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Abstract

Observing that most social networks are clustered, the literature often argues that

agents are more willing to form links that close triangles. We challenge this idea by

proposing a simple model of new collaboration formation that shows why network

clustering may arise even though agents do not “like” network closure. We address

empirically this question on the longitudinal evolution of the French co-invention

network, and find that two inventors are less likely to form a first research collabo-

ration when they have common partners. Our findings further reveal the preferences

of inventors towards forming non-redundant connections.

Keywords: Social networks; Link formation; Closure; Patents; Conditional logit;

Monte Carlo simulations.
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1 Introduction

One of the main salient features of most real social and economic networks is that

they are highly clustered, in the sense that the neighborhoods of neighbors tend to

overlap, exhibiting what Rapoport (1953) and Granovetter (1973) first called “tri-

adic closure”. In other words, agents having a common friend or partner are highly

likely to be friends or partners themselves, so that the whole network typically in-

corporates far more triangles than would be obtained by chance. This property has

been observed in a variety of network contexts, such as those involving Hollywood

actors (Watts, 1999), corporate board members (Davis et al., 2003), Broadway mu-

sicians (Uzzi and Spiro, 2005), inventors (Fleming et al., 2007; Carayol and Roux,

2008), scientists (Newman, 2001) and alliances between firms (Kogut and Walker,

2001; Baum et al., 2003).

A direct and natural explanation of the social tendency for closure is based

on a individuals’ presumed preference for closing triangles, what we call the love-

for-triadic-closure hypothesis. This idea was first suggested by Simmel (1922), then

followed by Heider (1958) and Newcomb (1961), who explored the psychological mo-

tives of individuals to maintain a “cognitive balance” between their social relations.

Later, sociologists, management scholars and more recently economists, have em-

phasized the benefits of network closure in social relations. Coleman (1988) argues

that closure, by facilitating collective monitoring and sanctions, prevents free-riding

and enforces cooperative behavior. Granovetter (1985) highlights the fact that clo-

sure facilitates interpersonal trust, since it creates a reputation cost for individuals

who misbehave. Common relations play the role of social collateral which favors the

formation of relations in a high-value exchange environment (Karlan et al., 2009).

A common partner may also act as a referee between his or her acquaintances (e.g.

Granovetter, 1973; Burt and Knez, 1995; Fafchamps et al., 2010). Accordingly, the

perceived gains of a new relationship between two agents will be higher if they have

common partners.

The empirical literature challenges this rationale, however, as it documents mixed

effects of closure on economic performances or social achievements. In particular,

whereas they generally expect a positive effect of closure on the inventive perfor-

mances of various actors, studies on research collaboration networks are inconclusive

as these effects are either positive, non significant or even negative (e.g. Reagans

and Mc Evily, 2003; Schilling and Phelps, 2007; Fleming et al., 2007; Bettencourt

et al., 2007; Breschi and Lenzi, 2016). A lively debate also concerns the effect
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of (generational or inter-generational) closure on children’s school performances or

well-being. Famous studies are those of Coleman et al. (1982), Carbonaro (1999)

and Morgan and Sorensen (1999) who obtain an opposite effect of parents’ closure

on school achievements. Similarly, contradictory effects are obtained regarding the

effect of closure on diffusion. For instance, the findings of Ugander et al. (2012)

suggest that closure in virtual networks is a negative predictor of Facebook dif-

fusion, while the opposite effect is found by Centola (2010) on the adoption of a

health forum. A number of studies also report in various contexts an inverse-U

shape relation between closure and, among others, the probability of artistic success

of Broadway musicals (Uzzi and Spiro, 2005), team effectiveness (Oh et al., 2004),

or new technology-based venture performance (Wang and Chen, 2016).

Rather than making the assumption that agents “like” closure, an alternative

point of departure would be that contextual factors or homophily may influence net-

work formation and ultimately lead to closed networks. It has often been claimed

in the sociological literature that people tend to form links with others who are

similar to them (in terms of age, education, ethnicity, religious beliefs for instance)

or share some common neighborhoods, such as a school or company (see McPherson

et al., 2001 for an extensive review). In fact, such factors could raise the level of

clustering in real networks as people with similar or close characteristics to others

may form cliques together (Easley and Kleinberg, 2010). Therefore, it is not nec-

essary to assume love-for-triadic-closure to explain clustered networks. In theory,

it is even possible to simultaneously reject the love-for-triadic-closure hypothesis,

introduce a love-for-non-redundant-connections ingredient and still observe a high

level of triadic closure.

To see this point, consider for instance the connections model introduced by

Jackson and Wolinsky (1996). In this model, agents benefit from positive external-

ities from other agents with whom they are indirectly connected, and the strength

of the externality declines with social distance. As only the length of the short-

est paths matters, agents do not benefit from multiple paths to some other agent.

Therefore, when two agents already have at least one common friend, they have

fewer incentives to form a link with each other, ceteris paribus, because thanks

to this common neighbor, they already benefit from each other. In this network

formation model, equilibrium networks will typically not exhibit a high level of clus-

tering. However, introducing an exogenous structure (geography for instance) that

affects direct link costs in this model is sufficient to ensure that agents form triadic

connections (Carayol and Roux, 2009). Though the gross returns of those redun-

2



dant connections are limited, agents form and maintain them simply because their

costs are also very low. Many triangles could therefore be observed in real social

networks, even though agents do not particularly like them. Socially distant (non-

redundant) connections are more valuable but in the same time more costly because

they need to be formed with (geographically) distant agents. There are only a few

such social bridges because their formation dissipates the incentives to further form

similar connections.1 This view is consistent with the literature highlighting that

individuals who bridge separate clusters (usually named brokers) experience higher

performance, for instance in tracking job opportunities (Granovetter, 1974), ob-

taining promotions (Burt, 1997), generating good ideas (Burt, 2004), or enhancing

firms’ performances (Zaheer and Bell, 2005) or inventiveness (Ahuja, 2000; Baum

et al., 2000).2 Yet, bridges are expected to provide opportunities for individuals or

organizations to benefit from new information or ideas arising from disconnected

parts of the network (Granovetter, 1973; Burt, 2000; Letterie et al., 2008).

In this paper, we empirically challenge the ideas that love-for-triadic-closure

and/or love-for-non-redundant-connections may drive the formation of new collabo-

rations. These hypotheses are tested on the formation of collaboration ties between

individual inventors. More specifically, we estimate the formation of links in a large

co-invention network.3 Such networks are particularly well suited to test our hy-

potheses for several reasons. First, we were able to build a dataset on a large scale

networks which we observe longitudinally over a sufficiently long period of time.

Further, this dataset has been matched with companies data sets in order to use

interesting covariates on top of other covariates built using information contained

in the patents. The second reason is that the formation of collaborations between

inventors remains understudied since previous studies in the field have mainly consid-

ered network ties as exogenous. Moreover, the results obtained concerning network

effects on inventive productivity remain contradictory in the literature in particular

regarding the effects of closure (Schilling and Phelps, 2007; Fleming et al., 2007;

Bettencourt et al., 2007; Breschi and Lenzi, 2016). A deeper understanding of how

collaborative ties are formed should provide new insights for empirical research to

1Carayol and Roux (2009) show that strategically-formed long-run equilibrium networks are
closed locally, though a few bridges between separate communities are formed, thereby constituting
small worlds, in the sense of Watts and Strogatz (1998).

2Note that these networks, like other social networks, typically exhibit a high level of clustering
(i.e. triadic closure).

3A link is drawn between two individuals if they have previously co-invented at least one patent.
The procedure is similar to that for drawing scientific collaboration networks from data on the co-
authorship of scientific publications (Newman, 2001; Barabási et al., 2002; Fafchamps et al., 2010).
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consider those effects4 and should ultimately better ground policy recommendations.

We first design a very simple heuristic model which clarifies the relation between

network gains and link formation. In our model, agents (individual researchers),

at any point in time, may consider the formation of a bilateral collaboration that

will produce an expected direct return and generate various costs.5 If this research

collaboration is undertaken, a new social tie is formed within the larger social net-

work generated by preexisting collaborations. These connections are conducive to

externalities. Though the model has intentionally been kept as simple as possible,

it is sufficiently general to encompass opposing assumptions about triadic closure.

Either direct and indirect links to an agent are complementary and then agents typ-

ically like forming triangles, or they are partial or perfect substitutes, which implies

that agents do not care about forming triangles, or even dislike doing so. Simulta-

neously, the model allows us to test whether two agents are more likely to become

connected when that new link grants access to agents they do no yet benefit from

directly (non-redundant links). This leads to a simple and generic expression of the

incentive schemes for forming collaborations at any point in time, either in or out of

equilibrium. As such, this expression can be applied to different contexts of network

formation.

We use relational information contained in all European patent applications over

the period 1978-2004, for which at least one inventor has declared a personal ad-

dress in France. Once we have disambiguated inventor identities thanks to an orig-

inal Bayesian methodology, we obtain a population of about one hundred thousand

inventors and reliable individual information on them, such as their precise geo-

graphic location, technological specialization or patent applicant identities (mostly

companies in the EPO system). These applicants are matched against the list of

French companies in mandatory annual surveys to gather detailed information on

applicants, including their yearly R&D investments and research personnel. We sus-

pect that the omission of some (potentially time-varying) variables could lead to the

mistaken conclusion that agents have incentives to form triadic connections. This

is likely to occur if, in the true data generation process, these covariates affect both

4For instance, though we would expect non-redundant connections to be very important to
access fresh ideas in such professional networks, Lee (2010) find that individual fixed effect may in
fact explain both the formation of distant connections and inventor performance. He then shows
that controlling for inventor fixed effects, the position-performance correlation disappears.

