
Reusable Aspect Models

Jacques Klein1 and Jörg Kienzle2

1 University of Luxembourg, Luxembourg
Jacques.Klein@uni.lu

2 School of Computer Science, McGill University, Montreal, Canada
Joerg.Kienzle@mcgill.ca

Abstract. This paper presents an approach for specifying reusable as-
pect models that define structure (using class diagrams) and behavior
(using sequence diagrams). The high degree of reusability of the aspect
models is demonstrated by modeling the design of 8 inter-dependent as-
pects of the AspectOptima case study. Based on this experience, several
modeling language features that we deem essential to support reusable
aspect modeling are identified.

1 Introduction
Aspect-oriented software development (AOSD) techniques aim to provide sys-
tematic means for the identification, separation, representation and composition
of crosscutting concerns. Aspect-oriented ideas can be applied at any phase and
at any level of abstraction during software development. Aspect-oriented model-
ing (AOM) focuses on modularizing and composing crosscutting concerns within
software models — models that can be used to describe or analyze properties of
a system under development.

It has been shown that aspect-oriented programming techniques can be effec-
tively used to increase code reuse. Even very general concerns such as distribu-
tion [1], concurrency [2], persistency [3] and failures [4] have been successfully im-
plemented in an application-independent aspect, and then later composed with
different applications. Reuse of many aspects within one application, however,
has proven to be more challenging, since aspects can have complex dependencies
and interactions. Currently, many researchers are working on aspect-oriented
programming languages features that could make such reuse easier.

In this paper we propose to take a look at the aspect reuse problem from an
aspect-oriented modeling point of view. We believe that the insights gained at the
modeling level can provide deeper understanding of the fundamental problems
of aspect reuse, and that the solutions we propose might be transferable to the
programming language level as well. We demonstrate the validity of our approach
by modeling the design of AspectOptima, a complex aspect framework that was
created as a case study for studying aspect dependencies and interactions.

The structure of the rest of the paper is as follows: section 2 presents the
class diagram and sequence diagram composition approaches that our aspect
models are based on as well as a brief overview of AspectOptima; section 3
presents our reusable aspect models; section 4 applies our modeling approach to
8 aspects of the AspectOptima case study; section 5 discusses the reusability of



our models and presents modeling language features that we deem essential to
support reusable aspect modeling; section 6 presents related work and the last
section concludes and mentions directions of future research.

2 Background
2.1 Weaving of Class Diagrams
The symmetric model composition technique proposed by France et al. [5,6]
supports merging of model elements that present different views of the same
concept. The model elements to be merged must be of the same syntactic type,
that is, they must be instances of the same metamodel class. An aspect view
may also describe a concept that is not present in a target model, and vice versa.
In these cases, the model elements are included in the composed model.

Currently, their composition tool focuses mainly on the merging of class dia-
grams. The signature of a class consists only of its name, and thus the attributes
and operations can be used to define different views of the class. Attributes
and operations match if and only if they have the identical syntactic properties.
Associations match if they have the same role names at their association ends.

2.2 Weaving of Sequence Diagrams
In [7], Klein et al. propose a semantic-based weaving of scenarios, where the weav-
ing is based on the dynamic semantics of the models used. In [7], the scenarios
are modeled with Message Sequence Charts (MSCs), but since the semantics of
UML 2.X Sequence Diagrams (SDs) are largely inspired by MSCs, the scenario
weaver can be easily adapted to SDs [8].

An aspect in this approach is defined as a pair of SDs: one SD serves as a
pointcut (specification of the behavior to detect), and one serves as an advice
(representing the expected behavior at the join point). Similarly to AspectJ,
where an aspectual behavior can be inserted “around”, “before” or “after” a join
point, an advice may complement the matched behavior or replace it with a new
behavior. When an aspect is defined with sequence diagrams, some advantages
related to sequence diagrams are preserved. In particular, it is easy to express a
pointcut as a sequence of messages.

2.3 AspectOPTIMA
AspectOptima [9] is an aspect framework that implements the ACID proper-
ties (atomicity, consistency, isolation and durability) of transactional objects.
Its latest version [10] defines 28 individually reusable aspects that can be com-
bined in different ways to implement various transaction models, concurrency
controls and recovery strategies. We are going to use example aspects from As-
pectOptima to demonstrate the reusability of our aspect models.

