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Abstract. We introduce a set of four twisted Edwards curves that sat-
isfy common security requirements and allow for fast implementations
of scalar multiplication on 8, 16, and 32-bit processors. Our curves are
defined by an equation of the form −x2 + y2 = 1 + dx2y2 over a prime
field Fp, where d is a small non-square modulo p. The underlying prime
fields are based on “pseudo-Mersenne” primes given by p = 2k − c and
have in common that p ≡ 5 mod 8, k is a multiple of 32 minus 1, and
c is at most eight bits long. Due to these common features, our primes
facilitate a parameterized implementation of the low-level arithmetic so
that one and the same arithmetic function is able to process operands
of different length. Each of the twisted Edwards curves we introduce in
this paper is birationally equivalent to a Montgomery curve of the form
−(A+ 2)y2 = x3 +Ax2 + x where 4/(A+ 2) is small. Even though this
contrasts with the usual practice of choosing A such that (A+ 2)/4 is
small, we show that the Montgomery form of our curves allows for an
equally efficient implementation of point doubling as Curve25519. The
four curves we put forward roughly match the common security levels
of 80, 96, 112 and 128 bits. In addition, their Weierstraß representations
are isomorphic to curves of the form y2 = x3 − 3x+ b so as to facilitate
inter-operability with TinyECC and other legacy software.

1 Introduction

Elliptic Curve Cryptography (ECC), introduced independently by Neal Koblitz
[22] and Victor Miller [26] in the mid-1980s, is nowadays widely considered the
most viable alternative to RSA and other traditional public-key cryptosystems
[10]. The main attraction of ECC is the absence of a subexponential-time algo-
rithm for solving the Discrete Logarithm Problem (DLP) on a general elliptic
curve over a finite field [8, 20]. Therefore, elliptic curve cryptosystems can use
much smaller groups than their “classical” DLP-based counterparts to achieve
a certain level of security. Smaller groups normally implies shorter keys and, in
turn, savings in execution time, energy consumption, memory requirements, as
well as transmission bandwidth, all of which is important in the embedded and
mobile domains. The expansion of the Internet of Things (IoT) in recent years
has created a strong demand for lightweight implementations of ECC that can
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accommodate the stringent resource constraints of wireless sensor nodes, RFID
tags, and various other kinds of smart devices [31]. According to the Ericsson
Mobility Report from November 2017 [16], the number of devices connected to
the Internet is expected to grow from roughly 19 billion in 2018 to more than
30 billion by the end of 2023. However, only about one third of these 30 billion
devices will be classical computers (PCs, laptops, tablets, smart phones), while
the remaining two thirds (i.e. around 20 billion devices) will be related to the
IoT. Consequently, in a few years, “things” like machines, meters, point-of-sale
terminals, consumer electronics, electromechanical sensors, actuators, wearable
gadgets, and medical devices will most likely account for far more deployments
of ECC than classical computers.

An elliptic curve has to satisfy various security and efficiency requirements
to be suitable for cryptographic algorithms [6, 9, 13, 17]. Most importantly, the
group of rational points on the curve must contain a (large) subgroup of prime
order since this order determines the computational cost of the Elliptic Curve
Discrete Logarithm Problem (ECDLP). However, determining whether a curve
has a near-prime cardinality requires one to count the number of points on the
curve, which is a complicated and computation-intensive endeavor [20]. There-
fore, it is common practice to use “standardized” curves that were generated to
meet certain security requirements. A multitude of standardization bodies has
recommended domain parameters for elliptic curves of different cryptographic
strength, in most cases comparable to that of 128, 192, and 256-bit AES. The
currently most important and widely-used curves are the ones specified by the
US National Institute of Standards and Technology (NIST) [28], which provide
security levels in the range of 80 to 256 bits. These so-called NIST curves were
allegedly generated by Jerry Solinas in the 1990s, who was an employee of the
National Security Agency (NSA) at that time [7]. Five of the NIST curves are
defined over prime fields and given by a Weierstraß equation of the form

EW : y2 = x3 + a4x+ a6 (1)

where a4 fixed to −3 for efficiency reasons [20]. However, the Weierstraß form
is performance-wise not state-of-the-art anymore since alternative curve models
for special families of curves allow for much faster execution times.