5In our model, each agent can create a new collaboration with any other existing agent. This
network formation mechanism is then different from the ones where new connections can only be
ensured by new agents entering the network, as in Barabási and Albert (1999), Jackson and Rogers
(2007) or more recently König (2016).
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the probability of connecting and the probability of having common friends in the

same way. The main variables we have in mind are the geographical distances be-

tween inventors, the institutional barriers they may face or the existence of common

research interests, which should affect the opportunities and costs of forming links

and be simultaneously correlated with closure. Their influence on knowledge flows

between workers, scientists or inventors has already been evidenced in a number of

papers (e.g. Kogut and Zander, 1992; Jaffe et al., 1993; Fafchamps et al., 2010 ;

Lee, 2010).

We rely on conditional logit regressions which allow us to control for such dyadic

fixed effects to estimate the probability of two as yet unconnected agents forming

a first connection at any period of time. The identification of the main explaining

variable effects thus comes from their variation in time. As this may bias estimates,

explaining variables are detrended (Allisson and Christakis, 2006; Fafchamps et al.,

2010). To account for the interdependence between dyads emanating from the same

person, inference is based on dyadic-robust standard errors (see Fafchamps and

Gubert, 2007 and Cameron and Miller 2014). Importantly, we introduce a dyadic

fixed effect that accounts for the time-invariant matching quality of the two agents,

as well as for the invariant individual abilities of the two inventors.6

When the connection costs are not properly accounted for, our estimations lead

to the conclusion that agents like closing triangles. But since we account for these

costs, the closure effect disappears. According to our preferred specification, agents

are even 23% less likely to collaborate when they have one more common previ-

ous collaborator. This speaks against the love-for-triadic-closure hypothesis. Our

second result is that inventors are more likely to collaborate when they each have

more partners with whom the other is not already connected to. If agents of a given

dyad have one standard deviation of non-common partners more, they are 20% more

likely to become connected. This supports the love-for-non-redundant connections

hypothesis in the context of knowledge creation. Such findings appear to be globally

robust to different assumptions about the trend of the quantitative explaining vari-

ables (logarithmic or quadratic vs. linear), to a larger time-window used for building

network variables (ten-year vs. five-year), and to different methods for clustering

standard errors (two-way vs. dyadic).

6In a recent paper, Graham (2016) introduces a methodology to disentangle closure effects from
other homophily effects in network formation. The identification strategy hinges on dyads creating
or severing a link together while all their other connections as well as their neighbors’ connections
remain stable across time. Unfortunately this method is very demanding in terms of network data
and cannot be used on our dataset since only a handful of stable dyads are present.

5



Finally, we conduct a series of Monte Carlo simulations to investigate the con-

sequences of departing from implicit assumptions of the econometric model. In

particular, as meetings can not be observed, we do not know if some dyads remain

unconnected because agents have met but decided not to collaborate, or if they did

not meet. We show that this may lead to a downward bias in magnitude for our

network variables. We also explore the consequences of assuming a different meet-

ing process, continuous updating of the network, and mistakes in the identification

of agents. Monte Carlo simulations overall reinforce the conclusion that no love-

for-triadic-closure is at play in our data and even further suggest that the “true”

negative effect on triadic closure in network formation may even be underestimated.

The following section introduces the heuristic theoretical model of strategic

research collaboration formation, and our empirical strategy. The third section

presents the data. The fourth section describes our findings and investigates sev-

eral robustness checks. In Section 5, we discuss the results of the Monte Carlo

experiments. The last section concludes and outlines some managerial and policy

implications of our findings.

2 The formation of inter-individual research col-

laboration networks

In this section, we present the different building blocks of a simple theoretical model

which illustrates how individual expected returns from collaboration shape link-

forming strategies. This model leads to a reduced form equation specifying agents’

incentives to bilaterally form collaborations. Lastly, we show how this equation can

be tested empirically and how it relates to our hypotheses on triadic closure and

non-redundant connections.

2.1 The setup

At each period t of the discrete time, we consider a finite set of nt agents, N t =

{1, 2, ..., nt}. New agents may enter the population at the beginning of any period

and, for the sake of simplicity in the exposition, agents are assumed never to retire

or die,7 so that N t ⊆ N t+1. A (non-directed) link between two distinct agents i and

j ∈ N t is denoted ij. Let gt denote the relational network in place at the beginning

7This assumption could easily be relaxed without changing any of the predictions.
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of period t, that is the collection of all existing links at that point in time. We also

assume that agents never consider link deletion, so that gt ∈ gt+1. At the beginning

of each period, all pairs of unconnected agents simultaneously meet with some given

uniform small probability p. They may then decide bilaterally to establish research

collaboration or not on the basis of the perceived impact of the new link on the

discounted net present value of their payoffs. Finally, agents are myopic, in the

sense that they do not anticipate the impact of their present moves on subsequent

moves: they consider that the network formed in the present period is a permanent

one. This standard assumption is usually considered as relevant when one considers

large networks in which forward-looking computations become extremely complex.

2.2 Individual payoffs

A research project generates immediate (pair specific) net payoffs, and brings a

social connection into the web of already existing connections, which also generates

per period returns. Let us assume that the expected (net) returns for i of a shared

research project with j formed at period t is given simply by:

rt(i, j) = θij + εtij − ζctij, (1)

where the net returns of the research collaboration are composed of: i) θij, an

idiosyncratic, pair-specific and time-invariant parameter, of ii) εtij a noise interpreted

as the opportunities of research collaboration between i and j that particular year,

and of ctij which captures the (sunk) time-variant costs and benefits, supported by

i, for running the research collaboration with j at period t. ζ is a non-null and

positive parameter so that variable ctij is interpreted as a net cost. To simplify the

exposition of the model, though that is not necessary for our results, we will further

assume that θij = θji, ε
t
ij = εtji and ctij = ctji so that rt(i, j) = rt(j, i), namely the net

primary payoffs of a research collaboration, are identical for the two agents involved.

Research collaboration between two agents who are not already connected con-

sists in a bilateral social connection that is assumed to be permanent for reasons of

simplicity. The complex of bilateral social connections is also assumed to support

positive externalities at each period. We propose the following simple specification

of these “network” (per unit of time) payoffs:

πi
(
gt
)

=
∑
j 6=i

(
αηij

(
gt
)

+ βη2
ij

(
gt
)

+ γ
4
η ij
(
gt
))
, (2)
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with ηij (gt) the number of direct links between i and j on gt (equal to 0 or 1),

η2
ij (gt) the number of paths of length two between i and j on gt, provided there is

no direct link, between i and j, and
4
η ij (gt) the number of triangles on gt having i

and j as summits.8

The two parameters α and β are likely to be positive. A standard interpretation

for these parameters would be that they capture the imperfect knowledge spillovers

that flow through local connections: α scales the knowledge spillover from a direct

neighbor, β gives the spillover that flows through any path of length two from

some other, provided there is no direct link to that agent. Parameter γ scales the

externality captured by i for each indirect connection of length two to any direct

neighbor. It captures both possible knowledge spillover flowing on such a path, and

a closure effect. As such, it is also expected to be positive.

It should be noted that, according to this payoff specification, agents are assumed

only to consider social network externalities at a social distance less than or equal

to two. This is a natural assumption for the closure effect, but needs to be justified

for the knowledge spillover effect. One convincing justification for not considering

knowledge flows at distances strictly greater than two is provided by Singh (2005)

and Breschi and Lissoni (2006), who show that the probability of patent citations

decreases sharply in function of the social distance between patent inventors, and

that these spillovers are null or nearly null at a social distance equal to or greater

than three. It should also be noted that externalities are here associated with paths,

and not agents. Therefore, one agent may benefit from another agent via different

paths, the total gain from that second agent being additive to the gain from each

path.

2.3 Bilateral incentives to form connections

We now focus on the bilateral incentives to form connections, once two unconnected

agents have just met (which is supposed to be random for simplicity). For simplicity,

agents are assumed to be able to bargain bilaterally when they consider forming a

link together, so that a link will be formed between two agents who meet, if their

expected joint payoffs are greater when the project is launched.9 Therefore, the total

8That is also the number of common neighbors of i and j, or the number of paths of length 2
between i and j, provided there is a direct link between i and j.

9We do not consider the precise way in which agents bargain, but just assume that the bilateral
transfers are such that the link is always formed when the two agents find it jointly profitable to
do so. This assumption allows us to consider the formation of a link as a joint dyadic decision,
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variation of expected worth for the two agents, due to the creation of a new link

between them, constitutes the (dyadic) incentives to form connections, whatever the

effective bilateral transfers they operate. Let ∆(gt, ij) denote the variation in the

discounted payoffs of agents i and j if link ij is created while the network gt is in

place (with ij /∈ gt). Using Equations 1 and 2, this is given by:

∆(gt, ij) = 2
(
θij + εtij − ζctij

)
(3)

+
1

1− δ

(
2α + βη̄ij

(
gt
)

+ (4γ − 2β)
4
η ij
(
gt + ij

))
,

with η̄ij (gt) the number of non-common neighbors of i and j on gt,10 and with
4
η ij(g

t)

the number of common neighbors of i and j defined above.11 The first component

of the right-hand side of Equation 3 is related to the per period average joint gain

of the research collaboration. The second one captures the net present value of the

variation in the flow of network payoffs, due to the new link ij having been added

to gt. All the agents discount time by factor δ. The variation in the per period

payoffs is composed of the payoffs obtained thanks to: two new direct relations,

η̄ij (gt) new indirect relations between agents not having a direct link, 4
4
η ij (gt + ij)

new indirect relations between agents having a direct link, and 2
4
η ij (gt + ij) less

indirect relations between agents having no direct link on gt. The following example

illustrates how exactly these computations are made.

