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Abstract

With the discovery of the integer quantum Hall effect by von Klitzing and collaborators in 1980,
the mathematical field of topology entered the world of condensed matter physics. Almost three
decades later, this eventually led to the theoretical prediction and the experimental realization
of many intriguing topological materials and topology-based devices. In this Ph.D. thesis, we
will study the interplay between topology and another key topic in condensed matter physics,
namely the study of inter-particle interactions in many-body systems. This interplay is analyzed
from two different perspectives.

Firstly, we studied how the presence of electron-electron interactions affects single-electron
injection into a couple of counter-propagating one-dimensional edge channels. The latter appear
at the edges of topologically non-trivial systems in the quantum spin Hall regime and they can
also be engineered by exploiting the integer quantum Hall effect. Because of inter-channel
interactions, the injected electron splits up into a couple of counter-propagating fractional
excitations. Here, we carefully study and discuss their properties by means of an analytical
approach based on the Luttinger liquid theory and the bosonization method. Our results are
quite relevant in the context of the so-called electron quantum optics, a fast developing field
which deeply exploits the topological protection of one-dimensional edge states to study the
coherent propagation of electrons in solid-state devices. As an aside, we also showed that
similar analytical techniques can also be used to study the time-resolved dynamics of a Luttinger
liquid subject to a sudden change of the interaction strength, a protocol known as quantum
quench which is gaining more and more attention, especially within the cold-atoms community.

Secondly, we study how inter-particle interactions can enhance the topological properties
of strictly one-dimensional fermionic systems. More precisely, the starting point is the seminal
Kitaev chain, a free-fermionic lattice model which hosts exotic Majorana zero-energy modes at
its ends. The latter are extremely relevant in the context of topological quantum computation
because of their non-Abelian anyonic exchange statistics. Here we show that, by properly
adding electron-electron interactions to the Kitaev chain, it is possible to obtain lattice models
which feature zero-energy parafermionic modes, an even more intriguing generalization of
Majoranas. To this end, we develop at first an exact mapping between Z4 parafermions and

ordinary fermions on a lattice. We subsequently exploit this mapping to analytically obtain an



iv

exactly solvable fermionic model hosting zero-energy parafermions. We study their properties
and numerically investigate their signatures and robustness even when parameters are tuned
away from the exactly solvable point.
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Introduction

With the discovery of the integer quantum Hall (IQH) effect in 1980 [ 1], the mathematical field
of topology entered the world of condensed matter physics. It took a while to fully understand
the potential of this interplay but, eventually, in the last decade a vast number of new topological
materials have been theoretically predicted and experimentally realized. Beneficial effects on
fundamental and applied research are countless and the importance of the topic is well testified
by the 2016 Nobel prize in physics earned by David J. Thouless, F. Duncan M. Haldane, and
J. Michael Kosterlitz “for their theoretical discoveries of topological phase transitions and
topological phases of matter”.

One of the most intriguing features of topological materials is the existence of edge states.
Indeed, because of the so-called bulk-boundary correspondence, the non-trivial topology of the
bulk emerges also on the boundary of the system, where states with amazing properties can
be found. Remarkably enough, because of their topological origin, these properties are robust
with respect to perturbations and therefore accessible and exploitable in experiments.

The most known example of edge states is definitely provided by the IQH effect [2, 3],
where one-dimensional (1D) gapless channels are present along the edges of a two-dimensional
(2D) Hall bar pierced by a strong orthogonal magnetic field. While the bulk is insulating, the
edge states act as perfect conductors, allowing for ballistic and coherent transport: electron are
indeed topologically protected from backscattering. Their conduction properties are so good
that these channels can represent the electronic analogous of the waveguides used in quantum
optics for coherent photons transport.

This observation lies at the heart of a new and fast developing field known as electron-
quantum optics (EQO) [4], whose aim is to transpose photonic quantum optics setups in
electronic solid-state devices (see Fig. 1a). One of the key differences with respect to photons is
that electrons do interact with each other, thus allowing for a much richer phenomenology. This
is particularly true since effects of interactions in 1D are known to be dramatic and associated
with exotic phenomena such as the fractionalization of the charge [5]. The study of interaction

effects following a single-electron injection into ballistic 1D systems is precisely one of the
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Fig. 1 (a) Edge of a 2D Hall bar with two co-propagating 1D ballistic channels. Because of
their topological origin, they can be used as electronic waveguides in the context of EQO. In
this sketch, an electron injected on the most external channel (red spike to the right) fraction-
alizes into different excitations (small peaks to the left) because of inter-channel interactions.
Note that such a process cannot happen in conventional photonic quantum optics. Credits: B.
Plagais’s group at LPA-ENS (http://www.phys.ens.fr/~placais/).

(b) Experimental setup used in L. Kouwenhoven group at TU Delft to create and study Ma-
jorana zero modes. They appear at the two ends of a quantum wire (in gray) coupled with a
superconductor (orange) and are pictorially represented with two yellow stars. Image taken
from Ref. [6].

main tasks addressed in the present thesis. In particular I will study the properties of the two
fractional excitations which originate in a couple of counterpropagating channels.

Another seminal example of topological edge states is represented by the so-called Majorana
zero energy modes, which arise at the two ends of a 1D topological superconductor. Interestingly
enough, these excitations are non-Abelian anyons and they are likely to become the first particles
of their kind to be experimentally observed. Theoretically proposed in 2001 [7], Majorana
zero modes had in fact sparked a huge interest in the community which eventually leads to the
observation of several exciting signatures, albeit not fully compelling yet, of their existence
[8, 9] (see Fig. 1b). Their non-Abelian nature, together with the protection associated with their
topological origin, makes Majorana zero modes very promising candidates for the so-called
topological quantum computation (TQC), a way of performing quantum operations which
minimizes decoherence at the hardware level [10].

While the research on Majorana zero modes is still ongoing, the community is also looking
for even more exotic edge states of topological 1D systems [11]. In particular, the fact that
Majoranas primarily emerge in non-interacting systems raises the question to which degree the

presence of interaction allows to generate more complicated and intriguing zero modes. This
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point is precisely the other main task of the present thesis, where we will discuss the emergence
of parafermions, a useful generalization of Majoranas, in interacting systems. In particular I

will devise an exact and useful mapping between spinful fermions and parafermions on a lattice.

The thesis is organized as follows:

In Chapter 1 an overview of topology in condensed matter is presented. After a general
introduction, I will mainly focus on three topological systems of great interest: the IQH effect,
the quantum spin Hall (QSH) effect and the 1D Kitaev chain (which hosts Majorana zero

modes).

In Chapter 2, I will review the role of interactions in 1D systems. I will present the Lut-
tinger liquid (LL) theory and discuss fractionalization phenomena both from a theoretical and
an experimental point of view. A brief introduction to EQO is also provided, mainly focusing

on single-electron injection processes and their relation with electron-electron interactions.

Chapter 3 contains our original results concerning the time evolution of out-of-equilibrium
1D interacting systems. In particular, the majority of the chapter is devoted to the study of
single-electron injection into a couple of counterpropagating 1D ballistic channels. Within such
a setup, which is relevant for EQO in either IQH or QSH bars, a couple of counterpropagating
fractional excitations are created and we fully characterize their properties using LL theory
[12, 13]. As an aside, I will also briefly present our results concerning the relaxation dynamics
of a LL subject to an interaction quench, that is another protocol used to bring a system out-of-

equilibrium [ 14, 15].

Chapter 4 begins with a review of the anyonic properties of Majorana zero modes, high-
lighting their relevance for TQC. Parafermions, a useful generalization of Majoranas, are then
presented together with their richer and intriguing properties. In the second part of the chapter,
I will present our original findings (see Ref. [16]) regarding the existence of an exact mapping
between chains of parafermions and fermionic interacting 1D systems. This will allow us to
built fermionic Hamiltonians which host zero energy modes obeying Z4 parafermionic algebra.
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Chapter 1
Topology in condensed matter

This chapter consists of a general overview of the role played by topology in condensed
matter physics. To this end, after a general introduction, we will focus on some key ideas of
topology such as the distinction between topological phases and the concept of topological
invariant. Concrete examples of their application will be provided by reviewing some famous
and important topological phenomena which will play a central role in the present thesis. It is
the case of the integer quantum Hall effect (the first topological phenomenon which has been
observed in condensed matter), of the quantum spin Hall effect and of the one-dimensional

Kitaev chain.

1.1 What is topology?

Topology is a mathematical discipline concerned with all the properties of a system that cannot
change continuously and are therefore invariant under smooth deformations of the system. One
of the first topological results in history is the solution to the famous problem of the Bridges
of Konigsberg, provided by Leonhard Euler back in 1736 [21]. He demonstrated that it was
impossible to find a route through the city of Konigsberg (now Kaliningrad, in Russia) that
would cross each of its seven bridges exactly once. This result is “topological” since it depends
only on the connectivity properties of the system, i.e. which bridges connect to which islands
or mainlands, and it is completely insensitive to smooth modifications of the bridges’ length, of
their mutual distance, of the islands’ shape and so on.

Topology knew a rigorous development in the early part of the 20™ century and it soon
began to show up in many different branches, becoming one of the great unifying ideas of
mathematics. With the discovery of the integer quantum Hall effect by von Klitzing and
collaborators in 1980 [1], topology began to be explicitly applied also in condensed matter
physics. The pioneering works of D. J. Thouless, F. D. M. Haldane, and J. M. Kosterlitz [22-24]



2 Topology in condensed matter

(d) Mugs and donuts are topologcally equivalent with g = 1.

Fig. 1.1 Examples of orientable surfaces with different genus g. Fig. 1.1d is taken from
https://commons.wikimedia.org/wiki/File:Mug_and_Torus_morph.gif.

eventually led to the exciting and currently extremely active field of “topological quantum
matter”, earning the three scientists the Nobel Prize in Physics 2016. Nowadays, the interest in
the study of topologically non-trivial systems is both at the level of fundamental research and
in view of promising applications which exploits the intrinsic robustness of topology-related
features. In this respect, a noteworthy research area is the so-called “topological quantum
computation” (TQC) which aims at performing quantum computation minimizing decoherence
at the hardware level [10, 25, 26]. TQC will be discussed in the fourth chapter (section 4.1.4).

1.1.1 Topological classification of surfaces

Before diving into the study of topologically non-trivial condensed matter systems, it is worth
it to step back and consider the topological classifications of orientable surfaces in 3D, such as
spheres and tori. This will allow introducing the building concepts of topology in an intuitive
way before generalizing them to more abstract objects. In Fig. 1.1 three different orientable
surfaces are shown: a sphere, a torus, and a double torus. In order to classify them, we introduce
an integer quantity g called genus which counts the number of holes featured by each object.
It’s easy to argue that g is indeed a topological property: being an integer, it cannot change
continuously and it is, therefore, invariant with respect to continuous deformation of the objects.
The only way to abruptly modify it is to plug or pierce holes. Objects with the same genus

belong to the same topological class and share the same topological properties. This can be
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Fig. 1.2 Gaussian curvature at point P (in black). The tangent plane in P is shown in green.
The eigenvalues of the Hessian represent the inverse radius of the two circles (red and blue),
aligned with the two eigenvectors.

summarized with a traditional joke, stating that a topologist cannot distinguish between a mug
and a donut. They indeed both have g = 1 and can be continuously deformed into each other as
shown in Fig. 1.1d.

A topological invariant, like the genus of orientable surfaces, is clearly a global property of
the system and it is not directly related to local features, e.g. the particular shape and curvature
of the mug’s handle in Fig. 1.1d. Interestingly enough, however, integrals of certain local
quantities over the whole object do provide information about the topology. This is a crucial
point and we are going to discuss it in details.

At first, let us introduce the geometric local Gaussian curvature of a smooth surface. Given
a generic point P on the surface, it is possible to choose the coordinates such that the tangent
plane in P is described by the equation z = 0. The surface can be therefore locally specified by
a function z(x,y). The Gaussian curvature G(P) is defined as the determinant of the Hessian of

z(x,y)in P
2
G(P) :det( %, a"fﬂ‘P> . (1)
Koz, 977,

Its geometric interpretation is easy: the determinant of the Hessian (which is symmetric) is the
product of its eigenvalues which, in turn, correspond to the inverse radius of curvature of the
surface along the two orthogonal eigenvectors. See the sketch in Fig. 1.2.

According to the Gauss-Bonnet theorem, the integral of the local Gaussian curvature over

the whole surface turns out to be a topological invariant. In particular, it is directly related to
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the genus g of the surface!

/S G(P) ds = 21(2 — 2g). (1.2)

A simple example is provided by considering a sphere with radius r. Its Gaussian curvature is
position-independent and simply reads r~2: the integral over the whole surface gives 47 and

therefore a genus g = 0, as expected.

1.1.2 Topology in condensed matter systems

The very same concepts used to study the topology of orientable surfaces in 3D can be applied
in order to classify gapped” condensed matter systems. It indeed turned out that there are
different gapped systems whose Hamiltonian cannot be continuously modified one into the other
without closing the energy gap. A gap closure plays therefore exactly the same role of the act of
plugging or piercing a hole in a 3D surface: it can separate two phases with different topology,
i.e. characterized by different topological invariants. These discrete quantities are unaffected
by continuous deformation of the system’s Hamiltonian and can only change abruptly when
the system goes through a gap closure.

Note that these topological invariants can be usually identified with physical properties of
the system such as, for instance, a quantized electrical conductance or a particular ground-state
degeneracy. Their topological origin automatically ensures them an extraordinary robustness
with respect to perturbations. In this regard, a prototypical example is represented by the
conductance plateaux of the quantum Hall effect: here, the measured conductance is quantized
to an extraordinary accuracy (one part in 10°) regardless the particular characteristics of the
sample considered. The robustness of topological phenomena and the fact that they don’t
require fine-tuning of parameters represent key advantages when it comes to experiments and
practical applications.

In the following, we are going to describe the topological properties of the integer quantum
Hall (IQH) effect, the first discovered and most known topological phase of matter. We then
briefly present the whole topological classification of non-interacting systems based on non-
spatial symmetries, focusing in particular on the quantum spin Hall (QSH) effect and its helical
edge states. Finally, a prototypical example of a topological system in 1D, the so-called Kitaev

chain, is presented.

I'This simple expression holds for orientable compact surfaces without boundaries.
2 A gapped system is a system which features a finite energy gap between the ground state and the first excited
states even in the thermodynamic limit.
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(a) Hall bar

(b) Quantum Hall effect

Fig. 1.3 (a) The typical 4-terminal scheme used to measure the Hall effect. Image taken
from: https://upload.wikimedia.org/wikipedia/en/1/19/Hall_Effect_Measurement_Setup_for_
Electrons.png. (b) Discovery of the quantum Hall effect: measure of the resistivity tensor p
as a function of the magnetic field B (py, is the one featuring the plateau while p,, is the one
featuring the spikes). Image taken from [31].

It is important to note that also gapless systems can feature a non-trivial topology. Note-
worthy examples are Weyl and Dirac semimetals [27-30]. These systems, however, won’t be
discussed in the present thesis.

1.2 Quantum Hall effect

The classical Hall effect was discovered in 1879 by Edwin Hall. He indeed observed that, when

a current / is made to flow along the x-direction in a metallic sheet pierced by an orthogonal

magnetic field B || 2, a Hall voltage Vi develops in the y-direction (see Fig.1.3a). More precisely,

the off-diagonal terms of the resistivity tensor
E=pJ (1.3)

happen to be proportional to the magnetic field

B
Pxy = % (1.4)

Here n is the charge carrier density, g their charge, E the electric field and 7 the current density.
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This effect, experimentally very useful in determining n and the sign of g, is a direct
consequence of the classical Lorentz force acting on the charge carries. At low temperature
and high magnetic fields, however, quantum effects kick in and lead to a more intriguing
phenomenology. The quantum regime was experimentally explored for the first time in 1980
by von Klitzing, using samples prepared by Pepper and Dorda [1]. The observed resistivity
deviated strongly from the classical expectation. In particular, as shown in Fig. 1.3b, the
Hall resistivity p,y is no more linear in the magnetic field and remarkably features quantized
plateaux

h 1
Pxy = v e 7. (1.5)

e2v
where the longitudinal resistivity vanishes pyx, = 0. The corresponding conductance tensor
o = p~! has a vanishing longitudinal conductance o,, = 0 and a quantized off-diagonal (or
Hall) conductance )
o—xy:v% Ve (1.6)
Interestingly enough, the heights of these plateaux depend only on universal quantities and the
quantization is extremely accurate (up to one part in 10”) regardless of the specific properties
of the sample. As pointed out in the previous Section, such a robustness strongly suggests that
the system is a non-trivial topological phase.

The IQH effect can be analyzed by different means, each one aiming at emphasizing
different aspects, as testified by the vast existing literature (see for example [32-34, 31, 35-37]).
The traditional microscopic approach, also known as Biittiker theory [33], directly focuses
on the transport properties featured by Landau levels in a confined and disordered system. It
successfully explains the experimental data and the existence of robust 1D channels at the
edges of the Hall sample. This approach, however, does not fulfill the main goal of the present
discussion: highlight the topological origin of the Hall effect. To this end, it is convenient to
follow another approach which somehow parallels the one used for the topological classification

of orientable surfaces in Sec. 1.1.1. Three main steps are in order:
* introduce the key concept of local Berry curvature (analog to the Gaussian curvature);

* relate it to a global topological invariant known as Chern number (thus paralleling the
Gauss-Bonnet theorem);

* link the topological invariant to a physical quantity, the Hall conductivity (analogous to

the genus, i.e. the “physical” number of holes).

Once the topological nature of the Hall effect is fully established, we will focus on a finite
Hall bar in order to discuss the concept of bulk-boundary correspondence and the existence of

gapless edge channels.
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1.2.1 Berry phase

The Berry phase, introduced in 1984 by Sir M. V. Berry [38], is one the most important concept
in topological band theory. The key idea is that adiabatic transport can modify a quantum
state by a phase other than just the dynamical phase. To be more precise, let us consider an
Hamiltonian H (1) depending on several parameters A= (A1,A2,...,4j,...) which can be
slowly varied in time along a path C in parameter space. The Hamiltonian can be diagonalized

at each point in the parameter space
H(A)In(A)) = Ex(A)|n(1)) (1.7)

providing us with a parameter-dependent set of eigenstates |n(7t)> Note that the Schroedinger
equation determines these eigenstates up to a phase (or a unitary matrix in presence of degen-
eracy): there is a gauge freedom, local in the parameter space. It is possible to exploit this
freedom in order to pick a gauge such that the phase is locally smooth and single-valued.

Let us now focus on a (non-degenerate) eigenstate |n0(1 (0))) of the Hamiltonian and study
its time evolution |y(¢)) as the parameters are varied in time along C. Provided that level

crossing are avoided, the adiabatic theorem ensures that at each time one has

[y (1)) = e®Dlng(A(1))). (1.8)

The phase 6(¢) can be easily computed exploiting the time-dependent Schrédinger equation for
|w(¢)) and it consists of two contributes [39]. The first one is the standard dynamical phase
while the second one is more subtle and arise from the fact that states at different 4 are not
identical’®. Considering the whole path C, this second contribution (with opposite sign) is called

Berry phase and reads

Yo C = /C Ay (A) - dA (1.9)
where
Any () = i (no(A)| V2 |no(4)) (1.10)
3 Applying the Schrédinger equation to the eigenstate (1.8), one has indeed
= - de - d, -
Eny R 0)Io0))) = 10 g R (0)) + it L o (1))

Taking the scalar product with <no(1 (¢))], one find the solution for 6(¢)
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is known as Berry connection (and it is always real). The latter is obviously a gauge dependent
quantity: under a gauge transformation |n0(1)> — eig(l)|no(1)> with § (1) a smooth and

single-valued function, the Berry connection transforms in the usual way
Ang(A) = Auy(A) = V2 (R). (111)

As for the Berry phase ¥,, ¢, it changes by ¢ (1 (T))—¢ (1 (0)) where T is the long time after
which the path C has been completed.

Let us now focus on a closed path C. The question is: can the Berry phase be completely
gauged away or not? In a closed loop one obviously has |n0(1 0))) = |no(}:(T))). Such a
property is maintained by every gauge transformation, meaning that

O ng(3(0))) = M ng(A(T))) = CA(T)) - SA(0) =22m meZ.
(1.12)
This result tells us that the Berry phase computed on a closed path C cannot be completely
gauged away (it can only change by multiples of 277) and therefore it must be physically relevant
[39].
Interestingly, in analogy with electromagnetism, it is possible to define also a local gauge-
invariant quantity by computing

Ewmzamﬁth—?ximbxﬁ ﬁ s
= i{9h,n0(A) 0 (R) — {4, m0(A)] 9,0 (1)

which is known as the Berry curvature. If, for the sake of simplicity, we consider a three-
dimensional parameter space, the contraction of the Berry curvature with the Levi-Civita
symbol

e F = (V x An0> (1.14)

i
can be readily interpreted as a magnetic field in the parameter space. Provided that the Berry
connection is smooth, it is possible to use the Stokes theorem in order to express the Berry

phase in terms of the Berry curvature

Yno.c = —Im / ds; & Fiy (1.15)

where the integral runs over a surface whose boundary is C and whose oriented surface element
is dS.
The Berry curvature plays the same role as the Gaussian curvature in Eq. (1.1). Although

defined on different spaces, they are both local and physical quantities. The next task will be to
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construct a global topological invariant out of the Berry curvature and to clarify its physical
meaning, in complete analogy with what we have seen talking about the genus of orientable

surfaces and the Gauss-Bonnet theorem.

1.2.2 Chern number and TKNN invariant

In this subsection we will focus on a particular parameter space, namely the first Brillouin
zone of a 2D system. Instead of a generic 1 we will therefore consider as parameters the two
components of the crystal momentum k= (ky,ky). Note that, from a geometrical point of view,
the first Brillouin zone has no boundaries and can be described as a 2D torus 7 2.

The goal is to compute the integral of the Berry curvature over the whole space. If it is
possible to find a gauge such that the Berry connection is smooth everywhere on the torus, a

straightforward application of the Stokes theorem gives
T (AT — o A (DN AT
/7,Z &jk iy (k) (dk)i = /TZVxAnO(k) dk =0 (1.16)

since 72 has no boundaries. However, it is not always possible to find a such a gauge and the
Stokes theorem cannot therefore be applied. As a result, one can show that the integral of the

Berry curvature can be non-zero and acquire integer values [39]
/72 &ijx Fiy (k) (dk);i =27 Cyy  Cpy € L. (1.17)

Here the integer number C,,, is known as the first Chern number of the band n. A non-vanishing
Chern number can be seen as a global property of the band, resulting from an obstruction to the
application of Stokes theorem over the whole torus. In Appendix A.1 we give an intuition why
Cy, has to be an integer, referring to literature for more details [40].

Eq. (1.17) can be seen as the analogous of the Gauss-Bonnet theorem and the Chern number
represents the topological invariant we were looking for. The next task is to relate it with
some physical quantity. Remarkably enough, it turned ou to be directly linked to the Hall
conductance of a 2D gapped system. In particular, the sum of the Chern numbers associated
with each occupied band « is

;Cazaxye%. (1.18)
This crucial result has been demonstrated a seminal paper by Thouless, Kohmoto, Nightingale
and den Nijs [41] in 1982. They basically computed the Hall conductance in terms of current-
current correlators, in the framework of linear response theory. Current operators are in turn

expressed in terms of group velocity, i.e. derivative of the Hamiltonian with respect to k, and
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o/,

Fig. 1.4 Hofstadter’s butterfly. The horizontal axis gives the chemical potential u (zero
electron density at the left side). The vertical axis indicates magnetic flux per unit cell
® of the crystal lattice (from zero at the bottom to one flux quantum @, at the top). At
higher fluxes, the phase diagram repeats periodically. Warm (cool) colors indicate negative
(positive) Chern numbers. White regions indicate a vanishing Chern number. Image taken from
https://commons.wikimedia.org/wiki/File:Hofstadter%27s_butterfly.png

ky, eventually leading to the remarkable identification (1.18). More details can be found in
Appendix A.2.

Several comments are in order. Eq. (1.18) relates a physical and measurable quantity,
the Hall conductance, to a topological invariant, the Chern number. This nicely explains the
robustness of the former with respect to perturbations which continuously modify the band
structure of the system4. Note, however, that so far we haven’t actually computed the Chern
number for a given band: this task is not trivial and it won’t be addressed in this thesis (the
interested reader is referred to the existing literature, e.g. Ref. [41, 39, 31]). That said, it is
worth it to mention one famous result which holds for free fermions on 2D square lattice in
presence of an external magnetic field. Here, the interplay between the lattice periodicity and
the magnetic length leads to a very complicated band structure, with fractal properties [42].
For given chemical potential and magnetic flux per unit cell, it is possible to compute the
Hall conductance of the system by summing the Chern numbers of the occupied bands. The
result, a structure known as Hofstadter’s butterfly, is shown in Fig. 1.4 and it has been recently
confirmed experimentally [43].

As a last remark, note that an external magnetic field is not necessary in order to have bands
with non-vanishing Chern number: as we will discuss in Subsection 1.3, what really matters is

the breaking of time-reversal symmetry. Models with non-zero Hall conductance in absence

4 i.e. perturbations which does not make the system gapless.
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of magnetic field are know as Chern insulators, see for example Ref. [44] and the seminal
Haldane model in Ref. [24].

1.2.3 [Edge states

What we have shown so far is that a 2D translational invariant insulators can be characterized
in terms of a Chern number, a topological invariant which is remarkably related to an important
bulk response function: the Hall conductivity. Moreover, we reported that there are many
gapped systems, such as lattice electrons in a magnetic field, which feature bands with non-
vanishing Chern numbers. This implies a nonzero Hall conductivity and therefore non-trivial
transport properties: how can this be possible in a gapped system? Whenever the system’s
geometry is finite and conceived in order to allow experimental measurements (e.g. when
contacts are present), the answer lies in the presence of edge states [39]: the system is a bulk
insulator but features gapless edges channels carrying electrical current. Their existence is an
inescapable consequence of many factors and, as it turns out, it represents a peculiar aspect of
many other topological insulators.

In order to develop some intuition, it is worth it to present the following simple argument>.
Let us consider two 2D insulators, with different Hall conductances, placed close together so
that they share a 1D boundary. The Hall conductance characterizes the topological phase of each
system and it cannot change unless the bulk gap collapses and reopens again. Therefore, the
boundary region must have a gap-closing-and-reopening point somewhere, i.e. it must feature
1D edge modes which cross the Fermi level. This kind of arguments applies to boundaries
between any two topologically distinct insulators, provided that the boundary respect the
symmetry protecting the bulk-insulting phase, and it is a manifestation of the so-called bulk-
edge correspondence [39].

The original argument which clarified the role of edge states in IQH effect is due to the
seminal work by R. Laughlin [2], later refined by Halperin [3]. The key idea, which allowed to
explain even better the meaning of a finite Hall conductance in an insulating material, is that
there is a non-standard way of carrying current. In the usual tight-binding picture, current flows
as a result of electrons hopping between neighbor orbitals. Interestingly, it is also possible
to have a current if the “orbitals” themselves move, without any electron hopping: such a
phenomenon is known as spectral-flow and it is quite relevant in the quantum Hall effect as we
are going to show.

Let us consider a Hall bar, pierced by an orthogonal magnetic field, wrapped into a

cylindrical shape as shown in Fig. 1.5a: periodic boundary conditions are ensured in the y-

3 Note that this argument actually holds only for very smooth edges, so that band structure can be locally well
defined. The Laughlin argument discussed below is more general and robust.
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Fig. 1.5 (a) Laughlin pumping argument: periodic boundary conditions are imposed along
the y direction of an Hall bar. The resulting cylinder is threaded by a magnetic flux ®. (b)
Sketch of the spectral flow in Landau level. Blue (white) spots represent occupied (unoccupied)
states. The black dashed lines are the Fermi energy. After the insertion of one flux quantum, an
electron has effectively moved from the left to the right edge (green arrow).

direction while edges are placed at x = 0 and x = L. An additional magnetic flux ® is inserted

through the cylinder, parallel to the x-axis. If such a flux changes in time, several things happen.

1. By Faraday’s law, an electric field in the y direction is induced on the cylinder Ey, =
—Ly’ 19,®. Because of the Hall conductance (1.18), this determines a current density in
the x direction J, = Oy E).

2. If the flux changes by a flux quantum ®y = h/e, it can be gauged away meaning that the
spectrum of the system’s Hamiltonian is unchanged.