Two examples of special elliptic curves with excellent arithmetic properties
are (twisted) Edwards curves [3, 15] and Montgomery curves [27]. The addition
law of twisted Edwards curves is much more efficient than that of conventional
Weierstraß curves and has the further advantage of completeness when certain
conditions are met [5]. Also Montgomery curves are attractive for practical use
due to an extremely simple, yet very fast, scalar multiplication technique, the
so-called Montgomery ladder [27]. In the recent past, a number of new curves in
Edwards or Montgomery form, most of them defined over a pseudo-Mersenne
prime field, have been published, e.g. [1, 4, 9, 19, 29]. Almost all of these curves
target security levels of 128 bits and above, which is somewhat surprising given
the rapid proliferation of the IoT along with the fact that many applications in
such domains as home automation and consumer electronics do not really have
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high security requirements. The only proposals for smaller curves we are aware
of came from Aranha et al., who introduced in [1, Sect. A] Montgomery curves
over 159 and 191-bit prime fields, as well as Edwards curves over 157, 168, and
191-bit fields, respectively.

In this paper, we present a set of four twisted Edwards curves over pseudo-
Mersenne prime fields that we generated in a transparent and verifiable way to
meet common security and efficiency requirements. These four curves, which we
call LiTE curves (an abbreviation for Lightweight Twisted Edwards), provide
security levels of about 80, 96, 112, and 128 bits, respectively, and are suitable
for IoT applications running on restricted devices. Using curves that offer less
than 128 bits of security allows for large savings in execution time1 and makes
particular sense for applications with low or medium security requirements. The
four twisted Edwards curves we present in this paper differ from the Edwards
curves introduced by Aranha et al. in [1] in two important aspects. Firstly, we
chose the prime fields and generated the curves with the goal of having consis-
tency across security levels, which means they share many basic properties like
the group structure. Most notably, all our curves are defined over prime fields
with p = 2k − c elements and have in common that k is a multiple of 32 minus
1 (i.e. k = 159, 191, 223, or 255) and c has a length of at most eight bits. This
consistency facilitates a parameterized implementation2 of the field-arithmetic
operations, which minimizes the code size when different security levels are to
be supported and has some other benefits like reduced development cost. The
second difference is that we aimed for curves capable to reach top performance
with the twisted Edwards representation and the birationally-equivalent Mont-
gomery representation. Aranha et al. [1], on the other hand, specified two sets
of curves, namely Montgomery curves with a small parameter A and Edwards
curves with a small parameter d; in both cases the rationale was to improve the
arithmetic performance. The four twisted Edwards curves we put forward have
a small parameter d and a fixed to −1, which implies the parameter A of the
birationally-equivalent Montgomery curves has the property that 4/(A− 2) is
small. While this contrasts with the usual choice of (A− 2)/4 being small, it is
possible to perform a point doubling equally fast as on e.g. Curve25519 thanks
to a simple modification of the doubling formula.

2 Preliminaries

In 1987, Peter Montgomery introduced a new model for elliptic curves and de-
monstrated its practical use by speeding up algorithms for integer factorization
1 For example, the results in [25] show that a scalar multiplication on a 192-bit ellip-
tic curve (providing about 96 bits of security) takes less than half of the execution
time of a scalar multiplication on a 256-bit curve (128 bits of security).

2 A parameterized implementation of a field-arithmetic operation can support fields
of different order (i.e. fields of different bit length), typically in steps of 32 bits. The
parameters include besides the operands (or pointers to operands held in RAM) an
additional parameter that specifies the length of the operands.
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[27]. Formally, a so-called Montgomery curve over a non-binary field Fq can be
described through the equation

EM : By2 = x3 +Ax2 + x (2)

where A,B ∈ Fq and A 6= ±2, B 6= 0 (or, equivalently, B(A2 − 4) 6= 0). Curves
of such form allow a full scalar multiplication k · P to be carried out using the
x coordinate only, which is clearly more efficient than when both the x and the
y coordinate are involved in the point arithmetic. A point P ∈ EM (Fq) given in
projective coordinates of the form (X :Z) can be doubled with only three mul-
tiplications (3M) and two squarings (2S) in the underlying finite field. On the
other hand, a differential addition of two points (i.e. the calculation of the sum
P +Q of two points P,Q ∈ EM (Fq) whose difference P −Q is known) requires
two multiplications (2M), two squarings (2S), as well as a multiplication by the
constant (A+ 2)/4. The so-called Montgomery ladder for scalar multiplication
has an overall computational cost of about 5` multiplications and 4` squarings
for an `-bit scalar, i.e. 5M+ 4S per bit [2].