Example 1 Let us consider the network g = {ix, jx, iv, iu, iy, yj, js} depicted in

Figure 1, and let us focus on the potential formation of a new link between agents

i and j that does not exist in g. It should be noted that here, η̄ij (g) = 3,
4
η ij(g +

ij) = 2. Thus, according to Equation 3, the new link ij would bring to the dyad

an expected average net payoff of (1− δ) [∆(g, ij)] = 2 (1− δ)
[
θij + εtij − ζcij

]
+

[2α + 3β + 2 (4γ − 2β)]. Let us explain the second term of the right-hand side of

this equation, which corresponds to the variation in the per period network payoffs.

instead of two separate decisions. It is consistent with the idea that in research collaboration, not
all agents contribute equally: more peripheral agents often accept to contribute more to a project,
which materializes here as a bilateral transfer. Since agents do not consider the further moves
induced by their present collaboration, the transfers are rationally limited to the private returns
generated by the link. Agents are, however, not allowed to subsidize the formation of a link they
are not directly involved in, which is also a reasonable behavioral assumption.

10That is, agents in the direct neighborhood of i (j), but from which the other agent j (i) does
not already benefit (at a social distance strictly greater than two).

11It should be noted that, by definition: η̄ij (gt) + 2
4
η ij(g

t + ij) = ηi (gt) + ηj (gt) , where ηi (gt)
denotes the number of neighbors of agent i in gt.
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The dyad first enjoys the returns of two new direct connections (j with i and i

with j), each providing an α. Thanks to link ij, i benefits from the returns of four

indirect connections, provided there is a direct link: two that point to j ({ix, xj},
and {iy, yj}), one that goes to x ({ij, jx}), and one to y ({ij, jy}). Simultaneously,

two indirect connections, provided there is no direct link, have disappeared ({ix, xj},
and {iy, yj}) on g+ ij. The same occurs for j, which explains the multiplication by

two.

2.4 Network evolution and empirical strategy

The relational network emerges gradually from the uniform meeting process exposed

above and the willingness of agents to form links.12 At each period of time, with

the network gt being in place, and provided that the link between i and j does not

already exist, the probability of a dyadic connection being established between the

two agents is written Pr(gt+1
ij = 1|gt, gtij = 0). As explained above, at each period,

any pair of unconnected agents i, j ∈ N t is chosen randomly with a given constant

and a non-null probability p and, provided that two agents i and j meet, a link will

be formed between them if ∆(gt, ij) > 0. We further assume that εtij ∼ Logit, and

we denote F (.) its associated cumulative distribution function. The probability of i

and j forming a collaboration in period t is thus given by:

Pr
(
ij ∈ gt+1

∣∣ij /∈ gt ) = Pr(∆(gt, ij) > 0)× p ∝ F (∆̄(gt, ij)), (4)

with ∆̄(gt, ij) ≡ ∆(gt, ij) − εtij. We propose to estimate Equation 4 by relying on

the following specification of the incentives to form a bilateral collaboration:

1

2
∆(gt, ij) = β1 + βncηij

(
gt
)

+ βc
4
η ij
(
gt + ij

)
+ θij + εtij + βcostctij, (5)

where θij is the time-invariant fixed effect, and εtij the error term. This expression

is directly derived from our specification of the bilateral payoffs of a link formation

exposed in Equation 3, with β1 = α
(1−δ) , β

nc = β
2(1−δ) , β

c = 2γ−β
1−δ and βcost = −ζ.

If 2γ < β, then βc > 0, and thus the number of triangles impact positively the

12The social network is not assumed to be at equilibrium but in some possibly transient state. In
our context, new agents enter the population at all periods, and connection costs evolve over time.
Therefore, to assume that the network is at equilibrium would amount to considering that agents
could rearrange all their collaborations at each period, which would obviously not be consistent.
Carayol and Roux (2008) adopt the alternative perspective by studying inert components, assuming
that they reach some stable state.
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incentives to form a link. If it turns out to be positive and significant, this would

mean that agents like closing triangles, thus supporting the love-for-triadic-closure

hypothesis. We will also be concerned with βnc being positive and significant, which

would provide support for the love-for-non-redundant-connections hypothesis, in line

with the idea that the collaboration network is a vehicle for knowledge spillovers.

Turning to the costs of research collaboration formation, we will identify several

factors that may impact the probability of forming a connection. Several forms of

homophily affect such costs in terms of uncertainty, time and effort to form a link.

3 Data and variables

Our primary empirical evidence is built upon all European patent applications in

which at least one inventor has declared an address in France, and the priority date

of which is between January 1978 and December 2004 included. All non-French

inventors of these patents have been excluded. Before describing the co-invention

network and the various explanatory variables, we first describe the procedure we

developed to disambiguate inventors, a major issue when tackling large network data

based on administrative files.

3.1 A Bayesian methodology to disambiguate inventors’ names

For each inventor listed in a patent document, her/his name, first name and personal

address information are available, but a unique identification is not. This raises a

disambiguation issue, or a “name game”, according to Trajtenberg et al. (2006), due

to the homonymy of inventors and to spelling errors. Most often, such errors should

not be neglected, since an accumulation of small identity errors could easily trigger

great changes in the network data. For instance, a Type 1 error of homonymy would

lead to considering that different persons are the same, thereby mistakenly generat-

ing some apparently extremely connected agents creating unjustified links between

different communities. A Type 2 error of homonymy would lead to ignoring the role

of bridging agents. As is well known in the literature on networks, many network

statistics are very sensitive to such errors. Therefore, the use of the information

on patent inventors necessitates the correct identification of individual identities in

patent data through some reliable, systematic and reproducible methodology.

Though a growing literature tackling this issue is emerging,13 a widely accepted

13For an overview see Miguélez and Gomez-Miguélez (2011), Pezzoni et al. (2014) and Li et al.
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standard has not yet been fixed, and a whole range of more or less ad hoc tech-

niques can be seen. Any disambiguation procedure needs, in particular, to have a

filtering step, in which different observable attributes, already listed in the patent

dataset, are used to provide similarity scores to determine whether two homonyms

refer to one and the same person. Two main issues need to be addressed. First, how

much should similarity scores increase when two homonyms have the same modality

for some given variable? Should, for instance, information about the city of resi-

dence contribute more or less to the similarity scores than information about the

technological classes? Second, how should the relative frequencies of each variable

modality be taken into account? Clearly, it is not as informative to observe that

two homonyms live in Paris as in a small town, and we would like to know what

difference this makes exactly.

We have thus developed a Bayesian methodology for estimating the probabil-

ity that two homonyms are the same person, given a series of observables provided

by the data. This methodology, further detailed in Appendix A,14 addresses the

two main issues stressed above. Out of 133,764 patents considered, we find 262,186

patent×inventor occurrences that correspond to an address in France. We use the

following list of observable attributes of individuals: name and first name, address

(the full string and the extracted name of the city), technological class, patent cita-

tion, applicant (at company and group level). Our methodology also makes use of an

empirical benchmark of nearly five thousand reliable (positive or negative) matches.

We thus know that we were able to reach ninety-eight percent correct inferences out

of a linear combination of Type 1 and Type 2 errors in the benchmark. Out of a

total initial population of 126,887 agents, we obtain 103,309 French inventors.

3.2 The French co-invention network

Of those 103, 309 French inventors, 82, 994 invented a patent with at least one other

French inventor over the period 1978-2004. In the evolving co-invention network,

connection exists if two persons have already invented at least one patent together.

Implicitly, we assume that all inventors of a patent are personally acquainted. This

assumption, which is standard in the literature on co-authorship networks (see e.g.

Newman, 2004; Moody, 2004; Goyal et al., 2006), is even more acceptable in the

co-invention context, since co-invented patents (with at least two inventors) mostly

(2014).
14Even more details are available in a technical note written by two of us (Carayol and Cassi,

2009), on the same data set, but less updated.

12



involve small teams of collaborators: the average and median numbers of inventors

of co-invented patents are respectively 2.8 and 2, with a standard deviation equal

to only 1.19. Different assumptions can be made about the duration of a link. As

is usually done in the literature (e.g. Singh, 2005), we will mostly rely here upon

a five-year backward-moving window. However, we have also computed network

data on an alternative ten-year moving window, and for the cumulated network.

Table 1 provides some basic statistics for each of these three networks in the last

year of our sample (2004). As could be expected, the number of connected agents

changes according to the assumption made about link duration. Note that the largest

component of the cumulated network represents 50% of the whole population (62% of

the connected agents). As a point of comparison, the largest component of scientific

co-authorship networks rarely includes less than 70% of the population.15 Such a

discrepancy may be explained by a greater density of the co-authorship networks.16

One could also argue that technological knowledge may be more fragmented than

scientific knowledge, or that the institutional configuration could generate a higher

fragmentation of the population of inventors than authors, who evolve in a more open

scientific mode of knowledge production. A very interesting statistic for our study

is the average clustering coefficient. This gives the (averaged among all connected

agents) number of triangles to be found in agents’ neighborhoods, divided by the

number of all the triangles that could be built between these neighbors. We find

high values for average clustering (between 53 and 59%), a result which is very close

to those usually found in large social networks.