3 Reusable Aspect Modeling
In our approach, an aspect can define structure using the class diagram compo-
sition approach presented in section 2.1, as well as behavior using the sequence
diagram composition approach presented in section 2.2. It should be noted here
that we think of aspects as concerns that are reused in potentially many places
throughout one application (or several different ones). Therefore, any function-
ality that is reusable is modeled as an aspect in our approach.

2



t: Thread a: Account

withdraw(100)

Thread

+withdraw(int amount)
int balance

Account

Structure: Behavior:

Fig. 1. A Simple Application Model

aspect Context

structure

+ Context getContext()
!

|ContextParticipant

!!!

!

Context
0..1

myContext

0..*   participant

|ContextParticipant

Fig. 2. The ContextParticipant Aspect Model

3.1 Model Instantiation

Similar to the Theme/UML approach of Clarke et al. [11] or the composition
technique proposed by France et al. [5,6], we use UML templates with template
parameters to keep our aspect models as generic as possible. Instantiating a
(generic) aspect model involves binding the aspect model’s template parameters
to target model-specific elements. The resulting context-specific aspect model can
then be composed with a target model. The template parameters that need to
be bound are textually identified with a preceding vertical bar, and graphically
depicted by a dotted rectangle in the top right corner of the aspect model.
Pattern-matching techniques can be used to specify one-to-many bindings to
target model elements.

3.2 Aspect Model Examples

Fig. 1 defines a simple application model of a bank, where a Thread instance
t calls the withdraw method of an Account instance a. Fig. 2 shows the aspect
model of Context, a simple AspectOptima aspect that defines a permanent asso-
ciation between a (to be determined) class and the class Context. The class |Con-
textParticipant is a template parameter of the aspect model. To bind the class
|ContextParticipant to the Thread class in the application model, the designer
has to instantiate the template element as |ContextParticipant → Thread.
As a result, the Thread and the instantiated |ContextParticipant classes are
composed to yield a new Thread class that has an associated Context instance
myContext as well as a getContext() method.3

Fig. 3 shows the aspect model of Copyable, an aspect that provides the func-
tionality of creating a duplica of an object. This is a more elaborate example,
since the aspect model defines behavior in form of a sequence diagram. For each
message clone() between a Caller and a Copyable instance, the sequence dia-
gram weaver adds behavior that creates a new Copyable instance and copies the
state of the original object to the copy.
3 The full aspect model of Context defines in addition behavior to create and leave

contexts, and associate ContextParticipants with Contexts. These models have been
omitted for space reasons.

3



aspect Copyable

+ |Copyable clone()
- |Copyable create()
- copyState(|Copyable from)

!

|Copyable
!

|Caller

|caller: |Caller |original: |Copyable

|copy: |Copyable

|copy := clone()

|copy := create()

copyState(|original)

structure

behavior clone

|caller: |Caller |original: |Copyable

|copy := clone()

Pointcut Advice
|original, |copy
|Caller, |caller

|Copyable

Fig. 3. Model of the Copyable Aspect

aspect Checkpointable depends on Copyable

+ establish()
...

!

|Checkpointable

|caller: |Caller |target: |Checkpointable myStack: Stack

estabilsh()

insert(newCheckpoint)

structure

behavior establish depends on Copyable

|caller: |Caller |target: |Checkpointable

establish()

Pointcut Advice

+ insert(|Checkpointable e)
...

!

Stack
1

myStack

0..*

!

!!!        newCheckpoint := clone()

Copyable instantiation
Copyable.|Copyable ! |Checkpointable

clone instantiation
clone.|original ! |target

clone.|copy ! newCheckpoint

clone.|Caller ! |Checkpointable

clone.|caller ! |target

|Checkpointable

(1)

(2)
(3)
(4)
(5)

|target
|Caller
|caller

Fig. 4. Checkpointable Depends on Copyable

3.3 Expressing Aspect Dependencies

Some aspects might depend on the structure or behavior provided by other
aspects. AspectOptima, for example, defines a Checkpointable aspect that pro-
vides objects with the functionality to establish, restore and discard checkpoints
of their state. When establish is invoked, Checkpointable relies on the behavior
provided by Copyable to create an identical copy of the object. Such a depen-
dency can be expressed at the model level by instantiating the required aspect
within the dependent aspect as shown in Fig. 4 4.

