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
εM [-]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

σ
M

[G
P

a]

E
(m)
c

95% CR
50% CR

(d) 0◦-loading; distribution-BI

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
εM [-]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

σ
M

[G
P

a]

E
(m)
c

95% CR
50% CR

(e) 45◦-loading; distribution-BI

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
εM [-]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

σ
M

[G
P

a]

E
(m)
c

95% CR
50% CR

(f) 90◦-loading; distribution-BI

Figure 13: Validation of the inferred parameters on the PA06-GF40 plate measurements at Location #6, (a-c)

using the error based approach, and (d-f) using the distribution based BI approach. Several loading Directions are

considered.

distribution of the matrix Young’s modulus obtained by the distribution-based BI predicts a 50%

credible region of the composites responses which covers most of the experimental measurements

and a 95% credible region, which covers them all.

7. Conclusions

We have shown in this paper that when modeling composite materials, although most the

parameters of a multiscale model can be experimentally measured, on the one hand, some model

parameters should still be defined, and, on the other hand, some physical parameters exhibit

variability during experimental tests. Both families of parameters require a special identification

process. To this end, two identification schemes based on Bayesian inference have been developed

and compared: the first one considers a Gaussian noise function applied on the experimental

measurements, and the second one assumes a normal distribution of the parameters to be identified,

in which case the distribution parameters are inferred. While the first approach can directly uses

the experimental observations of the composite responses to evaluate the likelihood function, the
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second approach requires first a change of variables to have as observations the corresponding

parameters.

In this work, we have focused on the elastic response of Short Fibers Reinforced Polymers

modeled using a MFH scheme. In particular, the effective aspect ratio of fiber populations, and

the matrix Young’s modulus have to be inferred.

When applying the two approaches on the experimental measurements, it is shown that the

error-based approach narrows the posterior distribution when the number of observations increases.

Although, this allows the model parameter, i.e. the effective aspect ratio, to be inferred, this

makes the multiscale method unable to be used as a stochastic model since the uncertainties in the

physical parameter, i.e. the matrix Young’s modulus, cannot be predicted. On the contrary, the

distribution-based approach is able to represent the matrix Young’s modulus uncertainties and,

as a result, the multiscale approach captures the stochastic behavior of the composite material

experimentally observed. It is worth emphasizing that this stochasticity results directly from the

identification process and not from a model.

In the future, it is intended to extend the distribution-based method to infer the matrix non-

linear model parameters in the elasto-(visco)-plastic case.
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Appendix A. Closure approximation

The orientation tensors denoted Al(a) (linear closure) and Aq(a) (quadratic closure) are exact

for randomly and aligned oriented inclusions, respectively. For other cases, only approximations

as a function of the components of a do exist. Several approximations have been proposed in the

literature:

• The linear approximation [42] is accurate for fiber populations oriented randomly (isotropic).

With this approximation, the fourth-order orientation tensor is written as

Al(a) = αlI ⊗ I + 2(αl − βl)I + βl[I ⊗ a+ a⊗ I] + 2βl[I(a+ I)− I(a)], (A.1)

where I and I designate the symmetric second- and fourth-order identity tensors, respectively,

and I(a)ijkl = 1
2(aikajl + ailajk), I = I(I), and where

αl =
−1

35
and βl =

1

7
in 3D; and αl =

−1

24
and βl =

1

6
in 2D. (A.2)

• The quadratic approximation [43] is accurate when the fibers are aligned along the same

direction. With this approximation, the fourth-order orientation tensor is written:

Aq(a) = a⊗ a . (A.3)
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• The hybrid approximation [44] combines the quadratic and linear closure approximations,

with

Ah(a) = (1− f)Al(a) + fAq(a), f = 1−Nh det(a), (A.4)

where the number Nh is Nh = 27 in 3D and Nh = 4 in 2D. This hybrid approximation

is accurate for the case of a population of oriented fibers in a single direction (f = 1) or

for randomly oriented fiber populations, i.e. isotropic orientation (f = 0). Advani and

Tucker [44] have shown that, overall, the hybrid approximations produce acceptable physical

behaviors as compared to reality.

• The generalized hybrid approximation [14] fills the gap between the clearly 2D and 3D cases.

To this end, the second-order orientation tensor a is first decomposed into its principal

(ordered) components ai and eigenvectors e(i), with a =
∑

i aie
(i) ⊗ e(i). We then work in

the principal components space, designated by the notation • with

a = diag(a1, a2, a3), with a1 ≥ a2 ≥ a3 ≥ 0 & a1 + a2 + a3 = 1. (A.5)

The normalized components of a in the 1D, 2D and 3D cases are then used to evaluate the

corresponding fourth-order orientation tensors. The 1D case considers the quadratic closure

(A.3), i.e.
1D
A = Aq

(
1D
a
)

with
1D
a = diag(1, 0, 0); (A.6)

The 2D case considers the hybrid closure (A.4), i.e.

2D
A = Ah

(
2D
a
)

with
2D
a = diag(

a1
a1 + a2

,
a2

a1 + a2
, 0); and (A.7)

The 3D case considers the hybrid closure (A.4), i.e.

3D
A = Ah

(
3D
a
)

with
3D
a = a. (A.8)

The fourth-order orientation tensor (in the e(i) space) is then written as a convex combination

of the closures associated with the normalized components of a in the 1D, 2D and 3D cases

as follows:

A =
a1 − a2
a1

1D
A +

a2 − a3
a1

2D
A +

a3
a1

3D
A . (A.9)

Finally, the generalized hybrid fourth-order orientation tensor Agh is obtained by simple

rotation to the original space

Aghijkl = e
(m)
i e

(n)
j e

(o)
k e

(p)
l Amnop . (A.10)
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In this work, we adopt the generalized hybrid fourth-order orientation tensor Agh (A.10).