3. A change in the flux §® shifts the k, momentum of the electrons, which is a good

quantum number in view of the translational invariance, by k, — ky, + 271:Ly_1 0P/ Py.

Considering an adiabatic insertion of a flux quanta, an integer total charge

0= /dt LyJ(t) = =P Oy = —eV vez (1.19)

is transferred between the two edges of the cylinder. Since after the whole process the spectrum
is the same, only the electron occupation numbers could have changed. Such a change, however,
is not associated with electrons hopping across the insulating bulk but with the aforementioned
spectral flow of the Landau levels.

If one consider the Landau gauge to describe the magnetic field orthogonal to the cylinder

surface (so that translational symmetry in the y direction is preserved), the wavefunctions of
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Fig. 1.6 Chiral edge states in IQH effect. At filling factor v = 1 only one spin polarization is
present. At higher filling factors, e.g. v = 2, channels with both spin projections are present.

the electrons in the n'™ Landau level read [31]

 (rkyld)?

Vg (6,9) ~e®e M 9, (x+kyl3) (1.20)

where /g = \/W is the magnetic length and $),, the Hermite polynomials. Since their
spatial localization in the x-direction depends on k,, it is clear that a change in the flux &
corresponds to a translation of these wave functions along the x-direction! In the end, every
adiabatic insertion of a flux quantum effectively moves one electron per occupied Landau level
(i.e. v electron in total) from one edge to the other (see Fig. 1.5b). The edge states involved in
this kind of adiabatic transport must be gapless and, as elucidated by Halperin, they carry a
chiral current along the edge [3].

Importantly, provided that the system is disordered, the Laughlin and Halperin arguments
hold also when a Landau level is not fully occupied, a situation which has not been considered
so far. One can indeed show that disorder broadens the Landau levels and localizes the states in
the tails of each Landaus level. Localized states are basically unaffected by the spectral flow:
the local change of vector potential due to the flux insertion act just as a gauge transformation
and does not result in any displacement of the localized wave function. The extended states
running along the edges, however, are subject to the spectral flow and behave as described
before. This point is crucial for accounting for real quantum Hall experiment, where in general
the chemical potential lies within one Landau level.

Before discussing other possible topological phases, it is worth stressing the importance
of the chiral edge states in QHE. Because of their chirality, low energy excitations can only
propagate in one direction and backscattering is not allowed (see Fig. 1.6). Transport along the
edges of a Hall bar is therefore ballistic over very long distances (of the order of tens of um
[45]), a striking property which lies at the heart of many application of quantum Hall physics.
Among them, it is worth citing the so-called electron quantum optics (EQO), an interesting and

fast developing field which will be discussed in Chapters 2 and 3.
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1.3 Other topological phases

The experimental discovery and the theoretical explanation of the quantum Hall effect eventually
led to the quest for other systems featuring non-trivial topological property. In the beginning,
however, it was long thought that topological phases are rare in nature and occur only under
extreme conditions. Things changed drastically with the discovery of spin-orbit-induced
topological insulators [40, 46]: it was suddenly clear that topological phases are way more
common than expected and many other non-trivial materials have been discovered. In particular,
it started to be recognized the great importance of the interplay between symmetries and
topology.

The former are long known to play a central role in the classification of different phases of
matter within the celebrated Ginzburg-Landau theory of spontaneously symmetry breaking.
When intertwined with topology, however, symmetries perform in a rather different way. For
instance, it is not possible to distinguish between topological and non-topological insulators
by simply looking at their symmetries. Moreover, topological non-trivial phases cannot be
detected by a local order parameter [28].

Symmetries kick in when it comes to defining which continuous modifications of Hamilto-
nians are actually allowed. Let us consider a couple of Hamiltonians obeying some kind of
symmetry. It may happen that the two can be continuously deformed into each other only if
the symmetry is broken at some point along the deformation. In this case, one can say that
the two Hamiltonians belong to two distinct symmetry-protected topological (SPT) classes.
Such a distinction clearly vanishes if the symmetry is broken but what is important is that the
two classes feature different (and useful) topological properties whose existence relies on the
presence of the symmetry.

It is useful to briefly review non-spatial symmetries, time-reversal (TRS), particle-hole
(PHS) and chiral symmetry, since they allow developing the celebrated ten-fold topological
classification of free-fermion systems [47—-49]. Time reversal symmetry 7 is an antiunitary
operator

T=UrK (1.21)

where U7 is a unitary operator and K is the complex-conjugation operator. Applying time-
reversal twice one has
T? = UrKUTK = UrUs =P (1.22)

where P has to be a diagonal matrix of phases since 72 should get us back to the original state
up to phases. The transpose of a diagonal matrix is the matrix itself so one has

UrUy=P = Ur=PU} = Ul=UsP (1.23)
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and hence
Ur = PUrP (1.24)

which can happen only if P = 4+-1. We have thus proved that the time-reversal operator can
square to (U7)? = %1 [39]. A system is time-reversal symmetric if 7~ preserves the canonical
anticommutator and if the Hamiltonian H obey TH7 ~! = H. Particle-hole symmetry C
is represented by an antiunitary operator which mixes fermionic creation and annihilation
operators C = UgKC. A particle-hole invariant Hamiltonian in the Bogoliubov-de Gennes form
anticommutes with C:

CHC'=-H. (1.25)

As well as TRS, particle-hole symmetry squares to (Uc)2 = +1. The combination of 7 and C

leads to a third unitary symmetry called chiral symmetry
S=T7C. (1.26)
The Hamiltonian of a system which features chiral symmetry anticommutes with S = Ugs
SHS '=-H (1.27)

and chiral symmetry squares to (Us)? = 1 [28].

These three symmetries define ten different symmetry classes, depending on whether they
square to 1 (+), to —1 (—) or they are not present (0). Such a classification (see Table 1.1) is
named after Altland and Zirnbauer who originally discussed it, although in a different context
[50]. Within each symmetry class (and for a specified spatial dimension) one can study how
many different SPT phases are possible, identifying a topological invariant for each one of them.
This is summarized in the last column of Table 1.1 for systems in 2 spatial dimensions. Here, a
dot (-) means that the only possible phase is topologically trivial, i.e. a phase containing the
atomic insulator limit ( a collection of independent atoms). If more (SPT) phases are possible,
the allowed values of the corresponding topological invariant are shown.

The first line of Table 1.1, i.e. the symmetry class A, describes systems with neither TRS,
PHS or chiral symmetry. Quantum Hall systems and Chern insulators fall in this class: the
topological invariant Z is indeed the Chern number discussed in the previous section. It was
long believed that only systems without TRS could exhibit interesting physics: after all, a

non-zero Hall conductance clearly requires TRS to be broken®! Interestingly enough, Table 1.1

6 This statement can be proved also by brute force formalism, i.e. by looking at the constraints which TRS
adds to the wave functions in the Brillouin zone. One can thus show that, because of TRS, the integral of the Berry
curvature over the Brillouin zone is always vanishing [39].
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Symmetry class 7 C S Topological invariant
A 0 0 O Z
Alll 0 0 +
Al + 0 0
BDI + + +
D 0 + 0 Z
DIII - + + Zy
All - 0 O 2Ly
CII - - + :
C 0 — 0 27
CI + - +

Table 1.1 Ten-fold classification of topological gapped free-fermion systems in 2 dimensions.
The last column shows the absence () or the presence of non-trivial topological phases by
specifying the kind of topological invariant they are characterized by.

actually shows that adding TRS does not prevent the possibility to have a non-trivial phase in
2D, provided that TRS squares to —1. Although a Z topological invariant like the Chern number
is not possible, the symmetry class All in 2 dimensions do feature some kind of two-valued
Z: topological invariant! Systems in this class can indeed exhibit the so-called quantum spin
Hall (QSH) effect: this extremely interesting class of materials, as well as their helical edge
channels, will be discussed in the next subsection.

Before concluding, I want to stress that the topological classification which I briefly
discussed here is far from being completely exhaustive. First of all, it can be extend to free-
fermion gapped systems with different dimensionality, as well as to the study of topological
defects [51]. Moreover, other symmetries such as the spatial ones can be taken into account,
leading to an even richer classification. Finally, one must bear in mind that the presence of

interaction can dramatically modify the whole picture [28].

1.3.1 Quantum spin Hall effect

In 2005, C. Kane and G. Mele considered the effect of a strong spin-orbit coupling (SOC)
interaction, which does not break TRS, on the electronic structure of graphene. The spin of
electrons plays a central role in determining the band structure of such a two-dimensional
system and they actually discovered that the constraints imposed by TRS could lead to a new
topological phase of matter: the quantum spin Hall effect [52, 53]. It was soon after realized by
A. B. Bernevig, T. L. Hughes and SC. Zhang (BHZ) that such a new topological phase could be
realized in realistic systems, namely CdTe/HgTe quantum wells [40]. In 2007, the group of L.
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Fig. 1.7 (a) CdTe/HgTe quantum well. (b) Band structures of HgTe (inverted) and CdTe
(standard).

Molenkamp reported the first experimental evidence of the existence of edge states associated
with the Z, topological invariant [54]. Before focusing on the properties of these edge states, I

will briefly review the BHZ model aiming to highlight its topological aspects.

The BHZ model

Let us focus on a CdTe/HgTe quantum well, as sketched in Fig. 1.7a. CdTe is a semiconductor
with a standard band progression: the s-type band I'¢ lies above the p-type bands I's. By
contrast, HgTe features an inverted band structure due to a strong SOC, with I'¢ lying below Is.
In both semiconductors, the gap is smaller near the I" point, see Fig. 1.7. Symmetry arguments,

as well as direct calculations, allow to devise a simple four-band tight-binding model on a

_(nE) 0
HBHZ—< 0 h*(—%)) (1.28)

square lattice

which effectively describes the two-dimensional states in the quantum well [40]. In particular,
here we used the basis {|E,+),|H,+), |E1,—),|H1,—)}} where the + sign refers to the spin
of the electron. Moreover, the H| bands come from the I'g states while the £; bands come from
a combination of I'q and I'g states. Each 2 x 2 block can be expressed as

—

h(k)=e(®)+EK)- & (1.29)



18 Topology in condensed matter

. i
‘/“)"/‘:’yf}‘{(‘(*‘\(‘{\\‘\'{\E\\\X Wz i:.,‘*:\gx f ;/@1

(a) Vanishing skyrmion number. (b) Skyrmion number v = 1.

Fig. 1.8 Vector plot of E (75) in the first Brillouin zone (yellow square). I" point is in the middle.
(a) Trivial regime: m/(2B) = —4 < 0. (b) Topological regime 0 < m/(2B) = 1.8 < 2.

where 6 = {0y, 0y, 0;} are the Pauli matrices,

E (k) = [Asin(aky), Asin(aky), m — 2B (2 — cos(aky) — cos(aky))] (1.30)
g(k) = C— 2D (2 — cos(aky) — cos(aky)), (1.31)

and A, B,C, D, m are parameters depending on the particular properties of the quantum well.
Here a is the lattice constant. Note that i*(—K) is the time-reversal symmetric of (k).
The Hamiltonian (1.28) features gap closures at high symmetry points:

« at the I point (k = (0,0)) when m/(2B) = 0;
« at the X and Y points (k = (/a,0) or k = (0,7 /a) respectively) when m/(2B) = 2;
« at the M point (k = (/a,m/a)) when m/(2B) = 4.

Let us study how the vector E (%) behaves within the first Brillouin zone, depending on the
parameter m/(2B). In the regime m/(2B) < 0, the z-component of vector E has always the
same sign as shown in Fig. 1.8a. By contrast, in the regime 0 < m/(2B) < 2 the vector E
behaves in a peculiar way (see Fig. 1.8b): it points to the north (or south) pole a the I' point,
points in the opposite direction at the zone boundaries and winds around the equatorial plane in
the middle region. Such a peculiar structure is known as skyrmion and it is characterized by a

non-vanishing topological number (skyrmion number) [40]
1 — — —
V= _W/ dhydky E - (axg X ayé) : (1.32)

which basically counts the number of time & winds around the unit sphere over the Brillouin

zone torus. This skyrmion number therefore represents a topological invariant which allows
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Fig. 1.9 Helical edge states in QSH effect. Different colors refer to different spin orientations.

us to distinguish between the two regimes m/(2B) <0 (v=0)and 0 <m/(2B) <2 (v =1).
Other regimes are not experimentally relevant. Note that the sign of m/(2B) is related to sign
of the energy difference between bands H; and E; at the I" point which, in turn, depends on the
band structure of the quantum well:

« if the HgTe region exceed a critical thickness d > d. ~ 6.3nm (see Fig. 1.7a) the band
structure is inverted (like in bulk HgTe) and m/(2B) > 0;

* otherwise the band structure is standard, like in bulk CdTe, and m/(2B) < 0 [40].

So far we have focused only on one 2 x 2 block, say the one associated with spin-up
electrons (bands |Ej,+) and |Hy,+)). Interestingly, in the context of quantum anomalous Hall
effect, it is known that within such a two-band model the skyrmion number is actually related
to the Chern number and thus to the Hall conductance [44, 40]

2
ol ="v. (1.33)

h
As for the spin-down block, which is related to the previous one by TRS, the Hall conductance
is the opposite S I({+). In the end, the total Hall conductance always vanished (as

expected in presence of TRS) but the spin-Hall conductance, defined as Aoy = GI({+) — (_),

can indeed be finite.

Pulling all the threads together, the BHZ model proves that a CdTe/HgTe quantum well in
the inverted regime (i.e. when the HgTe region is thicker than d. >~ 6.3 nm) features a non-trivial
topological invariant: a non-vanishing spin-Hall conductance Aoy = 2¢*/h. This effect is
called QSH effect and systems which feature it are usually called two-dimensional topological
insulators (2DTIs). In analogy with quantum Hall physics, a non-zero spin-Hall conductance
implies the existence of peculiar edge states at the boundary of the 2D bulk insulator. These edge
states are called helical and consist of two counterpropagating 1D channels with opposite spin,
as shown in Fig. 1.9. This peculiar relation between spin projection and electron momentum is
known as spin-momentum locking [55].
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Fig. 1.10 Sketch of the linear dispersion relation, within the bulk gap, of helical modes on one
edge. A single helical state (left) cannot be gapped out without violating Kramer’s theorem. By
contrast, a pair of Helical edge states (center) can be gapped out without violating Kramer’s
theorem (right).

The helical edges of QSH effect

An explicit solution for the helical edge states in QSH effect can be obtained by solving the BHZ
model with an open boundary [55]. In particular, one can show their exponential localization at
the edges of the sample as well as their linear dispersion around the Dirac point (see Fig. 1.10).

The counterpropagating nature of the helical states is in sharp contrast with the chirality of
the edge states in IQH effect (see Fig. 1.6). Therefore, one may wonder if this poses a threat
to the protection from backscattering. It turns out that single-particle elastic backscattering
cannot occur as long as TRS is not broken. Kramer’s theorem indeed states that, if |y) is an
eigenstate of a system featuring a TRS which squares to 72 = —1, then T|y) # €¢|y) is a
different eigenstate with the same energy’. This guarantees the protection of the degeneracy at
the Dirac point (k = 0), which cannot be lifted by any time-reversal-symmetric perturbation®.
Note that this topological protection from backscattering holds only for a single helical state on
each edge: every time one has an even number of helical states on the same edge, they can be
fully gapped out without violating Kramer’s theorem as sketched in Fig. 1.10.

Interestingly, in discussing the protection of the edge states, we encountered two of the
main features of the symmetry class All (see Table 1.1): TRS must square to —1 (otherwise
Kramer’s theorem does not hold) and we can only have either zero or one protected helical state
on a single edge, a fact which reflects the Z, nature of the topological invariant characterizing

the QSH effect. This observation, far from being a coincidence, can be seen as a manifestation

7 To prove the theorem one has to show that 7|y) # ei¢|lll> via proof by contradiction. Assuming that
T|w) = €| y), one would have

T2 ly) =T () = 0 |y)
which in turn would imply 72 =1 # —1.
8 Note, however, that Kramers theorem does not impede transitions between counterpropagating electrons

with different energies, i.e. inelastic backscattering. As a result, there are actually several mechanisms which can
limit the helical edge conductance. See, e.g., Ref. [56].
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of bulk-boundary correspondence: what happens on the edges is actually a manifestation of
topological properties of the bulk!

The existence of edge states represents an important signature of the QSH effect which can
be directly probed experimentally. The first experimental evidence of QSH physics [54] indeed
consisted in a conductance measurement in a CdTe/HgTe quantum wells: in the inverted regime
(d > d.) a quantized conductance plateau within the bulk gap was observed, indicating the
presence of gapless 1D states; moreover, such a conductance is highly suppressed by applying
an external magnetic field which breaks TRS and hence the topological protection [54]. A
few years later, the edge states in topological CdTe/HgTe quantum wells have been directly
observed using a scanning SQUID which measured the tiny magnetic field created by edge
currents [57].

In the last years, several other materials have been proposed and experimentally proved
to display QSH effect. It is the case, for example, of InAs/GaSb quantum wells which, in
principle, also allow changing the topology of the system by acting on external gates [58, 59].
QSH effect has been observed also in graphene (with enhanced SOC induced by deposition
of magnetic adatoms) [60], silicene and 2D germanium [61]. One of the goals of the current
research is to develop topological insulators with large gaps which allow for QSH effect at
high temperature. In this respect, chemical functionalization and engineered external strain
on tin film has proved to be quite effective [62]. Another option is represented by bismuthene:
scanning tunneling spectroscopy detected a very large gap of ~ 0.8 eV as well as conducting
edge state [63]. An exhaustive review of the experimental progress in 2DTIs is provided in Ref.
[64].

1.4 Topology in one dimension

Topological non-trivial phases of matter are not restricted to 2D systems. In 1D there are indeed
several SPT phases [65] described by non-vanishing topological invariants’. Bulk-boundary
correspondence still holds and, instead of 1D gapless states at the edges of a topological 2D
system, here one expects the existence of zero-energy modes localized at the two ends of a
1D topological system. Interestingly enough, these zero-energy states usually feature exotic
properties, as it will be shown in Chapter 4.

The rest of the chapter will be devoted to the discussion of the so-called Kitaev chain, a 1D
lattice model proposed by Alexei Kitaev in 2001 in Ref. [7]. This simple toy model features

indeed many important virtues in the context of the present Thesis

* Its topological features emerge in an easy and intuitive fashion.

° Note, however, that without enforcing symmetries all the gapped 1D phases are topologically trivial [65].
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* It predicts the existence of zero-energy Majorana modes in spinless 1D p-wave supercon-

ductors, systems which can be experimentally realized.

* It represents the ideal starting point to introduce parafermions, which will be the main
subject of the last chapter of the thesis.

The following detailed discussion of the 1D Kitaev chain is largely inspired by the approach
presented in Ref. [66].

1.4.1 A toy model: the 1D Kitaev chain

Let us consider a 1D chain of spinless fermions which can hop on a L-site open chain and

exhibit p-wave superconductivity'?. The Hamiltonian for such a model reads
L ; 1 L—1 :
HK:_“ZCjCJ+§Z [—tcjcj+1—chcj+1 + H.c. (1.34)
j=1 j=1

where operator c; (c}) annihilates (creates) an electron on site j. Here r > 0 is the nearest-
neighbor hopping amplitude, u is the chemical potential and A > 0 is the p-wave supercon-
ducting pairing amplitude. For simplicity, the superconducting phase is set to 0.

The peculiar physics of this model can be most simply accessed by decomposing the

spinless fermion c; into a couple of so-called Majorana operators via

1
cjzi(b,-+iaj). (1.35)
The inverse relations
aj=i(cl—c)) (1.36)
bj=cl+c; (1.37)

show that, roughly speaking, these operators can be seen as the real (b;) and the imaginary (a;)
part of a physical fermion. They satisfy the following anti-commutation relations

{aj,ai} = {bj,b;} =25, (1.38)
{aj,bi} =0 (1.39)

10Note that the standard s-wave superconductivity cannot be achieved with spinless fermions.
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and they are Hermitian operators

a'=a j (1.40)
b =bj, (1.41)
hence the name after the Italian physicist Ettore Majorana who, back in 1937, hypothesized the

existence of fermions which are their own antiparticles''. The Hamiltonian Hy can be rewritten

in terms of Majornas as
T -
:_Eg’ l—l—lb a] ; A+t )bjaj 1+ (A— )ajbhq} (1.42)

and it becomes very simple in the two limiting cases, schematically depicted in Fig. 1.11.

* The so-called “trivial limit” with t = A =0 and u < 0. In this case the Hamiltonian
simply reads

HI({triv) .

NI‘:

L
Z (1+ibja;) (1.43)

and pairs Majoranas on the same site, as depicted in Fig. 1.11a.

* The so-called “topological limit” with # = A # 0 and p = 0. Here the Hamiltonian

Ja—— Z ibjaj 1. (1.44)

pairs Majoranas on different sites and leaves two dangling Majoranas at the edges, as
shown in Fig. 1.11b.

These two limiting cases are very different from each other. The former features a unique
ground state corresponding to the vacuum of ¢; fermions. By contrast, the latter features two
degenerate ground states: the two unpaired Majoranas at the edges can be indeed combined
into an ordinary — though highly non-local — fermion

f= (a1 +iby) (1.45)

T As we will discuss in Chapter 4, the exchange statistics of zero-energy Majoranas is not fermionic since
these excitations actually behave as non-Abelian anyons. Hence, in order to avoid any possible misunderstanding,
in the present Thesis I will refer to operators a; and b; simply as “Majorana operators”, “Majorana modes” or
simply “Majoranas”.
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Fig. 1.11 (a) The trivial limit of the Kitaev chain in Eq. (1.43). (b) The topological limit in Eq.
(1.44). Note the two dangling Majoranas at the edges highlighted with blue glow. (c) Dangling
Majoranas appearing at domain walls between the topological phase (blue) and the trivial one

(gray).
that commutes with the Hamiltonian
[ f tOpO ] — 0 .

The ground state |0), which satisfies f|0) = 0, has therefore the same energy of |1) = £7|0),
which is another ground state with opposite fermion parity.

As the names suggest, the “topological limit” actually belongs to a SPT phase which is
topologically distinct from the one containing the “trivial limit”. We prove this statement in
Appendix A.3, where we demonstrate the phase diagram of the Kitaev chain:

* the topological gapped phase is present for ¢ > || and A #=0;

« the system is gapless'? for t = ||

* the system is in a trivial gapped phase otherwise.

The two dangling zero-energy Majoranas we just described can be therefore understood as the
manifestation of bulk-edge correspondence in 1D. They indeed appear at the domain walls
between topological and trivial regions, as shown in Fig. 1.11c (note that the fermionic vacuum

can be seen as a trivial Kitaev chain in the limit g — —o0).

12 in the thermodynamic limit.
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1.4.2 Protection of zero energy Majorana modes

Zero-energy Majorana modes have topological origin and their existence is therefore expected
to be protected from perturbations, just like the edge states of IQH or QSH effects. In this
subsection, we will discuss this protection when a finite chemical potential pt drives the systems
away from the topological sweet spot it =0 and t = A # 0. A very useful tool to characterize
the system, which is extremely relevant also from an experimental point of view, is the so-called
local fermionic spectral function .4 [32]. For a system in an eigenstate H|@) = Ey|@), A; is
defined as'?

.Aj((l)) _ /ei(m:<(P| {C}(’L’),Cj(())} lp) dt

(1.46)
=22y [8(@ + By Ey)l{nlelo) P+ 8@ — Ey-+ Ey)(nlc] 1) ]
|)

where the sum is over all the eigenstates |n) of the system (whose energy is denoted by E,). In
the following we will focus on the behavior of A () for energies within the bulk energy gap
(EG), i.e. where Majorana edge modes live.

At the topological sweet spot (1.44), the local spectral function features two zero-energy
peaks localized at the edges, signaling the presence of the zero-energy dangling Majoranas in
Fig. 1.11b.

Aj(w)=nd(w) (6j71—|—5j7L) for o € EG (1.47)

This can be easy verified by observing that the only non-vanishing matrix elements within the

two-dimensional ground-state subspace are

0lc[1D)* = 5 (8.1 + 8;.) (1.48)

ENT-

where we used |1) = £7|0) with f being the non-local fermion defined in terms of Majoranas
in Eq. (1.45).

In order to study the effects of a finite chemical potential, it is useful to compute the integral
of the local spectral function over the bulk EG

A= Aj(w)do. (1.49)

w€EG
This quantity is plotted in Fig. 1.12a for decreasing values of the chemical potential, while
t = A are kept fixed. Even if one moves away from the sweet spot (i = 0), the spectral weight
associated with the two Majoranas is still localized at the two edges and features only an

131n the rest of the chapter we set i = 1
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Fig. 1.12 Behavior of the open Kitaev chain away from the sweet spot. In (a) the local spectral
weight A; [units 277] inside the energy gap is plotted for different values of the chemical
potential 1 (see the legend) whit z = A. At the topological sweet spot 1 = 0, A; is non-
vanishing only at the edges (black stars). In (b) it is plotted the energy splitting SE [units
t] between the ground state and the first excited state as a function of the system length
L, with fixed parameters g = 0.3t and t = A. Both plots are obtained by exact numerical
diagonalization.

exponentially suppressed leakage in the bulk of the system. Clearly, as u approaches the critical
value u = —t, the leakage becomes more and more relevant.

A finite overlap between the two edge modes leads to a splitting of the ground-state
degeneracy. For a given choice of the parameters, the overlapping, and hence the splitting, is
exponentially suppressed with the system size L. This behavior clearly emerges in Fig. 1.12b
where we plotted the energy difference OE between the first two eigenstates of the system as a
function of the chain length L.

In view of these results, we can state that the zero-energy Majorana modes are topologically
protected in the sense that deviations from both an exact localization and an exact two-fold
degeneracy are characterized by a finite and parameter-dependent decay length. In the thermo-
dynamic limit (L — o), as long as the Kitaev chain is in the topological regime, one always has

exact zero-energy edge Majoranas.

1.4.3 Majoranas in experiments

The Kitaev chain wouldn’t have been so successful if it there wasn’t the possibility to experi-
mentally realize systems with the same intriguing topological properties. In this concluding
subsection, we will discuss how to devise a physical system whose Hamiltonian has the same
topological properties of the Kitaev model. We will also give an overview on the experimental
achievements obtained so far: clearly this is a huge topic and our one-page summary is basically

intended to provide some useful literature suggestions.
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Kitaev chain in real life

The goal is to find a realistic setup which could mimic the Kitaev chain Hamiltonian 1.34, i.e.
a 1D spinless model with p-wave superconductivity. The task is far from being trivial and it
involves different challenges. First of all, we need to find a way to freeze out half of the degrees
of freedom of the electrons, in order to have system which could be effectively “spinless”.
Moreover, intrinsic p-wave superconductors are extremely rare and almost impossible to have
in 1D [66]. Interestingly enough, several ingenious schemes have been devised in order to
overcome these issues. They usually rely on three ingredients: superconducting proximity
effect, TRS breaking, and SOC.

In the following, we will briefly present a setup based on 1D quantum wires, which was
proposed in 2010 by two seminal papers [67, 68] and sparked a successful experimental
research, eventually leading to milestone achievements [8, 69, 70, 9]. The Hamiltonian of the

proposed system reads

H = Hyjire + Hyc (1.50)
with
82
Hwire:/dxlllT (—ﬁ—u—iacyaﬁgcz)q’ (1.51)
H. = / dxA [yry, +hel] . (1.52)

Here, W' = (WTT , l//j) where the operator 1//; adds to the wire an electron with effective mass
m and spin o (along the z-axis); u is the chemical potential; & is the SOC strength (which
favors the alignment of the spins in the y direction, depending on the sign of the momentum);
{ is an external Zeeman field along the z-direction; A is the proximity induced pairing from a
conventional s-wave superconductor adjacent to the wire.

At first, let us focus on Hy only, with the aim of understanding the effects of each term.

* The kinetic one clearly determines a dispersion relation with two spin-degenerate
parabolic bands (see Fig. 1.13a).

e If only the SOC term is turned on (@ # 0, { = 0), the two parabolas get spin-polarized
along the y-direction and they split as shown in Fig. 1.13b.

* If only the Zeeman term is turned on (§ # 0, o = 0), the two parabolas get spin-polarized
along the z-direction and they split as shown in Fig. 1.13c.

* When both o # 0 and { # 0, the dispersion relation looks like the one in Fig. 1.13d.

