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Abstract—We consider the problem of automatically gener-
ating networks from data of collaborating researchers. The
objective is to apply network analysis on the resulting network
layers to reveal supplemental patterns and insights of the re-
search collaborations. In this paper, we describe our data-to-
networks method, which automatically generates a set of logical
network layers from the relational input data using a linkage
threshold. We, then, use a series of network metrics to analyze
the impact of the linkage threshold on the individual network
layers. Moreover, results from the network analysis also provide
beneficial information to improve the network visualization. We
demonstrate the feasibility and impact of our approach using
real-world collaboration data. We discuss how the produced
network layers can reveal insights and patterns to direct the
data analytics more intelligently.

I. INTRODUCTION

Network structures have drawn significant attention in big
data due to the possibility to apply network theory and analysis
to obtain extra insights from the data. Networks are ubiquitous
[27] in research areas from biology and neuroscience (e.g.,
brain networks [6]) to modeling and analyzing galaxy dis-
tributions [17], and quantifying reputation in art [15]. These
examples are use cases where network layers play an important
role to represent and analyze the data.

Networks offer several advantages. They provide adaptabil-
ity for dynamic structures benefiting from local principles on
nodes [9]. Additionally, network analysis discloses valuable
information for data visualization by defining an appropri-
ate link definition. Networks often provide computationally
efficient algorithms with lower complexity in comparison to
a tabular structure [13]. Furthermore, data transformed into
network structures can help providing evidence for missing
information [30], [21] as well as predicting forthcoming events
[26]. Besides, there are numerous algorithms that can be
applied on networks such as Louvain’s algorithm which is
a community detection algorithm [7] and Page Rank, that
identifies the most influential object within a network.

With these advantages of networks, we are confronted with
the challenge on how to transform relational data into appro-
priate networks, which exhibit advantages for data analytics as
well as data visualization. The challenge is twofold: It is not
only on how to represent the elements of a network, but also
the specific construction principles, since, for each dataset,
there are numerous ways be transformed into a network rep-
resentation [10]. Each network reveals a particular perspective

on the dataset. In this study, we investigate different linkage
thresholds for the transformation of a collaboration dataset into
networks.

In this paper, we propose a method that transforms collab-
oration data to network layers. Our approach favors scientific
projects as nodes with links generated by using a specific
linkage threshold. We apply our method on real-world data that
describes collaboration of a renowned research institute. Our
study uses different metrics to determine the influence of the
network structure on the network properties. Additionally, we
obtain results that provide information on better visualizing the
produced networks and a possible interface to include privacy
mechanisms into data analytics [28]. The remainder of this
paper is structured as follows. Section II investigates related
work. We describe our method to complement data with
network layers in Section III. The experiment setup designed
to analyze the proposed algorithm is represented in Section IV.
Section V discusses the outcome and the opportunities for
future work. Finally, Section VI concludes the paper.

II. RELATED WORK

The challenge of converting data to networks is a well-
known issue when it comes to geographical data [14], [16].
Graph studies on spatial data reveal valuable information
on route networks, complex urban systems [22] and the
relationship between different urban areas [31]. Nevertheless,
the raw dataset on geographical information is not enough by
its own to conduct proper graph studies. Karduni et al. [18]
focuses on this challenge and has introduced an approach for
geographical systems by defining a protocol describing the
network properties to convert the spatial polyline data into a
network.

In general, some of the studies have stressed the inference
of links from relational data to design a network out of the
relational data. Casiraghi et al. [11] developed a generalized
hypergeometric ensembles approach to address the problem
of inferring connections within relational data. The study
represents a perspective of link prediction while applying
predictive analysis. From a similar point of view, Xiang et
al. [29] established a link-based latent variable model to infer
the friendship relations within a social interaction. In addition,
in another study [25] the international relations from a dataset
consists of the news from different countries are extracted by
a tensor factorization technique. Moreover, Akbas et al. [1]
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proposed a social network generation by proposing a model
based on various interactions (e.g., phone calls) considering
smartphone data. Given a weight to each type of interaction,
the authors define a link value as the combination of various
interaction types. Akbas et al. followed up their study on
network generation from interaction patterns by studies on how
to infer social networks of animal groups [2], [3], [4]. Initiating
from these studies, in particular from [1], we followed a
similar approach in order to define the linkage threshold to
generate the network layers [5], [12].

Considering the collaboration data, Newman [19] has es-
tablished networks considering authors and their collaboration
on scientific papers. The scientific collaboration networks
have been also studied in a particular network structure,
hypergraphs, by Ouvrard et. al. [20]. The authors emphasized
on enhancing the visualization of these networks considering
network properties.