Exactly 20 years after Montgomery’s discovery, Harold Edwards introduced
a normal form to describe certain elliptic curves, which have since then become
known as Edwards curves [15]. Bernstein and Lange [5] showed that curves in
Edwards form have good cryptographic properties with respect to performance
and protectability against side-channel attacks. Twisted Edwards curves (in the
following abbreviated as “TE curves”) were presented in [3] as a generalization
of Edwards curves with similarly good implementation properties. A TE curve
over a non-binary field Fq is defined by the equation

ET : ax2 + y2 = 1 + dx2y2 (3)

where a and d are distinct elements of F∗q . The additive group ET (Fq) contains
a neutral element O = (0, 1), which can, under some conditions, be used as an
input to the addition formula given in [3]. More concretely, when a is a square
and d a non-square in the underlying field Fq, then the addition law from [3] is
complete and yields the correct sum for any pair P, Q ∈ ET (Fq), including the
corner cases P = O, Q = O, and P = Q. Hişil et al. presented in [21] extended
projective coordinates, the currently fastest means of point addition on a curve
in TE form. When a = −1, then a “mixed” addition P +Q, where P is given in
extended projective coordinates and Q in extended affine coordinates, requires
seven multiplications (7M) in Fq, while the cost of a point doubling amounts to
three multiplications (3M) and four squarings (4S) [12, 18].

Montgomery curves and TE curves are closely related due to the fortunate
fact that every Montgomery curve over Fq is birationally equivalent over Fq to
a TE curve and vice versa [3]. Specifically, if a, d are distinct and non-zero in
Fp, then the TE curve ET given by Eq. (3) is birationally equivalent over Fp to
the Montgomery curve EM given by Eq. (2) with the parameters

A =
2(a+ d)

a− d
and B =

4

a− d
. (4)
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Bernstein et al. demonstrated in [3] that also the converse holds. Namely, when
A ∈ Fp \{−2, 2} and B ∈ F∗p, then the Montgomery curve EM given by Eq. (2)
is birationally equivalent over Fp to the TE curve given by Eq. (3) where

a =
A+ 2

B
and d =

A− 2

B
. (5)

This curve always exists since A 6= ±2 and B 6= 0. In some sense, the TE form
and Montgomery form complement each other in an optimal way and facilitate
so the implementation of elliptic-curve cryptosystems. The Montgomery shape
is well suited for scalar multiplication k · P with a variable base point (i.e. P is
not known in advance), but little attractive in settings where P is fixed. Fortu-
nately, such fixed-base scalar multiplication is exactly the domain in which the
TE shape excels. Various algorithms for scalar multiplication with a fixed base
point, such as the comb method or window method [20], are extremely fast on
TE-form elliptic curves due to the high efficiency of the addition law [3, 9]. The
birational equivalence between these two curve models is particularly useful in
ephemeral ECDH key exchange [20], where each involved entity has to perform
a fixed-base scalar multiplication (to generate an ephemeral key pair) as well as
a variable-base scalar multiplication (to get the shared secret). The former can
be efficiently computed on a curve in TE form using e.g. a comb method, while
the latter can take advantage of the simple yet fast Montgomery ladder on the
birationally-equivalent Montgomery curve (see [25] for details).

3 LiTE Curves

We decided to base our new curves for lightweight ECC on the TE model due
to its excellent arithmetic properties that enable fast scalar multiplication and
effective protection against (certain kinds of) side-channel attacks. A TE curve
over Fp is fully specified by the prime p and the two coefficients a and d of its
defining equation, which is Eq. (3). We fix a to −1 so that implementers can
unleash the full performance of the extended coordinates described in [21]. As
a consequence, the curve-generation procedure boils down to finding a suitable
prime field and second coefficient. For efficiency reasons, it is common practice
to use primes of some “special” form that allow one to minimize the cost of the
modular reduction operation and to choose the coefficient d to be small since
it appears as operand of a multiplication in the addition formulae specified in
e.g. [3] (for both projective and inverted coordinates) and [21, Sect. 3.1].