In order to develop some intuition about it, note that the SOC term is proportional to
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Fig. 1.13 Dispersion relations of a 1D quantum wire parallel to the x-direction: (a) with the
kinetic term only; (b) in presence of SOC (a # 0) along y-direction; (c) in presence of a
Zeeman field (§ # 0) along z-direction; (d) in presence of both the aforementioned SOC and
Zeeman field. Colors refer to spin polarization along the y-axis: red and blue stand for complete
polarization [as qualitatively shown in panel (d)] while purple indicates no polarization along y.
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Fig. 1.14 Multi-terminal transport set-up used by the Kouwenhoven group to search for Ma-
jorana zero modes (stars) at both ends of a semiconducting InSb wire (gray) contacted to a
superconductor (orange). Image taken from Ref. [6].

the momentum |k, | while the Zeeman splitting is momentum-independent: at large |k, |
the dispersion will be dominate by SOC effects and it indeed looks like the one in Fig.
1.13(a); at small |k,| ~ O the Zeeman splitting dominates instead and the dispersion
relation acquires a gap proportional to ¢ just like in Fig. 1.13(b)

If the chemical potential is tuned to u ~ 0, so that the Fermi level lies in the Zeeman-induced
gap, the wire features only two gapless and quasi-helical 1D channels. Working at low
temperature, the degrees of freedom of the higher band can be frozen out as desired. Moreover,
the quasi-helical nature of the gapless channels do allow the superconductive pairing Hc,
inherited from a adjacent s-wave superconductor via proximity effect, to be effective (see Fig.
1.13d).

The Hamiltonian (1.50) has therefore all the ingredients needed to capture the physics of
the Kitaev chain. Remarkably, one can show that by an appropriate tuning of the parameters
the system can access a regime which connects smoothly with the topological phase of the
Kitaev chain [71]. More precisely, the phase diagram of the wire in (1.50) is controlled by the

£ > /A2 + 2. (1.53)

If the magnetic field is high enough, the wire is in the topological phase and at its ends, where

topological criterion [66]

it is connected to the trivial one, zero-energy Majorana will appear (see Fig. 1.14).
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Experimental realization

From the experimental point of view, the actual realization of this proposal posed many
challenges. One has indeed to identify materials which feature a strong effective SOC, a large
effective Zeeman energy and which are compatible with proximity-induced superconductivity.
This represents a formidable task in material science. So far, the heavy-element semiconductors
InAs and InSb have received considerable attention due to their strong SOC and the large Landé
g-factor. Quantum semiconductor wires can be obtained in two different ways, via a top-down
approach based on molecular-beam epitaxy (MBE) followed by etching or via a bottom-up
scheme based on vapor-liquid-solid (VLS) growth mechanism [72]. The quality of interfaces
between the wires and superconductors turns out to be crucial: the more smooth and clean the
interfaces, the more effective the proximity-induced p-wave pairing.

If the realization of these hybrid systems is challenging, finding compelling evidence for
the existence of Majorana zero modes can be even more complicated. The point is that most
measurements come with a certain degree of ambiguity: even when the system is in the trivial
phase, e.g. when the external magnetic field is not strong enough, fine-tuning some parameters
can lead to experimental observations which resemble those expected for Majoranas!

The simplest experiments involve tunneling conductance measurements of the local density
of states at the wire ends. Here Majoranas should appear as robust and quantized zero-energy
peaks within the superconducting gap (see also Eq. (1.48)). The observation of a zero-bias
peak in the topological regime was indeed the first experimental “evidence” for the presence
of Majoranas back in 2012 [8]. Huge improvements in material science allowed for better
samples and, in turn, to more impressive measurements which were actually able to probe also
the quantization and the robustness of the peak [9]. Other possible measurements aiming at
proving the existence of Majoranas include the study of Josephson current (which features 47
periodicity in presence of Majoranas) [73] as well as the relation between the ground-state
degeneracy splitting and the wire length (which is expected to be exponentially suppressed as
shown in Fig. 1.12b) [70].

The definite proof, however, will be the observation of a key feature of Majoranas which we
haven’t discussed yet: their non-Abelian statistics. This fundamental topic will be discussed in
detail in Section 4.1, where we will also discuss the important connection between Majoranas
and topological quantum computation. In this respect, however, experimental research is still
ongoing. A nice review and outlook of experimental Majorana physics in superconductor-

semiconductor hybrid systems can be found in Ref. [72].



Chapter 2
Interaction in 1D systems

In the previous chapter we considered only free-fermion systems. The presence of Coulomb
interaction between electrons, however, is often unavoidable, raising the question to which
degree topology and interactions coexist or compete. It has by now become clear that there is
no general answer to this question and this topic is actually still a matter of ongoing research.

When it comes to IQH and QSH effects, it turns out that they do tolerate interactions as long
as they do not spontaneously break symmetries or close the bulk gap. Therefore, chiral and
helical edge states are still present and robust even in an interacting environment. Interestingly
enough, however, the interaction between 1D channels makes their physics surprisingly richer.

The study of interaction effects in 1D systems will be one of the main topic of the present
chapter, where we will review the Luttinger liquid model in the spinless and helical case. Pecu-
liar 1D phenomena, such as charge fractionalization, will be also discussed both theoretically
and experimentally. Eventually, we will also introduce the so-called electron quantum optics:
an intriguing field where the interplay between topological edge states and interaction effects is

extremely relevant'.

2.1 Luttinger liquid theory in a nutshell

2.1.1 One dimensional systems are different

Inter-particle interactions characterize a large variety of physical systems and they can lead to
intriguing behaviors which are not captured at all by non-interacting single-particle theories
[74]. Noteworthy examples of these interaction-induced phenomena are the superfluidity of
helium-3 [75, 76] (whose discovery earned D. M. Lee, D. D. Osheroff, R. C. Richardson and,

'In this chapter we set /i = 1
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later, A. Leggett the Nobel Prize in Physics), the existence of Mott insulators [77], the Kondo
effect [78] and the fractional quantum Hall effect [79, 80], just to name a few.

Yet remarkably, fermionic systems usually feature a regime called “Fermi liquid” in which
they behave almost like a non-interacting Fermi gas, in spite of a Coulomb interaction energy
comparable with the particles’ kinetic energy. This behavior is successfully explained by the
celebrated Fermi liquid theory, introduced by L. D. Landau in 1956 [81], which well describes
normal metals. In a Fermi liquid, the low-energy excitations acquire a infinite lifetime and it
is therefore possible to describe the whole systems as a collection of these well-defined and
(almost) non-interacting fermionic quasiparticles.

Things are dramatically different in 1D [82—85]. The aforementioned quasiparticles are
not well defined any more and the low-energy physics of a 1D interacting system has to be
described in terms of collective and highly non-localized bosonic excitations. As a consequence,
interactions in 1D have dramatic effects and many exotic phenomena occur, such as charge
fractionalization [86—88, 5] and spin-charge separation [85, 83, 89] to name a few. When
dealing with 1D interacting systems, the theory of choice is the so called Tomonaga-Luttinger
model, which is a fixed point of the renormalization group (RG) flow, as nicely reviewed in
Ref. [90]. A system described by this theory, which was developed by S. Tomonaga [91] and J.
M. Luttinger [92] and later refined by Haldane [84, 85], is known as Luttinger liquid LL.

In the following, the L. model is presented, focusing on the aspects which are relevant and
noteworthy in the context of the present thesis. For a more detailed and complete treatment the
reader is referred to the many excellent reviews and books present in the literature [82, 83, 93,
94, 84, 85].

2.1.2 Spinless and helical Luttinger liquids

Let us consider a generic spinless 1D fermionic system, with length / — oo and subject to PBC.

Its Hamiltonian reads

H = Hp + Hip 2.1)
where oo
Hy = dx ' (x)e(—idy) w(x) (2.2)

is the free term associated with the dispersion relation £(k) and

H= [ dxdy v 0w V- ) w0)w) 2.3)

is a two-particle interaction term described by the potential V (x —y).
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Fig. 2.1 Sketch of the two approximations at the very base of the LL theory: linearization of a
generic dispersion relation (in green) around the Fermi points; extension of the linear branches
(right-movers in blue, left-movers in red) from k = —oo to kK = 40 by adding non-physical
states (in yellow) which will form the Dirac sea.

The Luttinger liquid theory, which allows to conveniently deal with the interactions, relies

on two main approximations. In particular, one has to
* linearize of the spectrum of Hy around the two Fermi points at k = +kf;
* replace the Fermi sea with a Dirac sea, unbounded from below.

These approximations, which hold in the low-energy limit, are schematically shown in Fig.
2.1. As aresult, we can identify two species of fermions: the right-movers (R) with positive
group-velocity vg and the left-movers (L) with opposite group velocity. Note that such a picture,
obtained for spinless fermions, can be easily generalized to the helical systems introduced in
section 1.3.1. Indeed, the spin-momentum locking simply consists in associating one of the
two possible spin projections to each branch. In the following we will assume, for example,
that electron on the R-branch (L-branch) have spin-up (spin-down).

Fermionic operators ¥, (x)" and v, (x) create and annihilate one electron at position x on the
r = R, L branch, respectively. The linearized non-interacting Hamiltonian can be thus expressed
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as

+o0
Ho = vr Z By dx ‘Vj (%) (—idx) yir(x) (2.4)
r=R,L -

where O/ = +/— 1.

Bosonization

The celebrated bosonization identity [93, 94] allows to express fermionic fields y,(x) in terms

of bosonic degrees of freedom

P
vi(x) = % e IKEX oxplin/ 21 (x)] . (2.5)

Here, vpa~! is a high-energy cut-off, needed in view of the unboundedness of the two branches.

More importantly, ¢,(x) is a bosonic field which obey the algebra

00(0).040 )] = —ir8, L -y s i85 ). 2.6
It can be conveniently expressed as (considering / finite)
Or(x) = ng ﬁ (e"qﬁrxbnq + e_iqﬂ"xb;q> e~%/? 2.7
where the bosonic operators b, ¢» Which obey
614,01 4] =0 (2.8)
[brq,b/ } = 8,8, (2.9)

have a nice and clear physical interpretation: b; 4 creates a coherent superposition of particle-
hole excitations (hence the their bosonic nature”) with momentum ®,q on the r-branch, i.e.

Z (kg Crik (2.10)

2 Actually, in order to prove (2.8) and (2.9) it is also crucial that the spectrum is unbounded, i.e. that k ranges
from —oo to 4o in Eq. (2.10)



2.1 Luttinger liquid theory in a nutshell 35

where the fermionic operator ci , creates an electron with momentum %,k on the r-branch.

Equation (2.7) shows that a~! can be interpreted as an upper bound to the momentum of
particle hole excitations.

Since the bosonic field ¢,(x) consists of particle hole excitations, it cannot clearly account
for variation of the fermionic particle number on each branch. In other words, if N, is the

number operator of the r-branch?, one has
[bjkwr/} —0. 2.12)

As a consequence, another ingredient is needed in order to be able to relate ¢,(x) with a
fermionic field: the Klein factor operators F,' which appear in (2.5). These unitary operators
add one particle to the r-branch

[Nr,Fﬂ =5, F] (2.13)

[F,T,q),(x)} —0 (2.14)
and ensure the anticommutation relation between fermionic fields

{F,T,F,,} =25, (2.15)

{F,,F.} =0 (2.16)

Note that Klein factors are often omitted in calculations because they drop out in particle
number conserving expressions due to their unitarity.

An important result, which is crucial for the following, is that the fermionic particle density

operator® has a very nice bosonic expression

r

V21

It indeed consists of an constant term and of a fluctuating contribution described by the

pr(x) =y (x) Ty (x) := A0, (x). (2.17)

~|Z

derivative of the bosonic fields.

3 Note that, when considering a physical observable like N,, one has to take into account for the infinite number
of fictitious single-particle states introduced with the Dirac sea. This can be properly done by looking at normal
ordered operator [93]

:Ny:=N,— (Ny)o (2.11)

which basically consists in subtracting the expectation value of the operator on the ground state € of the system
Hamiltonian (Hy in Eq. (2.4) in the present case).
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Diagonalization of the Hamiltonian

In view of the bosonic description we have given so far, it is natural to distinguish two
contributes to the free Hamiltonian (2.4): the former is associated with the bosonic excitations
at fixed particle number while the latter, usually called zero-mode term Hy y, exclusively
depends on the particle numbers on each branch. One can indeed show that

Hy = Z Z VEq b;r’qbnq + H()7N
" a0 (2.18)

=% [ dx 06w + How.

In the following we will only focus on the bosonic part of the Hamiltonians. Note that, with

respect to Hy, the bosonic fields ¢,(x,#) are chiral
O, (x,1) = ™' ¢, (x,0)e " = ¢, (x — O, vz, 0) (2.19)

They thus describe collective bosonic excitations which travels either to the left or to the right.
As for the interacting term (2.3), assuming a short-range potential, one can show that in
general the only relevant contributions can be expressed in terms of density-density couplings

[82]
Hine >~ Hy+ H) (2.20)

where

Z/dx :pr(x)pr(x) : Z/dx [0k (x)]°: (2.21)
Hz—gz/dx :pr(x)pL(x): g4/dx xR (X) 0L (x):

Here the coupling constants g4 (intra-branch) and g; (inter-branch) are named according to
the so-called g-ology [82, 93, 94]. Note that, in the fermionic language, Hs describe two-
particle forward scattering within the same branch while H;, describes forward scattering of two
particles on different branches. It is important to note that, in general, it is possible to devise
other interaction processes. One noteworthy example is the so-called two-particle Umklapp
scattering, which describes the backscattering of two R electrons into two L electrons (and
vice versa). Such a process is allowed by momentum conservation only at the Dirac point and,
moreover, it is RG relevant only under special conditions. Nevertheless, it can play a crucial

role in some exotic phenomena as we will briefly discuss in section 4.2.2.
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The great advantage provided by bosonization is now clear: the interacting Hamiltonians
H, and H,4, whose fermionic expressions consists of product of four fields, are quadratic in
the bosons! Therefore, the whole Hamiltonian H = Hy + H» 4+ H4 can be straightforwardly
diagonalized by implementing a proper Bogoliubov transformation

Bv;-,q = A+bf7q _A—bz,q o ¢4 (x) = AL Pr(x) —A_¢r(x) (2.22)
Bly=A+b,,—A brg ¢ (x) =A,Pr(x) —A_¢r(x)
with . |
An =3 (ﬁ+n\/l_<) (n==+1) (2.23)
and
2nvE+ g2+ 84

the so-called Luttinger parameter. The latter describes the density-density interaction strength:
one has K = 1 in the non interacting case, while K < 1 (K > 1) in the presence of repulsive
(attractive) interactions.

In terms of the new bosonic operators, the whole Hamiltonian reads

H=2 Y [dx:(06g@= ¥ Y uq B} o (225)
n=+ n=+¢>0
where
u=(21)""\/ Qv +84)? — 83 (2.26)

is the renormalized propagation velocity of the diagonal bosonic excitations. The new bosonic

fields, when evolved with H, are indeed chiral and satisfy

On (x,1) = 9y (x—un2,0). (2.27)

They are clearly related to the operators f3; , by a relation analogue to (2.7)

I ignx —ignx —ia
o0 =Y - (€ Biy g+ e By ) e79/2. (2.28)
q

A couple of observations, useful for the following chapter, are in order. First of all, note
that, if go = g4, one has the simple relation u = vpK ~1. For the sake of simplicity, we will

assume this relation throughout all the next chapter. By inspecting the Bogoliubov coefficients
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Ap, it is easy to prove that
A2 =1+A%>1, (2.29)

Finally, it is useful to derive the bosonic particle density p, associated to the chiral excitations:

pr(e.t) +pr,t) = %z_nax 0L(x.1) — Or(x.0)]

1
= ——=(Ay —A )0 [¢(x+ut,0) — ¢y (x—ut,0)]
VT ' (2.30)

- {\/g&cgb(x—l—ut,O)}%— {—\/§3x¢+(3€—”t70)}

J/ .
-~ -~

p—(x1) p4(x,1)

2.2 Charge fractionalization

As anticipated at the beginning of the chapter, interactions in 1D lead to some remarkable effects
such as the fractionalizaton of the electron charge, anomalous tunneling behavior [95, 96],
and the spin-charge separation [84, 83, 89]. In this section we will review the former, both
theoretically and experimentally, exploiting the formalism of spinless LL introduced in the

previous section.

2.2.1 Theory

The starting point is the bosonization identity (2.5) of the fermionic operator v (x) in presence

of interactions. Implementing the Bogoliubov transformation 2.22, one has

P
Wi (x 1) = \/’;_ e R oxpliv/2TA g, 0 (x,1) + iV2TA g O (x,1)]
a 2.31)

Fr
= 2—’ e IOk expliv/2mA g 01 (x — ut,0)] exp[iv2mA_g ¢ (x+ ut,0)]
Ta

where in the second line we exploited the chirality of the fields ¢y, [see Eq. (2.27)]. Eq. (2.31)
clearly shows that creating an electron on the r-branch corresponds to the simultaneous creation
of bosonic excitations traveling in opposite directions. Importantly, the charge carried by each

one of these excitations is just a fraction of the electron’s one. The total particle density does
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indeed satisfy the following commutator’

Pr(x) + PL(x), expliv/27A 9y ()] = | on (), exp[iv27A 0y ()

(2.33)
=VKALS(x—y) exp[i\/ﬁAifl)n )]

Therefore, if one electron is created on the r-branch, a fraction ¢ of its charge will travel in the
r direction while the remaining fraction g_ will move in the opposite direction. These charge

fractionalization factors are given by

1-K
and ¢g_=vVKA_=——<

1+K
gy =VKA, = ——> 2

1
= 2.34
5 5 (2.34)

| =

and they depend only on the interaction strength. Note that in the non interacting limit K = 1
one recovers ¢+ = | and g_ = 0 as expected. Interestingly, g, always satisfies g > 1/2
meaning that the majority of the charge will always flow in the r direction.

As an important remark, note that the two counterpropagating fractional excitations are
created by the product of the vertex operators displayed in Eq. (2.31): charge fractionalization
is therefore a genuine many-body phenomenon and it is not the result of a trivial superposition

of states where the electron moves either to the right or to the left.

Effects of non-interacting leads

The study of single-electron fractionalization after its injection into an interacting system
with counterpropagating 1D channels will be one important topic of the next chapter [see in
particular section 3.1]. It is important to underline, however, that fractionalization can arise
also in a slightly different context, namely in presence of inhomogeneities of the interaction
strength in a 1D system. This point is extremely relevant also from an experimental point of
view since the measurement of many transport properties requires the presence of metallic
leads which, being Fermi liquids, can be modeled as non-interacting systems [86, 87].

The effects of interaction inhomogeneity on 1D transport properties have been extensively
studied in the context of DC electrical conductance [86, 87], thermal and energy transport
[97, 98], out-of-equilibrium systems [99] and time-resolved dynamics of both charge [5, 100]
and spin transport [ 18, 17, 101]. Here, I’ll mainly focus on charge transport. In order to develop
some intuition, let us consider a spinless LL with an interface between an interacting region to

the left and a non-interacting region to the right. In a realistic sample the width of the junction is

3 Here we used the identity
[A,e] = [A,B]eP (2.32)

which holds if [[A, B],A] = [[A,B],B] = 0 [93].
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Fig. 2.2 Interacting 1D LL (green) coupled to two non-interacting leads (yellow). The Luttinger
parameter K is not homogeneous and fractionalization occurs also at the interfaces. The black
arrows show the multiple scattering events underwent by one of the fractional excitations
created by the injection of an electron.

usually much larger than the Fermi wavelength, meaning that backscattering of single electron
at the junction can be neglected. Let us focus on an excitation with charge Q impinging the
interface from the interacting side and, therefore, traveling to the right at the renormalized
velocity u = K~ 'vg. After the scattering at the boundary, there will be a transmitted excitation
with charge ¢Q traveling into the non-interacting part at velocity vp and a reflected one, with
charge rQ and traveling back to the left at velocity u. Conservation of charge and current (the
latter due to the absence of single particle backscattering) leads to

r+t=1 2 K—1
= t=—— and r=——. (2.35)
Kt—r=1 I+K K+1

One remarkable consequence of this result is that fractionalization phenomena cannot
directly emerge in the DC regime [86, 87, 100, 17]. Suppose, in fact, that one R-electron is
injected in the middle of an interacting 1D system connected to two non-interacting leads [see
Fig. 2.2]. The two fractional excitations which are created will scatter many times at the two
interfaces according to (2.35), eventually leading to a Fabry-Pérot-like pattern. If one computes
the total charge which enters the right lead, the result reads

1+K 1-K —
Qﬁt:{—z H ’]’Zr2"=1- (2.36)
n=0

The R-electron we have injected is thus eventually entirely transmitted to the right: from a DC
perspective, the interaction-induced fractionalization mechanism have no effect! Note that the



2.2 Charge fractionalization 41

Junction 1 <« [ Src. [y —> Junction 3

Fig. 2.3 Setup used by A. Yacoby and collaborators to provide the first evidence of charge
fractionalization. Two quantum wires form on the cleaved-edge of an heterostructure. An
electrical current / is injected from the upper wire into the lower one, where it fractionalizes.

same result is obtained considering the fate of one electron impinging the interacting region
from the left lead: after many reflection it will be eventually entirely transmitted to the right.

In view of the result presented above, a direct study of fractionalization phenomena usually
requires to go beyond the DC limit, considering either time-resolved or AC-based setups. A
brief review of some experimental evidences of charge fractionalization will be presented in
the following.

On a related note, it is possible to show that the DC electrical conductance of the whole
system lead-LL-lead, sketched in Fig. 2.2, is independent on the Luttinger parameter K. This
interesting result was derived in 1995 [86, 87] and explained the conductance measurements
performed early the same year by S. Tarucha and collaborators [102]. The reason for this is
again the effect of the leads and the scattering which happens at the interfaces. The conductance

of the sole LL would have been indeed renormalized by K [103].

2.2.2 Experiments

The first experimental evidence of charge fractionalization was provided in 2008 by A. Yacoby’s
group [88]. Their setup, shown in Fig. 2.3, consists into a couple of adjacent wires obtained by
means of the so-called cleaved-edge-overgrowth technique. The central region of the upper
wire (UW in the picture) is biased and used to inject a DC current of electrons on the L-branch
of the interacting lower wire (LW). Such a selective injection of L-electrons is achieved by
the so-called momentum resolved tunneling: here an external magnetic field allows to shift
and control the electrons’ momentum, which is a well defined quantity in an highly non-local
tunneling junction. The injected charge fractionalizes and eventually reaches the leads (named
O and O3) where two steady electrical currents are measured. Crucially, the LW is not directly

connected to the leads and electrons have to tunnel across two additional tunneling junctions
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(“Junction 1” and “Junction 3”). This clearly introduces backscattering at the junctions, thus
replacing the transmission 7 in (2.35) with a different coefficient 8. As a result, the sum rule
in (2.36) does not hold anymore and one can have a non-vanishing current in both the leads.
The price to pay is that parameter 8 is not known.

In addition to the current asymmetry between the two leads

LIy

A
N Is )

they measured also the DC conductance G between the two leads when no electron injection
take place. As mentioned in the previous chapter, these two quantities are related to each other.
In particular, using linear response theory and the LL model, one can show that the expression

(2.34) for the charge fractionalization factors necessarily implies the relation [ 104]

G=A"—. (2.37)

The validity of Eq. (2.37) have been successfully checked for different samples and different
experimental conditions, thus proving indirectly the existence of charge fractionalization for
the very first time.

Although remarkable and compelling, this experiment cannot provide a direct evidence of
fractionalization because of its intrinsic DC nature. In this respect, the first direct observation of
fractionalized wave packets is due to T. Fujisawa’s group in 2014 [5]. They indeed developed
a time-resolved detection scheme to probe the dynamics of charge packets in a spinless LL.
The latter has been “artificially” realized by bringing two integer quantum Hall edge channels
close to each other by means of a thin top gate. The setup is shown in Fig. 2.4a. The couple
of edge states can be effectively described as an inhomogeneous LL (see Fig. 2.4b): when
they are far apart from each other, inter-channel interaction vanishes (i.e. go — 0) leading to a
non-interacting Luttinger parameter K = 1; by contrast, when they are on the two side of the
thin metallic gate (in yellow), the two channel make up a interacting LL with K < 1. Note that
backscattering between the two edge channels is strongly suppressed by the negative biased
gate so that transport in the LL can be still considered ballistic.

A bunch of electrons (~ 150) is injected on one channel in the non-interacting region and
moves chirally until it reaches the thin gate. Here, the inhomogeneity of K determines the
Fabry-Pérot-like pattern of multiple reflections described in the previous section and precisely
computed in [100]. Electrons packets which are reflected back in the left non-interacting region

6 Parameter 3 effectively takes into account also for the backscattering events within the LW, which does
not feature any kind of topological protection and, therefore, allows for ballistic transport only over very short
distances.
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Fig. 2.4 (a) Experimental setup for the time-resolved measurement of charge fractionalization.
Image adapted from [5]. (b) Sketch of the inhomogeneous artificial LL: two separated chiral
edge state can be seen as a non-interacting LL; by contrast, when they are close enough to each
other, interactions start to be relevant and the couple can be described as an interacting LL.

will eventually reach a QPC charge detector. The time width of the injected packet is around
1 ns and the high time resolution of the detector (tens of ps) allows to precisely measure the
shape of the different fractionalized packets. The observed pattern is consistent with the charge
fractionalization framework and with a Luttinger parameter K ~ 0.927.

It is important to underline that fractionalization-like phenomena, associated with the
injection of a single electron, have been observed in 2015 [105] within the framework of the
so-called electron quantum optics. This interesting and fast developing filed, as well as the

mentioned experiment, will be discussed in Section 2.3.

2.2.3 Other fractionalization phenomena

Along with the charge, also other quantities can undergo fractionaliation in interacting 1D
systems [106]. It is the case, for example, of the spin [107]: in this case the bosonic collective
excitations which are created have a spin projection different from +1/2. This intriguing
phenomenon is more elusive than charge fractionalization and an experimental observation is
still lacking to date. The reason lies in the fact that, in addition to a challenging time-resolved
detection scheme [17], spin fractionalization also requires systems with peculiar spin properties

and does not occur in ordinary interacting spinless or spinful quantum wires. In this respect,

7 Such a weak interaction is due to the screening effects of the gate.



44 Interaction in 1D systems

helical systems represent a promising platform [107, 17]. In Ref. [18] I proposed a setup
based on the helical edge state of 2DTIs in a geometry inspired by Fujisawa’s experiment: by
exploiting the spin-momentum locking and the topological protection from backscattering,
this setup would allow to create neutral excitations with fractionalized spin and to probe their
signature by means of time-resolved electrical measurements only. The latest experimental
developments in 2DTTs [108] might lead to a future observation of spin fractionalization.

Another interesting phenomenon is known as energy partitioning® [98]. The energy is
indeed conserved during the tunneling process which injects particles into an interacting LL.
Therefore, it makes perfect sense to ask how the injected energy is partitioned between the
counterpropagating fractional excitations created in the LL. In Ref. [98], the authors showed
that the energy behaves in a rather different way from the charge: the DC energy partitioning
ratio py (between a right-moving and a left-moving energy flows) depends not only on the
interaction strength in the LL K but also on the injection process. In particular, the limit of a
local-injection differs quite significantly from the momentum-resolved tunneling limit (highly
non-local injection). Moreover, they showed that the presence of leads does not prevent the
direct observation of energy partitioning, even in the DC limit. This observation is directly
related to the fact that thermal conductance measured a lead-LL-lead setup (see Fig. 2.2) does
depend on the Luttinger parameter K [109, 97], in sharp contrast with the aforementioned
electrical conductance.

In Chapter 3, in the context of a broad characterization of time-resolved single-electron
injection into an interacting LL, I will also discuss the energy partitioning between the two
counterpropagating fractional excitations which are created in the LL. In this respect, we
will investigate the crossover between the local injection limit and the non-local regime,
generalizing the DC findings of Ref. [98] and showing how they apply in the single-electron

injection framework.

2.3 Electron quantum optics

The discovery of 2D topological states of matter, together with their protected 1D edge channels
described in Chapter 1, has triggered a number of theoretical proposals and cutting-edge
experiments. As a remarkable example, it has been realized that 1D ballistic systems are
great candidates to realize electronic waveguides, where particles can propagate in a coherent
way over long distances. This key observation represents one of the building blocks of the

so-called electron quantum optics (EQO), an emerging and fast developing field which aims

8 Here the word “partitioning” is preferred over “fractionalization” since, unlike charge and spin, there is no a
“quantum of energy”’.
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at transposing quantum optics setups in solid state devices where electrons play the role of
photons.