III. PROPOSED METHODOLOGY: DATA-TO-NETWORK
LAYERS

We establish a method with the purpose to convert the
relational data of research collaborations into network layers
by describing a set of nodes and a linkage threshold to define
the connections between nodes. Considering the thresholds we
then generate different network layers and investigate each
network with the network measurements. Using outcomes of
the last phase we then visualize the networks for a better
understanding of the relationship in our data.

For this study, we have access to a real-world dataset of
collaborative projects within National Electronics and Com-
puter Technology Center (NECTEC). The dataset consists
of various projects that have been completed with certain
members of the institute. Investigating on the relationships and
extracting the collaboration patterns are the outcomes that the
networks will provide in order to improve performance of the
research projects by using the possible resources inside the
organization. We, therefore, retrieved different features from
the dataset to feed our method and generate the network layers.

In this study, our focus is particularly on the projects of the
institute. Thus, we consider the elements of the network such
that the projects are nodes of the network and the common
members between the projects are represented as the links
of the network. Each project is identified with an id, and a
team of m members who contributed to the project, whereas
the project members can participate in different projects at the
same time. Contribution percentage is a feature extracted from
the dataset that quantifies the contribution of a member within
a project.

We calculate the linkage threshold by looking at certain
features from the dataset: (1) the project members, and (2) the
contribution percentage of each project member in a project.
Let mi

k, cik be the k-th member of project i and the contribu-
tion percentage of the member in the project, respectively. Let
mi = (mi

1,m
i
2, . . .) and ci = (ci1, c

i
2, . . .) of project i ∈ ID.

Next, we define P as the combination of features chosen to
explain the explain linkage threshold, i.e., P =

⋃
i(m

i, ci).

Then, the common members between two projects (e.g., i, j)
is denoted as Mij = {(i, j) ∈ ID |mi ∩mj}. Finally, con-
sidering the aforementioned parameters, the linkage threshold
is defined as

Tij =
1

nij

∑
∀k∈Mij

cik + cjk
2

,

T =
⋃

i,j∈ID
(Tij), (1)

where Tij is the linkage threshold within the projects (i, j),
nij is the number of common members calculated inMij , and
T is the linkage threshold for the whole dataset. Exploiting
the linkage threshold, we propose Algorithm 1 to construct
network layers with different linkage thresholds.

Algorithm 1 Data-to-Network Layers
Input: D, a dataset of research collaboration.
Output: G, a vector of generated network layers.

1: procedure TRANSFORM-TO-NETWORK(D)
2: nodesList← ID
3: P ← extract features from D
4: trange← generate a space vector from (min(T ), max(T ))
5: for each threshold in trange do
6: for each pair of nodes in nodesList do
7: f ← Aggregate(P[nodes])
8: if f ≥ threshold then
9: edgesList← pair of nodes

10: Network G← GenNet(nodesList, edgesList)
11: Insert G to G
12: return G

a) Description of the algorithm:: Assume D is the rela-
tional dataset of collaborations. We need to define the nodes
and the links extracting particular features from D to generate
the network layers. To define the list of nodes nodesList,
we extract the id of the entities which in this study we used
the identities of research projects (see line 2 in Algorithm
1). In order to describe the links, we first need to define a
linkage threshold t considering the list of features P . The
linkage threshold of linear space vector consists of n points
of threshold within the range of minimum and maximum
values of P (see line 3−4 in Algorithm 1). Additionally, each
network from G is measured by the set of network metrics.

We use the before mentioned collaboration data as input
for the presented Algorithm 1. Then, we measure the network
metrics and utilize them for a better visualization of data. The
resulting generated network layers are visualized in Fig. 1.
In this specific example, we consider 6 thresholds for defining
the edges starting from 0 (the minimum collaboration observed
in the dataset) to 100 by using the connected components to
enhance the visualization of data.

b) Complexity analysis: The complexity of Algorithm 1
depends on the two main parts of the algorithm: (1) Comparing
each pair of nodes to find those that serve the determined
condition for threshold is the most expensive one with the



Fig. 1: Visualization of the generated networks. In each network, the size of the nodes represents the degree of a node and the color illustrates
the components. Such that blue shows components with the highest number of nodes, whereas gray represents the smallest components of
a network. Moreover, green and red describe components which have a number of nodes within the range of previous cases.

complexity of O(n2). (2) The complexity of the network
generation is linear such that for n nodes and m edges the
complexity is O(n+m).