3.3 Variables

We now present the variables that will be used in the regressions. They include

network variables, geographical and technological distances directly extracted from

patent data, and applicant data that rely both on the cleaning of the applicant field

of patent data and the match of patent applicants with companies in mandatory

national surveys.

Descriptive statistics on all variables are presented in Table 2. Since the fixed

effect approach we use in our econometric estimations deletes all dyads with only

15See, for instance, Newman (2001) where a 5-year window is taken into account, and Barabási
et al. (2002) where the data cover a 8-year period.

16It is a well-known property of both random and scale-free networks that increasing network
density leads non-linearly to the emergence of a “giant component” tending to encompass almost
all the population (Erdos and Renyi, 1960).
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null-dependent variables (no link is ever formed), the data are limited to the yearly

observations of the dyads that are eventually formed. Moreover, since the variability

in the explanatory variables comes from the observation of at least one previous

patent, we only consider the 97, 551 dyads in which an inventor has already invented

at least one patent. Each one of these dyads is observed starting from the first year

the two concerned agents are considered to be part of the population of inventors,17

until the link is formed (that year being included). These dyads involve 54, 886

distinct inventors. All in all, there are 407, 001 dyad×year observations.

3.3.1 Network variables

The dependent variable gt+1
ij is a dummy, equal to one if the link between the two

active agents i and j is formed in year t+ 1, and zero otherwise. This concerns the

period 1983-2004. For each year t during the period 1982-2003,18 we calculated the

two explaining variables of major interest on the 5-year window network gt, namely

the number of non-common neighbors ηij (gt) and the number of common neighbors
4
η ij (gt).19 We also computed a series of network controls (noted net controlstij)

that concerns the time-variant network attributes of inventors of each focal dyad:

the average number of patents per year of the two agents, the rate of difference

(absolute value of the difference divided by the mean) of agents’ degree and the rate

of difference in their average number of patents.

3.3.2 Geographical and technological distances

As patent data mention the personal addresses of inventors, we were able to locate

inventors in the Metropolitan France area by matching the post codes mentioned

in their addresses with their corresponding latitude and longitude coordinates.20

By means of name disambiguation, we were able to identify inventors who changed

location: as many as 11, 970 of the connected inventors declared at least two different

17In order to build the unbalanced panel data set, we had to formulate some assumption about
the entry of inventors into the population. An inventor is considered as active three years before
his first patent application year.

18There is a one-year lag for all explanatory variables compared with the dependent variable, as
suggested by our theoretical framework.

19The five-year window was used, since it is the one most commonly employed in similar empirical
network studies. However, a larger ten-year window will also be used to build the right-hand side
network variables in the robustness check analyses. By doing so, we lose five years of observation
and the period covered is 1988-2004 for the dependent variable and 1987-2003 for the explanatory
variables.

20Those coordinates were kindly provided to us by the IGN (Institut Géographique National).
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addresses. Most geographically mobile inventors remain in the same area: nearly

79% (86%) of mobile inventors have a maximal distance between their different

locations of less than 20 km (50 km).

The Euclidean geographical distance can be computed for any pair of addresses,

given their coordinates (latitude and longitude). Since some agents change location,

more than one distance may be associated with a pair of connected agents: some

pairs of agents invent together on several occasions, while at least one of the two

changes addresses in the meanwhile. If we restrict ourselves to our data set of dyads,

matters are much simpler. Overall, we have identified more than 145, 000 distances

(in kilometers) between co-inventors. If we just consider the distance for the year in

which the link is formed, we observe that the distribution of connections, according

to the geographic distance between agents, is very skewed. More than 63% of the

connections are achieved between inventors that live less than 50 km from each other,

while fewer than 6.2% of the connections are formed between agents who live more

than 550 km from each other. Figure 2 presents the histogram of the geographic

distance between inventors, restricted to the dyadic observations of the year when

the link is formed. The variable geotij, which is equal to twice the geographic distance

(as suggested by the theoretical model) between agents i and j at period t, accounts

for some of the connection costs.

For each pair of inventors, in each year, we also computed the technological

distance. This has been defined using the similarity measurement proposed by

Jaffe (1988), i.e. un-centered correlation measurement of two inventors’ distribution

vector of patents over 30 technological IPC classes defined by OST (2010). It is

given by :

jaffetij = 1−
∑

k n
k,t
i n

k,t
j((∑

k

(
nk,ti

)2
)∑

k

(
nk,tj

)2
)1/2

,

with nk,ti the number of patents i invented in technological class k before year t.

Our results are invariant when we use alternative measurements of technological

distance, such as the Euclidean or Manhattan distance which are very correlated

together and with Jaffe distance (coefficients above .97).21

21Estimations are not included due to space constraints but are available from the authors.
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3.3.3 Applicants

The association of inventors to applicants on a yearly basis was based on the two

following principles: i) the inventor is associated with her/his first applicant and per-

manently if she/he does not switch to another applicant; ii) if the inventor switches

to a new applicant, she/he is associated with that new applicant from the year of

the application of the new patent.

To account for the institutional costs of collaboration, a dummy variable apptij
was created: it is equal to unity if i and j have ever been associated with the

same applicant. We also identify public research institutions (universities and other

public bodies) among all the applicants of our database. This variable is of interest

for us since we hypothesize that, when inventors are in the academic sphere, they

may follow different behavioral patterns, somewhat reducing the perceived costs

of collaborations. A simple justification would be that academics are less likely

to perceive each other as competitors and are therefore more likely to be willing

to engage in joint research projects. The dummy variable acadtij captures this: it

is equal to unity if the two agents have already invented a patent for which the

applicant is a public research institution. About eleven percent of all dyads formed

are between academics.

A final step in the enrichment of our data proceeded as follows. We matched

the patent dataset with the French R&D surveys conducted annually by the French

Ministry of Research, using the name and location of applicants-companies as the

matching key. These surveys are exhaustive for all the companies employing at

least one full-time researcher (whatever their size) and provided us with annual

data on companies’ internal and external R&D expenditure, number of researchers,

as well as more general information, such as total number of employees. We then

deflated internal and external R&D expenditure by a national investment price

index. Information concerning the applicants associated with the inventors was

used to build dyadic variables (denoted app controlstij), both by summing for the two

agents and by calculating the rate of difference (the absolute values of the difference

within the dyad divided by the sum). Though the company surveys we used are

exceptionally extensive, it was not possible to obtain this information for every

applicant in the dyad, or for every year. This results from a sharp decrease in the

number of observations available: approximately 130,000 observations for all dyadic

sums, and approximately 93,000 observations for all the relative differences within

the dyad (which can not be calculated when the sum is null). Since such a massive
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reduction in the number of observations sharply decreases coefficient significance,

we decided to present only the results in which applicant controls are limited to

dyadic sums.22

4 Estimations and results

The direct empirical counterpart of the theoretical model described in Equations 4

and 5, is given in the following equation:

Pr
(
ij ∈ gt+1

∣∣ij /∈ gt ) = F
(
β1 + βncηij

(
gt
)

+ βc
4
η ij
(
gt
)

+ βcost1 geotij + βcost2 jaffetij

+βcost3 apptij + βcost4 acadtij + βcost5 app controlstij + βcost6 net controlstij + θij
)
.

(6)

The significance and signs of parameters βnc and βc are our main interest, provided

that we control properly for the direct benefits and costs of collaboration forma-

tion. To do so, we introduced a fixed effect θij that accounts for the time-invariant

matching quality of the two agents which, we hypothesize, corresponds to the re-

turns of the research collaboration between i and j captured by these two agents.

That term accounts for any time-invariant effect on the probability of connecting,

such as the individual abilities of i and j. Controlling for time-invariant fixed effect

is, however, not sufficient since there may be some time-variant factors that affect

the probability of collaboration. Four variables introduced above account for the

costs: geographic distance (geotij) between agents, technological distance (jaffetij),

having already invented for the same applicant (apptij) which we interpret as being

associated with the same institution, and having already invented for an academic

institution (acadtij) that may capture more collaborative research patterns.

Lastly, we included two series of controls: app controlstij and net controlstij. The

former refer to the research capacity of the applicant(s) associated with the inventors

of the dyad. This series includes the total internal and external R&D expenditure,

the number of researchers and the number of employees, as well as the difference

rates of these three variables between the two agents of the dyad. This information

is however available only for one subset of the whole sample.23 The second series of

22We have found that the decrease in significance can be attributed mainly to the sample re-
duction and not to the inclusion of more controls by running all model regressions on the only
observations that are fully informed.

23For the dyads in which link formation is assessed thanks to a patent for which the applicant
is found in the company data.
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controls concerns inventors’ time-variant network attributes: the average number of

patents per year of the two agents, the rate of difference in the degree of the agents,

and the rate of difference in their average number of patents. These variables allow

us to control, in particular, for the time-varying individual propensities to patent

(which may affect the meeting probability p that is assumed to be uniform across

dyads in the model).24

Our estimation strategy immediately raises a first issue. Allisson and Christakis

(2006) show that the estimation of such a fixed effect logit model leads to spurious

estimates when the explanatory variables are trended. This is due to the fact that

it is not possible (by design) to observe link deletion in such data. All dyadic time

series take the form of a series of zeros followed by a one. Therefore, as suggested in

Fafchamps et al. (2010), all quantitative explanatory variables are first detrended

by assuming a linear trend (in the robustness checks, we relax this assumption by

considering other forms of trend).