Photons are long known to be extremely useful to study quantum effects such as entangle-
ment, non-locality, quantum teleportation or quantum cryptography [110—113]. Needless to
say, the possibility of reproducing these results in solid state devices is certainly appealing.
Moreover, EQO comes with a key advantage over standard quantum optics: differently from
photons”, electrons do interact with each other (especially in 1D systems, as discussed before)!
While strong interactions come with some drawbacks such as a shorter coherence time, they
clearly allow for a richer phenomenology and for an additional tunability of the electrons’
states. For example, the possibility of performing complex operations with flying electrons is
very attractive from a quantum information point of view [115].

Electron quantum optics represents therefore an excellent example of interplay between
topological systems and interactions in 1D. In analogy with conventional quantum optics, it

relies on three main building blocks:

Conventional quantum optics Electron quantum optics
Photon waveguide & 1D topological edge states
Cohrent single photon sources & Coherent single electron sources
Beam splitter & Quantum point contact (QPC)

The experimental realization of EQO setups is far from being trivial as it requires a full
mastering of very low temperatures, high quality sample fabrication and radio-frequency
techniques. That said, the high interest in the topic and some important theoretical and
experimental breakthroughs have already allowed for remarkable results and paved the way for
the future development of EQO.

2.3.1 Single electron sources

As discussed before, one the most important goal of EQO is to control transport in 1D ballistic
channel at the single-particle level. Over the last ten years, several on-demand single-electron
sources (SESs) have been developed and successfully exploited in experiments. As an interest-
ing aside, note that SESs play a central role also in metrology since they can link the ampere to

the elementary charge and frequency [116].

9 Several strategies, based on optical QED concepts, have actually been proposed to artificially introduce an
interaction between photons. They turned out to be very challenging from an experimental point of view though
[114].



46 Interaction in 1D systems

Mesoscopic capacitor

An important example of SES is the so-called “mesoscopic capacitor’, developed in 2007 by G.
Féve and collaborators [117]. Its physics relies on earlier work by M. Biittiker who theoretically
investigated the quantum analogue of an RC circuit [118]. A mesoscopic capacitor consists
of a small island of a 2DEG, isolated from the rest of the system by means of a QPC. The
island dimensions are small enough so that it can be assimilated to a quantum dot (QD) with
discrete energy levels. A DC voltage (Vi in Fig. 2.5) controls the transmission from the island
to the rest of the 2DEG, which is driven in the integer quantum Hall regime by applying an
orthogonal magnetic field. A second top gate is capacitively coupled to the dot and allows to
shift the discrete spectrum of the QD via the AC voltage Vex.. Note that the top gate screen the
Coulomb interaction in the dot region [ 117, 4].

The operating principle is sketched in Fig. 2.5. Starting from a situation where the up-
permost occupied electron level is below the Fermi energy of the 2DEG (1), a sudden rise
of Vexc brings it above the Fermi energy (2). After a time comparable with the level lifetime
(tunable via the DC voltage V) the electron leaves the dot and is injected in the chiral edge
channel. Then, restoring the top gate voltage to its initial value (3), the unoccupied energy
level is brought below the Fermi energy and captures an electron from the edge channel (or,
equivalently, it emits an hole). Fig. 2.5(b) shows time-resolved measurements of the injected
current averaged over many periodic emission cycles: the exponential decay of the current,
typical of RC circuits, reflects the exponential decay rate of the emission probability of electrons
and holes. The relaxation time 7 can be increased by reducing the transmission D of the QPC.

The mesoscopic capacitor is a tunable energy-resolved single electron source. Electrons
are indeed injected with an energy &, above the Fermi energy with an uncertainty given by
the inverse lifetime 7~!. Note that & is clearly bounded from above by the level spacing A
of the QD spectrum. One of the limitations of mesoscopic capacitors as SESs is that it is
only possible to inject one energy-resolved electron and one energy-resolved hole per cycle.
Moreover, it is technically difficult to realize identical dots due to nano-lithography reliability:
an important issue to deal with when interferometric experiments requiring more than one SES

are considered [114].

Levitons

Another interesting method to realize a SES is to apply an ultra-short voltage pulse to a contact
connected with the 1D channel of interest. According to finite frequency Biittiker quantum

transport theory, this injects a number of particles which depends on the time integral of the
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Fig. 2.5 (a) Sketch of a mesoscopic capacitor and of its operating principle. (b) Experimental
plots of the top-gate potential Vi« (dashed red curves) and of the injected current (black) which
is fitted well by an exponential decay (in blue). If the frequency of the driving is small enough,
one electron and one hole are emitted per cycle. Image taken from Ref. [117].
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voltage pulse as
e
=— [dtV(1). N 2.38
" 27r/ ) "e (238)

Injecting a single electron (n = 1) may thus seem an easy task to perform. The problem,
however, is that the voltage pulse in general perturbs all the electrons of the Fermi sea and
creates additional and unwanted neutral particle-hole excitations. Levitov and collaborators
showed that this issue can be overcome by a clever choice of the pulse shape, namely a
Lorentzian pulse [119]. It this case no extra neutral excitations are created and the single
injected electron is called “leviton”. Note that this technique does not require any lithography
processes, a great advantage from an experimental point of view [120]. Levitons are injected at
the Fermi energy and lack of the energy-tunability provided by the mesoscopic capacitor. This
point might also be seen as an advantage in terms of resilience against relaxation processes
[114].

Other kind of SESs can be realized as well. They can rely, for instance, on dynamic
semiconductor quantum dots [121] or on surface acoustic waves [122]. The interested reader is

referred to Ref. [114], where SESs (and EQO in general) are nicely reviewed.

2.3.2 Interaction in electron-quantum optics

As discussed before, electron-electron interactions play a central role in EQO, both as a
phenomenon to study and, eventually, as a tool to exploit. Within the integer quantum Hall
framework, the appearance of interesting interaction effects require the presence at least of a
couple of adjacent 1D channels. Indeed, as discussed in section 2.1.2, the presence of intra-
channel interactions alone does not have huge consequences: if the inter-channel coupling
g» 1s zero, the Luttinger parameter K in Eq. (2.24) is not affected at all by the intra-channel
coupling g4. The simplest setup to probe interaction effects in EQO is therefore based on a
Hall bar at filling factor v = 2, which is characterized by two co-propagating 1D edge channels
[123, 105, 124]. Although similar, the theoretical model which describes two co-propagating
interacting channels is different from the one presented in Section 2.1.2, which holds for two
counterpropagating channels. While a detailed review of the co-propagating model is beyond
the scope of the present thesis, it is worth to briefly discuss its main predictions related to
single-electron injections.

Suppose that one electron is injected into one of the two channels. This can be achieved
for example with a mesoscopic capacitor which is coupled only with the outer 1D channel
(see Fig. 2.6a). In the “strongly interacting” regime, which is the relevant one in experimental
realizations [4], one can show that the injected electron splits up into a couple of collective

excitations. They propagate in the same direction but with different velocities. Moreover,
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Fig. 2.6 (a) Experimental setup used to study interaction effects on single electrons injected
from mesoscopic capacitors (“Sources”) into the outer edge channel of a Hall bar at filling
factor v = 2. The coherence properties of the collective excitations created in each couple of
co-propagating 1D channels are probed with an interferometric detection scheme (known as
Hong-Ou-Mandel interferometer) realized with a QPC acting as beamsplitter. (b) Sketch of
the splitting mechanism underwent by an electron injected on the outer channel. Because of
inter-channel Coulomb interaction, the electron splits up into two co-propagating excitations:
the fast one carries all the charge while the slower one is neutral. Both excitations involve the
two channels. Images taken from Ref. [105].

the charge of the electron is carried only by the faster one, the slower being neutral. This
is schematically shown in Fig. 2.6b. The properties of these excitations and their real-time
dynamics have been extensively studied, both theoretically [123, 125, 126] and experimentally
[124]. One of the main finding is that the splitting of the electron into two excitations leads to
decoherence effects which, in turn, dramatically reduce the contrast in interferometric detection
schemes [123, 124, 105].

Inspired by these interesting results, we studied for the first time the interaction effects after
a single-electron injection into a 1D system consisting of two counterpropagating channels. A
detailed characterization of the two fractional excitations which originated from the injection
will constitute the main core of the next chapter, where our results [12, 13] are presented. Note
that counterpropagating systems are actually relevant for EQO in at least two different ways. As
nicely showed in Ref. [5], an “artificial” LL with counterpropagating and interacting channels
can indeed be realized in a Hall bar at filling factor v = 1 by using a thin gate. Moreover, helical
edge states of 2DTTIs represent another ideal playground to perform EQO experiments: they
are indeed topologically protected from backscattering, thus allowing for ballistic transport,
and it is possible to take advantage of their spin-momentum locking to further enrich the EQO
phenomenology [127-129]. In this respect, a recent experimental breakthrough in wet-etching
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techniques may pave the way for an actual implementation of EQO techniques in HgTe-based
2DTIs [108].



Chapter 3

Time-dependent evolution of interacting
systems

In this chapter, we will present our original results about the time evolution of 1D interacting
systems. In particular, we will focus on a single-electron injection into a 1D interacting system
consisting of two topologically protected counterpropagating channels. This process, extremely
relevant in the context of EQO, creates two fractional counterpropagating excitations whose
properties are carefully analyzed. In this respect, we will present the findings detailed into two
of our publications: Ref. [12] and Ref. [13].

The machinery we developed for the aforementioned tasks can be used to study also other
out-of-equilibrium regimes of 1D systems, e. g. the one induced by a quantum quench. In this
respect, we will also briefly present our results concerning the discovery of a universal feature
of relaxation dynamics which follows an interaction quench in a LL. We refer to our original

works in Ref. [14, 15] for a more detailed and comprehensive discussion'.

3.1 Single electron injection in 1D interacting systems

As discussed in the previous chapter, single electron injection is one of the fundamental
building block of EQO. In this section, we will focus in particular on the injection from a
mesoscopic capacitor, a process which has been widely studied, both theoretically [125, 126]
and experimentally [4, 105], in the context of Hall edge states at v =1 (non interacting
single-channel) and at v = 2 (a couple of co-propagating and interacting 1D channels). Here,
however, we will focus, for the first time, on a single-electron injection into a couple of

counterpropagating and interacting 1D ballistic channels.

'In this chapter we set i = 1
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3.1.1 Single electron injection

Let us begin by describing the simple model we will focus on. We consider a single electron
level and a 1D interacting system consisting of two counterpropagating ballistic channels. The
injection of a single electron into the 1D channels is made possible by a tunneling coupling
between the two. The Hamiltonian of the whole system reads

H =Hg + Hy1 + Hr. (3.1
The single level from which the injected electron originates is modeled as
Hg, = gyd'd, (3.2)

with off-resonance energy &, > 0 measured with respect to the Fermi energy Er of the 1D

systems. The latter is modeled as an interacting LL

+o0
Hi = dx H(x,t) (3.3)

—00

where the Hamiltonian density

Za@m nut))? (3.4)

NI:

is expressed in terms of the bosonic chiral modes ¢y, defined in section 2.1.2 [see Eq. (2.28)].
Electron tunneling from the resonant level into the right-moving branch of the 1D system is

described by the tunneling Hamiltonian
HT—7L/ dyw(y )d+hc (3.5)

Here A is the (small) tunneling amplitude while the function w(y), whose properties will be
discussed in the following, characterize the envelope of the tunneling region. Note that the
choice of a tunneling Hamiltonian which involves only the R-channel allows to break the
inversion symmetry and thus to study the differences between excitations moving in opposite

directions.

Physical setups described by our model

Our simple model describes the physics of different experimental setups. One possibility is

to consider a mesoscopic capacitor in a 2DTI, see Fig. 3.1a. Here a quantum dot could be
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(a) (b)

Fig. 3.1 Possible setups described by our model. In (a), a QD pierced by a magnetic field in
a 2DTI acts as SES which injects electrons on one spin-polarized channel of an helical edge
state (different colors refer to different spin polarization). In (b), an analogous setup in a Hall
bar (filling factor v = 1) with an anti-dot acting as a mesoscopic capacitor and injecting single
electrons on the right moving channel of an effective counterporpagating system realized by
implementing a thin gate (yellow).

realized by mean of wet-etching?, separating an island from the rest of the 2DTI [127-130]. A
capacitively coupled top gate is used to shift the discrete spectrum of the dot and it also highly
suppresses the electron-electron interactions within the QD because of its screening effects>.
Because of its finite dimension, the QD will have discrete single-particle levels that come in
Kramers pairs. Spin degeneracy can be lifted by an external Zeeman field [127] in the island
region. The uppermost occupied level in the dot will thus consist of one spin-polarized electron:
acting on the top gate it can be brought at energy &y above the Ef so that it will tunnel into the
helical edge. If only spin-preserving tunneling is allowed, the electron is injected only into one
channel, say the right-moving one, thus justifying the tunneling Hamiltonian considered in Eq.
(3.5). Note that an anti-dot geometry might be used as well [135].

Another possibility consists in mimicking the setup used in Ref. [5] to detect charge
fractionalization. A thin metallic gate is placed on a Hall bar at filling factor v =1 so that, on
each side of the gate, one chiral edge channel is present, see Fig. 3.1b. If the gate is thin enough
so that electrons on opposite site interact, the whole system can be effectively described as a
couple of interacting and counterpropagating 1D channels. An anti-dot, capacitively coupled
with a top-gate, can be pierced on one side of the thin gate and act as a mesoscopic capacitor
[136]. Note that the electron injection involves only one 1D channel, i.e. the one on the same

side of the thin gate, thus achieving the selective tunneling considered in Eq. (3.5).

2 In principle, if InAs/GaSb-based 2DTTs are used, one could also use metallic gates to shape the topological
region.

31t has been experimentally shown (in Hall bars) that the charging energy contribution in a mesoscopic
capacitor is very small [117, 4, 105, 131] thus explaining the success of non-interacting models usually considered
in describing the QD region. It is worth noting that, in systems without a top gate, interactions between QDs and
1D channels can have strong effects [132—134].
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Usually the tunneling Hamiltonian is assumed to be local. Here, however, we want to
explore also the non-local injection regime. To this end, we consider an extended tunneling
region of width ¢ (see Fig. 3.1): as we will see in Section 3.1.3, this allows for a richer
phenomenology mainly due to the fact that, in a non-local tunneling event, the momentum
of the injected electron can play an important role. A non-local injection is quantitatively
described by the envelope function

% ik 1 2
w(y) = MY =Y o7 2 3.6
) =80) N (3.6)
consisting of a real Gaussian & (y) and of a complex phase. Here ko = kqop — kr is defined as the
mismatch between the momentum of the electron which is about to tunnel from the quantum
(anti-) dot (kgp) and the Fermi momentum in the right-moving channel (kg). In principle, ko
can be tuned by means of additional gate voltages applied either to the QD or to the edge
channels in order to shift their spectra with respect to each other [137-139]. Note that in the

local-injection limit (¢ — 0) one has w(y) — 8(y) and kg is completely irrelevant, as expected.

Description of the injection process

Here we model the single electron injection process. Let us assume that at time # = 0 the 1D
system is in its ground state |Qy) (zero temperature limit) with fixed particle number N. Its
equilibrium density matrix reads prr(0) = |Qx)(Qx/|. On the contrary, the single resonant level
is initially occupied and described by the density matrix pop(0) = |1) (1].

Let O be a generic number-conserving operator that acts on the LL, such as, for example,
the particle density. In the interaction picture, with respect to the tunneling Hamiltonian Hr,
the time evolution average of O(t) reads

(0(1)) =Tr{O(1)p (1)} , 3.7)
with the time dependent density matrix
p(1) =U(t,0)p(0)U"(1,0) (3.8)
where (T denoting the time-ordering)

U(t,0)=T [e*"fédf'HTU’)] (3.9)

p(0) = pr.(0) @ pon(0). (3.10)
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We are interested in the average variation of O(¢) induced by the tunneling process
60(1) = Te{O() [p(1) = p(0)]} - (3.11)

At lowest order in the tunneling one has

500) = [[an [ T {p(0)Hr (1) (00 Hr ()]},

o * (3.12)
+/Odt1 i dty Tr{ﬁ(O)HT(lz) [O(I)T7HT(tl)]}

1.N

where the symbol Tr{... }17N denotes the trace over system’s excitations with fixed particle
numbers: one electron in the single level and N in the LL.

Being tunnel coupled with the LL, the resonant level acquire a finite lifetime (27y)~! [4, 140].
Note that the energy broadening y must be small, i.e. 0 < y < &, so that the injection of a
single electron is actually possible. In the following we will focus on this regime, known as
“optimal” in the EQO community [4, 141]. In order to describe the discharge of the single level,

we explicitely take into account its large-but-finite lifetime via the approximate correlator®

(d"(n)d(n)) = B*(n)B (1) (3.13)
with
B(t) = e 0l (3.14)

Eq. (3.13) consists in a Markov approximation, already exploited in literature [126, 143]. The
precise value of y will be calculated microscopically in order to guarantee the conservation of

the total injected charges. Approximation (3.13) allows to express (3.12) as

t 1 o0
00(t) = Mz\/dtl/ ldtz // dy dy;
0 0 —e° (3.15)

E(t1,y1312,2) {I(o)(fl,yutz,yz;t) +Ziony (1,310, y231)"

4 It is worth noting that, in the non-interacting case, it is possible to solve the problem at all orders in lambda
without the need of such an approximation[142].

3 Here, we have not considered energy-dependent corrections to the self energy of the single-level [144, 145]
since, in the optimal regime, their effects can be neglected.
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where

E(t,yi02,y2) = B(t)w(y1) B(t2) ' w(y2)* (3.16)
Loy (t1,y1:12,2:1) = (Wr(y2,12) | O(1), Wi (1, 11) )Q (3.17)

and the average is performed over the LL ground state |Q).

Inverse lifetime

We now evaluate the inverse lifetime 2y of the single resonant level. It is related to the time
derivative of P(t), the probability of transition from the dot to the edge channel, by

2y= lim P(t). (3.18)

f—>+oo

Recalling that the system is initially in a state with one electron in the dot and N electrons in

the edge channels, the transition probability is given by the relation
P(t) =Tr{(N+1,0|p(¢) [N+ 1,0)}, (3.19)

where |N + 1,0) denotes the state with no electrons in the dot and N + 1 electrons in the edge
channels. The trace is calculated over the excitations of the system at fixed particle number. At

lowest order in the tunneling one has

¢ oo .
P(t) = Wz//o dtdt //_w dyydyy €@ w* (v )w(yy) G(ya, iy, t1) (3.20)

where we have introduced the fermionic correlator on the R-channel

Gy, sy1,t) = <1VR(y2,lz)‘I/1§(y1J1)>Q : (3.21)
Using the identity in (B.15) and introducing the shorthand notations

m=x—nut, z=yi—nuy (i=1.2), (3.22)

the correlator G is expressed in terms of the bosonic Green function

1 a

G(42) = (9+(2)0-(0))a — (02(0))a = 5_log ——

(3.23)
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(a) ‘

k k

Fig. 3.2 Sketch of the overlap between the spectral function Ag(k, €) (in gray) and |€ (k)|? (in
red). The latter is represented with a horizontal line at energy &y since we are considering
injection of an electron with well defined energy. Panel (a): local injection (¢ — 0). Panel (b):
non-local injection (G ~ 2ug, 1Y with a finite extension in k region for |& (k)|? centered around
ko.

as
G(z32f) = % PO ) PrA GG ), (3.24)
a

Performing the time derivative one has (see Appendix B.1)

~ 2
VZYo;—fr/dkAR(k,s()) (é(ko—k)( : (3.25)
with e
% = ‘2—’ (3.26)
VF

Here, & (k) is the Fourier transform of the real envelope function & (y) (see Eq. (3.6) and Eq.
(B.5)) and thus |§(k0 — k)|? is centered around k = kq. The function

—&a/u
Arll,e > 0) = 2% (“

242 2 2
AZT2(A2) 2_u> (& +uk)™ (€ —uk)™ " 6(€ — ulk]), (3.27)

is the spectral function of the right edge channel [82]. Recall that k and € are defined as
momentum and energy with respect to kg and Ef respectively. Equation (3.25) has a clear
physical interpretation: 27y represents a tunneling rate and is proportional to the overlap between
the spectral function Ag(k, &) and the k “spectrum” of the injected electron, described by
| (ko — k)|2. In Fig. 3.2 one can see this overlap in the energy and momentum space. The
region where Ag(k,€) # 0 is filled in gray, showing that in the presence of e-e interactions the

spectral function broadens and does not vanish away from the mass shell (¢ = uk). The injected



58 Time-dependent evolution of interacting systems

—2
0.05 o 2

Fig. 3.3 Panel (a): ratio ¥/ as a function of interaction strength K with 6 = 0.9 and ko= —1.2.
Panel (b): density plot of ¥/ as a function of & (x-axis) and k¢ (y-axis) with K = 0.6. In both
panels a = 1 /40vge, .
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electron has a well defined energy & > 0 and thus the function |€ (kg — k)|? is represented

as a red horizontal line at &y, centered around k = ko with an extension of the order of o~ !.

Panel (a) refers to local injection: ¢ — 0, with |€ (kg — k)|? ~ 1. Here, the momentum kg is not
relevant and the overlap is along the darker red line over the gray cone. In this limit the integral

in Eq. (3.25) can be solved analytically, giving the local rate

242
Ka&
< aVF —Kai—o
=~ 7 F

r(1+242) ¢

Y =Ky

(3.28)

Note that }; in Eq. (3.26) represents the asymptotic value of ¥'°° < ¥, in the non interacting
limit K — 1.

Fig. 3.2(b) shows a non-local injection. Here, |& (ko — k)|? is centered around kg, chosen
in the figure to be negative, with a width ~ o—!. The overlap between the two functions is
significantly smaller with respect to (a) and it further reduces as long as ko is pushed away from
the gray cone. In addition, for a given interaction strength K, and momentum ko, the overlap
decreases as o increases with the result 7 < Y°¢ < 1.

For convenience we introduce the dimensionless parameters

6=22 k= kove

3.29
o & (3.29)

The dependence of the ratio ¥/ on different parameters is reported in Fig. 3.3, where the
relation ¥y < yp clearly emerges. Panel (a) shows the suppression of the tunneling rate as the
interaction strength increases, a well-known feature of LL. Parameter ko, considered in panel
(b), does not affect y as long as local-tunneling is concerned but becomes more and more
relevant as & increases. In particular, ¥ significantly diminishes when kg is pushed away from

the momentum range where the spectral function Ag(k, &) has finite values (see also Fig. 3.2).

3.1.2 Charge density and its fractionalization

Here we will use the result (3.15) to compute the time evolution of the charge density variation
0p(x,t), defined as in Eq. (3.11) with O = p. Note that charge is measured in units of the
electron’s one so that charge density exactly equals particle density p(x,¢). The latter can be

expressed in terms of chiral bosonic fields as

K
plxt) ==/ 5} %y, (3.30)
n
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As shown in Appendix B.2.1, the average factor Zp—) in Eq. (3.17) can be evaluated
yielding
1 a
@+ (2 — 1))

Zipy=Tpny = ) dn 2] G(y2,12;y1,11) 5 (3.31)

n==+1
where g are the charge fractionalization factors defined in (2.34), 1.e.

1+nK
qu: 2 )

(3.32)

and G is the fermionic correlator (3.21). The charge density is then computed inserting Z,, into

the average (3.15). It results into the sum of two chiral contributions
op(x,t) = ZSPn(Zn)a
n

which can be expressed in terms of the bosonic correlators G in (3.23)

51
ke / dtl/ dtz// dy2 s (3.33)

. 2mA% G(zf - 27A2 G(z; —
L(tl,yl,tz,yz) S(Zn_zg) e2TAY ( Zz) b8 (= Zl)

6pn(zn)

This important result will be the starting point for the study of the charge density profile of the
two fractional excitations which travel in the LL after the single-electron injection. However,
before addressing this topic [see section 3.1.4], let us focus here on the total charge associated
with each one of the two fractional excitations.

Charge fractionalization

The total amount of injected charge that travels in a given direction (n = %) is

—+oo
On = dx §pp(x,t — o). (3.34)

This integral can be easily performed from Eq. (3.33) for p;(z5). One finds Oy = g Q

— AP / di, / dtz// dyrdyi [EG +h.c] (3.35)

represents the total amount of charge injected in the system. Note that the previous relation can

where

be also written as

=|4] // dtzdfl// dyrdy E(t1,y1302,y2) G(y2,02:y1,11) - (3.36)
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We thus recover the expression (2.34) for charge fractionalization factors

Qp 147K
9, +0 M~

(3.37)

that depend only on the interaction strength K. This is not surprising giving the fact that charge
fractionalization stems from an operator identity, see Eq. (2.31).

For 7 > 1/(2y) the QD level is empty and the total amount of injected charge Q = Q. + Q_
is expected to satisfy Q = 1. It is indeed shown in Appendix B.2.2 that, as long as y < €&, the
condition @ = 1 holds.

3.1.3 Energy density and its partitioning

The injected electron transfers into the helical edge not only charge but also energy. We then
start focusing on the evaluation of the energy density [see Eq. (3.4)] variation, proceeding
along the lines discussed in the previous subsection. Considering Z(o—y,) in Eq. (3.17) and the
commutator relation in Eq. (B.13) one can derive the following expression

Iy = Zg <WR(}’2,t2) [: CXME) ‘Vlg(yl’“)] >Q

n
(3.38)
_ _ymAgym (1 a 3 (D 1 @)
BRI (na2+<Zn—z?>2> i)
with
MG = (Wr(r2,12) 0n zn) wr(n1)) (3.39)
My = (WRO2:2) W O1.1) 90 zn)) (3.40)

These average functions are evaluated in Appendix B.3 with the final result

n 1 a 1 a 1
H u; n [12 o (na2+(zn—z?)2> (Ea2+(zn—z?)2> a+in(zn_13)]

(3.41)
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This formula allows to express the total energy density profile §#(x,7) in Eq. (3.15) as a sum
of the left and right moving contributions 6H (x,t) = Y., 6Hn (z5), with

nwz

1]
O0Hn(zn) = Re/dfl/ dlz/ dy»dy; E(t1,y1:12,y2)

. (3.42)
a na
X g(t27y2;t17y1) (a—I—in(zn _Zg) +l78z?> 5(27] _Z?)

As for the charge, let us focus at first on the total amount of energy associated with each one
of the two counterpropagating fractional excitations. The detailed study of the energy density

profile from Eq. (3.42) will be discussed in section 3.1.5.

Energy partitioning

To analyze energy partitioning phenomena, we now focus on the total amount of energy that

travels in a given direction once the injection is concluded

—+oo
En= [ dx&Hy(x,t— ). (3.43)

Using the expression (3.42) for 6H (x,) one has

21712 ;
= W; i1l / dy / dny / dyzdy1 E 27O~ )en 265 ~2 ) +h.c.] , (3.44)
Ta?

where g% = A% + (14£1)/2. The above expression can be conveniently represented in Fourier

space (similarly to what has been done in Appendix B.1) as

S YT T LA
e F-1 on—1 | £
x/ de_ (e, +€_)5n" (ey —e_)8n ‘Jj (ko —€_/u)
e,
The key quantities to discuss are the energy partitioning factors defined as
Ey

=" 3.46

Pn E, +E_ ( )

They indeed represent the fraction of the total energy E = E, + E_ that propagates in the
direction 11 = =£. Concerning the total contribution £ = E + E_, we demonstrate in Appendix
B.3.1 that E = g as long as ¥y < &.
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In the local injection limit g(k) = 1 one has (see Appendix B.3.1)

poe—_An__ (LK) (3.47)
A2 +AZ 0 2(KPH+1)] '

Namely, energy partitioning has a “universal” character, i.e. pﬁloc does not depend on injection

parameters but only on interaction strength, in agreement with the partitioning of DC energy
transport found in Ref. [98].

On the other hand, it can be shown that such universality breaks down as the width of the
tunneling region increases. In order to quantitatively highlight this deviation we present below
results for the right moving energy fraction p in Eq. (3.46), using the gaussian envelope & (y)
in (3.6).