The structure model of Checkpointable shows that a checkpointable object has
an associated stack of checkpoints. The establish behavior model describes that
when the establish() operation of a checkpointable object is invoked, the ob-
ject first clones itself and then inserts the new copy into its stack of checkpoints.
By invoking clone() on itself, Checkpointable depends on the checkpointable
object to be copyable as well. To make sure that this is the case, Copyable is in-

4 For space reasons, only the establish behavior of Checkpointable is shown in Fig. 4

4



aspect Checkpointable

+ establish()
+ |Checkpointable clone()
- |Checkpointable create()
- copyState(| Checkpointable from)

!

|Checkpointablestructure

behavior establish

|caller: |Caller |target: |Checkpointable
establish()

Pointcut

Advice

+ insert(|Checkpointable e)
...

!

Stack

1

myStack

0..*

|caller: |Caller |target: |Checkpointable myStack: Stack

estabilsh()

insert(newCheckpoint)

!

!!!        newCheckpoint := clone()

newCheckpoint: |Checkpointable
newCheckpoint := create()

copyState(|target)

|Checkpointable

|target
|Caller
|caller

Fig. 5. The Independent Checkpointable Aspect (after weaving of Copyable)

stantiated within Checkpointable by binding all template parameters of Copyable
to Checkpointable-specific elements as shown in Fig. 4: (1) Copyable applies to all
Checkpointable (meaning that all the structure and behavior specified by Copy-
able is also applied to Checkpointable); (2) The original instance to be cloned is
the instance target ; (3) The Caller class of the instance invoking clone() is a
Checkpointable; (4) The caller instance invoking clone() is target ; (5) The re-
turned copyable instance of clone() named copy is the checkpointable instance
newCheckpoint. As a result, Checkpointable can call the clone() method present
in Copyable on the Checkpointable instance target without explicitly specifying
the clone() method in the structure of Checkpointable.

3.4 Weaving Inter-dependent Aspects

Before an aspect A that depends on an aspect B can successfully be woven with
an application model, B has to be correctly instantiated and woven into aspect
A itself to create an independent model. This weaving is not different from any
other weaving. After all template parameters of B have been bound to concrete
elements of A according to the instantiation directives, the pointcut of B is
matched against the advice of A, and any occurrences of the pointcut within the
advice of A are composed with the advice of B.

Fig. 5 shows the result of weaving Copyable into Checkpointable. The resulting
aspect model is not dependent on Copyable anymore, since all the structure and
behavior defined in Copyable is already included in the model. This model,
however, is only shown for illustration purpose. It defeats the idea of reuse.
If, in the future, changes are made to the Copyable aspect, this independent
Checkpointable model does not take advantage of these changes. To fully exploit
reuse, aspect dependencies should be kept unresolved until the aspects are woven
with the final application model.

5



aspect AccessClassified

structure

+ Kind getAccessKind(Method m)
!

|AccessClassified

|AccessClassified

Fig. 6. The AccessClassified Aspect

4 Modeling of AspectOPTIMA
In this section we illustrate the reusability of our aspect models by presenting
more of AspectOptima. For space reasons it is impossible to show all 28 aspects
models. We are going to concentrate in this section on the modeling of the Check-
pointing aspect, which is provided in AspectOptima as one of the strategies to
implement atomicity for transactions. Checkpointing makes sure that when a
thread working within a checkpointing context tries to modify a checkpointable
object for the first time, a checkpoint of the object is made automatically and
stored with the context.

Checkpointing depends directly on the aspects Tracing, Context and Check-
pointable, and indirectly on Traceable, Copyable and AccessClassified. The mod-
els for Context, Copyable and Checkpointing have already been shown in the
previous sections. The following subsections are therefore going to present Ac-
cessClassified, Traceable and Tracing.