3.1 Selection of Prime Fields

An analysis of recent proposals for new curves shows that the underlying fields
are based on three main classes of primes, namely generalized-Mersenne primes
[28], pseudo-Mersenne primes, and primes for which Montgomery reduction can
be optimized, i.e. “Montgomery-friendly” primes [13]. Pseudo-Mersenne primes
seem to be particularly attractive since they were used by the majority of the
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recent curve proposals, e.g. [1, 2, 4, 6, 9, 29]. Formally, a pseudo-Mersenne prime
can be written as p = 2k − c where c is small in relation to 2k. The reduction
of a 2n-bit integer x modulo p requires, in essence, just a multiplication of the
upper half of x (i.e. the k most significant bits of x) by c, and then an addition
of the product to the lower half of x (see e.g. [2, 9] for further details). Besides
excellent arithmetic efficiency, these primes offer the virtue of minimizing the
surface for side-channel attacks since the reduction can be easily implemented
to have constant (i.e. operand-independent) execution time. Pseudo-Mersenne
primes also allow for a parameterized implementation of the modular reduction
operation so that one and the same reduction function can be used for primes
of different length, which is not possible with the generalized-Mersenne primes
of the NIST curves. This combination of desirable features led to our decision
to use pseudo-Mersenne prime fields for the LiTE curves.

Now that the basic form of the primes is fixed to p = 2k − c, the next step is
to determine the actual values for the exponent k and constant c. Since we aim
for elliptic curves providing security levels of (approximately) 80, 96, 112, and
128 bits, their cardinalities need to contain a large prime factor of magnitude
2160, 2192, 2224, and 2256, respectively, which requires due to Hasse’s theorem
[20] that the underlying prime fields have about the same order. This suggests
to use k = 160, 192, 224, and 256, yielding primes whose bit-lengths are a mul-
tiple of 32, similar to the NIST primes [28]. However, choosing the exponents
in this way does not necessarily lead to peak performance. Namely, as shown in
[2], it can be beneficial to use a prime with a bit-length that is a tad below the
“nominal” bit-length for the targeted security level, e.g. a 255-bit prime instead
of a 256-bit prime. Having on bit of “headroom” simplifies the implementation
of the field arithmetic when one aims for both high performance and resistance
to side-channel attacks via constant (i.e. operand-independent) execution time
[9]. Therefore, we decided to fix the values of k to 159, 191, 223, and 255.

The concluding step in the process of selecting a pseudo-Mersenne prime is
to determine the constant c, which is typically chosen as the smallest integer so
that p = 2k − c is prime [2]. An additional criterion often taken into account is
the congruence class of p modulo 4, whereby the two most common choices are
p ≡ 3 mod 4 and p ≡ 5 mod 8 (which implies p ≡ 1 mod 4)3. In the former case
(i.e. p ≡ 3 mod 4), it is possible to find a TE curve with the property that the
curve and its quadratic twist have both a minimal co-factor of 4 [23]. Unfortu-
nately, −1 is always a non-square modulo such a prime and, consequently, the
fast addition for TE curves from [21] is not guaranteed to be complete. On the
other hand, if p ≡ 5 mod 8, then −1 is definitely a square in Fp, but either the
TE curve or its quadratic twist will have a co-factor of at least 8. However, we
consider having a fast and complete addition law clearly more important than
minimal co-factors, and thus we chose the values for c as the smallest integers
that yielded primes congruent to 5 mod 8. The four primes we obtained in this
way are 2159 − 91, 2191 − 19, 2223 − 235, and 2255 − 19. A TE curve over these

3 These two choices allow for an efficient computation of square roots in Fp (which is
needed for the decompression of compressed points [8]) through exponentiation.
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primes with a = −1 can safely use Hişil et al.’s point-arithmetic formulae with-
out compromising completeness [21]. To summarize, the four pseudo-Mersenne
primes we put forward share the following three basic features, which facilitate
a “parameterized” implementation of the field arithmetic: (i) the exponent k is
a multiple of 32 minus 1, (ii) the constant c is at most eight bits long, (iii) p is
congruent to 5 mod 8, i.e. −1 is a square in Fp. The second feature guarantees
that a reduction modulo each of our primes can be efficiently implemented on
8, 16, and 32-bit microcontrollers since c always fits into a single register.