Fig. 3.4 shows two representative cases of energy partitioning as a function of interaction
strength. The local limit p{fc (3.47) is drawn with a solid red line. Panel (a), has ko = 0, and
shows deviations from the local limit as & increases, with 0.5 < p.(K) < p?°(K). These
deviations are even more striking for negative values of ko as shown in panel (b) with ko=—1.2.
Here, it is even possible to achieve p(K) < 0.5 for a wide range of interaction strength (dot-
dashed curve). This means that, due to interactions and non local tunneling, the energy of
an electron, injected into the right branch, can travel mostly to the left while its charge still
continues to move mainly to the right (g > g—). Fig. 3.5 represents the cartoon of this charge
and energy decoupling. To clarify the physical interpretation of this effect, we consider in Fig.
3.6 the energy partitioning factor p as a function of & for different interaction strength. In
panel (a) ko = 0 while in panel (b) kg = —1.2. For & — 0 one recovers the “universal” behavior,
while deviations from it become relevant as G increases and reaches 6 2 1. Comparing the
two panels, note that these deviations emerge at smaller & when kg is significantly different
from ko = 0. This fact can be understood considering again the overlap between the spectral
function Ag(¢,k) and the injected electron momentum “spectrum” |€ (kg — k)|? represented as
insets of the two main panels in Fig. 3.6. Here, we sketched two typical situations with the
same interaction and momentum kg as given in the main panel. Non-universal effects appear
only when the red line does not cover the whole gray region, whose extension at € = & is
given by 2&9K /v (see Eq. (3.27)). Therefore, if one considers ko = 0 (panel (a)) it is necessary
6 > K~ ! in order to break the energy partitioning universality. By contrast, for a negative
ko=—1.2 (panel (b)), a smaller & will be required since the overlap is already smaller. While
discussing &, it worth noting that, for the two experimental realizations devised in subsection
3.1.1, one has the constraint & < 2 which stems from the requirement that the level spacing in
the dot is less than &.
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(b)
0.3 K 1
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Fig. 3.4 Energy partitioning factor p as a function of the interaction strength K. In panel
(a) ko = 0, with & — 0 (solid red), & = 2 (dashed blue), & = 3 (dotted green) and & = 3.75
(dot dashed orange). Panel (b) shows ko = —1.2 with 6 — 0 (solid red), 6 = 0.9 (dashed
blue), & = 1.5 (dotted green) and & = 1.95 (dot dashed orange). Parameters: ¥ = 0.05 & and
a=1/40vpe, .
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Fig. 3.5 Cartoon showing the strong direction separation of energy (solid green) and charge
(dashed orange) for K = 0.8, & = 1.95 and ko = —1.2. The majority of charge (80%) travels to
the right while most of the energy (about 65%) moves to the left.

Note that all these deviations are much less pronounced (and then not shown) for ko > 0 since
even with extended tunneling, the transferred momentum lies near the right electron branch,

loc

leading to p1 (K) > p'?°. As a last comment, the non-interacting limit K — 1 shows always
p+ = 1, regardless of all the other parameters. Energy partitioning is indeed a manifestation of
e-e interactions and so, if they’re absent, all the energy added to the system after an R-electron
injection goes to the right.

Non-universal features of energy partitioning can thus play an important role when a non-
local injection is concerned. In particular, it is possible to directly control the energy flow after
a single electron injection, being able even to invert its direction with respect to the charge
flow. The energy flow, and its partitioning, could be inspected by means of nanocalorimetric

measurements [ 146, 147].

3.1.4 Charge density profile

We now focus on the local-injection limit & (y) = d(y), in order to study interactions effects on

the charge density profile. Integrating Eq. (3.33) one has

qn| nx 4 14242
SPTI(xv )_ 2R /dtl/ dtzﬁ tz tl) <t1_t__) (a+iu 2—t1)> ’

2mau (
(3.48)

We observe that, apart from the fractionalization factors gy, the two chiral charge density

packets share the same mirrored shape

6p+(xvt) _ 6p_(—X,t) )
q+ q-

(3.49)
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0.1 . . . .
0 o 2.5

Fig. 3.6 Energy partitioning factor p as a function of the tunneling region width 6. Each
line refers to different interaction parameter: K = 0.8 (solid red), K = 0.6 (dashed blue) and
K = 0.5 (dotted green). In panel (a) ko = 0 while panel (b) ko = —1.2. The insets show the
overlap, at the same interaction strength, between the edge spectral function (in gray) and
the momentum “spectrum” of the injected electron (in red), along the lines of Fig. 3.2. The
momentum kg is the same of the hosting panel. Parameters: ¥ = 0.05&y and @ = %VFS(; I
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Fig. 3.7 Charge current j (7) (in units of &) flowing in the right direction through the detection
point xp > 0 as a function of time (in units of &; l). Different interaction strengths are
considered: solid red line K = 1 (non-interacting case), dashed blue K = 0.8, and green
dotted K = 0.6. The inset shows the function C(7) with the same color coding. Parameters:
% = 0.05 & and a = 1/40vpe, '

As a consequence, we can focus only on the right-moving packet (n = +). We analyze
the corresponding charge current ji(7) = udp(t) with T =1t — xp/u, flowing through a
“detection” point xp > 0 away from the injection region. The integral over #; in Eq. (3.48) can
be easily performed yielding

jo(7) = 24,7 6(x) exp[—277] Re[Cy(7)] (3.50)
where (m € N)
c m .0 1 m—+24%
Con(T) = 2 (V—F) ds e Vel [ F____ . (3.51)
T \ag 7 avg +isK—1

First of all we note that, because of causality, j(7) # 0 only for T > 0, since an excitation
created in x = 0 takes exactly a time xp /u to reach the detection point. Another clear feature is
the exponential decrease e "% due to the QD single level inverse lifetime (27). The presence
of the interacting helical Fermi sea is taken into account by the function Cy(7)°. Fig. 3.7 shows

Tt is possible to show that, for K = 1 and in the limit &y — oo (where one can actually forget about the Fermi
sea), function C; (1) does not contribute to j; (7) since Re[C; ()] ~ 1.
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all these features. The decreasing exponential behavior is clearly visible as well as the increase
of the QD level lifetime (2y)~! as interactions strength increases. Function Ci (), plotted in
the inset, is characterized by a global decrease, while increasing interaction strength. It also
presents oscillations with a period given by 27g, !"and an amplitude damped by interactions.
This fact is due to the smearing of the Fermi function, which weakens the effects of the Fermi
sea.

Similar qualitative features are expected in the case of non-local injection, where however
the pulse will be less localized. Although challenging, experimental detection of such fractional
charge packets could be performed. High-resolution time-resolved measurements are indeed
possible in quantum Hall bars, using a quantum point contact as a shutter on the ps scale [148,
149] that allows the study of charge packet profiles [5]. Different measurement schemes, based
on Hong-Ou-Mandel interferometry [131, 105], have also been used to detect charge profiles.

3.1.5 Energy density profile

Along the lines of what we have done about the charge, here we discuss the energy density
profile of the two fractional excitations. Again, we focus on the local-injection limit. By

integrating Eq. (3.42) over space with &(y) = 8(y) one obtains

AZIAP S LS
6 My (z) = 1 Re/odtl/o dty B*(12)B(11)
a

Ta
242 +1
a nx
x [2ui (a+iu(t2—t1)) ol —t+ u ) (3.52)

24% 42
a nx
+(a+iu(t2—t1)> 6<t1_t+7)

Similarly to charge, the two chiral energy density packets share the same mirrored shape as

long as local-injection is concerned

OH .y (x,t)  OH_(—x,1)

= (3.53)
A% A2

We then focus on the right moving energy packet (n = +), by analyzing the instantaneous
energy power P, (7) = u0H(7) that flows through the “detection” point xp. Integration of
(3.52) over t; leads to (T =t — xp/u)

Py (1) =A%y 0(T)exp[—27y] Re[Cx(T)] , (3.54)
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Fig. 3.8 Instant energy power P (7) (in units of 83) flowing through the detection point xp > 0
as a function of time 7 (in units of &, ! ). Different interaction strengths are considered: solid
red line (K = 1), dashed blue K = 0.8, and green dotted K = 0.6. Inset: function Cy(7) with
the same color code for interactions. Parameters: 9 = 0.05 g anda = 1/ 40vge, I

with )
&y

Cx(7) &

Ci (1) +% (1-24%)C(7) (3.55)

and Cp,(7) (m = 1,2) given in Eq. (3.51). In Fig. 3.8 the instantaneous energy power Py (7) is
plotted as a function of time for different interaction strength. As for charge current, it reflects
causality, ensured by 6(7), and the exponential decay related to the QD level inverse lifetime
27, with analogous behaviors. The function Cy(7) (plotted in the inset) features also a spike at
T =0, even in the non-interacting case, reflecting the sudden turning on of the injection process

and the consequent excitation, at short times, of energy modes even higher than &.

3.1.6 Single-electron coherence for local-injection

In the two previous subsections, we have demonstrated that in the local-injection limit the
charge density profiles of the two counterpropagating excitations are mirror-shaped, differing
only for a prefactor controlled by charge fractionalization [see Eq. (3.49)]. The same holds for
the energy density profiles, as stated in Eq. (3.53).

However, in view of the highly asymmetric injection process (we are injecting one electron
at energy &y on the R-channel only), one may expect more striking differences between the two

counterpropagating excitations. Such differences are indeed present and they clearly emerge
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when more involved quantities are analyzed, namely the momentum and energy distribution.
As we will see in the following, these important properties can be derived from the so-called
single-electron coherence.

The coherence properties at single-particle level are described by the single-electron coher-

ence correlator [4, 141, 150]

otessa=(v (b w(sdesd)). e

in analogy with Glauber’s optical coherence [151—153]. Despite a close parallelism between
electronic many-body systems and quantum optics, there are also important differences, one of
them being that, even at equilibrium, the single-electron coherence does not vanish because of
the presence of the Fermi sea. For this reason it is a standard procedure [4, 141, 150] to focus
on its deviations from the equilibrium value &9, and thus to consider §&, = &, — &%, Our
goal is to study the evolution of 6®, after the electron injection, i.e. implement Eq. (3.12). A

first result is that the single-electron coherence features the structure

06,(s,1;8,2) = gr(s,1:8,2) + &7 (s,1;—&,—2). (3.57)

The detailed evaluation of functions g, is shown in Appendix B.4.1, while here we focus on their
dependence on space and time variables. First of all, it is clear that the s and ¢ dependence must
be retained since the system is not invariant under either space or time translations because of
the injection process. Moreover, in presence of interactions the electron injected in the R-branch
fractionalizes into two counterpropagating chiral excitations. In the long-time limit r > y~!,
i.e. when the injection is over, they are spatially separated and they contribute independently to
the single-electron coherence correlator. In Appendix B.4.1, we demonstrate that this is indeed
the case: the functions g, can be written as the sum of two chiral terms g, and g, _, the former

propagating to the right and the latter to the left
gr(5,1:8,2) = ) grnls—nut;§,2). (3.58)
n==+

This important relation allows us to separately study the dynamical properties of the two chiral

fractional excitations. We find the following expression for functions g,

A2 -
grn(xn;&,2) = % Crn(&,2) elvrkes (3.59)

—+oo
X/ drydt eizwlf(f) Yr,n(xn7crl7tlar)7
0
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where x; = s —nut, { = & —nNuz and

A% A2 .
Crn(E,2) = | ——— l— by —iad; (3.60a)
’ a—iuz+ i, |a— iuz — i0,& Cn
. 1+242
F(r)=e 7T 807 _ ] , (3.60b)
la—iut
a+in(xy + Cp /2 +nut) ] "
Yr,n(xnacnatlaf): |: ; L d
@it = /2% k) (3.600)
< mm{ [a_i”(xn — Gy /2-+ nu(n +r>>} }
The exponents @, are related to the Ay, coefficients in by
Orn =Aj, OLp=AA_. (3.61)

The factor (& —iad,) !'in Eq. (3.60a) stems from the point-splitting procedure’ [93] and
ensures that the diagonal part of the single-electron coherence truly represents the electron
particle density 8p,(s,t) = 0®,(s,1,;0,0) (see Appendix B.4.2 for details). Eq. (3.59) will be
the building blocks from which the energy and momentum distributions can be obtained.

3.1.7 Momentum distribution

The momentum distribution of the R and L branches is defined as the average variation [as in

Eq. (3.12)] of the occupation number operator

np(k,t) = el (t)eri(t), (3.62)

where ¢, annihilates an electron with momentum k on the r-branch (r = R,L). Using the

single-electron coherence, one can represent the occupation number variation as

oo .
S, (k,1) — % / / dE dse M6, (5,1:€,0). (3.63)

In general, the momentum distribution dn,(k,t) has a temporal evolution [125, 124]. Focusing

on the long-time limit 7 > 7!, however, the decoupling relation in Eq. (3.58) allows us to

7 The insertion of the point-splitting factor only affects functions grn around the point z = & = 0. This does
not change significantly the momentum and energy distribution in the region of interest.
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express the momentum distribution as a sum of time-independent contributions

n,(k Z 8ny.n (k) (3.64)

where each of the four terms

1 oo .
Sy (K) = ERe{ / /_ ddse kﬁgm,(s;aj,O)} (3.65)

represents the momentum distribution of the r-branch electrons associated to the right (1 = +)
or the left (n = —) moving chiral excitation. Using Eq. (3.59) and conveniently shifting the
variable s, each term can be written as

B |7L|2 1 400
5]’lr,n (k) = m (27Ta)2 Re{ 0 dT.F(T)
></+ d& e ih=0rke)S o (E, 0) [ dsx,n( gr)}, (3.66)

with

a+in(s+€—nuf>} “"Im{[_“—ms )] "} (3.67)

xr,n(s,é,f):%[ a+in(s—nur) a—in(s+§

The time independence of the momentum distribution in the long time limit 7 > y~! stems from
the fact that our model does not take into account for spectrum non-linearities or equilibration
mechanism that would induce a time evolution even on time scales greater than ! [126, 154].

In order to clarify the meaning of the 6n,, (k) terms, is it useful to focus at first on the

integrated quantities
o0
5N}’,T] - 511,,717 (k) dk, (368)

which represent the excess number of electrons carried by each of the two chiral excitations in

the r branch. A straightforward calculation leads to

SNp+=1+A% =1+1 (K—1 +K-2) (3.69)
SNg_=-A? =1 (K" +K-2) (3.70)
SNL+=FAA_ =51 (K1 -K). 3.71)
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-

Fig. 3.9 Sketch of the fractionalization mechanism. The real-space structure of the coun-
terpropagating fractional excitations (highlighted by the “+” and “—" rectangles) is shown,
distinguishing between the contributions from the two branches, R and L.

The total charge (units of e) of each chiral excitation is thus

1+nK
Gn=3 ONpp= 217 : (3.72)
r=R,L

reproducing Eq. (3.37), i.e. the well-known charge fractionalization ratio. As a direct conse-
quence of conservation of the electron number on each branch, which follows from the absence

of backscattering, the following sum rules are also satisfied
Y 6Ngp=1, Y 6NL;=0. (3.73)
n==+ n==+

In Fig. 3.9 we sketch the structure of the chiral excitations in position space. The left-moving
excitation is made up of a negative packet R_ (in green) and a positive one L_ (in blue). By
contrast, the right-moving excitation is made up of a negative packet L (in blue) and a positive
one R, (dotted line). According to Eq. (3.69), the latter can be regarded as the sum of a unit
packet (in red), representing the injected electron, and a positive packet (in green) with opposite
charge compared to R_.

This scenario corresponds to the well-known fractionalization phenomenon, where the
injected single-electron charge is split into counterpropagating fractional charges. However,
being based on the integrated quantities (3.68), this picture is not able to describe the detailed
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structure of the many-body excitations created in the 1D conductor, and these types of informa-
tion are crucial to give a proper characterization of the relaxation and decoherence mechanism
due to the interplay of single-electron injection and electron interaction. Therefore, we go
beyond this coarse description in the following by characterizing the many-body nature of the

fractionalization phenomenon using the momentum-resolved contributions (3.66).
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At first, let us consider the noninteracting case K = 1. Here Ay =1, A_ =0 and Eq. (3.66)

readily reduces to:

VEY/T
V> +[€0 — ve(k —kg)]?
5I’lR_ = 5I’lL7:|: =0.

5nR,+(k) = 9(/{ — kp)

(3.74)

For K = 1 the right and left branches are two independent and chiral systems, so the electron
injected on the R branch will just propagate to the right without affecting the L branch. The
momentum distribution in Eq. (3.74) is a truncated Lorentzian [150, 155] of width 7, centered
ink = kg+&vp ! In the limit Y/€ — 0 it becomes a delta function. It is worth noting that the
Fermi sea remains a spectator as ong 4 (k) # 0 only for k > kr. As we will see, this will no
longer be true in presence of interactions.

In an interacting system the complete momentum distribution functions is obtained by
numerically computing the integrals in Eq. (3.66). In Fig. 3.10 we plot dny (k) (left panel)
and Ong(k) (right panel) for different values of the interaction parameter K. Increasing the
interaction strength, the peak around kg + gou~ ! (right panel) lowers and broadens while
particle-hole contributions emerge around the Fermi points. In this respect, it is useful to

consider the limit k — +kp where the momentum distributions éng, 1. (k) exhibit a power-law

behavior
21
u [ egay2A ) k — Ok |
S (k) =~ o <7> D(1-242) Gy sgn(k— Oyke) fu— " . (375
with interaction-dependent coefficients
Cr = sin(27A? ) sin(7A? ) (3.76a)
Cp = —sin}(mA A )cos(mA?). (3.76b)

Eq. (3.75) is demonstrated in Appendix B.5.1 and holds as long as A> < 1/2, i.e., when the
interaction in not too strong (K > 0.27). In this case, the momentum distribution features a
power-law divergence at the Fermi points +kp. This divergence is integrable, consistently with
the fact that dn,(k) defines a probability density, and gets weaker as the interaction strength
increases. Such a behavior can be understood as a manifestation of the well-known Anderson’s
orthogonality catastrophe [156, 157] We note that, as discussed in Appendix B.5.1, the exponent
of the power-law behavior in Eq. (3.75) is robust with respect to the approximation made in Eq.
(3.13).
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Quite interestingly, particle-hole pairs are much more relevant on the L branch than on the R
one, as can be seen in Fig. 3.10. This means that excitations around the Fermi points are more
important on the channel which is not tunnel-coupled to the single-electron emitter. This feature,
which from a mathematical point of view emerges from Eqgs. (3.76) where Cy, is greater than Ckg,
can be interpreted by relying on the following picture of the interaction mechanism [83, 158].
We note that the intra-branch coupling g4 alone simply renormalizes the Fermi velocity and
does not modify the Luttinger parameter K = 1 (see Eq. (2.24) with g, = 0). Therefore, it is
the inter-branch coupling g> which plays a fundamental role in the fractionalization mechanism.
Since the injection is performed on the right branch, a first interaction process couples the
injected electrons with momentum near £yu ! to the left branch, thus creating particle-hole
excitations around —kg. Then, a second process couples the excitations just created on the
left branch to the right branch, exciting particle-hole pairs around +kg. The latter is thus a
higher-order process compared to the creation of particle-hole pairs on the L branch. For weak
interactions, this heuristic picture perfectly fits with the expression of the C, coefficients. Indeed

on can show that

Cr = A7 (ga+27vp) ™ (g2)* +0(g2)° (3.77)
CL=—1m*(ga+27mvE) * (22)* +0(g2)". (3.78)

Having discussed the features of dng and dny, for different interaction strengths, we can
now analyze the chiral components of the momentum distribution. In Fig. 3.11, the four terms
on,.y are plotted for K = 0.54. Functions 6ny, + are shown in the left panel, while 6ng 4 are
plotted in the right one. Solid red lines refer to the chiral right-moving components (1 = +)
and the blue dashed ones to the chiral left-moving terms (1] = —). Interestingly, it is possible to
understand the features of these plots using the sketch in Fig. 3.9. The peak on R+ centered

around kg + gou !

is indeed the remnant of the injected electron: it is related to the red packet
in Fig. 3.9. As discussed above, the inter-branch interaction creates particle-hole pairs on the
L-branch. However, because of the excess right-moving charge present on R+, the majority
of the holes 1s “dragged” to the right (see the negative blue packet in Fig. 3.9). This explains
the asymmetry between 6ny - (k), rich in holes and larger for k > —kg, and dny_(k), rich in
particles and larger for k < —kg. Electron-hole pairs are also created on the R branch, but
through a higher-order process and thus their impact on the R branch is reduced. Again, the
excess left-moving charge on branch L—, represented by the positive blue packet in Fig. 3.9,
drags the holes on the R branch to the left (green negative packet) and pushes particles to the
right (green positive packet). As a consequence, Ong, (k) basically contains only holes while

ong + (k) features a particle component near the Fermi point, superimposed on the peak tails.
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As a last comment, we note that the momentum distribution of the right-moving excitation
(solid red lines) is very different from the left-moving one (dashed blue lines): the former
features the peak around kg + €ou~' while the latter has significant weight only around —kg. As
shown in Eq. (3.49), this strong asymmetry is completely lost within a real-space description
of the chiral excitations.

We would like to stress that it is possible in principle to experimentally access every
contribution on,, (k). A detector placed to the right (left) of the injection point can in fact
exclusively measure the properties of the chiral right (left) moving excitation n = + (n = —).
Moreover, we observed that the interesting features of the momentum distributions are centered
around the Fermi points and around kg + gou~!. Provided that kp > gyu~!, it is thus possible

to easily distinguish between the contributions from the R and the L branches.

3.1.8 Energy distribution

In an interacting system, energy and momentum are not related through a simple dispersion
relation and are independent quantities [83, 159]. Therefore, the energy distribution of the exci-
tations provides complementary information to the already discussed momentum distribution.
Here, we will focus on the following component of the local nonequilibrium spectral function
integrated over time

+oo :
S A (®,x,) = % / dtdz 86, (x,,1;0,2) €7 (3.79)

Such a quantity has the great advantage to be directly related to a physical observable, namely
the total charge transferred from the system to a tunnel coupled single empty level. It can be
thus experimentally accessed via quantum dot spectroscopy [160, 158, 161]. Before explicitly
computing 8 A,, it is worth discussing more in detail the aforementioned relation, in order to
further clarify the meaning of Eq. (3.79) and to allow for a clearer interpretation of the results.

Let H, = @ b'b be the Hamiltonian of a probe quantum dot, modeled as a single level with

energy @ > 0. At position x,, it is tunnel coupled to the r-branch of the system via
HY = | W (xp)b+Hee.| (3.80)
The current transferred from the system to the probe dot reads

Iy = ie [HJb'b| = ie | Apy; (x,)b—He (3.81)
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and, to the lowest order in the tunneling amplitude A,, its average value is given by

I(t) = i/;<[H¥(T),I,(t)}> dr. (3.82)

We now assume that the single level is held empty, i.e. (b7b) = 0, considering for example an
additional stronger coupling with a drain at lower chemical potential [158]. Then, the total
charge transferred from the system to the dot

+o0
q-(@,xp) :/ I.(t)dt (3.83)

—o0

can then be expressed as
qr(0,x,) = e|A,|? // dtdz &,(xp,1;0,z) . (3.84)

The variation of this quantity, induced by the electron injection, is thus directly related to the
energy distribution defined in Eq. (3.79) via
e|Ap °

0qr(@,xp) = 2%T5Ar((o,xp) . (3.85)

Since the energy is conserved in the tunneling process, it is clear that the function 6 A,(®,x,)
represents the probability density of destroying an excitation with energy @ > 0 by extracting
an electron from the r branch at position x,. Note that if the system is in its ground state
(without the injected electron), no excitations can be destroyed and no charge can be transferred
to the probe dot. As a consequence, the variation 8¢, correspond to the total transferred charge
qr-.

If the probe dot is positioned far away from the injection point, i.e. |x,| > uy~!, the chiral
excitations created by the electron injection will reach it only at large time ¢ > 7!, In this limit,

Eq. (3.58) holds and allows to distinguish between the contributions of each chiral excitation

SA, -
SA(@,x,) = +(@) x> uy (3.86)

SA,_(0) xp<—uy !
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Here, the chiral energy distribution of the r branch does not depend on x;, and reads

oo
0A (@) = % Re {/_ dtdz e'®* gm(ut;O,z)}

AP e [ aer) [ azeo 0.0 [ ds o (s, —muz. 1)
_27r}/(277:a)2 0 ze rm\Y,Z . S Xrm S, —Nuz, .

—00

(3.87)

It is also possible to define a total chiral energy distribution, summing with respect to branch
index r

SAp(w)= ) 8A(0). (3.88)

r=R,L

Fig. 3.12 shows the behavior of 8.4, (®) obtained by using Eq. (3.88) and numerically
evaluating Eq. (3.87). In analogy to the momentum distribution, the chiral right-moving
component features a peak centered at @ = & (the average energy of the injected electron)
which lowers and broadens as the interaction increases. However, in this case, the broadening is
highly asymmetric and tails increase only for energies @ < &p. This behavior is a consequence
of energy conservation: on average, the total energy transferred to the LL by the electron
injection is & and it is therefore impossible to create more energetic excitations. Tails for
o > & are indeed just a consequence of the finite level broadening y. As the peak lowers, low-
energy excitations appear near the Fermi energy both on 8.4, (top panel) and § A_ (bottom
panel), exhibiting a power law divergence at @ = 0. Indeed, in the limit @ — 0" the total chiral
energy distributions read

2
1 ey ) ) 2421
5An(a))_n2—80<7> I(1-242)D (g) , (3.89)
with
D =sin®(TA,A_)+sin’(nA%). (3.90)

Equation (3.89) is demonstrated in Appendix B.5.2 and holds as long as A% < 1/2 (K > 0.27).
We observe that the divergence is integrable and features exactly the same exponents we already
found in Eq. (3.75) for the momentum distribution. Once again, this exponent is robust with
respect to the approximation in Eq. (3.13).

In Fig. 3.13 the contributions 8.4, (@), associated with the » = R and the r = L branch for
a given chirality 17, are analyzed for a fixed interaction strength (K = 0.54). The peak centered
around & is present only in 6.Ag + (solid red line). Conversely, the majority of the low-energy
excitations near the Fermi energy are hosted by the L branch. In this respect, note that §.A; 4
and 6.A; _ coincide in the energy range we considered and they are both represented with
the long-dashed blue line. Note that also .47 (@) are strongly suppressed above & as a
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0AL(w)

€0

W

Fig. 3.12 Total chiral energy distribution 6.4+ (®) (in units of g, 1Y associated, respectively,
with the chiral right-moving excitation 8.4 (top panel) and the left-moving one 8.4_ (bottom
panel). Different values of the interaction parameter K are considered: K = 0.8 (green short-
dashed line), 0.54 (red continuous line), 0.42 (blue long-dashed line) and 1 (thin black line). The
inset in the top panel is a zoom of the peak centered around @ = &. Parameters: gau~' = 1/40
and y = 0.05¢p.
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Fig. 3.13 Chiral energy distributions 6.4, (®) in units of &, !, The solid red line refers to the
0Ag .+ contribution; the short-dashed green one refers to d.Ag . The long-dashed blue line
refers to 0.A; +. Parameters: K = 0.54, goau~! =1/40 and y = 0.05¢,.

consequence of energy conservation. As discussed for the momentum distribution, the creation
of low-energy excitations on the R branch comes from a higher-order process and it is thus less
relevant. This can be clearly seen by observing the short-dashed green line representing 6.Ag

as well as the behavior of 0.Ag  (solid red line) near the Fermi energy.

3.2 Quantum quench of interaction

The injection of a single electron in a 1D system, which originates the fractional counter-
propagating excitations we have studied so far, can be seen as a way to bring the 1D system
out of equilibrium. Obviously, there are also many other protocols which allows to study
non-equilibrium physics in 1D. Among them, the quantum quench of interactions is particularly
relevant for the present thesis. It is indeed possible to adapt the machinery developed in the
previous section to study how a sudden interaction quench affects the time-evolution of a LL
focusing, for example, on its spectral function.

The parallel between interaction quenches in LL and the electron injection discussed before
is strengthen also by the observation that the former can be also interpreted as a creation of an
infinite superposition of fractional counterpropagating excitations [162, 163]. In this section
we will demonstrate that this peculiar superposition of excitations has a remarkable universal

signature, namely a power-law relaxation of observables o 2 which does not depend on the
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details of the quench protocol! This intriguing result represents the core of our publications in

Ref. [14, 15], to which we refer the reader for a more comprehensive and detailed discussion.

