
ROSploit: Cybersecurity tool for ROS
Sean Rivera†, Sofiane Lagraa†, and Radu State†

† SnT, University of Luxembourg
firstname.lastname@uni.lu

Abstract—Robotic Operating System(ROS) security research is
currently in a preliminary state, with limited research in tools or
models. Considering the trend of digitization of robotic systems,
this lack of foundational knowledge increases the potential threat
posed by security vulnerabilities in ROS. In this article, we
present a new tool to assist further security research in ROS,
ROSploit. ROSploit is a modular two-pronged offensive tool
covering both reconnaissance and exploitation of ROS systems,
designed to assist researchers in testing exploits for ROS.

Index Terms—Robotics, ROS, Security, Threat Model, Cyber-
security

INTRODUCTION

As robotic systems become standard throughout indus-
try and research, there is a greater concern about security
vulnerabilities. One of the primary frameworks for robotic
development, Robotic Operating System (ROS) [1], is used
widely in the field. With the addition of ROS-Industrial (ROS-
I) [2], ROS has moved from a purely research tool into an
industry standard middleware system, with various versions
of ROS systems found in the field. As a tool that was initially
developed for academic research, security was not part of the
initial ROS design [3]. As such the core implementation of the
ROS system is highly insecure and the previous research into
the security of ROS systems has been stymied by the lack
of a consistent set of tools [4]. A consistent set of security
tools is crucial for security research as it provides foundation
for further development. Additionally, the existence of such
tools allows a developer to test their systems against similar
real-world attacks and more effectively develop secure reliable
systems.

This paper has the following major contributions:
• We propose a new model of security for ROS systems,

that future work can use as a foundation for ROS security
analysis.

• We propose ROSploit a new exploitation tool for simu-
lating attacks against ROS systems and we compare it
with ROSPenTo, a similar new exploitation tool under
development.

SECURITY FOR ROS

In SROS: Securing ROS over the wire, in the graph, and
through the kernel [5], the authors proposed SROS, a library
for ROS ecosystem to support modern cryptography and
security measures to address existing vulnerabilities. In SROS,
all network communication is encrypted using Secure Sockets
Layer (SSL), or more specifically TLS. The encryption is done
through the use of Public Key Infrastructure (PKI), where each

ROS node is provided an x.509 certificate, equivalently an
asymmetric key pair, signed by a trusted certificate authority.
These results indicate security vulnerabilities in ROS, requir-
ing additional libraries to ensure security in vital ROS systems.

However, the most common vulnerabilities of ROS, are
presented in Security for the Robot Operating System [3].
The authors highlighted the security issues in ROS with
several possible attack vectors on a ROS application such
as unauthorized Publishing (Injections), unauthorized data
access, and denial of service (DoS) attacks on specific ROS
nodes. They showed how to secure ROS on an application level
and describe a solution which is integrated directly into ROS
core. Additionally they built a tool to assist them in looking
for additional attack vectors, ROSPenTo.

THREAT MODEL

In order to conduct a security analysis of ROS applications,
an extended threat model was constructed based on the at-
tack vectors discussed in Security for the Robot Operating
System [3], mainly focusing on the following attacks: Unau-
thorized publishing, Unauthorized data access, and a packet
flooding DOS as a first pass analysis into the security of
ROS. For our research, we extended these attacks into broader
categories and explored what other attacks would be possible
for those categories.

For this threat model, two distinct types of threats, internal
and external, and their primary risks were considered. For the
purposes of this paper, internal threats are defined as attackers
who have access to the underlying Linux system, with access
to legitimately spawn new nodes onto the system and have at
least partial network access. Insider threats can come in a wide
variety of forms including; malicious manufactures, compro-
mised nodes, disgruntled developers with accessor even simple
software bugs. For the purpose of this paper, we define external
threats as any sort of threat that does not have partial access to
the underlying Linux system. External threats cannot launch
new nodes on their own.

By referencing similar threat models for normal Internet-
connected systems [6], it is evident that external threats will
likely be the vast majority of threats that ROS systems will
face. When analyzing external threats, several areas of known
potential vulnerabilities for ROS system were discovered.
These include sensor input tampering with available IP flows
[3]. Given the existence of remote parameter control for ROS
services, an attacker may be able to escalate their attacks to
remote code execution. This would allow the attacker to load



malware on the robot, which would elevate the attacker to be
an internal threat instead of external.

ROSPLOIT

ROSploit is designed to assist security researchers in their
analysis of ROS systems and compare it to the other tool
currently in development: ROSPenTo [7]. This system can
be split into two separate components: reconnaissance and
exploitation.