3.2 Requirements

State-of-the-art curve-generation procedures, in particular the ones described in
[9, 17], put a strong emphasis on transparency and reproducibility to help the
obtained curves find acceptance and trust in the cryptographic community. An
important ingredient of such procedures is a set of well-explained and clearly-
specified requirements to convince potential users of the curves that they were
generated in a highly systematic and rigid fashion [6]. Our LiTE curves are, in
essence, based on four major requirements, namely (i) security, (ii) arithmetic
efficiency of operations in both the field and the group, (iii) consistency across
security levels, and (iv) inter-operability with “legacy” cryptographic hardware
and software that supports only the Weierstraß form.

Security requirements for elliptic curves mainly consist of criteria to ensure
the hardness of the ECDLP, but may also take certain implementation aspects
into account, e.g. to prevent non-obvious side-channel pitfalls [17]. In our case
(i.e. TE curve over a large prime field), the ECDLP is generally assumed to be
a hard problem if (i) the group of points on the curve ET contains a large sub-
group of prime order ` (or, equivalently, the co-factor h = #ET (Fp)/` of ET is
small) and (ii) the curve does not belong to some special class of “weak” curves
for which discrete logarithms can be computed in less than the 0.886

√
` steps

required by Pollard’s rho method [6]. Like Montgomery curves, TE curves have
a co-factor of h ≥ 4 [3, 27]. Fortunately, most standards for ECC accept curves
with small co-factors (e.g. h ≤ 8 as in [23, Sect. A.1]), and some standards even
tolerate not-so-small co-factors. For example, the NIST permits implementers
of ECDSA to use an elliptic curve with a co-factor of up to 210 if ` is between
160 and 223 bits long, while h can become as big as 214 for ` lying in the range
of 224 to 255 bits [28, Table 1]. When generating new TE curves, it is common
practice to discard candidates that enable a multiplicative transfer or feature
an efficient endomorphism because these properties would allow an attacker to
“shortcut” the computation of discrete logarithms [1, 6]. Therefore, one has to
check whether a curve candidate has a large embedding degree4 e and a large
Complex-Multiplication (CM) field discriminant D [17]. Some recent proposals
for curve generation, e.g. [23, Sect. A], explicitly exclude also curves with trace
t = 0 (i.e. supersingular curves) and t = 1 (i.e. anomalous curves), but this is

4 For a TE curve ET over Fp with #E(Fp) = h`, the embedding degree is defined as
the smallest positive integer e such that ` divides pe − 1.
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redundant5 when targeting TE curves over Fp. An additional requirement often
taken into account is twist security, which means that not only the TE curve
ET , but also its quadratic twist E′T , meets the security criteria specified above
(i.e. small co-factor and large embedding degree6) [6]. Twist security is a useful
feature for x-coordinate-only ECDH key exchange based on Montgomery-form
curves, such as X25519 [23], because it eliminates the need to check whether an
incoming x-coordinate belongs to a point on the curve or on the twist [13]. All
LiTE curves are twist-secure since ECDH is one of their main applications.

The second requirement we put on LiTE curves is to enable efficient imple-
mentations and facilitate state-of-the-art optimization techniques for both the
field and group arithmetic. More precisely, we aim for curves that allow one to
reach peak performance not only with the TE model, but also when using the
birationally-equivalent Montgomery representation of the curve. A wide range
of IoT devices (e.g. wireless sensor nodes) are equipped with small 8-bit micro-
controllers whose limited computational capabilities may introduce long delays
or high energy consumption when executing scalar multiplications. This makes
a good case to take efficiency aspects—at both the field and group level—into
account in the curve generation. Our approach of choosing a set of prime fields
with good arithmetic properties, even on 8-bit microcontrollers, was explained
in Subsect. 3.1. The addition law of TE curves can be fast and complete when
a = −1 is a square in Fp and d a non-square; ideally, d is a small non-square so
that a multiplication by d becomes less costly than an arbitrary multiplication
in the field Fp. On the other hand, when generating a Montgomery curve, it is
usual practice to fix B to 1 and choose a small A congruent to 2 modulo 4 to
ensure a multiplication by (A+ 2)/4 is fast [2, 27]. Unfortunately, a TE curve
with “ideal” coefficients (i.e. a = −1 and d is small) is birationally-equivalent to
a Montgomery curve with coefficients that are far from ideal. Namely, as can
be seen from Eq. (4), the coefficient A of the corresponding Montgomery curve
is 2(a+ d)/(a− d) = 2(1− d)/(d+ 1), which is normally not small. We tackle
the problem of non-ideal Montgomery coefficients through a small modification
of the (projective) Montgomery doubling to minimize its execution time when
4/(A+ 2) is small instead of (A+ 2)/4 (see Sect. 4 for details).