A second issue concerns inference. Our observations are not independently dis-

tributed since all the observations corresponding to dyads involving the same agent

are likely to be correlated. Ignoring such correlation between observations may lead

to an inference problem. We are particularly worried about a potential overesti-

mation of coefficient significance, although the contrary may also occur. Clustering

observations on the dyads is not satisfactory since clustering should be performed

on the identities of the two members of each dyad. Cameron and Miller (2015)

suggest a two-way clustering approach by which observations are clustered on the

identity of the two persons involved. However it does not fully account for all the

correlation between observables. In particular, it does not take into consideration

the correlation between dyads that share the same agent on different “sides” of

the dyad (on the right and on the left). In this paper, we will follow previous

work by Fafchamps and Gubert (2007) and Cameron and Miller (2014)25 to provide

dyadic-robust standard errors estimation. We have adapted the sandwich variance

estimator of Cameron and Miller (2014) to the conditional logit model which is

estimated through maximum likelihood.26

Table 3 synthesizes our baseline regression results. We find first that, as ex-

24Fafchamps et al. (2010) use similar network controls.
25Previous work by Snijders and Borgatti (1999) should also be mentioned.
26Adaptation of their Stata code “regdyad2.ado”. In the robustness checks, we show that this

method is, as expected, more conservative (t statistics are closer to zero) than the two-way clus-
tering approach suggested by Cameron and Miller (2015).
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pected, the number of neighbors that the two agents do not have in common always

positively and significantly impacts the probability of connection. This result is

significant at the 0.1% level for the three regressions for which all 407,001 observa-

tions are available. Significance at the 5% level is obtained when we also control for

the applicant (company) characteristics, imposing a significant reduction in sample

size down to one third of its initial size. This result supports the idea that agents

benefit from indirect connections (at least at distance two) which is consistent with-

the existence of network-based knowledge spillovers. It supports the love-for-non-

redundant-connections hypothesis. This effect may seem limited as having one more

non-common friend increases the probability to connect by approximately 3% across

all specifications. However, note that agents in the dyads under investigation have

in average four-to-five non-common partners. Moreover, the standard deviation of

that variable is even slightly larger (reported in Table 1), so that a one-standard

deviation of the number of non-common friends actually increases the probability

to connect by more than 20%. Remind that such probability increase is obtained

within the dyad and while controlling for all other time-varying covariates.

Our second and main result is the following. When we do not control for the

costs of network formation (no cost variable is introduced in the model of Column

1, Table 3) or only account for technological and geographic distances (Column

2), the number of common neighbors is positively and significantly associated with

the probability of creating a link. This seems to indicate that agents like closing

triangles. However, when we properly control for omitted variables such as the

connection costs, in particular when we control for all applicant variables (Columns

3 and 4), it appears clearly that this effect disappears. Therefore, if inventors close

triangles, this is totally explained by the controls. Moreover, it turns out that the

number of common neighbors now significantly decreases the probability of becoming

connected. These results are significant at the 0.1% level for the models of columns

1 to 3, and at the 1% level for the full model of Column 4 - on the reduced sample.

This effect is strong as, according to the last specification, having one more friend

in common decreases the probability to connect by 23%. In terms of within-sample

variation, a one standard deviation in the number of non-common partners raises

the probability to connect by 16%. These results clearly speak against the love-for-

triadic-closure hypothesis.

The results appear to be globally robust to a list of alternative specifications.

All the supplementary regressions we discuss below are reported in Appendix B.

The results are robust in particular to different assumptions about the trend of the
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quantitative explaining variables: the results do not change when we assume either

a logarithmic or a quadratic trend (Tables B1 and B2). When a larger time window

(ten years) is retained to build the right-hand side networks variables (Table B3),

the results on the impact of the number of common neighbors remain the same.

However, it then appears that the number of non-common neighbors negatively

affects the probability of connecting. This could be explained by the lower influence

of (older) non-common neighbors on the probability of connecting. It could also be

due to the assumption that agents never retire or die: older agents are those most

likely to have larger neighborhoods, while they are also more likely to be no longer

active. This last remark could be interpreted as a reinforcement of our positive

result obtained for the five-year moving window networks. The divergence with the

main regressions is, however, limited since this coefficient is never significant and

very close to zero.27 Lastly, in Table B4 we report the same regression coefficients as

in Table 3, but the t statistics are obtained with two-way clustered standard errors

instead of dyadic clustered standard errors. These standard errors were computed

as suggested in Cameron and Miller (2015). As expected, these results are less

conservative in terms of inference as compared to our main results presented in

Table 3.

The impacts of the cost variables are also interesting in themselves. All the cost

variables are always significant at the 1% level,28 and the coefficients always have

the expected signs. Geographic distance and technological distance significantly de-

crease the probability of becoming connected. Having previously had one common

applicant strongly and positively affects that probability. Interestingly, if one inven-

tor has already invented for an academic applicant in the dyad, and while controlling

for individual fixed effects, the probability of forming a connection is higher, which

highlights the role of academics in creating connections among inventors.

5 Monte Carlo experiments

In this section, we explore the validity of the estimated negative effect of common

neighbors on link formation, relying on a series of Monte Carlo simulations. We

suspect that our estimates may be biased by underlying assumptions, in particular

27Moreover, this coefficient remains positive in a more complete specification in which difference
variables (between applicants in the dyad) are included. Results are not reported, but are available
from the authors.

28In fact, all the cost variables in all models but one (Jaffe technological distance in Model 3)
are significant at the 0.1% level.
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concerning the unobserved meeting process between agents which we have assumed

to be uniform.

The Monte Carlo model, further detailed in Appendix C,29 simulates network

formation according to the model presented in Section 2. At each period, non-

connected dyads meet with probability p and decide to collaborate if their dyadic

net return is positive, calculated as follows:

∆t
ij ≡ θij + βc

M
ηij
(
gt + ij

)
+ βncη̄ij

(
gt
)
− ctij + εtij, (7)

which is a simplified version of Equation 3. βc and βnc are generative coefficients

chosen on purpose.30 Only dyads of agents who eventually collaborate are considered

for inclusion in the data table, up to their first connection, so that the dependent

variable is a time series of 0 followed by a single 1 for each dyad (as for the empirical

data estimation in Section 4). Then, we estimate the occurrence of a first connection

in a conditional Logit model on linearly detrended explanatory variables. The whole

network data generation process and the estimation are repeated 100 times so that

a distribution of estimated coefficients is obtained for each single set of generative

coefficients.

In a first set of Monte Carlo simulations, the generative coefficients βc and βnc are

calibrated using the estimated coefficients of Column 3–Table 3. The regression re-

sults obtained on those data are presented in Model 1–Table 4. The mean estimated

coefficient of common neighbors is -0.25 (SD is only 0.07) and are significant for 98

out of 100 runs. The sign is thus correctly estimated but the coefficient is about half

of its associated generative coefficient (-0.505). We suspect this downward bias in

magnitude may be due to the systematic inclusion in the sample of agent dyads for

all the periods before their first collaboration, even when they actually do not meet.

Those dyad-periods have been included to match the very nature of the empirical

data. Meetings between inventors are not directly observed as in most real network

data. Meetings are however observable in the Monte Carlo generated data allowing

us to appreciate to what extent using this information would reduce the estimation

bias. In Model 2 agents dyads are excluded for all periods they do not meet. This

significantly alleviates the downward bias as the average estimated coefficient of the

number of common neighbors is now -0.41, closer to its generative value (-0.505).

29Note that the results of this section are robust to a variation in the generating parameters, as
shown in Appendix D.

30The generative coefficient of costs is normalized to −1.
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If the underestimation of this coefficient by 50% is roughly preserved for different

generative values of βc, it is pretty straightforward to find out the generative value

which leads to estimates matching the ones obtained on real data. Setting the gen-

erative βc to -1 (nearly twice the estimated βc on the real data), we obtain estimated

coefficients that are indeed very close to the coefficients obtained from real network

data regressions (-0.53 in Model 3, vs. -0.505). Further, network generation free of

any network determinants (i.e., generative βc = βnc = 0) leads to positive estimated

coefficients (Model 5) that are significant in 71% of the regressions. Therefore, in

the absence of any network effect, spurious positive (not negative) effects of common

neighbors may be obtained. Such bias is mainly due to not observing meetings as

excluding non-meeting pairs almost completely solves the problem (the fraction of

regressions for which we obtain significant coefficients falls to 7% in Model 6, and

the mean point estimates are close to 0).

In Appendix E, the Monte Carlo procedure is used to investigate three other

potential biases. We first explore the consequence of miss identifying agents in the

data. We find that artificially adding Type 1 or Type 2 errors31 into the data has

limited consequences on the estimates. Large type 1 errors only lead to a downward

bias in magnitude of the estimated coefficients. Such errors are however controlled

and minimized by the disambiguation algorithm (see Appendix A). Secondly, we

consider a non uniform meeting process, assuming that meetings are more likely

when agents have common friends. This alternative meeting process does not bias

estimates. Thirdly, we assume agents take their decisions in continuous time, ob-

serving the current state of the network whereas estimations are performed on a

discrete time basis. The bias is also limited, decreasing slightly the magnitude of

the common neighbors estimates.

In a nutshell, none of those Monte Carlo experiments suggests that the estimated

negative effect of common neighbors could be spurious. If biased, the negative effect

of common neighbors may have only been underestimated. This reinforces our main

conclusion leading to the rejection of the love-for-triadic-closure hypothesis in our

context.