IV. EXPERIMENT SETUP

A. Dataset

We benefit from a particular collaboration data derived from
the National Electronics and Computer Technology Center
(NECTEC) that presents different projects and collaborations
in the area of R&D. The dataset is stored in a relational
database consisting of research projects conducted between
July 2013 and July 2018. Each project may consist of different
deliverables: intellectual property (IP), papers, or prototypes
as well as may comprise different members from different
teams of the same institute. The dataset is the knowledge
management about the project where the key information is to
know (1) the type of the project, (2) project contributors and
contributions.

The dataset of combined team tables have almost 8k records
which is the information of more than 2.3k projects. Among
them 630 are related to IP, 1717 to papers, and 539 to
prototypes. Overall, the institute has more than 1000 members
who are contributing on different projects with certain features
(e.g., contribution percentage) which have been defined within
the organization to evaluate the contributions. One of the main
features we have used is the contribution percentage. The total

percentage assigned to each project is 100% that is divided
between the project members according to their contribution
on the project. Furthermore, IC-score is another feature that
is developed by the institute and it illustrates the value of
each project (e.g., prototype) based on its status (e.g., lab,
industrial). To obtain the IC-score for each member, the total
IC-score value of each project is divided by the contribution
percentage of each member. The details regarding the values
of both features (contribution percentage and IC-score) have
been further discussed further in Section V.

B. Network Metrics

A network (or graph) G = (V,E) consists of a set of
vertices V which are connected by the edges from set E.
There exists different parameters (e.g., centrality measures)
to analyze and study the networks. We choose centrality
measures to analyze the generated network layers, which help
to find the most important vertices within a network. Besides
the centrality measures, we also consider other metrics such
as network density and connected components to analyze the
properties of the network. The following is a brief description
of each metric.

a) Closeness Centrality: defines the closeness of a node
to other nodes by measuring the average shortest path from
that node to the all other vertices within the network. Hence,
the more central a node is, the closer it is to all other nodes



[23] calculated as CC(v) =
∑
y

1
d(v,u) , where d(v, u) is the

distance between vertices v and u.
b) Betweenness Centrality: indicates the number of times

a node acts as a bridge along the shortest path between two
other nodes. For a given node the number of shortest paths that
passes through the node implies the betweenness centrality of
the node. Nodes with high betweenness may have significant
influence in a network due to their control over the flow
of information passing between others through them. In a
network G = (V,E) betweenness centrality for node v is
[8]: CB(v) =

∑
s6=v 6=t∈V

σst(v)
σst

where σst total number of
shortest paths from node s to node t and σst(v) is the number
of those paths that pass through v.

c) Degree Centrality: identifies the number of direct
links which are connected to a vertex within the network.
The importance of the nodes with higher degree is due to
the immediate risk of these node while some information
is flowing through the network. The degree of a node v is
represented as, CD(v) = deg(v).

d) Clustering Coefficient: presents the likelihood of
nodes in a network that tend to cluster together. The value of
clustering coefficient lies between 0 and 1. When a network
is clique which means that every two distinct vertices are
adjacent, the value is 1, however, in a star network in which
a node’s neighbours are not connected to each other at all,
clustering coefficient is 0. For an unweighted network, the
clustering of a node v is the fraction of possible triangles
through that node that exist, CC(v) = 2T (v)

deg(v)(deg(v)−1) where
T (v) is the number of triangles through node v and deg(v) is
the degree of v [24].

e) Network Density: is the ratio of potential links to
existing links in a network. The range of this metric varies
form 0 for a network with no links (sparse network) and 1
for networks with all possible links (dense network). nd =

2m
n(n−1) , where n is the number of nodes and m is the number
of edges in network G.

f) Connected Components: are sub-networks in which
there are at least two vertices connected to each other through a
path. In other words, two vertices are in the same sub-network
if there is a path between them in the network. We use ncomp
as a notation to address the connected components in this the
paper.

It is to be observed that the chosen metrics are (1) local
when they are only considering a node itself and the informa-
tion of its neighbour to calculate, centrality measures are of
this category, or (2) global when they calculate a parameter
considering the whole knowledge of network properties, nodes
and edges, such as network density. Exploiting these metrics
on networks generated from collaborative data, the purpose is
to analyze the networks from different perspectives. Centrality
measures are indicators to define the important node within a
network. For instance, closeness centrality defines whether a
project has a higher value for the institute such as delivering
different outcomes (IP, papers, and prototypes). Moreover,
there might be an argument regarding the topic of the project
such that it is covering fundamental topics which other projects

need to collaborate with. Degree centrality, represents the
members’ collaboration of a project with other projects. On
the other hand, metrics like network density and connected
components illustrates the general overview of a network.
Network density represents how much a network is away from
being a fully collaborative network in which all projects are
connected together.