4.1 AccessClassified
AccessClassified provides the functionality to classify the operations of an object
into read operations, i.e. operations that only read the state of the object, and
write operations, i.e. operations that modify the state of the object. As shown
in Fig. 6, this functionality is encapsulated in the method kind getAccess-
Kind(Method m). Since this functionality does not involve any message sending
between objects, the model of AccessClassified only defines structure.

4.2 Traceable
The Traceable aspect encapsulates the structure and behavior necessary to cre-
ate a trace of an operation invocation. A trace instance contains all important
information about an operation invocation: for checkpointing we are mainly in-
terested in storing the access kind of the operation. The access kind is determined
using the functionality offered by AccessClassified : the instantiation directives
within getTrace declare that all Traceable objects have to be AccessClassified as
well.

4.3 Tracing
The Tracing aspect monitors object accesses made by context participants that
are associated with the context. It stores a trace of all operation invocations made
on traceable objects. The model of the Tracing aspect depends on Context and
Traceable as shown in Fig. 8. The traceMethod behavior specifies the interactions
that create a new trace before any operation m is executed on a Traced object.
Tracing also defines the behavior for a method boolean wasModified(Object o)
that consults the current trace to determine if, within this context, a context
participant has executed a modifying operation on the object o.

6



aspect Traceable depends on AccessClassified

+ Trace getTrace(Method m)
!

|Traceable

|caller: |Caller |target: |Traceable

|newTrace: Trace

|newTrace := getTrace(m)

                 |newTrace := create(m, accessKind, |ttarget)

structure

|caller: |Caller |target: |Traceable

|newTrace := getTrace(m)

Pointcut

Advice

+ create(Method m, Kind k, |Traceable t)
!

Trace

!

!!!                         accessKind := getAccessKind(m)

1

myObj

|Traceable

|target
|Caller, |caller

|newTrace

AccessClassified instantiation
AccessClassified.|AccessClassified !|Traceable

behavior getTrace depends on AccessClassified

Fig. 7. The Traceable Aspect

4.4 Checkpointing
Checkpointing makes sure that the first time a ContextParticipant invokes a mod-
ifying operation on a checkpointable object within the context, a checkpoint of
the object is automatically established. The intersting fact about Checkpointing
is its dependency on Tracing. Checkpointing does not remember the objects that
it checkpoints. It relies on the trace collected by Tracing. It is therefore essen-
tial for all methods that are monitored by Checkpointing to also be traced by
Tracing. This is achieved by instantiating Tracing within Checkpointing, and by
specifying in the instantiation directives that the method that Tracing is sup-
posed to trace is the same method that Checkpointing is monitoring (see (1) in
Fig. 9).

4.5 Applying Checkpointing AccessClassified

Checkpointable

Checkpointing

Tracing

CopyableContextParticipant

Traceable

Fig. 10. Aspect Model Dependencies

Before a reusable aspect A can be in-
stantiated and woven with a target
model, all aspects that it depends on
must be instantiated and woven into
the advice of A. If these aspects also
have dependencies, then these have to be resolved first. The instantiation and
weaving order for Checkpointing can be deduced from the dependency hierarchy
depicted in Fig. 10. Fig. 11 shows the structure and behavior that is obtained
when applying Checkpointing to the bank application model of Fig. 1.

5 Discussion on Reusability
The AspectOptima case study illustrates reusability very well. Any of the as-
pects can be reused in a different application whenever the functionality it pro-
vides is needed.

In the full design of AspectOptima, many of the above aspect models are
reused within others. For example, Shared, an aspect that guarantees single-
writer/multiple-reader access to objects also depends on AccessClassified. Ver-
sioned, an aspect that can create multiple context-local copies of objects, also
depends on Copyable. 2-Phase Locking, Deferring and Recovering, three aspects
that help providing isolation and atomicity to transactions, depend on Tracing.

7



myTrace   1   

aspect Tracing depends on Context, Traceable

structure

+ * |m(..)
!

|Traced
+ boolean wasModified(|Callee obj)
...
- addTrace(Trace t)

!

|Context

+ insert(Trace t)
+ Trace[] findTraces(Object o)

!

TraceList

+ boolean isModify()
!

Trace
0..*

element

|ContextParticipant

|caller:
|ContextParticipant

|callee
 |Traced

|caller:
|ContextParticipant

|callee:
|Traced

|m(..)