The reconnaissance components of the system integrate with
the existing research tool NMAP [8] as a set of NSE scripts
which can be enabled when scanning a suspected ROS system.
As of the publishing of this article, there are two high-level
scripts implemented as part of this system. The first script is a
master node scan, which focuses on pulling information from
the ROS master, while the second is an addition to the normal
NMAP wide port scan, allowing NMAP to identify various
ROS nodes during the course of the port scan. The master
scan script runs only for the master port(normally 11311) of
ROS. This scan calls the getSystemState() function, a part of
every ROS system. Once it calls the function it is given a list
of every single running node topic and service on the ROS
system, which it then parses for further user examination. The
wide port scan can be run as a part of any scan of the system.
It can determine if an open TCP port is a ROS node, part of
ROS master, or a ROS service by sending normal XMLRPC
requests to the nodes and monitoring the responses it receives.
If it fails to receive a response from the XMLRPC requests,
it attempts to send a TCPROS subscription request to the
open port. Using the response to that subscription request, the
system can determine if the node is a topic or a service and if it
is running TCPROS. Unlike ROSPenTO we are able to analyze
a system with an unknown master node, and able to partially
analyze a ROS system based on port numbers. In Figure 1 we
demonstrate the node scan portion of ROSploit and compare
it with the results of the rosgraph tool in order to demonstrate
the effectiveness of the scanning tool. The system correctly
identifies the open ports as well as the name of the node
running. The script flags these by describing them as topic
ports, and then naming the publisher. This indicates that we
can effectively scan the whole system, including the debugging
add-ons.

The exploitation component of the system is developed in
Python as a set of modular exploit components. It is similar
to Metasploit in design as it is a modular system of scripts
that contains canned exploits to be run against an already
scanned target, and it depends on the reconnaissance half of
the system to determine which parameters are needed. In order
to facilitate easy development of various exploits, we provide
interfaces to the entire ROS middleware. This allows the user
to run ROSploit without having to fully install ROS, and it
opens up new potential exploit areas where attacks can target
the underlying system by, as an example, sending malformed
TCPROS messages. A user can select which attacks they with
to run as command-line arguments. As an example, in order
to run a MiTM attack, a user would give the name of the

topic and the two nodes to the script. The script would then
insert itself into the communication between the two nodes on
the selected topic. From there use user is free to modify the
communication as needed. As compared to ROSPenTo we are
capable of performing every action that it can related to topics
and nodes, though we do not have scripts to interact with the
parameter server yet.

Fig. 1. An example version of the NMAP port scan compared to the
plot generated by the internal ROS graph tool. The highlighted names were
included to demonstrate that they nodes were successfully scanned while the
rest of the names were omitted due to brevity.

CONCLUSION AND FUTURE WORKS

In this paper we introduce ROSploit, a new research tool
modeled after NMAP and Metasploit for modeling and ex-
ploiting vulnerabilities in ROS. This tool is designed to
provide a framework for further research into security for
ROS systems allowing providing a flexible platform for the
development of future research. For future work, ROSploit
will be extended to support additional functionality, newer
attacks, as well as allow multi-stage exploits. Additionally,
we will extend the tool to support ROS2.

REFERENCES

[1] “Community metrics report 2017,” http://download.ros.org/downloads/metrics/metrics-
report-2017-07.pdf, accessed: 2018-06-29.

[2] “Ros-industrial overview,” http://wiki.ros.org/Industrial, accessed: 2018-
06-29.

[3] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and
P. Schartner, “Security for the robot operating system,” Robotics and
Autonomous Systems, vol. 98, pp. 192 – 203, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889017302762

[4] A. J. A. Wang, “Information security models and metrics,” in
Proceedings of the 43rd Annual Southeast Regional Conference - Volume
2, ser. ACM-SE 43. New York, NY, USA: ACM, 2005, pp. 178–184.
[Online]. Available: http://doi.acm.org/10.1145/1167253.1167295

[5] R. White, H. I. Christensen, and M. Quigley, “SROS: securing ROS
over the wire, in the graph, and through the kernel,” CoRR, vol.
abs/1611.07060, 2016.

[6] M. Jouini, L. B. A. Rabai, and A. B. Aissa, “Classification
of security threats in information systems,” Procedia Computer
Science, vol. 32, pp. 489 – 496, 2014, the 5th International
Conference on Ambient Systems, Networks and Technologies
(ANT-2014), the 4th International Conference on Sustainable
Energy Information Technology (SEIT-2014). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050914006528

[7] “Hacking a mir robot with rospento.” [Online]. Available:
https://bernharddieber.com/post/mir-hacking-video/

[8] Fyodor, “The art of port scanning,” https://nmap.org/p51-11.html, ac-
cessed: 2018-06-29.