V. RESULTS OF THE NETWORK ANALYSIS

A. Data Analysis

We perform a preliminary analysis on the data set in order to
conduct on the linkage threshed. We exploit histograms to plot
the frequency of the score and contribution percentage. Fig.
2 presents the histograms of IC-score and contribution per-
centage for each member in the collaboration data regarding
all projects. The histograms represent the number of members
with a certain value of IC-score (or contribution percentage) in
the dataset. Moreover, mean, standard deviation, and variance
are calculated for IC-score which are 3.16, 4.24, and 1.79,
respectively. For contribution percentage, the mean, standard
deviation and variance are obtained as 23.30, 22.80 and 5.20,
respectively. IC-score concentrates on lower values better than
contribution percentage, nevertheless, contribution percentage
represent the dataset better as the coverage range is broader.
Thus, we construct the linkage threshold defined in Equation
(III) considering the contribution percentage.

B. Network Analysis

We applied the proposed Algorithm 1 on our collaboration
dataset. As a result, we obtained a vector of network layers,
each represents a certain linkage threshold. For each network
we calculated the set of network metrics which has been
introduced in Section IV.

We chose 6 linkage thresholds which are 0, 20, 40, 60, 80,
and 100. For instance, with the linkage threshold equal to 20
two projects in the network are connected if the average con-
tribution percentage of the common members between those
projects is equal or greater than 20%. Thus, those two projects
are neighbours in the network. While increasing the threshold,
the number of nodes that could not satisfy the condition
increases dramatically. Thus, the number of isolated nodes
increases which impact the outcomes of network metrics. In
order to analyze the network regardless of the influence of
these nodes, the network metrics are applied after removing the
isolated nodes. We measured Betweeness Centrality CB(v),
Degree Centrality CD(v), Closeness Centrality CC(v), Clus-
tering Coefficient CC(v), Network Density nd, and Connected
Components ncomp for each network. Additionally, for the
local metrics, we calculated the average of nodes for the whole
network.

We first applied our algorithm considering only IP projects
data, and then on the combination of all projects (i.e., IP,
paper, and prototype). Fig. 3 describes the metrics on networks
that are constructed particularly on IP dataset and Fig. 4
provides the results for a similar setup while considering the
combination of all projects.



Fig. 2: Histograms of IC-score and contribution percentage in the collaboration dataset.
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Fig. 3: The effect of the set of network metrics, CC(v), CB(v), CD(v), CC(v), nd, ncomp, on the generated network layers from IP projects.
The result in each plot represents the average for all the nodes within a network layer. Thus, the x-axis illustrates the linkage threshold
in which the corresponding network has been created and the metric is measured.

According to Fig. 3 starting from 0 as the linkage threshold
increases the values of betweenness, degree and closeness
centrality, clustering coefficient, network density decrease
whereas the number of connected components increases until
the linkage threshold is 60. However, the pattern of the results
for all metrics have dramatically changed within the range of
40 to 60. Besides the outcomes from Fig. 3, that represents
the result only for the IP projects, Fig. 4 provides the results
of applying network metrics including all types of projects
(IP, papers, and prototype). The results of both figures (Fig.

3 and 4) are representing the similar patterns. In other words,
the topology of networks are not any different from one
project type to another. Furthermore, although the linkage
threshold equal to 0 provides detailed information of projects,
the linkage threshold equal to 100 represents a particular
perspective of the dataset which describes the main leaders
contribution in different projects.

C. Optimization and Future Work

Our methodology to construct network layers from collabo-
ration data reveals several optimization criteria. Optimizing the
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Fig. 4: The effect of the set of network metrics on the generated network layers from IP, paper, and prototype projects.

number of network layers while still containing the maximum
on distinct information for enhanced analytics is a challenging
task. Moreover, the linkage threshold we have defined in this
paper can be generalized to a utility function to be performed
on any given collaboration dataset. In addition, deciding on
an optimal linkage threshold based on predefined criteria and
conditions could further improve the performance, but also
widen the applicability, of our algorithm. Additionally, we
will consider different network representations for the same
data in future work. We also plan on using more real-world
collaboration data from distinct sources to further generalize
our approach.

VI. CONCLUSION

The approach outlined in this paper infers possible
collaboration networks of researchers within projects of
an organization. Our method uses a linkage threshold
to automatically generate these network layers from the
relational input data. We conducted a network analysis
on the produced networks using metrics such as clustering
coefficient, closeness and betweenness centrality, and illustrate
their impact on the different network layers. We, then, utilize
the results of the metrics as an important input to visualize
the generated graph in each configuration. We conclude that
the linkage threshold has a crucial impact on the network
properties and must be chosen with caution. Additionally, the
influence of the linkage threshold on the results of the metrics
indicates that the network representation can be optimized.
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