31Type 1 errors are false positives while Type 2 errors are false negatives.
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6 Conclusion

While a large number of empirical studies examine how social networks shape ag-

gregate or individual outcomes, the individual strategies that drive their evolution

are often not considered. At the same time, a growing theoretical literature explores

the properties of networks that emerge when self-interested agents strategically form

their connections (Jackson, 2009). In this paper, we contribute to a recent empirical

literature that aims to fill the gap between these two approaches by studying the

formation of links using panel data on large social networks (e.g. Fafchamps et al.,

2010; Snijders, 2017). Specifically, we examine the incentives of inventors to form

new research collaborations, with a special focus on the effect of triadic closure and

non-redundant connections which have been identified as some of the main drivers

of social network formation. We estimate the proposed incentive equation to bilat-

erally form new links using precise data on patents produced by French inventors

over the period 1978-2004 that allow us to account for time-varying co-variates and

to control for dyadic as well as individual fixed effects.

We find that two inventors are significantly less likely to form a first research col-

laboration when they have more common partners, once all the potential confound-

ing factors are properly controlled for. Our heuristic model leads us to interpret this

result as meaning that inventors are not willing to close triangles per se, and even

that they dislike doing so. A series of Monte Carlo experiments even suggest we may

underestimate this effect. It may (or may not) be limited to our particular context,

in which the institutions (mostly companies) have incentives to create the conditions

for the enforcement of cooperative behaviors between their employees. As we control

for patent applicants, we also control for the positive effect of being employed by the

same organization. In any context of application, however, this result does urge us

to control for the various potential costs and constraints borne by the agents when

testing individuals’ preferences toward forming links as a function of the existing

network connections. A second finding reveals the preferences of inventors towards

non-redundant connections. Taken together, these results indicate that connections

among socially closed agents might provide lower benefits but that the lower costs

or constraints faced to form such connections strongly encourages their formation.

This paper also contributes to the recent literature on knowledge spillovers, net-

works and invention. Several studies have shown that interpersonal networks are

crucial determinants of knowledge transmission (e.g. Singh, 2005; Breschi and Lis-

soni, 2006). Our evidence further shows that inventors preferentially form links with
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partners with whom they are not already indirectly connected. One interpretation

would be that agents prefer to form non-redundant connections to benefit from fresh

ideas and gather information from socially distant sources. Nevertheless, our results

also suggest that inventors mostly build those less fruitful collaborations within clus-

tered communities because they are less costly. In terms of innovation policy, an

implication of our findings is that the focus should be more on the communities of

individuals (rather than on companies or spatial clusters) and on subsidizing the

formation of those supposedly more efficient but costly connections that span insti-

tutional and other boundaries. Their social value is likely to be very high because

they are non-redundant, much higher than their private returns for the directly

concerned agents.
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Table 1: Descriptive statistics of the 2004 co-invention networks built with different
assumptions about the duration of links.

cumulated 10-year window 5-year window
# isolated agents 20, 315 53, 555 73, 063
# connected agents 82, 994 49, 754 30, 246
# links 161, 724 92, 756 51, 763
# of components 10, 198 7, 104 5, 586
largest component size 51, 761 24, 744 7, 357
2nd largest component size 82 153 130
av. degree (all agents) 3.13 1.80 1.00
av. degree (connected agent) 3.89 3.74 3.42
av. clustering 0.53 0.57 0.59
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Table 2: Descriptive statistics of the dyads that are formed at some point, observed
from the year the two agents are considered as active, until the year the link is
formed (included).

Variable Mean Std. Dev. N
network common 0.11 0.73 407,001
variables non-common 4.73 6.79 407,001

geo distance 265.91 395.83 407,001
cost Jaffe tech distance 0.49 0.46 407,001
variables public research 0.11 0.32 407,001

common applicant 0.16 0.37 407,001
cpny researchers 819.66 1635.14 154,535
RD dpt size 1912.3 3355.97 154,535

applicant controls internal RD 216,785.65 588,788.08 154,535
(sum in the dyad) external RD 52,692.32 139,987.39 147,743

cpny size 19,212.2 55,975.64 154,535
cpny turnover 1,994,384.71 8,439,402 154,535
diff. cpny researchers 0.18 0.35 129,133
diff. RD dpt size 0.18 0.36 129,133

applicant controls diff. internal RD 0.18 0.35 129,133
(difference in the dyad) diff. external RD 0.21 0.38 111,472

diff. cpny size 0.18 0.35 129,120
diff. cpny turnover 0.2 0.37 119,898
av. productivity 0.38 0.44 407,001

net controls diff. in degree 0.64 0.45 407,001
diff. in productivity 0.71 0.39 407,001
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Figure 2: Distribution of first connections according to the geographic distance (in
km) between the connected agents.
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Table 3: Conditional logit on the occurrence of the first connection, all sample,
five-year window network, linear detrending.

1 2 3 4
non-common 0.0321*** 0.0328*** 0.0276** 0.0313*

(4.26) (4.33) (2.35) (2.01)
common 0.199*** 0.204*** -0.529*** -0.255**

(10.34) (9.47) (-4.31) (-2.79)
geo distance -0.00132*** -0.00143*** -0.000621***

(-24.70) (-25.15) (-6.52)
Jaffe tech distance -0.339*** -0.258** -0.507***

(-5.18) (-2.77) (-3.30)
public research 23.13*** 21.83***

(84.67) (1312.63)
common applicant 31.71*** 24.75***

(8.30) (133.39)

network controls yes yes yes yes
applicant controls no no no yes
observations 407,001 407,001 407,001 129,924

Notes: Dyadic clustered standard errors (t statistics in parentheses).

Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table 4: Estimated coefficients of the number of non common neighbors on the
probability to collaborate from given Monte Carlo simulations.

Generative Estimated coefficients
Values Full sample Excl. Non-Meeting Pairs

βc = −0.53
Model 1 Model 2

Mean S.D. # signif. Mean S.D. # signif.
-0.25 0.073 98 -0.41 0.204 48

βc = −1
Model 3 Model 4

Mean S.D. # signif. Mean S.D. # signif.
-0.656 0.112 100 -0.989 0.241 99

βc = 0
Model 5 Model 6

Mean S.D. # signif. Mean S.D. # signif.
0.189 0.0887 71 0.0849 0.347 7

Notes: The table reports the means and standard-deviations of the coefficient estimates
βc from 100 conditional logit estimations obtained. The column # signif. reports the
number of times the coefficient is significant at the 5% level. In Models 1 to 4, the
generative coefficient for βnc is fixed to 0.028. In Models 5 and 6, it is kept to 0, as βc. In
Model 2, 4 and 6, the non meeting dyads a given year are excluded from the sample. All
explaining variables are linearly detrended.
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Appendix A: A Bayesian methodology to disam-

biguate inventors’ names.

In this Appendix, we present the basic features of a Bayesian methodology for

estimating the probability that two ex ante different identities correspond to the

same person, given a series of observables provided by the data.32 This methodology

has been presented much more extensively in a technical note authored by two of

us (Carayol and Cassi, 2009). In the second section of this appendix, we show how

this methodology applies to the disambiguation of patent inventors. We also briefly

present the results we obtain on an actualized data set of French inventors. Other

methodologies have been developed and applied on patent data in recent works,

such as Trajtenberg et al. (2006), Pezzoni et al. (2014) or Li et al. (2014).

Methodology

According to Raffo and Lhuillery (2009), any procedure of disambiguation should

be performed in three stages i) a parsing stage, finalized in the standardization and

cleaning of different data set fields; ii) a matching stage, where different algorithms

could be used to group homonyms; iii) a filtering stage, where different sets of

information (i.e. observable attributes already listed in patent data sets such as, for

instance, technological class) are used to give a similarity score in order to determine

whether homonyms refer to the same person. If the two first steps are essentially

technical, the third one requires non-trivial methodological issues to be solved. Here,

we focus on this third step, since the first two have already been treated. Basically,

it consists in establishing criteria for assigning similarity scores between homonyms.

Let us first consider a list I of ex ante agents i defined in the most disaggregated

way possible. Each ex ante agent i is characterized by a series of K variables33

labeled Xk, with k = 1, ..., K. The main goal of the methodology proposed here

is to provide an estimation of the probability that any ex ante agent i is the same

person as some other ex ante agent j. In short, we are in search of the partition

π = {C1, ..., Cm} of I, the m elements of which should correspond to the correct ex

post identities. We note {i, j} ⊂ Ch,∀h = 1, ...,m by writing “i = j”.

In order to assess the probability of that event, we must rely on observables of

32Though this methodology has been developed for inventors in patent data, it can be applied
to other similarly structured data.

33See Table A1 below to have the list of variables we use here.
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agents i and j, that is the observed realizations xki and xkj of random variablesXk
i and

Xk
j for all k = 1, ..., K and their respective frequencies of occurrence. These variables

are assumed to be independent across agents (∀k, k′ = 1, ..., K,∀i 6= j :Xk
i ⊥Xk

j ) and

∀k = 1, ..., K;∀i, j, Xk
i and Xk

j have the same support (by construction). Without

loss of generality, let us assume that we observe xki = xkj , for all k = 1, ..., k̄ − 1 and

xk
′
i 6= xk

′
j for all k′ = k̄,..., K. One may think of j as an identity which first appears

in the data, and then a new identity i appears and one wants to check whether i and

j identities correspond to the same person. We have some information on j and i

from which we can use. In short, we would like to estimate the following conditional

probability:

Pr
(
i = j

∣∣∣Xk
i = xkj ,∀k = 1, ..., k̄ − 1 and Xk′

i 6= xk
′

j ,∀k′ = k̄, ..., K
)
. (8)

In principle, it could be possible to apply Bayes’ rule to calculate (8). Applying

Bayes rule, the probability in (8) is equal to

Pr(i = j)× Pr
(
Xk
i = xkj ,∀k = 1, ..., k̄ − 1 and Xk′

i 6= xk
′
j , ∀k′ = k̄, ..., K |i = j

)
Pr
(
Xk
i = xkj ,∀k = 1, ..., k̄ − 1 and Xk′

i 6= xk
′
j , ∀k′ = k̄, ..., K

) .