Appendix B. Reconstruction of the ODF

When unavailable, the ODF must be recovered from the orientation tensors a and A. In this

work we use the Onat and Leckie reconstruction method [37]:

πP (p) ≈ ψ1 + ψ2(a)dev : (p⊗ p)dev + ψ3B(a) :: F(p), (B.1)

with

F(p) = Aq(p⊗ p)− Al(p⊗ p), and B(a) = Agh − Al, (B.2)

where the (.)dev operator denotes the deviatoric part. The fourth-order orientation tensors Al and

Aq are computed using respectively Eqs. (A.1) and (A.3) as function of the components of either

a or (p⊗ p), and the fourth-order orientation tensor Agh is obtained using the generalized hybrid

method (A.10). The constant values of ψ1 ,ψ2 and ψ3 are given as

ψ1 =
1

4π
, ψ2 =

15

8π
, ψ3 =

315

32π
in 3D; and

ψ1 =
1

2π
, ψ2 =

2

π
, ψ3 =

8

π
in 2D. (B.3)

Appendix C. Numerical averaging from the ODF

From a practical point of view, we consider half of the unit sphere i.e. (θ, φ) ∈ [0, π] × [0, π].

The angle θ is divided into constant increments ∆θ = π
Nθ

, defining Nθ spherical rings situated

between the angles (θ −∆θ) and (θ + ∆θ), and having the following area:

Sθ = π

∫ (θ+∆θ
2
)

(θ−∆θ
2
)

sin(ξ)dξ = 2π sin (θ) sin

(
∆θ

2

)
. (C.1)

In order to define iso-facets of (almost) constant area, for each of these rings, the number of iso-size

facets is given by Nφ (θ) = Nθ sin(θ), leading to facet sizes

S(θi, φj) = 2∆θ sin

(
∆θ

2

)
. (C.2)

At each pole θ = 0 and θ = π, there is a single facet of area

S(θ = 0) = S(θ = π) = π

∫ (∆θ
2
)

0
sin(ξ)dξ = π

[
1− cos

(
∆θ

2

)]
. (C.3)
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It is to be noted that in some cases, reconstructed probability functions have negative values.

The recovered ODF, either in 2D or 3D, is thus substituted by an analytical fit of its discrete values

using a Gaussian function as suggested in [14], with

πP (φ) ≈ ψG(φ) in 2D; and πP (θ, φ) ≈ ψG(θ)ψG(φ) in 3D; (C.4)

with ψG a Gaussian function expressed as follows:

ψG(φ) =
1

σφ
√

2π
exp

[
−1

2

(
φ− E (φ)

σφ

)2
]

; (C.5)

where σ• and E (•) are the standard deviation and expectation of •.

Appendix D. Adaptive Metropolis algorithm

We use the adaptive variant [40] of the metropolis algorithm, which is a specific case of the

Metropolis-Hastings algorithm [41]. In this approach, the proposal distribution is symmetric and

updated once every nK = 1000 samples.

A random walk is considered in the parameter space x ∈ Rn. Considering a proposition sample

x(p) drawn from a (symmetric) conditional distribution q(x(p)|x(i)) with the current sample x(i),

depending on the ratio
πpost(x(p))
πpost(x(i))

and on a random number u drawn from a uniform distribution

U0, 1, with

Ua, c(y) =


1
c−a if y ∈ [a, c] ;

0 if y 6∈ [a, c] ,

(D.1)

the proposed sample either becomes the new current sample x(i) or is rejected following the algo-

rithm detailed in Table D.5.

Considering previous samples x(i), the symmetric proposal distribution q(x(p)|x(i)) is updated

once every nK = 1000 samples, such that the proposition sample x(p) is drawn following

x(p) ∼ Nx(i), γ2NnK
, (D.2)

where γ determines the proposal distribution width and is usually taken as γ = 2.38√
n

. The matrix

NnK of size n× n is obtained as the covariance matrix of the nK previous samples as

NnK =
1

nK − 1
K̃T K̃ , (D.3)
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where the nK × n zero-mean matrix K̃ collects nK previous samples indexed from (j) to (j + nK)

following

K̃ =

[[
x(j) − E (x)

]T
, ... ,

[
x(j+nK) − E (x)

]T]T
. (D.4)

In this last equation, the expectation E (x) = 1
nK

∑nK
k=1 x

(j+k) has been computed on the nK

samples. Practically, the sample x(p), Eq. (D.2), is obtained as

x(p) = x(i) +
γ√

nK − 1
K̃Tk(p) with k(p) ∼ N0, InK

, (D.5)

where k(p) is drawn from the normal zero-mean distribution of unit covariance, InK being the

nK × nK identity matrix.

Table D.5: Adaptive Metropolis algorithm

input: observed data y ∈ Rm

Select initial sample x(0) ∈ Rn, number of iterations nite, nK = 1000, γ = 2.38√
n

and NnK
= InK

1: for i = 1 : nite do

2: draw x(p) ∼ Nx(i), γ2NnK
following Eq. (D.5)

3: evaluate r(x(i)|x(p)) = min

(
1,

πpost(x(p)|y)
πpost(x(i)|y)

)
from either Eq. (29) or Eq. (36)

4: draw u ∼ U0, 1
5: if r(x(i)|x(p)) ≥ u then

6: x(i+1) = x(p)

7: then

8: x(i+1) = x(i)

9: endif

10: if i%nK == 0 then

11: Evaluate K̃ from Eq. (D.4) using samples x(i−nK) to x(i)

12: endif

13: endfor
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