Our third requirement is consistency across security levels, which means the
curves should share certain properties about the structure of the elliptic-curve
groups (e.g. co-factor, sign of trace) and the prime fields. Consistency enables
a parameterized software implementation of the group arithmetic (i.e. addition
and doubling of points) and the scalar multiplication so that one and the same
arithmetic function can be used for curves of different order, e.g. ranging from

5 A TE curve ET over Fp can never be anomalous since a co-factor of h ≥ 4 implies
#ET (Fp) 6= p and also ` 6= p. Supersingular curves are implicitly excluded because
they do not have a large embedding degree. Concretely, a supersingular TE curve
ET over Fp has an order of #ET (Fp) = p+ 1, which means its embedding degree is
e = 2 since p+ 1 = h` divides p2 − 1 and, consequently, ` divides p2 − 1.

6 There is no need to check the CM field discriminant of E′
T since ET and E′

T share
the same endomorphism ring and, therefore, have the same discriminant.
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159 to 255 bits in steps of 32 bits. Similar to efficiency, also consistency affects
both the selection of fields (which we already discussed in Subsect. 3.1) and the
generation of curves. The four LiTE curves we introduce in this paper have in
common that the coefficient d is positive and small enough to fit into a single
32-bit word, which makes it straightforward to write a parameterized function
for point addition. Besides point arithmetic also other operations, such as the
generation of secret scalars for x-coordinate-only ECDH key exchange, can be
implemented in a parameterized way, provided the set of curves meets certain
conditions. If, for example, the bitlength of the underlying prime fields differs
by a fixed amount (e.g. 32 bits) and each curve has a co-factor of 8 and a neg-
ative trace (like Curve25519), then a single parameterized function7 suffices to
generate scalars for all curves. Implementing or using a parameterized software
library for the field/group arithmetic (and other operations) in settings where
different levels of security need to be supported provides two major advantages
compared to a separate implementation for each curve. First, it allows for sub-
stantial savings in (binary) code size, which is an important asset in the realm
of the IoT. Second, the software development effort is significantly lower since
each arithmetic function needs to be written and tested only once [13].

Finally, the fourth requirement is inter-operability with legacy elliptic-curve
hardware and software that only supports the standard Weierstraß model given
by Eq. (1). For efficiency, the coefficient a4 of a Weierstraß curve is often fixed
to −3, while the second coefficient a6 is typically chosen to be a non-square in
Fp in order to prevent the existence of points whose x-coordinate is 0. This is
necessary because, as noted in [14, Sect. 3], some legacy ECC implementations
encode O as (0, 0), which would cause an ambiguity with one of the two points
(0,±√a6) when point compression is applied. Our LiTE curves are required to
have a Weierstraß-form representation that is isomorphic to a Weierstraß curve
with a4 = −3 and a non-square a6. We clearly prefer an isomorphism over an
isogeny to keep the cost of converting points between different representations
at a minimum. The need for point conversions between the Montgomery or TE
form and the Weierstraß form arises when a state-of-the-art cryptosystem like
X25519 [23] or EdDSA has to be implemented on top of some legacy hardware
accelerator or software library for scalar multiplication. A well-known example
of such legacy software is TinyECC [24], a lightweight ECC library for wireless
sensors that supports solely Weierstraß curves with a4 = −3. Another scenario
requiring a conversion of points is discussed in [30] and concerns standardized
cryptosystems like ECDSA, which use (affine) Weierstraß coordinates as “wire
format.” Instantiating ECDSA with a TE curve allows an implementer to take
advantage of the high performance of the TE addition law for point arithmetic
at the (small) expense of a conversion from TE to Weierstraß form during the
signature generation, as well as a conversion in the opposite direction (i.e. from
Weierstraß to TE form) when verifying a signature.

7 This parameterized function can follow the approach of Curve25519, which means
it first generates an array of (pseudo-)random bytes of the same byte-length as the
underlying prime field and then “prunes” the first and last byte as in [23, p. 8].
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3.3 Curve Generation

Since we have already chosen the prime fields of our LiTE curves and fixed the
coefficient a to −1, the final step of the curve generation consists of finding the
smallest coefficient d that satisfies all requirements discussed in Subsect. 3.2. In
fact, these requirements can be condensed into five basic conditions, which are
specified in the following definition of a LiTE curve.