(9)

However, it is not possible to compute Pr(i = j), and thus it is not possible to com-

pute the conditional probability using Bayes’ rule. One way to avoid this difficulty is

to focus on the similarity score ∆ (i, j), defined as follows. It is the probability that

i = j, knowing that indeed Xk
i = xkj ,∀k = 1, ..., k̄ − 1, divided by the probability

that i = j, knowing that Xk′
i 6= xk

′
j ,∀k′ = 1, ..., k̄ − 1, all other things remaining

the same. This differentiates out Pr(i = j). If we make the additional simplifying

assumption that the different variables are independent for any given agent across

agents (∀k, k′ = 1, ..., K,∀i :Xk
i ⊥Xk′

j ),34 it can be shown that the similarity score is

equal to:

∆ (i, j) = Πk=1,...k̄−1

(
1− εk

)
εk

× Ωk (i, j) , (10)

where εk ≡ Pr
(
Xk
i 6= xkj |i = j

)
is the probability that any individual changes kth,

observable between two invention occurrences, and where Ωk (i, j) ≡
(
1− Pr

(
Xk
i = xkj

))/
Pr
(
Xk
i = xkj

)
, that is the probability that the two ex ante agents i and j have a

34This assumption is made for simplifying the exposition only. If, for instance, the correlation
of the Xk

i with Xk′

i variables (for all i) had to be considered, we would just have to consider the

probability of jointly observing Xk
i = xkj and Xk′

i = xk
′

j . Then, it is more a matter of computation.
As it is shown below, in this disambiguation exercise, there is no need to introduce this since the
results are already very good.
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different kth observable divided by the reverse (irrespective of the fact that they are

or are not the same persons ex post). The latter term accounts for the frequency

of occurrence of the observables (xkj through Ωk (i, j) in Equation (10)). As will

be shown in the next section, these two probabilities εk and Ωk can be estimated

iteratively.

At this point, let us assume that we know the relevant threshold value ∆̄ for the

similarity score below which two ex ante agents should be considered as different

agents, and above which they should be considered as being the same person.35

Then, a transitivity issue arises. For instance, consider three ex ante agents z, w

and h and ∆ (h,w) < ∆̄ < ∆ (z, h) < ∆ (z, w). In this situation, ex ante agents

z and w will ex post be considered as referring to the same person. The same

applies to z and h. If these two statements hold true, h and w should also be the

same person ex post by transitivity, even though their similarity score is below the

threshold value. We thus need to modify the values of ∆ (h,w) so as to take into

account the transitivity of identities. To do so, an algorithm is proposed in order to

modify the values of ∆ (i, j) .

Algorithm

For all considered pairs of distinct ex ante agents i and j, we apply:

∆ (i, j)←↩ max

(
∆(i, j); max

k∈I\{i,j}
min(∆(i, h); ∆(j, h))

)

recursively until one can not find any triplet of distinct ex ante agents h, i, j ∈ I,

such that:

∆(i, j) < min (∆(i, h); ∆(j, h)) .

Data, estimation and results

Our empirical evidence is built upon all European Patent Applications for which

at least one inventor has declared an address in France, with a patent priority

date between January 1978 and December 2005. All non-French inventors of these

patents have been deleted. The data set counts 136, 285 patents and 266, 724

inventor×patent occurrences. At this stage, the total number of ex ante agents cor-

responds to all the inventor×patent occurrences that can be observed (for instance

35We show in the next section how we make use of a benchmark sample to compute this threshold.
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Pierre Dupont/Patent X; Pierre Dupont/ Patent Y; Olivier Dupuy/Patent Y and

so on). This represents our list of ex-ante inventors, I. The variables used for com-

puting similarity scores are presented in Table A1.

Table A1: The variables used to build the similarity scores.

Variables

X1 : name & first name

X2 : assignee

X3 : city

X4 : IPC (6 digits)

X5 : citation link

The name, first name and full address information are initially used to obtain

a starting partition of agents noted π0. Since full address information is used, we

certainly minimize incorrect aggregations.36 This partitioning generates an initial

evolution of the set of agents, reduced to 126,887 inventors. This evolution allows us

to compute initial conditional probabilities εk. However, the εk are underestimated

here since the identities are not yet sufficiently aggregated, and we thus encounter

the risk of abusive aggregations of agents. Therefore, we propose to process identities

recursively, which allows us to progressively determine both the identities and the εk.

The first similarity scores are computed for the 1,074,946 couples of agents, taken

from the previous step, with the same name and first name.37 A precautionary

conservative rule is arbitrarily adopted at this step: a high value is given to the

threshold ∆̄ which defines, after having applied the transitivity algorithm, a new

partition π1. Then, at each stage t ≥ 2, the partition obtained from the previous

period πt is considered, and new conditional probabilities εk, new similarity scores

36The full string, reporting the city and street address, is considered. The probability of two
different persons with the same name and first name having the same address (i.e. living in the
same building) can reasonably be assumed to be equal to zero. However, it may happen that the
company address is reported as the inventor’s personal address. Such cases were checked in the
data and treated separately.

37Without relying on the location data at this stage, because addresses were used in defining the
identities so that the probability of moving is null here by assumption.
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and a new threshold ∆̄ are computed. All pairs of agents whose similarity score

is above the threshold are aggregated within the elements of πt+1. That partition

defines a new population of agents taken as an input in the next iteration. This

process is repeated until it converges to an equilibrium partition, π∗, which will

constitute the final set of inventors.

Fixing the value of the threshold ∆̄ is obviously a key issue which deserves careful

attention. In order to determine this threshold, we rely on a benchmark data set.

A list of French faculty members was matched with the patent data set on the basis

of the name and first name of their inventors. Checks on the internet and phone

calls to the faculty members were made in order to verify that they are the inventors

of patents when their first name and name are mentioned therein. In all, reliable

information was collected on 445 French scholars.38 Their positive and negative

declarations have been transformed into assertions on the fact that an ex ante agent

i and another agent j who have the same name and first name refer to the same

person. In all, we have 4, 989 assertions, 4, 567 of which are positive and 422 are

negative. This sample of positive and negative couples of agent identities is used as

a reliable benchmark to select the appropriate value of the threshold in the interim

stages. For each threshold value chosen, the share of Type 1 (false positive) errors

ε1 and the share of Type 2 (false negative) errors ε2 in the benchmark are computed,

as well as any linear combinations of these two values: φ (θ) = θε1 + (1− θ) ε2, with

θ ∈ [0, 1] , which accounts for any given weighting schemes of the two types of errors.

A threshold that would minimize φ (θ) for some θ is noted ∆̄ (θ). On our data set,

it appears that fixing the threshold equal to ∆̄ = exp (12.49) minimizes φ (θ) for a

wide range of θ, between 0.09 and 0.64, and thus this is the chosen value for the

threshold.

Finally, the algorithm converges after four iterations towards a final population

of 105,086 French inventors. Restricting ourselves to the period 1978-2004, we have

103,309 inventors.39 The benchmark can also be used to assess the quality of the

terminal results. If the most appropriate weighting scheme is θ = .1,40 the weighted

38We are indebted to the KEINS project and BETA at the University of Strasbourg for kindly
allowing us to use these data.

39It should be worth noting that, in order to solve the issue of homonymy between inventors,
we make use of all the data available to us (i.e. 1978-2005). Nevertheless, since the data for the
last year (2005) is not complete, we exclude it from our analysis of the co-invention network in the
article.

40It is indeed our preferred value because it avoids abusive aggregation of agents. Note that this
preference does not constraint the disambiguation algorithm since the chosen threshold value for
the similarity score is minimizing errors for a large and reasonable set of values of θ.
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share of errors obtained is φ (.1) = 1.81%, which remains very low.
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Appendix B: Robustness check regressions

Table B1: Conditional logit on the occurrence of the first connection, five-year

window network, log detrending.

1 2 3 4
non-common 0.0322*** 0.0329*** 0.0277** 0.0314*

(4.28) (4.34) (2.36) (2.01)
common 0.199*** 0.204*** -0.527*** -0.254**

(10.37) (9.50) (-4.31) (-2.78)
geo distance -0.00132*** -0.00143*** -0.000623***

(-24.72) (-25.17) (-6.45)
Jaffe tech distance -0.340*** -0.260** -0.509***

(-5.20) (-2.79) (-3.32)
public research 22.63*** 21.83***

(27.39) (33.16)
common applicant 31.02*** 24.75***

(8.15) (135.85)

network controls yes yes yes yes
applicant controls no no no yes
observations 407,001 407,001 407,001 129,924

Notes: Dyadic clustered standard errors (t statistics in parentheses).

Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table B2: Conditional logit on the occurrence of the first connection, five-year

window network, quadratic detrending.