Pointcut

Advice

Context instantiation
Context.Context ! |Context

Context.|ContextParticipant ! |ContextParticipant

!

!!!                           myContext := getContext()

tracedOp := getTrace(|m)

myContext:
|Context

addTrace(tracedOp)

|m(..)

myTrace: TraceList

insert(tracedOp)

behavior wasModified

 include := wasAppliedTo(o)

ops := findTraces(o)

t: Trace

loop [t within elements]

loop [i within ops, found " true]

|caller: |Caller |target: |Context myTrace: TraceList

|result := wasModified(|Traced o)

i: Trace

found := isModify()

Pointcut Advice

|caller: |Caller |target: |Context

|result := wasModified(|Traced o)

Traceable instantiation
Traceable.|Traceable ! |Traced

getTrace instantiation
getTrace.|target ! |callee

 getTrace.|Caller ! |Caller

getTrace.|caller ! |caller

getTrace.|newTrace ! tracedOp

|caller
|callee
|Traced

|m

|target
|Caller
|caller
|result

behavior traceMethod depends on Context, Traceable

Fig. 8. The Tracing Aspect

Finally, of course, all aspects are reused in different configurations when they
are combined to create different transaction models. Unfortunately, space limi-
tations forbid us to describe these models and their dependencies in detail. The
interested reader is referred to [10].

Reuse within aspects only creates unidirectional dependencies: even if an
aspect B reuses A, A does not depend on B and can be reused in isolation.

Finally, we want to note that in a real-world application, our aspect-oriented
modeling approach would be used in combination with pattern-matching tech-
niques when specifying aspect bindings. For instance, the following instantiation
specifies that all method invocations on Account objects must be checkpointed:
Checkpointing.|ContextParticipant → Thread, Checkpointing.|Checkpointed →
Account, Checkpointing.|Caller→*, Checkpointing.|caller→*, Checkpointing.|m→*.

5.1 Modeling Features Required for Reusability
Based on our experiments with AspectOptima and on findings reported by many
other researchers, we have identified several modeling language features that we
believe are mandatory to support reusable aspect modeling:

8



aspect Checkpointing depends on Tracing, Checkpointable

structure

+ * |m(..)
!

|Checkpointed

  
!

|Context

  
!

|ContextParticipant

|ContextParticipant
|Checkpointed

|caller: |Caller |callee: |Checkpointed|caller:
|ContextParticipant

|callee:
|Checkpointed

|m(..)

Pointcut Advice

!

!!!                           myContext := getContext()

myContext: |Context

firstTime := wasModified(|callee)

|m(..)

opt [firstTime]

establish()

Checkpointable instantiation
Checkpointable.|Checkpointable ! |Callee

establish instantiation
establish.|target ! |callee

establish.|Caller ! |Caller

establish.|caller ! |caller

|caller
|Checkpointed

|callee
|m

Tracing instantiation
Tracing.|Context ! |Context

Tracing.|ContextParticipant !
|ContextParticipant

traceMethod instantiation
 traceMethod.|caller ! |caller

 traceMethod.|Traced ! |Checkpointed

 traceMethod.|callee ! |callee

             traceMethod.|m ! |m        (1)
wasModified instantiation

 wasModified.|target ! myContext

wasModified.|Caller ! |Caller

 wasModified.|caller ! |caller

 wasModified.|result ! firstTime

behavior checkpointMethod depends on Tracing, Checkpointable

Fig. 9. The Checkpointing Aspect

• Template Parameters: Template parameters can be used in a reusable
aspect model as generic placeholders for structure or behavior expected
by the target model.

• Binding / Instantiation: In order to use a reusable aspect model
within a target model, the template parameters have to be bound to
elements from the target model. This instantiation of the reusable aspect
model creates a context-specific aspect model.

• Separate Binding: The instantiation directives that specify the bind-
ing do not belong into the aspect model itself, since they are different
for each target model. Bindings using wildcards or more powerful pat-
tern matching techniques should be provided to support one-to-many
bindings.

• Inter-Aspect Dependency Declaration: The modeling formalism
must support to express inter-aspect dependencies. If aspect A depends
on reusable aspect B, A must provide instantiation directives for B.