Definition 1. Let Fp be a prime field with p ≡ 5 mod 8. A LiTE elliptic curve
is a twisted Edwards curve over Fp given by the equation

ET : −x2 + y2 = 1 + dx2y2

where d is the smallest element of Fp\ {−1, 0} so that the following five condi-
tions are met

1. d is a non-square in Fp

2. ET has a co-factor of h = 8 and a negative trace (i.e. #ET (Fp) > p), while
its quadratic twist E′T has a co-factor of h′ = 4 and a positive trace

3. ET has an embedding degree of e ≥ (`− 1)/100 and E′T an embedding degree
of e′ ≥ (`′ − 1)/100

4. ET has a CM field discriminant of |D| > 2100

5. the Weierstraß representation of ET is isomorphic to a curve defined by an
equation of the form y3 = x3 − 3x+ b where b is a non-square in Fp

The first condition is necessary to ensure that Hişil et al.’s “extended” addition
formulae from [21] reach maximum performance and are complete, which is an
efficiency requirement on our LiTE curves. In contrast, the second condition is
related to security and to consistency. It guarantees, on the one hand, a basic
prerequisite for the complexity of the ECDLP, namely the existence of a large
cyclic subgroup of ET (and of E′T ). Since we use prime fields with p ≡ 5 mod 8
(which implies p ≡ 1 mod 4), it is not possible that both the curve ET and its
quadratic twist E′T have a minimal co-factor of 4 [23]; either h or h′ has to be
at least 8. We followed the approach of Curve25519 [2] and opted for h = 8 in
order to prevent the accidental leakage of a bit of the secret scalar in protocols
that involve a co-factor multiplication [23, Sect. A.1]. On the other hand, the
second condition contributes to consistency because a negative trace means ` is
always slightly larger than a power of 2, which enables a parameterized imple-
mentation of a function to generate secret scalars as discussed in the previous
subsection. The third and fourth condition are linked to security; their purpose
is to exclude curves with a transfer or a (fast) endomorphism. Both conditions
are not new since they can be found in a similar form in [6, 14, 23]. Finally, the
fifth condition guarantees inter-operability with legacy ECC hardware/software
that supports only Weierstraß curves with a4 = −3 and ensures the conversion
of points through an isomorphism (the conversion of points between isogenous
curves would be more complex [11]). An arbitrary Weierstraß curve over Fp is
isomorphic to one governed by the equation y3 = x3 − 3x+ b when −3/a4 has
a fourth root in Fp, which holds in our case for 25% of all values of a4 [8].
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We used the computer algebra system Magma V2.24 to compute the coeffi-
cient d according to Def. 1 for each of the four levels of security we consider in
this paper. More concretely, we wrote a Magma script that essentially consists
of a loop in which d gets incremented in each iteration until all five conditions
are satisfied. This script output the coefficients 49445, 141087, 987514, as well
as 4998299, which define the four LiTE curves:

LiTE-P159 : −x2 + y2 = 1 + 49445x2y2 mod 2159 − 91

LiTE-P191 : −x2 + y2 = 1 + 141087x2y2 mod 2191 − 19

LiTE-P223 : −x2 + y2 = 1 + 987514x2y2 mod 2223 − 235

LiTE-P255 : −x2 + y2 = 1 + 4998299x2y2 mod 2255 − 19

Our smallest coefficient d (which is the one of the 159-bit curve) is only 16 bits
long, whereas the largest coefficient has a length of 23 bits. The execution time
of the script on a 2.4 GHz Xeon E5-2407 v2 processor ranged from 11 minutes
(for the 159-bit curve LiTE-P159) to roughly 87 hours (LiTE-P255).