Quantum quenches: a short digest

Before diving into the model we considered, let us give a brief overview about quantum
quenches. They consist in the rapid and controlled variation over time of one of the system
parameters. Such a protocol, which clearly settles an out-of-equilibrium state with non-trivial
time evolution, has recently known a widespread interest thanks to the dramatic experimental
development in cold atomic system: indeed, their high degree of tunability and the isolation of
the system from the environment make them the ideal platform to study quantum quenches®.

When dealing with quenched systems, two important questions arise: do such systems
eventually settle to a steady state? And if so, what does characterize their relaxation dynamics?
Several theoretical studies [166—168] and experiments [169—171] have addressed such topics,
showing that the answers strongly depend on the system considered. In this respect, integrable
systems such as the LL. model are particularity interesting to analyze: their large number of
conserved quantities strongly constrain the post-quench dynamics and, as long as the system is
isolate, it will retain a strong memory of the initial state. In particular, it has been conjectured
that they eventually approach the so-called generalised Gibbs ensemble (GGE) [172, 173],
whose associated density matrix is in general very different from the thermal one. Interestingly,
the first analytical confirmation of such a conjecture did come from the study of quenched LL,
see Ref. [174] and Appendix C.1, hence proving the usefulness of LL model as a tool to study
also non-equilibrium 1D systems.

In the following we will answer to the second of the aforementioned questions, which is
still open: what are the characteristics of the relaxation process which describe the system

evolution of a quenched LL?

3.2.1 Sudden quench protocol

We consider an isolated 1D interacting system, consisting of two counterpropagating channels
described by the LL model. We enforce periodic boundary conditions and consider the
thermodynamic limit, i.e. the system size L — co. The system is subject to the following quench

protocol. For ¢ < 0, the Luttinger parameter is K; < 1 and the system Hamiltonian reads

. oo
H=9 Y [ a0, (3.91)
2, )

8 It is worth noting that quench-like protocols have been recently investigated also in solid-state devices
[164, 165]
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where the chiral bosonic fields ¢; » (x) propagate at velocity u; = vFKi_l.

Gin (x,1) = @i (x — Mu;t,0) (t <0). (3.92)

The system is initially described by a thermal equilibrium density matrix (here we assume
kp=1)
o—Hi/T

Peg="— (3.93)

where Z = Tr{e Hi/T} is the partition function and 7 is the temperature’.
At t = 0 the interaction is suddenly quenched from K; — Ky < 1, resulting in a sudden
switch of the Hamiltonian H; — Hy. The latter reads

> / [0 ()] (3.94)

Here the new bosonic fields @y, are chiral for 7 > 0 and propagates with the new renormalized

velocity uy = vFKJZI:

Orn(x,t) = @rn(x—mnust,0) (r>0). (3.95)

It is crucial for what follows to clearly establish the relations between the different bosonic
fields at play (we recall that 9/, = +/—1)

* The fields ¢;  diagonalize the Hamiltonian H; with Luttinger parameter K; and they are
thus chiral for ¢+ < 0. Following Eq. (2.22), it is possible to relate them with the non
interacting boson fields ¢, via

1
n==+

* Along the same line, the fields ¢y, diagonalize the Hamiltonian Hy with Luttinger
parameter Ky and they are thus chiral for 7 > 0. They are relate to ¢, via

,/ +
Ky

% Such a situation can be realized by coupling, at a very early time, the system with a thermal bath at
temperature 7', then letting the system thermalize and eventually disconnecting the bath.

1 (3.97)

(l),(x,t) = Z A(nﬁr)d’f,n (x,t) with Ay =
n==+
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* By combining (3.96) and (3.96), it is possible to directly relate ¢7 ,, and ¢;  via

. 1 K¢ K;
t) = 0 o(x,t th 6L=— — =+, /=1 3.98
Or.n(x,1) Z,i (en) Pie(x,2) Wi =5 V%, X, (3.98)
The relation between the different Bogoliubov coefficients is
By =A:0,+A-0_. (3.99)

Note that the non-quenched case (K; = K) is represented by 6 =0, 6, = 1 and A+ = B-..

3.2.2 Quench-induced entanglement

If we are only interested in the dynamics of the system for + > 0, we can regard the sudden
interaction quench just as a way to initialize the system at # = 0 in a particular out-of-equilibrium
state of the Hamiltonian H, described by a non-equilibrium density matrix pyg. In this
subsection, we will study the properties of pyr from a post-quench perspective.

For the sake of simplicity, in this subsection we focus on the zero-temperature limit. This
allows to readily identify the density matrix with pyg = |€;) (€], i.e. with the ground state of
the initial Hamiltonian H;. This state is defined by the property of being annihilated by every
“initial” bosonic operator ﬁ,({)q

ﬁ?%i,)q|Qi> =0, Vn==,4¢>0. (3.100)

Here we have denoted by ﬁ,%l)q ( ﬁ,gf q) ) the bosonic operators related to the bosonic field
Oin (9rn) by Eq. (2.28). Interestingly, the condition in Eq. (3.100) is satisfied by the state

[163, 162]
oy (8Y) (8

+ ¢>0

|Wve) = D exp Q) (3.101)

where 1 is a normalization factor and Q is the ground state of Hy. Indeed, using (3.98), one
has

e =0 (0,841 -0 (515, Yoo [ (812) (%) |

Teefs 505 0)

q>0

(3.102)
Q)
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which vanishes because

NP CANCANIEY
= X (1B ) g (88) " (89:) i o

—o-(55,) e [ (81)' (8) ] s

A sudden interaction quench can be seen as a way to initialize the system in a highly
non-trivial state. The latter consists of a superposition of couples of counterpropagating and
entangled excitations which originate from every point of the system at # = 0. In the following
we will show a remarkable signature of this entangled state, namely a universal relaxation

behavior in the non-equilibrium spectral function of the system and in its transport properties.

3.2.3 Quenched bosonic and fermionic correlators

In this subsection we will discuss the local lesser fermionic Green function of the 1D channel

G (z,1,7) = i<wj (z,7) l;/,(z,t)> - <eim¢r(z7">e*fm¢r<m> , (3.104)
eq 21a eq
at the generic position z. Here, the brackets (...)., denotes a quantum average performed on
the initial thermal density matrix p,, and the last bosonic expression is obtained using the
bosonization identity (2.5). The first step to evaluate the Green function is to compute the time
evolution of the free bosonic fields ¢,(z,¢). It crucially depends on whether the operators are
evaluated before or after the quench. Indeed, using Eqgs. (3.96) and (3.97) one can write

A z—ust,0)+A_ (z+ust,0) t>0
or(at) = 0,97+ (z—ust,0) 0,91~ (@+uyt,0) 7 (3.105)
By, 0i+(z—uit,0)+B_y,¢i —(z+u;it,0)  1<0

having exploited the proper chirality properties of Eq. (3.92) and Eq. (3.95).
Note that, since space translational invariance is not broken by the quench protocol, the
Green function will not depend on the generic position z. On the other hand, due to the breaking

of time translational invariance, it will feature four different time regimes depending on the
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positive (p) or negative (n) sign of # and 7. One can thus write

gm(t,f) t<0,7<0
Pt t>0,i<0
G=(t,7) = r(t,0) (3.106)
L(f) 1<0,7>0
(GFP(1,f) 1>0,7>0

Note that the average in (3.104) is with respect to the initial state, meaning that the only known

correlator is [82]

Cy () = (91 (x,0)01.7(0,0))eq — (977(0,0))eq
L T+ To " —iTna ) 1 ( | ) (3.107)
1. Ly

2n L(1+Tao; )2 21 1 —inxa~!

In order to compute the functions appearing in (3.106), one has therefore to express everything
in terms of €, (x), a task which can be performed by exploit the canonical transformations
(3.96 - 3.98) and the chiral evolutions (3.92) and (3.95). The explicit expressions for each
function appearing in (3.106) are reported in Appendix C.2.1.

The most important function is G¥¥. As we will see, it is indeed the only one responsible for
the presence of the universal features which characterise the post-quench relaxation dynamics.
Moreover, it is the only one controlling the transport properties after the quench. It is therefore
worth to analyse it in details, highlighting the physical origin of its peculiar quench-induced
features. To this end, it is useful to rewrite it in terms of correlation functions between the final
chiral bosonic fields. One thus has

- i _ _
GPP(1,F) = 5 _—exp {m[A5 Dy (t,t—7)+AZy D__(t,t—7)

+ 2A,A_D4 _(t,t —1)]}, (3.108)
with

Da,ﬁ (t7T) = 2<¢f,a(0>t - T>¢f,l3 (0>t)>eq - <¢f,06<07t - T)q)f,ﬁ <O7t - T)>eq
—(85.a(0,1)87,8(0,1))eq- (3.109)

Here a, 8 = + and the time difference should satisfy T = —7 < t. One can identify two

contributions
0
a,

Do,p(t,7) = DYy (1,7) + ADg g (1,7), (3.110)
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with DE;?)B (t,7) the zero-temperature contribution and AD, g(t,T) the corrections due to the

finite-temperature of the initial state. In particular, one obtains (see Appendix C.2.1)

62 1
(0) n
D T)= —log ———— 3.111
a.a(7) ngi S (3.111)
62+6% |I(1+Tw '+iTAT)]
ADy o(T) = = lo d , 3.112
06706( ) T g F2(1—|—T(Dl-_l) ( )
2 2 2.2
5O (1.7) = 6. 6_ log [1+4w7(t —7)°](1 +4o5t) 3.113)
Gt 21 [1+ w7 (2t — 7)) ’ '
20,6_ C(1+Tw ' —iTA2t—1))?
ADg q(t,T) = ~— log _|1( + ' TA )>|_1 , , (3.114)
T T(14+Tow " +2iTA(t —1))||[T(1+ T +2iTAt)|
with the cut-off frequencies @y = u fa’l, ; = u;a” ! and
K;
A= —. 3.115
K ( )

As a general feature, we note that auto-correlators (o« = ) only depend on the time
difference T and not on . By contrast, cross-correlators (o = — 3) feature a full dependence on
both ¢ and 7. Note that the fact that cross-correlators are finite is a direct consequence of the
highly entangled state induced by the quench and described, in the 7 = 0 limit, in subsection
3.2.2: at thermal equilibrium, chiral fields ¢/ , (x,7) would have been completely decoupled
leading to a vanishing cross-correlator. This fact is obviously confirmed by observing that,
without a quantum quench, one has 6_ = 0 which kills the whole Dy _ (7, 7).

We now want to study the dependence on ¢ of the cross-correlators when ¢ > 7. Functions
Dy, o are plotted in Fig. 3.14 for different temperatures, showing a power-law behavior o< 2.

A careful asymptotic analysis, carried on in Appendix C.3.1, gives indeed

0.6_ | 2(TAT) T(1,1+To ) — (£)° 1< < (AT)™!

) (3.116)
T |2Te ! (%) T (AT) ' <1

DOC,—OC(ta T) ~

in perfect agreement with the plots. As one can see there are two different regimes, both
featuring a power-law decay o 72 but with different prefactors. For long time # > (AT) ™!
the cross-correlator is positive and proportional to the temperature. By contrast, when finite
temperature effects have not kicked in yet, i.e. at shorter time t < (AT)~!, the prefactor of the

12 decay is negative and temperature-independent.
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[Dar,—a(t; 7)]

0. 0_
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Fig. 3.14 Plot of the full cross-correlator ﬁ |Dg,—a(t,7)| as a function of time 7 for different

temperatures: T = 10~ (red), T = 1073 (green), T = 1072 (yellow), T = 10~! (blue). Here,
T=10,K; =0.9, Ky = 0.6, time units a);l and temperature units @j.

3.2.4 Non-equilibrium spectral function

To fully characterise the effects of the quench, we now focus on the local (lesser) non-
equilibrium spectral function. This is a key quantity to inspect the presence of universal
features in the relaxation dynamics, as well as an important ingredient to evaluate observable

transport properties. The local non-equilibrium spectral function is defined as [175]

i
A (w,1) = 37/ "”Gf(t,t—r) dr. (3.117)
Our task is to investigate its time evolution after the quench, i.e. for # > 0. Since the integration
range over T extends to +oo, the calculation of the above expression requires to distinguish
between two different regimes of the Green function:

A (o,1) = AP (@,1) + A" (@, 1)

:i/ e PTGPP (1,1 — T) dr+—/ TGPt t — 1) dT
2m

(3.118)
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Equation (3.118) is exact and suitable for numerical investigation, using Eq. (C.8) and (C.9). It
is possible, however, to devise helpful analytical limits and expansions.

Steady state

The non-equilibrium local spectral function finite steady state A,(®) = lim; ... A= (®,?) is
given by

_ — Foo
Ao)=— /_ eV lim GPP (1,1 — 7) T

+v_
a! /°° we (1 N/ 1 \"[ra+1e '+ira))]" "
=—— | e
(2m)? J o 1 —ioyt l1+iost r2(1+To ") ’
(3.119)
with
_ N2 42 2

Ve = 02(A2 +A2). (3.120)

An extensive study of the effects of interaction quenches on the steady state limit of the spectral
function can be found in our publications Ref. [19] and Ref. [20]. There, we also discuss
the momentum dependence of the spectral function and how the transport properties, such as

energy partitioning, are affected in the steady state.

Transient dynamics of the non-equilibrium spectral function

The analysis of AZ” is more tricky. The key observation is that the integrand '®® GF” (¢, — 1)
contributes to A””(@,t) only in two distinct regions: near T ~ 0 and close to the boundary of
the integration domain 7 ~ t. These are indeed the regions where the non-analytical points of
the Green function are located, see Appendix C.2.1. In the region in between, i.e. for 0 < 7 < ¢,
the integrand is a smooth and slowly varying function multiplied by an oscillating phase ¢'®7.
Therefore, it does not contribute to the integral in the long time limit # > w~! and one simply
has

AP (0,1) =~ AV (0,1) + AP (0,1), (3.121)

where the former term stems from an expansion of the integrand for 7 — 0 and the latter from
an expansion for 7 — 7.

The behaviour of Agl) (w,t) is controlled by the bosonic cross-correlators: using (3.116)
one can thus obtain the asymptotic expansion

27 3
AN (0,1) = Ar(0) — k(1) y W +0 G) (3.122)
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< (AT)il > (AT)*I
Universal: 2 12
Non-universal: el =8 ¢ exp[—2mATH) V-

e’ exp [—27rATt]§
.wlui:uf ; u,-+uf

V- ¢ exp[—2mAT)Y -

Table 3.1 Summary of the terms contributing to the transient dynamics of d.4,(®,t) defined
in (C.3.3). Here we reported only the dominant time dependence of each term. Their full
expressions can be found in Eq. (3.122) and in Appendix C.3.2.

where Y= —A;A_0,60_ and

_1 -1
K(t) = 2_1 l<<(AT)_1 (3.123)
Tw " t>(AT)

distinguishes between the two regimes of Dy . Interestingly, Aﬁ” (w,t) features a universal
power-law relaxation o< 72 in both regimes. The behaviour of A'? (e, ) and A" (®, ) is rather
different: as detailed in Appendix C.3.2, they feature a non-universal power-law decay in the
t < (AT)~! regime which is subsequently killed by a fast exponential decay for ¢ > (AT)~!.

In the end, the transient dynamics of the whole non-equilibrium spectral function
SA (1) = A5 (o0,1) — A (@) (3.124)

features two regimes, each one consisting of a sum of different terms whose dominant time
dependence is summarized in Table 3.1. The quench-dependent exponents which appear in the

non-universal terms are carefully analyzed in Appendix C.3.3.

e At short times (r < (AT)_l) a oscillating non-universal power law decay with exponent
either & = v +v_ —2yor v_ (both lesser than 2) is present and dominates the relaxation

dynamics, masking the universal features induced by the finite cross-correlators.

« For sufficiently long times( z > (AT)~!) the situation drastically changes: temperature
effects kick in and the non-universal power laws are killed by fast exponential decays. As

a result the non-equilibrium spectral function display a very clear universal ¢~ relaxation.

The latter is a remarkable feature, since in general one would have expected exponential

behaviors for all fermionic correlation functions at finite temperature. Note that at 7 = 0, the
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Fig. 3.15 Plot of the real part of 8A,(®,t) = Ay (®,t) — A,(®) (units v?l) as a function of
time for different temperatures: T = 107! (orange), T = 1072 (blue), T =0 (green). Black
line show a power-law decay o 2. Here ® = 0.1, K; = 0.9, Ky = 0.6, time units coJT.1 and

temperature units @;. We have included the zero temperature case (green curve) to underline
the difference with the finite temperature case.

regime ¢ > (AT)~! is never reached: the non-equilibrium spectral function always features
non-universal power laws o< =% which completely mask the o =2 behavior.

All features described so far can be seen in Fig. 3.15, where the real and the imaginary
part of the transient spectral function 6A,(w,?) are evaluated numerically from Eq. (3.118) for
different temperatures. Notice that we have also inserted the zero temperature case (green line)
to better clarify how it differs from the finite temperature case. Once the exponential decay of
the non-universal contributions sets in, around ¢ ~ S(AT)_l, the universal decay o< 12 clearly
emerges in the real part of 0A,(®,1).

In Ref. [14, 15] we demonstrate that the appearance of this remarkable universal relaxation
characterizes also the transport properties. In particular we computed the time-dependence of
both the charge and the energy currents which flow from an external probe to the quenched
system via a weak-tunneling coupling. In view of their close relation to the spectral function (a
relation emerged also in Section 3.1), these observables feature a qualitatively similar relaxation:
a competition between the universal decay o r~2 and non-universal terms, the latter being

eventually killed by finite-temperature effects [14, 15].






Chapter 4
Fermionizing parafermions

This chapter is devoted to parafermions, i.e. non-Abelian anyons which generalize the Majo-
ranas introduced in the first chapter. After a general introduction about Abelian and non-Abelian
anyons in 2 dimensional systems, the focus will be on the reasons why it is both possible and
interesting to go beyond Majoranas. Exploiting the Clock model generalization of the Ising
chain, Z, parafermions will be introduced along with their main properties. A brief discussion
of the existing proposal for systems which can host parafermions will eventually lead to the
last and main important section of the chapter. Here we will describe the original and exact
mapping which we developed in order to directly relate chains of Z4 parafermions and chains
of spinful fermions [16]. This will allow studying how the peculiar parafermionic properties

previously discussed emerges at the level of interacting electrons’.

4.1 Anyons

It 1s well known that in 3 spatial dimensions particles can be either fermions or bosons,
depending on their exchange statistics: a many-body bosonic wave function is completely
symmetric with respect to the exchange of two particles while a fermionic one is completely
antisymmetric. Interestingly enough, a much wider variety of behaviors are possible in 2 spatial
dimension, as pointed out for the first time in Ref. [176] in 1977. Particles which are neither

fermions nor bosons have been named anyons [177].

4.1.1 Two indistinguishable particles

In order to highlight the differences between the three-dimensional case and the two dimensional

one, let us focus at first on two indistinguishable particles at positions 7 # 7,. The configuration

'In this chapter we set i = 1
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(b) Paths belonging to the exchange class.

Fig. 4.1 First homotopy group of the configuration space for two particles in 3 spatial di-
mensions: sketch of the two possible classes of closed loops (with fixed radius) on C3. The
circle represents half a sphere, viewed from above, whose opposite points on the boundary are
identified (and marked with crosses).

of the system can be described in terms of the center of mass R = (7| +7,)/2 and the relative
coordinate 7 = 7| — 7 # 0. The former does not play any role in the exchange of the particles
and we can therefore safely forget about it in what follows. Note that, since the two particles
are indistinguishable, points 7 and —7 must be identified with each other. As a result, the
configuration space of the relative coordinate is given by Cy = (R? — 0) /Z, with d = 2,3.

Suppose that at time #; the two indistinguishable particles are at positions 7|; # 7»;, i.e. the
system is initially at point 7; € C;. The physics of the system can be studied by means of
the path integral approach which, in turn, requires to take into account all the possible paths
in configuration space which connects 7; with a final point 7. To this end, it is important to
study the properties of these paths and, in particular, the existence of different classes of paths.
In mathematical terms, this task is known as computing the first homotopy group II; of the
configuration space Cy [178].

Focusing at first on d = 3, it turns out that there are only two distinct classes of paths
in C3: mathematically IT;(C3) = Z,. Here distinct means that paths belonging to different
classes cannot be continuously deformed into each other. In order to develop some intuition,

it is useful to restrict our analysis to closed loops with a fixed? |7|. The configuration space

2 Note that, if |#| varies along the closed path, is it possible to continuously deform it into another path with
fixed |F| belonging to the same class.
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Fig. 4.2 First homotopy group of the configuration space for two particles in 2 spatial dimen-
sions. Three different classes of closed paths (with fixed radius) with different winding number:
0, 1 and 2.

becomes, therefore, half a sphere with the additional prescription that opposite points on the
boundary (the diameter) are identified. This allows to easily visualize the closed paths looking
at the half sphere from above, see Fig. 4.1. The direct class consists of all the loops which
can be continuously shrunk to a single point, i.e. to the trivial path where the two particles do
not move at all [see Fig. 4.1a]. By contrast, the so-called exchange class consists of all the
remaining loops, which are associated with an exchange of the two particles: the path connects
two antipodal points 7; and —7; [see Fig. 4.1b]. When the “trajectories” of two particles in 3 4 1
dimensions are considered, it only matters whether at the end the two particles are exchanged
or not: it does not matter at all how complicated these trajectories are in between the initial and
the final point. This statement is directly related to the fact that all knots in 4 dimensions are
trivial, i.e. they can always be untied.

The situation is completely different when d = 2. The first homotopy group is now
I1;(C;) = Z, meaning that paths can be subdivided into infinite classes Xy, which can be
labelled by an integer number v. Again, for ease of visualization, let us focus on closed path
with fixed |F|. The configuration space becomes half of a circumference, whose two endpoints
are identified with each other. By looking at Fig. 4.2, it is easy to convince ourself that loops
can be classified based on their winding number v around the circumference. As a result,
specifying only whether a path exchanges two particles or not is not enough: one must also
specify how many times the two particles wind around each other. Along the lines of the
previous paragraph, this finding can be related to the fact that, as everybody experienced, it is
indeed possible to tie knots in 2 4- 1 dimensions.

In order to see how these interesting results are related to physics, let us compute the

quantum amplitude between the initial state at time #; and a state at time ¢, both lying at the
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same point in the configuration space 7;. If d = 3, one has

(i(t;)|7i(tr)) Z S 4 ¢i0 Z S0 .1
veD YeE

where we distinguished between closed paths y belonging either to the direct (D) or the
exchange (E) class. Here S|v] is the action computed along . Note that, since the two classes
are completely decoupled, we are able to introduce the phase ¢ which simply means adding
a harmless constant to the action S[y] when y € E. Such a phase, however, is not arbitrary
because composition rules must be satisfied: two concatenated paths, each one belonging to the
E class, clearly gives a path which belongs to the D class. This means ¢2¢ = 1 and therefore
= +1. Particles whose physics is described using the +1 are bosons, the others are fermions.

By contrast, if d = 2 one has

<rl(tl)’rl(tf) Z [z@v Z e ] . “4.2)

VEZ reXy

When paths are concatenated, winding numbers clearly sum up. This poses a constrain on the
phases ¢!% % = ¢%+u which implies 6, = v6. Interestingly enough, the angle 6 remains
arbitrary: in two spatial dimensions, one can therefore have bosons 68 = 0, fermions 8 = 7 but

also everything in between, i.e. anyons!

4.1.2 Permutation and braiding groups

The above arguments can obviously be extended to N indistinguishable particles. For d = 3, one
can show that the disconnected classes of closed paths in the configuration space correspond
to the possible ways to permute N objects. These permutations, along with their method of
composition, yield the so-called symmetric group Sy. The problem of associate a complex
phase to each class, consistently with the compositions rules, is equivalent to find the one-
dimensional unitary representations of Sy. For N = 2 we have already shown that there are
only two possibilities. As expected, the same holds in general since there are only two 1D

unitary representations of Sy:

* the trivial one, which associate the phase +1 to every permutation;

* the alternating one, which associated either +1 or —1 depending on the parity of the
number of exchanges.

Particles which behave accordingly to the trivial (alternating) 1D representation of Sy are

bosons (fermions).
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Fig. 4.3 The identity {, and the three generators ; of the braid group B4. On the right, the
Yang-Baxter relation shown pictorially.

For d = 2, closed paths are classified based on the way particles’ trajectories interweave
with each other in a 3D space-time. If N = 2, as we have seen, the classification simply
counts how many times the two trajectories twist around each other. In general, equivalence
classes of interweavings are called braids. Together with their composition method, they yield
the so-called braid group By. Counterclockwise exchanges of neighbor? particles form the
generators {; of this group. Group inversion is given by the clockwise exchange (¢;)~! while
the identity, i.e. no exchanges, is denoted by &y = (£;)(;)~!. There are two defining relations
satisfied by the group generators

CiCj = CjCi for |i—j| >1 4.3)
CiCiv16j = Cir18iCi1 (4.4)

which can easily checked pictorially using Fig. 4.3. Eq. (4.3) represent a far-commutativity
relation while Eq. (4.4) is known as Yang-Baxter relation. In order to determine the possible
behaviors of particles in two spatial dimensions, one has to find the unitary representations
of By. Focusing at first on 1D representations, it turns out that the situation is the same
we encountered for B;: there is an infinite number of 1D representations which consist in

associating the complex phase ¢’? to each generator, with 6 arbitrary.

3 Some arbitrary ordering rule has to be defined.
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Being U(1) an Abelian group, anyons associated with 1D representations of By are called
Abelian anyons. Interestingly enough, it is possible to conceive even more exotic particles
which behave accordingly to higher dimensional representations of By. These particles, whose
existence requires that the system exhibits some degeneracy, are called non-Abelian anyons
[179, 178]. By braiding two or more of these particles, the quantum state of the systems does
not pick only a complex phase but it undergoes a unitary transformation within the degenerate

subspace!

4.1.3 Majoranas as an example of non-Abelian anyons

In the previous subsection, we showed that particles in a 2D space can behave not only as
fermions or bosons but also as anyons. It is important to stress, however, that a low dimensional
confinement is a necessary condition for the existence of anyons but it is clearly not sufficient:
for example, the physical degrees of freedom in a standard 2DEG (two-dimensional electron
gas) are fermionic!

Remarkably enough, the Majorana modes introduced in the first chapter do behave as
non-Abelian anyons. A convenient way to study their exchange statistic, easily generalizable to
parafermions, will be discussed in Section 4.2.1. Here, however, we want to present an intuitive
argument following Ref. [180]. To this end, let us consider two generic Majorana operators
(which might be a; and/or b;) and conveniently call them ¥; and 9. As explained in Sec. 1.4.2,
they obey the defining properties

n=v r=n (4.5)
=1 (4.6)
{n,n}=0. (4.7)

Moreover, it is possible to combine them to build a fermionic operator

f=-n+in) (4.8)

| =

which clearly satisfy {f,£} = I and allows to define a fermion number

ng=1f=—(1+ipyn). (4.9)

| =

The goal now is to build a braiding operator U; » which exchange the two Majoranas. It

must obey the following constraints:
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* Up v Uy 21 must be a Majorana operators, i.e. it must obey properties (4.5), (4.6), and
4.7);

¢ the fermion parity must be conserved, i.e. [n¢,U; 2] = 0.

As a result, the only possibilities are [180]:

U211 Uiy =50 (4.10)
Uia Uiy =+, (4.11)

where the freedom in choosing the overall sign stems from the possibility to associate U »
either with a clockwise or a counterclockwise exchange. The unitary operator which generates
this transformation (with y; — —79 and p» — 71) is

1 T i
Ul,zcxﬁ(l—l—ylyz):(l—nf)e "4 L nee's (4.12)
This operator clearly induces a non-trivial unitary transformation within the subspace spanned

by the two eigenstates of n¢|n) = n|n):
Ur2(a/0) +BI1)) = (ae™510) + BeF 1) ) 4.13)

It is therefore possible to change the quantum state* of a system just by braiding two Majoranas.

Note that, if other Majoranas 7; are present, the generic braiding operator U; ;11 will satisfy
both far commutativity and the Yang-Baxter relation, thus proving to be a legit 2D representation
of the braiding group.

At this point, one may wonder how braid can be implemented within a 1D wire. A simple
way out is to actually consider a 2D network of wires, whose simplest example is the so-called
T-junction [71, 26]. As shown in Fig. 4.4, it is possible to successfully braid the edge modes
by locally controlling the parameters in the wires and tuning them either in the trivial or
topological phase. Many other protocols have been devised as well [181]. Their experimental
implementation, however, represents a formidable ongoing challenge [8, 69, 70, 9].