• Aspect-Aspect Weaving: It should be possible to compose an aspect
model with an application model, but also with another aspect model.
This is mandatory to allow aspects to be reused within other aspects.

• Template Parameter-Preserving Weaving: If an aspect B is in-
stantiated and woven into a reusable aspect model A that defines tem-
plate parameters, the template parameters of A should still be present
in the resulting aspect model. This is mandatory to preserve genericity
and hence reusability.

• Dependency-Consistent Weaving: When a reusable aspect model
A is instantiated and woven with a target model, the weaver first recur-

9



+ withdraw(int amount)
+ Kind getAccessKind(Method m)
+ Account clone()
- Account create()
- copyState(Account from)
+ Trace getTrace(Method m)
+ establish()

!

Account

1

myTrace

+ boolean wasModified(Account obj)
- addTrace(Trace t)

!

Context

+ insert(Trace t)
+ Trace[] findTraces(Object o)

!

TraceList

+ create(Method m, Kind k, Account t)
+ boolean isModify()

!

Trace

0..*    elements

1

obj+ insert(Account e)
!

Stack

myStack    1

0..*

myContext    1

0..*     participant

+ Context getContext()
!

Thread

t: Thread a: Account
!

!!!                    myCo := getContext()

myCo: Context

firstTime := wasModified(a)

withdraw(100)

opt [firstTime]

establish()
myStack: Stack

insert(newCheckpoint)

!

!!!        newCheckpoint := clone()

newCheckpoint: Account
newCheckpoint := create()

copyState(a)

 include := wasAppliedTo(o)

ops := findTraces(o)

t: Trace

loop [t within elements]

loop [i within ops, found " true]

myTrace: TraceList

i: Trace

found := isModify()

!

!!!                    myCo := getContext()

tracedOp := getTrace(withdraw)

addTrace(tracedOp)
insert(tracedOp)

tracedOp: Trace
                 tracedOp := create(m, accessKind, a)

                   accessKind :=

                          getAccessKind(withdraw)

Fig. 11. Application Model after applying Checkpointing

sively instantiates and weaves all aspects that A depends on with A (to
create an independent model of A).

• Late Dependency Resolution: Instantiation and weaving due to de-
pendencies is performed only during the final target model creation.
Independent intermediate aspect models are never exposed.

6 Related Work

6.1 Aspect-Oriented Modeling Approaches
Our reusable aspect models are based on the class diagram weaving approach [5]
and the sequence diagram weaving approach [8] presented in section 2. Other
related aspect-oriented modeling approaches are briefly described in this section.

Clarke and Baniassad [11] define an approach called Theme/UML. It intro-
duces a theme module that can be used to represent a concern at the modeling
level. Themes are declaratively complete units of modularization, in which any
of the diagrams available in the UML can be used to model one view of the
structure and behavior the concern requires to execute. In Theme/UML class
diagrams and sequence diagrams are typically used to describe the structure and

10



behavior of the concern being modeled. Just like in our approach, the binding
to a base model is done by template parameter instantiation. In contrast to our
approach, Theme/UML does not support model weaving.

Similarly to our approach, Whittle and Araujo [12] represent behavioral as-
pects with scenarios. Aspectual scenarios are modeled as interaction pattern
specifications and are composed with specification scenarios. The weaving pro-
cess is performed in two steps. First state machines are generated from the as-
pects and from the specification. The weaving is then performed by composing
the obtained state machines.

The Motorola WEAVR approach [13] and tool have been developed in an
industrial setting. Behavior is modeled using the Specification and Description
Language (SDL), a formalism related to state diagrams. In order to be able to
reuse aspects, mappings have to be defined (equivalent to our instantiations)
that link a reusable aspect to the application-specific context in which it is to
be deployed.

6.2 Reusability
In [14] the authors propose framed aspects, an approach that uses AOP to mod-
ularize crosscutting and tangled concerns and frame technology [15] to allow
aspect parameterization, configuration, and customization. In framed aspects,
the identification of features (here called feature aspects), and detection of de-
pendencies and interferences is performed following the high-level feature inter-
action approach promoted by FODA [16]. Once this is done, the features are
modularized within framed aspects, together with their dependencies.