1 2 3 4
non-common 0.0320*** 0.0327*** 0.0275** 0.0312*

(4.24) (4.31) (2.34) (1.98)
common 0.198*** 0.203*** -0.531*** -0.256**

(10.31) (9.44) (-4.31) (-2.76)
geo distance -0.00132*** -0.00143*** -0.000620***

(-24.68) (-25.14) (-6.47)
Jaffe tech distance -0.338*** -0.256** -0.505***

(-5.15) (-2.75) (-3.29)
public research 23.13*** 21.83***

(22.95) (725.74)
common applicant 31.76*** 24.76***

(8.26) (138.67)

network controls yes yes yes yes
applicant controls no no no yes
observations 407,001 407,001 407,001 129,924

Notes: Dyadic clustered standard errors (t statistics in parentheses).

Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table B3: Conditional logit on the occurrence of the first connection, ten-year

window network, linear detrending.

1 2 3 4
non-common -0.00998 -0.00841 -0.00991 -0.00398

(-0.68) (-0.57) (-0.46) (-0.16)
common 0.115*** 0.121*** -0.686*** -0.418***

(5.33) (4.92) (-4.29) (-3.29)
geo distance -0.00122*** -0.00132*** -0.000536***

(-21.54) (-22.47) (-5.43)
Jaffe tech distance -0.00122*** -0.00132*** -0.000536***

(-5.11) (-2.90) (-3.03)
public research 23.22*** 22.15***

(438.72) (1470.51)
common applicant 35.82*** 25.50***

(7.02) (74.01)

network controls yes yes yes yes
applicant controls no no no yes
observations 347,707 347,707 347,707 118,839

Notes: Dyadic clustered standard errors (t statistics in parentheses).

Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

The observations before year 1988 were dropped to obtain a consistent ten-year window

for each year considered.
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Table B4: Conditional logit on the occurrence of the first connection, five-year

window network, linear detrending, with the two-way clustered standard errors

1 2 3 4
non-common 0.0321*** 0.0328*** 0.0276** 0.0313**

(5.04) (5.15) (2.73) (2.40)
common 0.199*** 0.204*** -0.529*** -0.255***

(10.67) (10.86) (-5.09) (-3.19)
geo distance -0.00132*** -0.00143*** -0.000621***

(-28.14) (-28.22) (-7.24)
Jaffe tech distance -0.339*** -0.258*** -0.507***

(-5.28) (-3.16) (-3.79)
public research 23.13*** 21.83***

(113.25) (54.27)
common applicant 31.71*** 24.75***

(9.72) (147.829)

network controls yes yes yes yes
applicant controls no no no yes
observations 407,001 407,001 407,001 129,924

Notes: Dyadic clustered standard errors (t statistics in parentheses).

Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Appendix C: Network generation for the Monte

Carlo experiments

Data are generated according to the theoretical model over 30 periods. One thousand

agents are initially introduced and fifty new agents are added each period. Agents

meet at random with a probability p = 0.05, and decide to form a link if ∆ij (t) > 0,

with ∆ij (t) defined in Equation 3. The network statistics are computed on the links

that have been created between periods t − 5 and t − 1, consistently with the real

data as network statistics are computed over the five previous years. The random

term εtij is drawn from a centered Logistic distribution of unitary scale. The pair

fixed-effect is defined as θij = γi + γj + ξij, where γi and γj are specific to the agents

and drawn from a Poisson law of mean λγ = 2, and where ξij is specific to the pair

and drawn from a Poisson law of mean λξ = 11. Each time varying cost variable ctij
is drawn at from a Poisson law of parameter λc = 23. λc is greater than λξ + 2λγ

so that on average the costs are higher than the benefits (i.e. E(∆t
ij) < 0), meaning

that it requires several meetings (on average) before getting connected.

At each period, the network evolves as follows:

1. Meeting step: Each non-connected pair of agents is selected with probability

p.

2. Decision step: For each selected pair of agents, we

• Compute the network statistics η̄ij (gt) and
4
η ij (gt),

• Generate the cost value ctij and the error εtij,

• Compute ∆ij(t),

• Create a link if ∆ij(t) > 0.

3. Entry step: 50 new agents enter the network.
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Appendix D: Monte Carlo simulations with vary-

ing network generation parameters

We replicate the Monte Carlo simulations reported in Section 5 for different values

of the generating parameters λξ and λc. More precisely, we let the mean cost and the

mean dyad fixed effect vary across a grid. We reduce and increase by 1 the values of

the two parameters, thus replicating the MC simulations nine times. The different

parameters lead to different expected probabilities to collaborate upon meeting.

In Table 5, we report these expected probabilities and number of meetings prior

collaboration, when two agents have no common nor non-common neighbors. In the

baseline, the expected probability to collaborate upon meeting equals 11%. This

means agents need to meet 9.5 times on average before a collaboration occurs. Both

reducing the mean cost and augmenting the mean dyad fixed-effect by one increases

collaboration probability upon meeting up to 18%, that is agents need to meet only

5.7 in average times before collaborating.

Table 5: Consequence of parameters variation: Expected probability to collaborate
and expected number of meetings before collaboration.

Expected Expected number of meetings
probability to collaborate before collaboration

λξ − 1 λξ λξ + 1 λξ − 1 λξ λξ + 1
λc − 1 0.1 0.13 0.18 λc − 1 10 7.4 5.7
λc 0.076 0.11 0.14 λc 13.2 9.5 7.1

λc + 1 0.059 0.082 0.11 λc + 1 17 12.2 8.9

Notes: The expected number of meetings before a collaboration takes place is computed as
1+(1− p) /p with p the expected probability to collaborate. To obtain these probabilities,
we generated 100,000 times the value of ∆ij = (γi + γj + ξij) − ctij + εtij and computed

the average of 1 {∆ij > 0}. With: γi ∼ Poisson (2), γj ∼ Poisson (2), ξij ∼ Poisson (x),

x ∈
{
λξ − 1, λξ, λξ + 1

}
, costij ∼ Poisson (t), t ∈ {λc − 1, λc, λc + 1}, λξ = 11, λc = 23

and εtij ∼ Logit (1).

The distribution of estimated βc from 100 conditional logit estimations for each

variant of network costs and benefits, and with the same generative values of the

network determinants than in Model 3-Table 4 are reported in Figure 3. Over-

all, patterns are very close to what is obtained in Section 5, exhibiting a similar

downward bias in magnitude for βc.
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Figure 3: Distribution of estimates obtained with different values of the parameters.
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Notes: The figure reports the distribution of the coefficient estimates βc from 100 con-
ditional logit estimations obtained, when γi ∼ Poisson (2), γj ∼ Poisson (2), ξij ∼
Poisson (x), x ∈

{
λξ − 1, λξ, λξ + 1

}
, costij ∼ Poisson (t), t ∈ {λc − 1, λc, λc + 1},

λξ = 11, λc = 23 and εtij ∼ Logit (1). The generative coefficient for βnc is fixed to
0.028 and the generative coefficient for βc is −1.
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Appendix E: Further Monte Carlo simulations

Errors in individuals identification

Dealing with individual data extracted from name registers, we had to play a “name

game” described in Appendix A. Though we know identification errors are very

limited, still the data suffer from some lack of precision (due to Type 1 errors) and

recall (due to Type 2 errors). To appreciate the impact of such errors, we inject both

types of errors in the simulated data before estimation. Type 1 errors are introduced

by selecting randomly a fraction of individual IDs and merging each with another

randomly drawn ID. Type 2 errors are introduced by splitting randomly chosen

agents in two and each of their collaboration is then randomly assigned to one of

the two “fake” agents. Though the network forms on the basis of real identities,

network statistics and regressions are computed on data where IDs errors have been

included. The results are reported in Table 6. All estimated common neighbors

coefficients are very close to the ones of Model 3–Table 4. The largest difference is

observed when a large fraction of Type 1 errors are introduced. Here the average of

the estimated coefficients of common neighbors is significantly reduced in magnitude

to a value of -0.40.

Table 6: Estimated coefficients obtained from 100 Monte Carlo simulations: Differ-
ent ways to generate the data.

Generative Estimated Coefficients
Value Type 1 errors Type 2 errors Alternative Continuous

1% 10% 1% 10% Meeting Updating
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

βc = −1
Mean -0.619 -0.397 -0.657 -0.656 -0.646 -0.564
S.D. 0.112 0.0896 0.113 0.112 0.082 0.0903

Notes: The table reports the means and standard-deviations of the coefficient estimates
from 100 conditional logit estimations. The data for each of these estimations consist in
100 different networks. The generative coefficient for βnc is fixed to 0.028. The coefficient
is significant at the 5% level in all regressions.
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Alternative meeting process

In the baseline model, agents meet at random. We investigate the consequence of

introducing an alternative meeting process in which ex ante connected agents in a

“friendship network” are more likely to meet. When connected in this friendship net-

work, agents are four times more likely to meet. The friendship network is assumed

to be a small world created from a L1 lattice with degree 6, and a 10% rewiring

probability. The results of the MC simulations are reported in Model 5–Table 6 and

show estimated coefficients similar to the ones of Model 3-Table 4.

Continuous time

In the baseline model, all individuals take decisions at discrete points of time. To

investigate the consequences of introducing continuous time, we assume that in-

stead of all agents making their decisions simultaneously in one given period, now

dyads make collaboration decisions sequentially as in a continuous time updating

of the network. MC results are reported in Model 6–Table 6 where we see that the

coefficient of common neighbors is slightly lower in magnitude than the coefficient

of Model 3-Table 4. This implies that in the presence of continuous updating, the

empirical methodology would still be able to detect the negative effect of common

neighbors. Further, the continuous updating acts simply as adding further “noise”

in the estimation.
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