The last years have been characterized by huge experimental efforts aiming at the ob-
servation of anyons, the reason being their twofold importance. In fact, in addition to their
intrinsic value in the framework of fundamental physics, non-Abelian anyons also represent

an extremely promising platform to perform the so-called topological quantum computation

4 In reality, states like the one considered in Eq. (4.13) are not physical since their fermion parity is not defined.
In order to avoid cat states, real implementation of the braiding protocol must consists of at least two couples of
Majoranas [10].
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7

Fig. 4.4 Simple braiding scheme for a couple of Majornas by exploiting a T-junction. Majornas
are moved by locally tuning the wires either in the topological (dark blue) or trivial (light blue)
phase.

(TQC) [10, 180]. The key feature of TQC, i.e. the possibility to minimize decoherence at the
hardware level, will be briefly discussed in the following subsection.

4.1.4 Non-Abelian anyons and topological quantum computation

The birth of quantum computation dates back to the 80s, when people started realizing that
a computer able to operate coherently on quantum states can be much more powerful than
a standard classical computer [182—-185, 10]. Some many-body quantum Hamiltonian, for
example, can be simulated exponentially faster on a quantum computer than on a classical one
[183]. The interest in quantum computation is not confined within the physicists community:
the celebrated Shor quantum algorithm for integer factorization, for instance, is extremely
relevant for encryption and cryptography [186].

At the most elementary level, quantum computation consists of three steps: the initialization
of the system, its unitary evolution under a Hamiltonian H (z), and the measure of the output.
In this sense, the Hamiltonian can be seen as the software program which is run. In complete
analogy with a classical computer, a versatile and programmable quantum computer must
consist of many small building blocks, which can be accessed and manipulated individually.
These fundamental blocks are called qubits®: while a classical bit can be either 0 or 1, a qubit is
a quantum-mechanical two-state system that can be in any of the infinitely many superpositions
o|0) + B|1). The state of a n-qubit system is therefore a vector in a 2"-dimensional Hilbert
space. The elementary unitary operations performed on qubits are called quantum gates, in
analogy with the logic gates used in classical computation.

The biggest issue in building a working computer is represented by errors, which inevitably
happen during any kind of computation. Error correction schemes play therefore a key role,
both for classical and quantum computers. In the former case, they’re based on repeatedly
checking information against redundant copies of it. In a quantum computer, the task is more

complicated. A measurement at some intermediate stage of a calculation, in order to see if some

Note that it is also possible to conceive systems based on qudit, i.e. d-state systems with d not too large: this
will be the case for parafermions [187].
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errors have occurred, would cause the wave function collapse and ruin the whole calculation.
Moreover, while in a classical computer errors are represented by discrete bit flip, quantum
information is much more fragile and subject to continuous errors (e.g. the change of a phase
in a state superposition). Despite this difficulty, many clever error correction schemes have
been devised for quantum computers [188]. On a practical way, however, one has to take into
account that also these schemes may be noisy, meaning that errors can occur even during error
correction [188]. In the end, quantum computation can be performed only if the error rate on
single operations is kept extremely low.

From a practical point of view, errors can be roughly divided into two categories [10]:

e errors occurring when qubits are simply storing information (i.e. when they act as a

quantum memory);

e errors occurring when qubits are processed with quantum gates (e.g. when a quantum
state is rotated by 90.01° instead of 90°).

Interestingly enough, topological quantum computation is protected from errors of both kinds.
Let us think, for example, about non-local Majorana qubits. Here the information is stored
in couples of topologically protected edge Majoranas modes. Any local perturbation has no
nontrivial matrix elements within the ground state subspace, meaning that this kind of quantum
memories are rather immune from decoherence. Moreover, protected quantum gates can be
build by exploiting the adiabatic braiding of non-Abelian anyons: the outcome of these unitary
operation depends only on the topology of the trajectories of the anyons and does not depend
on the particular geometry or dynamics.

One of the biggest challenges faced by TQC is to find non-Abelian anyons whose braiding
properties are rich enough such that all the necessary quantum gates can be performed by
exploiting braiding. Unfortunately, this is not the case of Majoranas-based qubit. They would
indeed require a whole set of non-protected gates in order to be able to perform universal
quantum computation, i.e. to perform computations which cannot be efficiently simulated also
by classical computers [10, 71, 187]. This implies by no means that Majoranas are useless
for quantum computation: it is still possible to exploit part of their topological robustness and
devise convenient platforms to efficiently implement non-protected gates and error correction
schemes [189, 190]. It makes sense, however, to seek for more complicated non-Abelian anyons,
with richer braiding properties. The study of parafermions, a generalization of Majoranas,
heads in this direction and will constitute the topic of the following sections.
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4.2 Parafermions, a generalization of Majoranas

Majoranas are extremely interesting to study and promising for their potential applications.
However, as underlined in the previous section, their braiding properties are not complex enough
to allow for universal computation. One may therefore wonder if it is possible to conceive
other kinds of non-Abelian anyons, which generalize Majoranas and are computationally more
powerful. A positive answer is provided by the so-called parafermions which will be the central

subject of what follows.

4.2.1 Clock models as a convenient way to generalize Majoranas

A convenient way to generalize Majoranas is to look at first at their spin-model counterpart. It
is indeed well known [191, 7, 192, 11] that a Jordan-Wigner transformation allows establishing
a mapping between the spinless fermions, which make up the Kitaev chain, and bosonic Ising

spins. In particular, by considering the non-local mapping

j—1

aj= (H c%‘) o} (4.14)
k=1

bj=—iajo} = <Hok> (4.15)

between Majorana operators a; and b; and Pauli matrices on site j, the Kitaev Hamiltonian on

a open chain [see Eq. (1.42)] is mapped onto a transverse-field Ising model
L1 L
HK:—iJijajH—ifZajbj (4.16)

:_JZ ol fZG 4.17)

Before moving on and introducing parafermions, one important remark is in order. Although
the two chains clearly share the same spectrum, their topological properties are rather different.
This is due to the fact that the mapping in Eq. (4.14) and (4.15) is non-local: operators which
are local in terms of Majorana can feature a highly non-local expression in terms of spins
and vice-versa. In particular, one can easily show that the non-trivial topological phase of the
Kitaev chain (J > f) maps to the topologically-trivial ferromagnetic phase of the Ising model.
While they both feature an exact two-fold degeneracy at the sweet-spot (f = 0 and J # 0), their
properties are indeed different: in the Kitaev chain the degeneracy is protected and due to the
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presence of dangling Majoranas localized at the two edges of the system; in the Ising chain
the degeneracy stems from the spin-flip Z, symmetry which is spontaneously broken and it is
characterized by a bulk local order parameter, i.e. the magnetization along z, <GJZ.>.

Although topologically trivial, working with the Ising chain is very convenient when it
comes to devise possible generalizations. In particular, a straightforward idea is to replace
the two-state Ising spin variables and the Z, symmetry of the model with p-state variables
and Z, symmetry. The subsequent step would be to exploit the generalization of the mapping
in Eq. (4.14) and (4.15) in order to go back from the generalized spin-model to a topological
model with generalized Majoranas. This procedure has proven effective and the operators
which generalize Majoranas, which we are going to call ¢¢; and 3, are named Z,, parafermions
[11, 193]. Let us now present in detail the procedure we have just sketched. The single-site ¢*

operator measures the spin and generalizes to

®
1 O
GZ:< > — o= > (4.18)

with @ = ¢'» . Along the same lines, the single-site operator ¢, which cycles the spin,

generalizes to the “shift” operator

0 0 O 1
1 0 O 0
. 01
o= T=10 1 0 0 (4.19)
1 0
0
0O 0 0 1 0
These operators obey the on-site algebra
ol =t'=1, 01, =01;0; (4.20)

and commutes on different sites, e.g. 0T = 7,0, for j # k. The generalization of the
transverse-field Ising model

L—-1 L
How=—J Y (¢%0], j0;+He)~f Y (97 +H.c.) .21)
=1 =1
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is known as Clock model.

The Z, spin-filp symmetry featured by the Ising model is promoted here to a Z, symmetry.
The presence of parameters ¢ and 6 make the phase diagram of the model more complicated
than the simple one of the Ising model [11, 194, 195]. In the following, however, we will
mainly focus on the simple case ¢ = 6 = 0 known as the p-state Potts model [196]. It exhibits
a self-dual critical phase transition at J = f, separating ordered (J > f) and disordered (f > J)
phases. At the sweet-spot f = 0, the Pott model features a p-fold degeneracy throughout all the
spectrum, which indicates the spontaneously breaking of the Z, symmetry. Each ground state
can be identified by the local order parameter (o;), which generalize the magnetization of the
Ising model.

We are now in a position to implement the generalization of the mapping in Eq. (4.14) and

(4.15), rewriting the Hamiltonian in terms of parafermions [193]
j—1
o = H T | O (4.22)
k=1

j—1
ﬁj:lOCj”L'j:l <HTk> O;Tj (4.23)

k=1

Where 1 = e~#/P(—1)P. These operators obey the parafermionic algebra

OC;-) = ﬁjp =1 Otjﬁk = wﬁkaj (with k > j) (4.24)
OC}LOC]' = [)’;fﬁj =1 (4.25)

The Potts model Hamiltoinan thus becomes
L1 L )
H=—-1Y (VBof, +He) -1y (Vespf+He) . (4.26)
j=1 j=1

This model looks like a direct generalization of the Kitaev chain and features similar character-
istics. In particular, at the sweet spot f = 0 and J # 0 there are two dangling parafermions o
and f;, which commute with the Hamiltonian. Remarkably, they do not commute with the Z,
symmetry of the Hamiltonian and are therefore responsible for a p-fold degeneracy throughout
all the spectrum. Operators o and 3, are therefore topologically protected zero-energy edge
modes.
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Braiding of Z, parafermions

Now that Z, parafermions have been introduced, one can study their braiding properties in
order to highlight their advantages over Majoranas (which can be thought as Z, parafermions).
To this end, one has to identify which representations of the braid group are compatible with
parafermions’ algebra. We consider a chain of 2L uncoupled parafermions (o, B1, 0, ..., Br)
and seek for the set of unitary operations which can be performed by braiding them. It turns

out to be convenient to relabel the parafermion operators as

%=1 4.27)
Bi =1
This allow to readily define the so-called parity operators as
ptl
Lj=02v.,- (4.28)
and prove that they obey [187]
F? =1 (4.29)
[Fj,l“k] =0 if |j—k|>1 (4.30)
[0 = o0 r, i |j—k=1. 4.31)

These operators clearly satisfy far-commutativity (see Eq. (4.3)) and therefore represent the
building blocks of the unitary representation U; of the braid group generators which exchange
Y; and ¥; 1. In particular one has

1

U=—Y cnI. (4.32)
ﬁmezzp ’

Note that the overall parity is conserved by these braid operators as expected

L
U;, Y Tul=0 Vj (4.33)
k=1

Constraints on the coefficients ¢, are imposed by requiring unitarity U jU; =1 and the Yang-
Baxter relation (see Eq. (4.4)). A family of 2p solutions for arbitrary p can be found [187]

+ m(m+2r+p)

em=w 2, (4.34)
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with r € Z,. The presence of & simply stems from the fact that we are free to associate U,
either to clockwise or anti-clockwise exchanges. It is instructive to check that for Majoranas
(p =2) one get co = 1, ¢; = %I, consistently with Eq. (4.12).

While being computationally way more powerful with respect to Majoranas (especially
when p is an odd prime number), one can show that Z, are still not enough to perform universal
quantum computation [187]. It is worth noting, however, that it is possible to generate even
more exotic kinds of anyons by letting Z, parafermions interact with each other: a 2D lattice
of Z3 parafermion, for example, can give rise to the so-called “Fibonacci” anyons which are

eventually capable of universal topologically quantum computation [ 194, 197].

4.2.2 Proposed system which could host parafermions

The richer braiding properties of parafermions come with an obvious drawback: their greater
complexity makes it harder to find physical systems which can actually host parafermions.
In view of their commutation relation (4.24), for instance, it is likely that strongly correlated
systems with non-trivial emergent degrees of freedom are needed. Moreover, it has been shown
in Ref. [198, 199] that is not possible to have parafermions which are fully topologically
protected in strictly 1D systems.

In spite of these difficulties, there are several proposals of systems which can host zero-
energy modes obeying parafermionic algebra. While a precise and detailed description of the
different setups is beyond the scope of the present subsection, it is useful to provide a list of the

main ideas which have been put forward.

 Several proposals are based on 2DTI-superconductor hybrid structures [200-202]. Here
Z4 parafermions emerge as a result of the interplay between two gapping mechanisms of
the helical QSH edge states. One is provided by the proximity-induced superconductivity,
the second is actually what differentiates the various proposals: in Ref. [200], they
consider two-particle Umklapp backscattering within a single helical edge state; in Ref.
[201] the gap is opened thanks to a spin impurity coupled with the helical edge; in [202],
they considered two-particle scattering processes between two helical edge states brought
close together by an extended constriction of the QSH bar. In all these proposals, the

presence of electron-electron interaction is a crucial ingredient.

* Other proposals rely on interacting 1D quantum wires [203-205]. In Ref. [204], for
example, two strongly interacting Rashba wires are coupled with a conventional s-wave
superconductor: here Z3 parafermions appear at the wires’ ends because of the interplay
between two types of induced superconductive pairing, intrawire and interwire. Note that

(strong) electron-electron interaction is necessary also for this kind of proposals.
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* Another important class of proposals is based on hybrid system consisting of fractional
quantum Hall bars (which also feature 1D edge states) coupled with superconductors.
The main difference with respect to the other proposals is that, here, the 1D edge channels
are intrinsically embedded into a 2D environment, consisting of a strongly interacting
quantum liquid. Depending on the filling factor of the fractional quantum Hall bar,
different kind of parafermions can arise. For example, Z,, parafermions are considered

in [181, 206], while Z3 parafermion arise in Ref. [207].

Although useful and interesting, these approaches all rely on effective low-energy field
theories. Therefore one may wonder if it is possible to find an exact mapping between chains
of Z, parafermions and fermions on a lattice. This would allow studying exact microscopic
fermionic models, discussing how the peculiar features of parafermions arise there and high-
lighting the difference with the approaches based on bosonization. Moreover, a fermionic model
which generalize the Kitaev chain may be the starting point for studying parafermion-related
physics with cold-atoms setup. The existence and the properties of an exact mapping between
parafermions and fermions will be the central topic of the following section, which constitutes

the original content of this chapter.

4.3 Parafermions in 1D fermionic lattices

In this section, we will present our results, published in Ref. [16]°. The starting point of the
analysis is a one-dimensional open chain of Z4-parafermions. At each site i € {1,...,L}, there
are two parafermionic operators ¢; and f3; which obey the defining properties in Eq. (4.24) and
(4.25).

4.3.1 From Fock parafermions to fermions

To relate these operators to physical electrons, we study how they act on the states of the system.
The fact that 061-4 =1= Bi4 implies that each lattice site can be associated with four different
states, and that the application of the operators ; and f; cycles through those states. This
notion can be made more precise by associating a Fock space to the parafermionic operators
via the introduction of “Fock parafermions” (FPF) [210]. The latter are described by creation

(d;) and annihilation (d;) operators, which allow us to express ¢; and f3; as

aj=dj+d, Bj=e™"d;iN+d7), (4.35)

6 Note that a similar topic has been discussed also by two contemporary papers, in Ref. [208, 209]: the findings
discussed in these references are consistent with our results where they overlap.
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where

3
N; = Zod}f’"d}” (4.36)
m=

is the number operator for FPF whose four integer eigenvalues run from O to 3. These
relations show that both o; and B; reduce the number of FPFs on site j by one modulo 4. The

parafermionic algebra of ¢; and f; is handed down to the FPFs in their commutations relations,

dldj = idjd[, d;dj =—i djd; for [ < j, (437)
d"dr+d T a " =1 form=1,2,3. (4.38)

Moreover, on a given site d;‘ = 0. The key idea of our mapping to electrons is to identify the
four-dimensional parafermionic Fock space with the Fock space of spin-1/2 fermions.
As a first step, we focus on a single site with FPF annihilation operator d and fermionic

operators ¢y |. Denoting the FPF basis by

{10),11),12),13)}, (4.39)

where |n) are the eigenstates of the FPF number operator N with eigenvalue n, we can for
instance identify these states with the fermionic basis

{IE), cl|E), ic[c]|E), —ic|E)}, (4.40)
where |E) denotes the vacuum state, ¢s|E) = 0. For this choice of basis, one finds the
representation (see Appendix D)

_;_

d= CICTQ — c?cjci + "CTCT% +cy, 4.41)
which automatically satisfies the algebra of Eq. (D.2). Clearly, different choices of the fermionic
basis (D.4) lead to different expressions for d. The mapping (4.41), however, is particularly
useful because d has a well-defined fermionic parity. This will simplify the extension of the
mapping from a single site to a chain, to which we turn now.

The well-known Jordan-Wigner transformation maps spin-1/2 chains to fermionic chains
by the introduction of string factors. A similar technique can be employed to map parafermionic
chains to electronic chains, e.g., by defining

dj= i):P<.i(NP+2”PT+2nP¢> (ch —Cjphj| — C;F'Tnji + icjian) (4.42)
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where njs = cj. Cjo- The FPF number operator has the fermionic representation
Np :in—zinnp¢+3an,. (4.43)

The string factor cancels the fermionic anticommutation factors of —1 = i> while adding the
factors of +-i required for parafermions. The fact that d; has odd fermion parity ensures that
every parafermionic operator conserving the number of FPFs modulo 4 is transformed into
a fermionic operator without string factors. To see this, consider a generic operator D which
involves FPF operators on m adjacent lattice sites

D=d%d . d%d . (4.44)

where o, B € {0,1,2,3}. Its fermionic expression factorizes into a form

D— i2p<j[2§n:0(ﬁi*ai)] (Np+2n,14+2n,)) C

with an operator C containing, up to prefactors, only fermion operators on sites j, ..., j+m.

Requiring that D conserves the total number of FPFs modulo 4 then implies

m
) (Bi—a)=0(mod4),
i=0
so the string factor cancels. This remarkable result is at the heart of the locality of our mapping

between parafermion chain Hamiltonians and electronic systems.

4.3.2 Mapping of the Hamiltonian

In the remainder of the chapter, we will focus on the Z4-parafermionic Hamiltonian at the

topological sweet spot

L—1
H;y=—-J Z et BjaL_l +h.c.
i—1

! (4.45)

L-1

— ; 3 N; 73 43 T LN; T3 gt

——J le (i1 +d P+ dyd 1+ dPd] ) b,
]:

defined on a L-site open chain. This Hamiltonian can be readily obtained from the Pott

model in Eq. (4.26) by considering f = 0. It features two dangling parafermions, a; and f,

which commute with the Hamiltonian and induce an exact and topologically protected 4-fold

degeneracy throughout the entire spectrum. The Z4 symmetry Z featured by this Hamiltonian
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is clearly associate with the conservation of the total number of FPFs modulo 4
Z =il (4.46)

The mapping (4.42) allows us to translate the Hamiltonian (4.45) to a local fermionic

Hamiltonian
Hy=H% +H®% + 7O (4.47)
with
H? = —JZ [Cj;,jcmjﬂ —1 Cic,jcjr,jﬂ] +he., (4.48)
o.j
H® = —JZ [c;jc@jg (—n—o,j —n—c,j+1) +cjy7jc—6,j+1 i(”fo,j +”GJ+1)
o,j
+ CJLG7J’CL7J-+1 i(ne,j+n_c 1) +C;,jcg,j+l (n-o,— "*6,j+1>} +he., (4.49)
H(6) — _JZ |:— 21'0;]-0_6’]'4_1 (n707jn67j_|_1) — ZiCT—G,jCTG,j—H (n07jn—67j+1) ] +hC .
j
(4.50)

In the fermionic language, H; consists of superconducting pairing and hopping terms with and
without spin-flip, locally weighted by the fermion occupation numbers on the lattice sites. Note
that the Hamiltonian H; is time-reversal invariant.

The mapping we have developed allows to express parafermionic operators in terms of
electrons. The zero-energy parafermionic modes, in particular, have the following fermionic

expression:

o = iC]U’ln —chnw +CIT(1 —I’l]i) —I—ich(l _an) (4 51)
. ~“YLIN. r. . . . '
B = em/4 (—l)ZF' J [ZCZT”M +icpr(1—np)) — ch(l —npp) — lcunm} )

These equations represent an important result, namely the explicit expression of combinations of
fermionic operators that satisfy the parafermionic algebra and that commute with the fermionic
Hamiltonian Hj.

An important question concerns the locality and topological protection of the zero-energy
states of the fermionic Hamiltonian. Although o and B are localized at the edge in the
parafermionic language, one of the corresponding fermionized operators (in our case fr)
inevitably contains a non-local string factor. This string factor is not associated with a density
of states (see below), but allows the edge mode to “feel” what happens in the bulk. The non-

locality hence challenges the fopological protection of the fourfold ground state degeneracy
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in the fermionic model. As we will discuss in the next section, it indeed turns out that only a
twofold degeneracy is topologically protected. Remarkably, the non-locality of f8; does not
prevent us from finding local operators on either edge of the fermionic chain that cycle through
the four degenerate ground states (see Appendix E).

4.3.3 Topological properties of the fermionic chain

In the parafermionic language, the model in Eq. (4.45) represents a topological phase [11, 211,
194] in which the spectrum exhibits a topologically protected fourfold degeneracy that cannot
be lifted by local parafermionic perturbations. It is natural to ask if the same holds also for the
corresponding fermionic chain, since it is well known that the presence of string factors can
change the topological properties of the system. It is the case of the Kitaev chain and the Ising
model discussed in section 4.2.1.

In this respect, it is instructive to study the symmetries featured by the fermionic model
in Eq. (4.48-4.50). The Z4 symmetry of the parafermionic Hamiltonian in Eq. (4.45) can be
expressed in terms of fermions as Z = jXi [(njpm ) +205] e square corresponds to the usual Z,
fermion parity P = 2% = (— I)Z.i(”JT 1), Interestingly, the local operator M; = iy; ;v ;, where
Yo.j = c; j 1 ¢o,j are Majorana operators, commutes with the Hamiltonian but anticommutes
with the Z4 symmetry {M;, Z} = 0. It can be therefore identified as a Z, local order operator,
associated with the Z, symmetry Sp = e~i%272 Z + h.c. which is spontaneously broken
and satisfies [Sp, H;] = {Sp, M} = 0. This local order parameter thus differentiates the four
degenerate ground states into two pairs and the degeneracy between them can be split by a
local perturbation containing any of the M;. A concrete example of such a perturbation is a

magnetic field along the y axis

1

L
5 (Mj+ing jm,. ) (4.52)

L
_ ST il _
Hy = By Z ! (CMCM - Cj,¢cj7T> = By
i=1 '

i=1

where N6 j =1 (c; j—Co, ;) are the other Majorana operators. Our DMRG simulations indeed
confirm that even a small field By reduces the fourfold degeneracy to a doublet of twofold
(almost) degenerate states, with an energy difference which scales linearly with the system size
L, as showed in Appendix E.

On the other hand, the fourfold degeneracy is protected against other local perturbations,
including in particular a magnetic field in the (x,z)-plane or a chemical potential: our DMRG
calculations indicate that the lifting induced by these perturbations is exponentially suppressed
in the system length, see Appenidx E. The protection of the degeneracy against some of these
perturbations becomes apparent in the parafermionic language. Both the chemical potential and
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the magnetic field along the z axis conserve the total number of FPF modulo 4 and they thus
feature a local expression also in terms of parafermions.Our findings are consistent with the
results of Ref. [198, 199, 212] in that the fully topologically protected part of the degeneracy
(the part that cannot be lifted by symmetry-breaking local perturbations) is only twofold.

4.3.4 Phase diagram

Being an exactly solvable model, H; allowed us to derive important analytical results such as the
existence of the local order parameter M; and the expression of the zero-energy parafermions
in Eq. (4.51). The price we payed for this exact solvability is the rather complicated form
of Hj in the fermionic basis, which in particular includes three-body interactions. Instead of
searching for fine-tuned models that might realize Eq. (4.48-4.50), we view this model as one
representative of a much larger class of systems realizing parafermionic physics at low energies.
In this spirit, the specific model H; is not only crucial in that it allows us to fully understand
the physics beyond any low-energy approximations, but also as a controlled starting point
around which we now explore topologically equivalent models by smooth deformations of the
Hamiltonian. As long as the gap is not closed, the system remains in the same topological
phase and will feature the same topological properties. In particular, we consider the much
more generic Hamiltonian

AWU,v)=H? +U [v (H<4> +H(6>) +(1- V)H@)} (4.53)

where the parameter U weights all interacting terms and V' allows to smoothly transform the

three-body terms into simpler two-body terms with

AY=-JY [c;jco,jﬂ (—n—o,j—n_c,j+1)
0.J (4.54)
+ C;jC;J-H (n—g,j—n_g,j11) } +h.c.

DMRG simulations on a chain with 16 sites reveal a gap closure in the region U ~ 0.5 —0.7,
see Fig. 4.5. This defines two different phases: a “strongly interacting” (SI) one on the right
and a “weakly interacting” (WI) one on the left. The original Hamiltonian H; [triangle in Fig.
4.5] belongs to the SI phase and can be continuously deformed into Hy = H(1,0) [square] — an
Hamiltonian in the Z4 parafermionic phase without three-body interactions. Note that, away
from the exactly solvable point H;, Hamiltonians H in the SI phase feature an exact four-fold

degeneracy (through out all the spectrum) only in the L — oo limit.
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2.2J

Energy gap

2

U

Fig. 4.5 Energy gap [units J] of H(U,V) as a function of U and V. Triangle, square and star
correspond to Hy, Hy and H® respectively. DMRG simulations on 16 sites.

Our numerics thus show that parafermionic physics can already be generated from occupation-
dependent hopping and pairing terms. Experimentally, such conditional terms can be realized if,
e.g., the hopping involves intermediate virtual states whose energies are tuned by the interaction.
Somewhat simpler density-dependent hoppings have already been engineered in cold-atomic
systems [213-215]. On more general grounds, however, any not strictly local interaction gives
rise to occupation-dependent hoppings and pairings [216-218]. It would be most desirable to
identify (quasi-)one-dimensional systems in which these occupation-dependent terms are of
appreciable size — a challenging goal for future research that will also benefit from investigating
the stability of the parafermionic phase under further modifications of the Hamiltonian.

4.3.5 Fermionic spectral function

In analogy with what we have discussed for the Kitaev chain (see section 1.4.2), a crucial (albeit
not conclusive) signature of topological phases is the appearance of a zero-energy density of
states at the ends of the topological chain. In general, the spin-averaged fermionic local spectral
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Spectral weight A;
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Parameters

Fig. 4.6 (A): A; for different points in the (U,V) parameter space. Green plots feature a
dependence on the parity of the site j. (B): A (blue dots) along the straight paths in parameter
space connecting H 2 [star], Hy [square] and Hj [triangle]. The energy gap [units J] is shown
in red to help identifying the phase transition (here around U ~ 0.7) between the W1 phase (red
fade) and the SI one (green fade). DMRG simulations on 16 sites.

function at zero temperature reads

Aj(@) =271 ¥ |80~ Ep+Eas)|(9lc)|GS)
ole) (4.55)
+8(0+ Eg— Ecs) |(9lcjo|GS)| |

where |@) are the eigenstates of the Hamiltonian with energies E and |GS) is the ground state
the system is in’.
At first, we focus on the exactly solvable Hamiltonian H;. Denoting its four ground states

with fixed FPF number m (modulo 4) by |y;,), one has that (see appendix E)

[H = Hj] (4.56)

0| =

Y [ (Wlcjslwi) > = (8,1 +6j.L)

7For the numerical computation of the spectral function in presence of degeneracy, we select the ground state
with odd fermion parity and with the lower expectation value of M. Different choices would not have modified
the results we presented though.
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for I € {0,1,2,3} and 6 =1,|. The same holds true for the creation operators. Focusing
on energies below the gap, this immediately leads to a zero-energy peak A; 1 (@) = 7o (w)
localized at the edges and to a vanishing spectral weight in the bulk, A;(w) =0 for j €
{2,...,L—1}. This result is confirmed by DMRG simulations which also allowed us to move
away from the exactly solvable point. In particular, in Fig. 4.6 we plot the spin-averaged spectral
function integrated over the energy gap (EG) A = [;A;(®)dw for different Hamiltonians.
Interestingly, the spectral weight is robust with respect to variations of the parameters U and
V as long as the system remains in the SI phase. The fermionic edge density of state remains
indeed trapped at the edges and features only an exponentially suppressed leakage into the
bulk. This is clearly displayed in Fig. 4.6 A. Note that the spectral weight within the gap has
proven to be robust also with respect to other kind of small perturbations such as magnetic
fields (along every direction) and chemical potential.