Framed aspects are made up of three distinct modules: the framed aspect
code (normal and parameterized aspect code), composition rules (aspect de-
pendencies, acceptable and incompatible aspect configurations), and specifica-
tions (user-specific customization). These modules are composed to generate
customized aspect code using a frame processor. Framed aspects achieve sep-
arate aspect bindings and aspect dependencies through parameterization and
composition rules respectively. Composition rules can also be used for specifying
acceptable and incompatible aspect configurations. The above mentioned con-
structs enable framed aspects to be reused in contexts other than that for which
they were implemented.

7 Conclusion and Future Work
We have presented in this paper an approach for specifying reusable aspect
models that define structure (using class diagrams) and behavior (using sequence
diagrams). We have demonstrated the high degree of reusability of our aspect
models by modeling 8 inter-dependent aspects of the AspectOptima case study.
Based on this experience, we identified several modeling language features that
we deem essential to support reusable aspect modeling.

Since our approach currently only allows the use of sequence diagrams to
express behavior, we are limited in our behavioral modeling to describe message

11



exchanges / method invocations only. We are planning to investigate how to
integrate state-based modeling approaches such as [13]. We are also interested
in extending our approach to address aspect interference, i.e. when two aspect
models that specify contradicting behavior are applied to the same target model
elements. Again, AspectOptima can be used as a testbed, since [10] highlights 11
interference problems. Finally, we believe that in order to obtain target models
with well-defined public interfaces, instantiation directives should offer control
over method visibility. More research is required to determine exactly how this
could be accomplished.
References

1. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence
aspects with AspectJ. In: Proceedings of OOPSLA, ACM Press (2002) 174–190

2. Cunha, C.A., Sobral, J.L., Monteiro, M.P.: Reusable aspect-oriented implemen-
tations of concurrency control patterns and mechanisms. In: AOSD 2006, ACM
Press (2006) 134 – 145

3. Rashid, A.: Aspect-Oriented Database Systems. Springer-Verlag (2004)
4. Kienzle, J., Guerraoui, R.: AOP - Does It Make Sense? The Case of Concur-

rency and Failures. In Magnusson, B., ed.: 16th European Conference on Object–
Oriented Programming – ECOOP 2002. Number 2374 in Lecture Notes in Com-
puter Science, Malaga, Spain, Springer Verlag (2002) 37 – 61

5. France, R., Ray, I., Georg, G., Ghosh, S.: Aspect-oriented approach to early design
modelling. IEE Proceedings Software (August 2004) 173–185

6. Reddy, R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., Song, E., Georg,
G.: Directives for composing aspect-oriented design class models. Transactions on
Aspect-Oriented Software Development 3880 (2006) 75–105

7. Klein, J., Hélouet, L., Jézéquel, J.M.: Semantic-based weaving of scenarios. In:
AOSD 2006, ACM Press (2006) 27–38

8. Klein, J., Fleurey, F., Jézéquel, J.M.: Weaving multiple aspects in sequence dia-
grams. Transactions on Aspect Oriented Software Development (2007) To appear

9. Kienzle, J., Gélineau, S.: AO Challenge: Implementing the ACID Properties for
Transactional Objects. In: Aspect-Oriented Software Development – AOSD 2006,
ACM Press (2006) 202 – 213

10. Bölükbaşi, G.: Aspectual Decomposition of Transactions. Master’s thesis, School
of Computer Science, McGill University, Montreal, Canada (2007)

11. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-
proach. Addison Wesley (2005)

12. Whittle, J., Araujo, J.: Scenario modelling with aspects. IEE Proceedings Software
151 (2004) 157–171

13. Cottenier, T., v.d. Berg, A., Elrad, T.: Stateful aspects: the case for aspect-oriented
modeling. In: 10th Aspect-Oriented Modeling Workshop, ACM Press (2007)

14. Loughran, N., Rashid, A.: Framed aspects : Supporting variability and config-
urability for aop. In: In International Conference on Software Reuse (ICSR-8),
Springer Berlin/Heidelberg (2004) 127–140

15. Bassett, P.: Framing Software Reuse: Lessons from the Real World. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1997)

16. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University (1990)

12