4 Birationally-Equivalent Montgomery Curves

For a LiTE curve (or any other TE curve with a = −1), the coefficients A and
B of the birationally-equivalent Montgomery curve are

A =
2(a+ d)

a− d
=

2(1− d)

1 + d
, (6)

B =
4

a− d
= − 4

1 + d
= −2(1− d) + 2(1 + d)

1 + d
= −(A+ 2). (7)

Consequently, the Montgomery representation of a LiTE curve is given by an
equation of the form

−(A+ 2)y2 = x3 +Ax2 + x. (8)

The Montgomery-coefficient A obtained via Eq. (6) does not correspond to the
common perception of efficiency since it is normally not small (and likely also
not congruent to 2 modulo 4). In other words, when generating an efficient TE
curve (i.e. a TE curve with a = −1 and small d), one can not expect that the
birationally-equivalent Montgomery curve is also efficient. This problem exists
in the opposite direction as well; for example, the TE curve that is birationally-
equivalent to Curve25519 does not have a small coefficient d [30]. One way to
deal with this issue is to generate, for each targeted security level, a TE curve
with ideal coefficients and a distinct Montgomery curve with ideal coefficients
(like in [1]). Unfortunately, this approach is not useful in the case of ephemeral
ECDH key exchange, where one typically aims to reach maximum performance
with the TE shape and the Montgomery shape of one and the same curve (see
Sect. 2 and [25]). Bos et al. [9] approached this problem by exploiting isogenies
between elliptic curves; concretely, they generated efficient Montgomery curves
that are isogenous to efficient TE curves. In this way, they were able to obtain
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elliptic curves that simultaneously feature a small coefficient A in their Mont-
gomery representation and a small coefficient d in the isogenous TE form. Also
Curve448 (an efficient Montgomery curve over a 448-bit prime [19]) is specified
in [23] together with an isogenous Edwards curve with a small d. However, the
conversion of points between isogenous curves is rather costly; for example, the
4-isogeny maps for Curve448 provided in [23, p. 6] are much more complicated
than the birational maps for point conversion from [3].

The approach we take in this paper is to generate “ideal” coefficients for the
TE model, but compensate the disadvantage of having a large coefficient A in
the birationally-equivalent Montgomery representation by a slight modification
of the point doubling for Montgomery curves. As pointed out before, when the
coefficient a of a TE curve is set to −1, then the resulting coefficient A of the
birationally-equivalent Montgomery curve is 2(1− d)/(d+ 1), which means the
constant (A+ 2)/4 is not small. However, we found its reciprocal 4/(A+ 2) to
be small when a = −1 and d is small. More concretely, due to Eq. (7) we have
4/(A+ 2) = d+ 1, and this implies 4/(A+ 2) is small when d is small.

4XnZn = (Xn + Zn)
2 − (Xn − Zn)

2 (9)
X2n = (Xn + Zn)

2(Xn − Zn)
2 (10)

Z2n = (4XnZn)
[
(Xn − Zn)

2 + ((A+ 2)/4) (4XnZn)
]

(11)

Montgomery provided in [27] the above formulae for the doubling of a point in
projective (X :Z) coordinates. The computation of 4XnZn takes two squarings
(2S) in Fp and, then, the computation of X2n and Z2n requires a multiplication
(1M) each, which means the overall cost amounts to 2M + 2S, plus a multipli-
cation by (A+ 2)/4. Fortunately, these formulae can be easily adapted for the
Montgomery representations of our LiTE curves, whose A coefficients have the
property that 4/(A+ 2) is small. Namely, by simply multiplying both X2n and
Z2n by 4/(A+ 2), we obtain the doubling formulae below, which do not contain
a multiplication by the constant (A+ 2)/4 anymore.

X2n = (Xn + Zn)
2(Xn − Zn)

2 (4/(A+ 2)) (12)
Z2n = (4XnZn)

[
(Xn − Zn)

2 + ((A+ 2)/4) (4XnZn)
]
(4/(A+ 2))

= (4XnZn)
[
(Xn − Zn)

2 (4/(A+ 2)) + (4XnZn)
]

(13)

This modification does not change the affine x-coordinate x2n = X2n/Z2n, and
so we can safely use these formulae for the Montgomery ladder. Similar to the
original doubling method, 4XnZn has to be computed first and, thereafter, the
product of (Xn − Zn)

2 and 4/(A+ 2) can be formed. This product serves then
as operand for the computation of X2n and Z2n, respectively, which means the
total cost amounts to 2M + 2S and a multiplication by 4/(A+ 2). Apart from
that, two additions and two subtractions in Fp have to be executed, exactly as
with the original formulae [27]. In summary, performing a scalar multiplication
on the Montgomery curves that are birationally-equivalent to our LiTE curves
takes exactly the same number of Fp-operations as when a Montgomery curve
with a small coefficient A and B = 1 is used, e.g. Curve25519.
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