Fig. 4.5 shows that a pronounced reduction of the interaction strength U eventually leads to
a phase transition, located where the gap closes (in a finite system the gap reaches a minimum
but remains finite). At this point the low-energy spectral weight is spread all over the chain, as
testified by the blue plot in Fig. 4.6 A computed for U = 0.7 and V = 0. Once the system enters
the WI phase, the spectral weight localizes again at the edges but with an important difference:
as clearly shown in Fig. 4.6 B, the low-energy spectral weight in the WI phase is twice the one
in the SI one. The reason is that the WI phase features two couples of zero-energy Majoranas
instead of a single pair of parafermions. The non-interacting and exactly solvable Hamiltonian
H® [red star in Fig. 4.5], which belongs to the WI phase, can indeed be expressed as two

decoupled Kitaev chains with 4 dangling edge Majoranas:

L—1
H® = —Jiy 20000 + % 2041 (4.57)

J=1

where 75 j = (Y-6.j + No.;)/V2 and Yo ; = (Yo.; — N-0.;)/V/2. Moreover, it is possible to
show that the four ground states of H (2) satisfy (see Appendix E)

[H=HWY), (4.58)

Bl

Y [(@ulcjoldn)|? = (81 +6;.)

for/ € {0,1,2,3} and o =7, . The same holds true for the creation operator. This leads to a
peak A (@) =276 (w) whose weight is exactly twice the one found in the SI phase.

The zero-energy peak in the local spectral function, localized at the edges and with weight
in a system with a time-reversal symmetric Hamiltonian provides therefore a robust signature of
the SI phase and allows to distinguish between the presence of its Z4 parafermionic modes and

the two couples of Majoranas featured by the WI phase. The existence of the phase transition
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between SI and WI underlines once more that inter-particle interactions play a crucial role for

the emergence of zero-energy parafermions, as discussed also in Ref. [205, 203, 204, 201].



Conclusions and outlook

In this thesis, we have explored the interplay between topology and interaction effects in 1D
systems, from two different perspectives. In Chapter 3, we studied how a single-electron
injection is affected by the presence of electron-electron interactions between the topological
1D edge channels in IQH and QSH effects. In Chapter 4 we studied the properties of the zero
modes which arise in a topological interacting fermionic chain, obtained from a Z,4 parafermion

Hamiltonian via an exact mapping.

Summary of the main results on the ‘“time-dependent evolution of interacting systems”
[Chapter 3]

The injection of a single electron into an interacting 1D system is one of the building blocks of
EQO and it has been already studied in the context of a couple of co-propagating 1D channels.
In this thesis, we carefully analyzed the characteristics of the two fractional excitations, created
by interactions, after a single-electron injection into the right-moving channel of a counter-
propagating system. Such a process can be engineered in EQO setups based on either IQH or
QSH bars. By using the LL model, we analytically studied the charge, momentum and energy

properties of the fractional excitations, obtaining the main results summarized below.

* Because of the electron-electron interactions, the charge and the energy of the injected
electron fractionalize between the two counterpropagating excitations. The charge frac-
tionalization ratio depends only on the interaction strength while the energy partitioning
ratio is strongly affected by other parameters as well: the width of the tunneling region,
the energy and the momentum of the injected electron. Charge and energy flows are

therefore decoupled and could be tuned separately.

* Real-space study in the local injection limit showed that the two fractional excitations
have mirror-shaped charge and density profiles. Important additional insights on their
properties is provided by the study of their momentum and energy distributions. The
former clearly shows that the injected electron loses its single-particle nature by creating

many particle-hole pairs. Interestingly, these are mostly excited within the channel not
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directly tunnel-coupled to the single-electron source. The creation of particle-hole pairs
is clearly associated with an energy relaxation process. The energy distribution of the
system features indeed a Lorentzian-shaped peak around the injection energy which is
lowered by the interactions while a relaxation tail appears between the peak and the

Fermi energy.

As an aside, we also showed that similar techniques can be used to study the time-resolved
dynamics of a LL brought out-of-equilibrium by a quantum quench of the interaction strength.
Remarkably, we analytically identified and explained the emergence of a peculiar relaxation

behavior. with the following characteristics.

* In the long-time limit, the non-equilibrium spectral function of the quenched system
relaxes towards a steady value following a universal power law decay o t~2. This
exponent is independent of the initial and final interaction strengths. This can be seen
as a robust signature of the quench-induced entanglement between counterpropagating

bosonic fields.

* This universal power law decay is robust with respect to finite temperature effects, which
actually greatly enhance its visibility by killing other non-universal contributions. This
is quite remarkable since usually all the power law behaviors appearing in fermionic

correlators are eventually destroyed by finite temperature effects.

Summary of the main results of the ‘“fermionization of parafermions” [Chapter 4]

Parafermions are non-Abelian anyons which intriguingly generalize Majoranas and are ex-
tremely relevant for TQC. Majorana zero modes nicely appear at the edge of the Kitaev chain,
a toy-model consisting of non-interacting spinless fermions on a 1D lattice in a topological
superconductive phase. Our goal was to generalize such a model, aiming at building an in-
teracting fermionic chain which features zero modes with Z,4 parafermionic algebra. To this
end, we first developed an exact mapping between fermions and parafermions on 1D lattices;
then we applied it to a well-known parafermionic Hamiltonian in a topological phase. We
eventually discussed the interesting properties of the fermionic Hamiltonians we obtained. Our

main results are summarized below.

* Itis possible to find an exact mapping between spinful fermions and Z,4 parafermions on
a 1D lattice. Despite the mapping’s intrinsic non-locality, we showed that certain local
parafermionic operators (conserving the total number of Fock parafermions modulo 4)

can be mapped onto local fermionic operators. This allows for the systematic construction
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of nearest-neighbor Hamiltonians in interacting fermionic lattice systems which feature

zero-energy parafermionic modes.

* An exactly solvable fermionic Hamiltonian is provided, thus making possible to find
an exact fermionic expression for its zero-energy parafermionic modes. Fermionic
properties of its four-fold degenerate ground states are also discussed. The original
Z4 symmetry of the parafermionic model emerges also in the fermionic one, although
with a crucial difference: the latter features a Z, spontaneously broken symmetry which

challenges the full topological protection of the parafermionic zero-energy modes.

* We identified an entire phase which contains the exactly solvable model mentioned above
as well as other simpler interacting Hamiltonians. These are more suitable for numerical
and experimental investigation while retaining the same topological properties we are
interested in. In this respect, we showed that the local fermionic spectral function is a
good quantity in order to distinguish between this interesting phase and another weakly
interacting phase where, instead of parafermions, there are two couples of less exotic

Majorana zero modes.

Outlook

Having carefully discussed the properties of the fractional counterpropagating excitations origi-
nated after a single-electron injection, it would be interesting to properly devise experimental
setups where their properties can be probed and even exploited. In this respect, a very recent
experimental breakthrough in the fabrication of QSH bars (in HgTe quantum wells) might be
extremely interesting and promising [108]. Another intriguing extension of our work is to
consider different types of single electron sources, focusing for example on levitons injection.
In this respect our work has already triggered subsequent research, see for example Ref. [219].

As for the study of parafermions, extension of the present work could investigate more
profoundly the relationship between our model and the ones relying on effective low-energy
field theories. In particular, it would be extremely interesting to understand how one of the
flagship properties of parafermions, their exchange statistics, emerges in our system and in
other models. Moreover, it would be interesting to extend our exact mapping also to chains of

generic Z, parafermions.






Appendix A

Topology

A.1 Why the Chern number has to be an integer?

Here we want to give an intuition why the Chern number appearing in Eq. (1.17) has to be an
integer. Let us assume that the whole torus can be subdivided into two different patches, P
and 72 — P, so that inside each one of them the phase of the eigenstates is smooth and single
valued. On the boundary dP between the patches, however, the phase associate with every

eigenstate |no(k)) is clearly discontinuous

Tim [no(k)) = &%) Tim [no(5)) (A1)

k*)k() ﬁ*)ko

withk € (T2—P), p € P, ko € 9P. Here { (ko) is the gauge transformation on the boundary
which relates the gauge choices made in the two patches. At this point, Stokes theorem can be
safely applied within P and 72 — P and one obtains

V x Aoy (R .dieZ/ V x A, z.dm/%xztn %) di
L5 Aydi= [ 9 Aoy (-t [ 9 Ay () -
=¢ VEK)-dk =2mn nez.

JdP
In the second line we observed that the line integral of 65 basically counts the winding number
(times 27) of the gauge transformation on the boundary between the two patches. For more
details, we refer to the literature, e.g. Ref. [40].
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A.2 The TKNN formula

Here we want to briefly review the seminal TKNN result in Eq. (1.18), highlighting the key
points of its derivation. For a more detailed discussion we refer to the original paper in Ref.
[41] as well as to other reviews, e. g. Ref. [39, 31].

Let us consider a square lattice placed in an orthogonal uniform magnetic field. The first
issue to deal with is to understand the fate of the Brillouin zone. Its existence indeed relies on
the translational invariance of the lattice which, however, is broken when we fix a gauge to
explicitly express the vector potential. The interplay between lattice and magnetic effects leads
to a surprisingly rich physics, which is very sensitive to the magnetic flux ® which threads the
Brillouin zone. It turns out that, when @ is a rational® of the unit flux Py =h/e,

o=Lo,, (A.3)
q

it is possible to define a magnetic version of the Brillouin zone, i.e. it is possible to identify
two translation operators qu and 7> which commutes between each other and allows to label
the energy eigenstates of the Hamiltonian H|k) = E(k)|k) as [31, 220, 41]

TRy = ™M k) Tolk) =™ [). (A4)

Here k = (k1,k2) can be seen as a generalization of the crystal momentum and lives in the
magnetic Brillouin zone (mBZ)

T

< oad — k< (AS)
qa a

qa a

Despite being smaller than the standard Brillouin zone?, it is still a 2D torus and it allows to
use all the machinery based on the Bloch theorem.

An explicit expression for the electrical conductivity of a system can be readily obtained
using the linear response theory and, in particular, the Kubo formula [221, 32]. The electrical
conductivity describes current response of the system when an external electrical field is applied.
Since the latter couples to the current density in the Hamiltonian, the Hall conductivity should

be determined by current-current correlators. Indeed, the Kubo formula reads [31]

(WolJy| @) (@1 Wo) — (wolJx| @) (@]Jy|wo)
(Eo—Eg)?

oy =inA"" )
[9)#[w0)

(A.6)

! Behavior for irrational values can be deduced by taking an appropriate limit [41].
2 Being ¢ times smaller, the spectrum in presence of magnetic field will split up into g different bands.
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where A is the system surface while |yp) and |@) represent the many-body ground state and
excited states respectively. When the system is non-interacting, the many-body wave functions
can be written as a tensor product of single-particle states |uq (k)), labeled by the band index o
and by the momentum k which lives in the magnetic Brillouin zone. This gives

6y —ita~ Y <Ma(%)|fy|uﬁ(z')><uﬁ(%')|Jx|ua(§)> (e (k) || g (K )><”ﬁ(7€/)|~]y|”a<7€>>.
Eq(R)<Ex (Eq(k) — Eg(K'))?
Eg(K')>Ep

(A.7)

where EF is the Fermi energy lying in the gap of the system. Plugging in the expression of the

current in terms of the group velocity

- edH
J=— A8
h ot (A.8)

one eventually obtains®

[\.)

Y / d’k |{ [akyua(%)\akxua(%»—<akxua(%)\akyua(%)> (A.9)

ny — l_ 2
Eo>ErR

Remarkably, the square bracket in the RHS is exactly the Berry curvature defined in Eq. (1.13)
for the band «. Since the mBZ is a 2D torus, Eq. (1.17) holds and allows to readily prove the

relation in Eq. (1.18) between Hall conductance and Chern number.

A.3 Phase diagram of Kitaev chain

Here we will discuss the phase diagram of the Kitaev chain, following an approach which
closely parallels the ones used before for the QSH effect [66]. We start by imposing PBC on
the Kitaev model, thereby wrapping the chain into a closed loop. This gives us access to the
bulk property of the chain and allows to work in momentum space. The Kitaev Hamiltonian

3 Here, one has to exploit the identity

(e (k)| O H|ug (K')) = (Eq(k) — Eg (k') (Ohyutc (k) |up (K'))

(i = x,y) and the completeness relation

Y lup@)up®) =1 ¥ ua(k)(ua (k)]

Eg(K')>Ep Eq(k)<Ep
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can be conveniently rewritten in the standard Bogoliubov-de Gennes from as

1 y
Hi =5 Y CiHiC (A.10)
keBZ
where CZ = (cz,c_k> and
Ek AZ
Hi=| - . A.ll
k (Ak —8k> (A.11)

Here g, = —tcos(k) — i is the kinetic energy and Ay = —iAsin(k) is the Fourier-transformed
superconducting pairing potential. The Hamiltonian can be easily diagonalized (neglecting a

constant term)

Hx =Y Epu(k) pipx (A.12)
keBZ

where the quasiparticle operators py read

E, k)+ € E; k)—¢€
A Evuik (k) + & {CkJr bulk (k) ki

= — — b (A.13)
Pk 2Epuk (k) Ay k}

and the energy of the bulk excitations reads

Epu (k) = /€2 +|Ar|2. (A.14)

Zero-energy bulk excitations are possible only when u = =+t (at k = 7 or k = 0 respectively)
or when A=0and ¢ > |u| (at k = cos~! (—p/t)). It is therefore possible to distinguish three
different gapped regions in the parameter space, separated by gap closures.

* The first one, for u < ¢, contains the “trivial limit” in Eq. (1.43) as well as the trivial

fermion vacuum (when g — —oo).
* The second one, for 7 > || and A # 0, contains the “topological limit” in Eq. (1.44).

* The third one, for u > ¢, is related to the first one by a particle-hole transformation: they

share the same properties and we can thus focus only on the first one.

Once the gapped phases have been found, we are left with the identification of a topological

invariant. To this end, note that the 2 x 2 Hermitian matrix 7, can be written as

Hie=h(k)-G (A.15)
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Fig. A.1 In (a) and (c), examples of two trajectories of vector iz(k) on the unit sphere when £ is
swept on half of the BZ: in the first case the Hamiltonian is in the trivial phase, in the second
case it is in the topological one. In (b) and (d) the energy of bulk excitations Epy (k) is plotted
over the BZ. The colors display the z component fzz(k), ranging from —1 (blue) to 41 (orange).
Sketches of the unit vector fz(k) (in red) inside the unit sphere are also provided. In (b) the
system is in the trivial gapped phase while in (c) it is in the topological one. The exact values
of the parameters used to generate the plots are reported in the sub-captions.



128 Topology

where 6 = (0, 0y, 0;) is the vector of Pauli matrices and ﬁ(k) is a three-dimensional vector.
Even for a rather general (translational invariant) Hamiltonian, the structure of 71(1() 1S not

completely arbitrary since the relation (Ci )T = 0,Cy implies

hyy(k) = —hyy(—k) h;(k) = h;(—k). (A.16)

—

Therefore, it suffices to study A(k) in the interval 0 < k < 7 since, on the other half of the
BZ, the value of the vector follows from the constraints in Eq. (A.16). Within a given gapped
region, the vector ﬁ(k) cannot be zero and it is therefore possible to define a unit vector
h(k) = h(k) /|h(k)| which provides a map between the BZ and the unit sphere. Because of Eq.
(A.16), there are strong constraints at k = 0 and k = 7: here the unit vector h can either point
to the north or the south pole

h(0) =502  h(m) = s, (A.17)

depending on the sign of the kinetic energy (measured with respect to the Fermi level) at k = 0
(so) and k = 7 (sz). When £ is swept between k = 0 and k = 7, two topologically different

trajectories are possible depending on the relative sign v = sosyz:
 if v = 41, the unit vector begins and ends up at the same pole, see Fig. A.la;
* if v = —1, the unit vector ends up at the opposite pole, see Fig. A.lc.

These two trajectories cannot be continuously deformed into each other and the only way to
change the sign of v is to go through a gap closure, resulting in fz(k) being ill-defined at a
certain point of the BZ.

We have therefore successfully identified the Z, topological invariant v, which allows to
distinguish between a topological and a trivial phase. In particular, the one which contains
the fermion vacuum is topologically trivial (r < |u|) while the other is topological (t > |u|
and A > 0). Fig. A.1b and A.1d help in summarizing the results of this appendix. They show
the gapped bulk spectrum Epy (k) and the behavior of the unit vector A(k) across the BZ for
two different Hamiltonians: one belonging to the trivial phase (Fig. A.1b) and the other to the
topological phase (Fig. A.1d). The spectrum is qualitatively analogous but the analysis of the
unit vector over the whole BZ shows a profound (and indeed topological) difference between
the two cases: in Fig. A.1d the unit vectors performs a twist over the BZ while in Fig. A.1b it

does not.



Appendix B

Single electron injection into interacting

systems

B.1 Inverse lifetime of the single resonant level

In this Appendix we explicitly calculate the inverse lifetime 2y defined in Eq. (3.18). Let us

start from the result in Eq. (3.20), which can be rewritten in the following form

t 1 o0 )
P =2APRe [dn ["dn [[ " andyentn
0 0 — oo
X W (y2)w(y1)G (y2, t2:y1,11)

It is now straightforward to perform the time derivative, obtaining

o t +oo )
P(t) = 2|7L‘2Re/ dl‘z/ d,V]dyz eleo(zzfz)
0 —co

X W (y2)w(y1)G (y2,12:31,1) -

We now express this quantity in Fourier representation. First, considering [222]
N 1 a\g [t ) :Ez _Ea
200 — - (4)° [ dp pele e,
L(g) \u/ Jo

the fermionic function G in Eq. (B.2) becomes

G- | ! aNIAS e ik
~ 2maT(A2)[(A2) (5> / o
E1+E2 E27El . E27El

2 2 . . .
« E1147E1247 le—a . e—l[z(E1+E2) elt(E1+E2)e—ly2 TPl

(B.1)

(B.2)

(B.3)

(B.4)
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Then, we introduce the Fourier transform of w(y)

w1 = [ayw)et = [ay )t =kt k) (B.5)

Using (B.4) and (B.5) in (B.2) we obtain

' B |l‘2 1 i 2AZ oo +€
P(t) = T F(A%_)F(Az_) <2u> /() de —¢ aE (B.6)

&a ? :
!2 (e +E)A2* (e —E)Az_le_uRe/ dse (80—}
0

x [W(—Eu"")

Recalling the definition (3.18) and using

+o0

Re [ dse 05 = g§5(gy—¢), (B.7)
0
we find
_ WK _ae ragg\ A /“ (_8ox\|? A2 A
T= @) (50) [l (-50) asta-o @9

with ¥ = |A|?/(2vg). Eq. (3.25) is thus proved by using the expression in Eq. (3.27) for the
spectral function and Eq. (B.5). Note that when ‘g: (k) = 1 (local tunneling), the above integral

can be evaluated analytically, yielding

+1 2 2 2 (] e 2 A2 1—~2(A2>
dy (1+ 72 (1 — A—1:22A/ d _ 242 A% =
A (2= -%) 0 A (1+24%)

This result leads to Eq. (3.28) which holds in the case of local injection with ¢ — 0.

B.2 Charge properties of wavepackets

B.2.1 Calculation of 7,

This Appendix is devoted to the evaluation of the average function

Iy = <‘I/R(y2,f2) [p(xvt)vll/;g@htl)] >Q : (B.9)

defined in Eq. (15) and necessary in order to compute the density variation dp(x,¢) in Eq.
(3.15). Let us start with the commutator in (B.9), which can be written in terms of chiral fields
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as
[pt) winm)| ==/ 5 Zn Audn(2n), wkOn,11)] (B.10)

with z = x — nut. Using the bosonized expression (2.5) with (2.22) one has

. 1 . . _
[8x¢n(zn),w,§(y1,t1)] = N [8x¢n (zn),elx/ﬁ(mm(zl )+A_9_(z; ))} (B.11)

with the boson fields satisfying c-number commutation relations [93, 94]

1 a

(040 (x), 0 ()] = in &y,

This allows to use the Baker Hausdorff relation [93] among two operators A and B (with a

c-number commutator) [A,eB] = [A,B] P, getting to

a

[&‘Pn(Zn)a‘l’Iz()’l,tl)} :_nAn\/E<l

.}.
1,01) - (B.13)
ﬂ:a2+(zn_z7l7)2> WR(y )
Then, using Eq. (3.30), we obtain

a
vh(yi,t). (B.14)

[p( )WRylatl} an

a4 (zg —23)
The average function Z,, in Eq. (B.9) is then given by

1 a
717a2-|-( Zz)

Io=Y 4n

n==1

2] <WR(y27t2)WI—£(ylatl)>Q

As a final step the fermionic Green function G = (yg (yz,tz)l//;{, (y1,11)) 0, is expressed using
the identity [93]

<e—ia¢n (x) it () >Q — exp [0?G(—n(x—Y))] , (B.15)

with G the bosonic Green function defined in Eq. (3.23). In writing Eq. (3.33), we exploit the
fact that a is the smallest length scale and it is thus possible to approximate

1 a
— — 8(zp —20). (B.16)
Ta+ (g —25)? @ =2)
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B.2.2 Calculation of the total charge O

In this Appendix we calculate the total amount of charge injected in the edge channels, starting
from the expression given in Eq. (3.36). Let us first introduce the Fourier transform of the
funcion B(z):

BlE) = [ B )" — e

Taking advantage of the integral representation (B.3), we write Q as a double integral over

(B.17)

energies:

WZ 1 an 1+24%

 27maT(A2)[(A2) <E>

e ' L (B.18)
x / dE\dE, EV E !
0

2
E,—E . 2 peE
w( 2u 1)‘ ‘ﬁ(EH—Ez)) e

Moreover, since the energy level of the dot is well defined (Y < &), the following approximation
on the function B(E) can be used:

E(E)(z ! S S(E—e). (B.19)

TP+ (E-g)? v

Inserting this §-function in Eq. (B.18) we are left with a single integral

_Kp a0 1 agy\ 24> [+ A2 A2 1| 1y 2
0="F et mnry (50) [ a0 e (e

(B.20)

with ¥ = |A|2/(2vE). Recalling the expression of y found in (B.8), we conclude that Q = 1.

B.3 Energy properties of wavepackets

Here we evaluate the average function

Ty = (ilva:t2) [Hn) g0 ) B21)

demonstrating the validity of Eq. (3.41), necessary in order to evaluate the energy density

fluctuations 6H (x,7). In particular we have to compute functions M%a/ ®) introduced in Eq.
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(3.38). Focusing on /\/l%a) we get

MG = (Wr(y2,12) 0n zn) wr(ns1))

- _ L <e—iv2”Afn¢fn(Z;n)ei\/ﬁf‘fn‘f’fn(zfn)> (B.22)
27a Q
« 3, <e—i¢2nAn¢n (23) iVn(zn) ,iv2TAndy (z?>>

Qlv=0

where we have used Eq. (2.5) and the identity

O (x,1) = —idye’™ It (B.23)

)’v:O'

By means of the Baker-Hausdorff identity, one can rewrite

M (29, 25,75) = —iAg V2R G(zF,5F) (G (nzn—n2]) =G (Nl —nzy))  (B24)

where the bosonic Green function G and the fermionic correlation function G have been defined
in Eq. (3.23) and in Eq. (3.24) respectively. It is easy to show that J\/l%b) has the same
expression apart from a different sign in the argument of the second bosonic Green function.

As a result one has

M%“)jt/\/l%b) = —iAnV21 G(25, 7))

(B.25)
x [2G(Mzg —nz]) =G (nzn —nz]) — G (N2 —nzy)] -

Eq. (3.41) can now be readily obtained simply taking the derivative of functions G.

B.3.1 Behavior of E;

In this Appendix we present details on the energy Ey that travels in the 71 direction. Such
quantity, defined in Eq. (3.43) is expressed as in Eq. (3.45).
Let us start to discuss the total energy £ = E, +E_. In the limit Y < & we can approximate
1B (e4)]? = 8(ey — &) 7/, see Eq. (B.19), writing
K (ﬁ)w‘ A e [
2y \2¢ I(gn)T(gn) —g (B.26)
(o4& )1 (gg—e_)sn " W (—e_ /u)|?.



134 Single electron injection into interacting systems

Recalling that g# =A% + (1£1)/2, one then has

K (Ka\* 1 .
e=a'2(5) wmam ™
A2 B.27

+1 ( )

2 2. N2

A () (=) (e[

By comparing this result with the behavior of the total charge Q in Eq. (B.20) we can conclude
that £ = £ Q = &, since @ = 1. The “universal” limit present for local injection (5 (k) = 1)
and given in Eq. (3.47) is recovered using in Eq. (3.45) the relation

de_ = . (B.28)
e [(gy)T(gh) r(2+247)

/+8+ (€ +& )81 ey —e )on ! (2e)

We therefore have that £y = A%S with

2
Ky (Ka 4% 1 ° 14242
E=—|— 5 | deygy
T \ & ['(2+24%) Jo

independent of 1. Such an expression immediately allows to recover the energy partitioning

_&

Ble +))26—K“% (B.29)

factors p%"' given in Eq. (3.47).
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B.4 Calculation of the single electron coherence

B.4.1 Single-electron coherence

In this Appendix we give the details on the calculation of the single-electron coherence
®,(s,t;&,z) in Eq. (3.56). The starting point is Eq. (3.12) together with the bosonization
identity (2.5). Denote with O,(s,t;&,z) the operator in the average (3.56). It has the property
that O (s,t;&,72) = O,(s,t;—&, —z). Then Eq. (3.57) immediately follows from Eq. (3.12) with

t 15 .
g,(s,1:E,2) = |/1|2/ dtz/zdtl e MoH) ==t g (1 1 E 2 1)) (B.30)
0 0
where €, = €£1) — @9 and

¢! = (yr(0,1)0,(5,1:8.2)wh(0,12)) . (B.31a)

e = <v/1e(0,t1)IV,§<O,tz)0r(~v,t;€,z)>Q : (B.31b)

(1)

Here, (...)q denotes the ground state average. Let us focus on €; . First, the fermion fields
are rewritten in terms of the chiral fields with the bosonization identity and Eq. (2.22), so that
the time evolution becomes chiral. Introducing the shorthand notations x, = s — nut and
&n = & — nuz we have:

[ Ok
ngl) — Q <e—i\/ﬁAn¢n(—null)ei\/ﬁAﬁrn%(xn—Cn/z)
(2756’)2 n==+
% e~ IV2TA g (XnJrCn/Z)ei\/EAn(f’n(*ﬂulz)>Q (B.32)
[ Ok
— el ks H eZWA%Gn(nu(frll))eZ”A%rnGn(*Cn)
(27a)? n=+

o 2T ANADn G (—Nut1 —xn+8y /2) ,~2TAn A g,y Gy (—1uty —xy = /2)

x e—ZEAnAgrn Gn (xn —Cn /2+T]ut2)e27TAnA19rn Gn (xn—f—Cn /2+nut2) ) (B33)

The average (B.32) has been evaluated by using the identity [93]

<e01 ...eO"> = e%z?:1<0%>ez"<f<0"0j> ; (B.34)
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with n = 4, and the bosonic Green functions

a

2
Gnx) = (00 ()0 0))g ~ (030 = 50— (®.35
Substituting Eq. (B.35) into Eq. (B.33) we find
ol _ AOkRE a AL 4 A2
" (2ra)? |a—iuz+idE —iuz —i%,&
a 14242 W
X {m] n:iQr,n(Xn,Cn,fl,tz), (B.36)
with
(1) a+in(xn+§'n/2+nml>1ar.n
Qr y6nyl1,12) = .
o ) = [
—j _ Qrn
" {a {Tl (xnp —Cn/2+ 771”2)} ' (B37)
a—in(xny+Cn/2+ nut)

The exponents @, are defined in Eq. (3.61). The correlator ngz) has the same structure as

Eq. (B.36) but with different functions 95271) which are readily obtained from len) by taking

the complex conjugate of all the factors containing .

The functions Qﬁ}f) and QSLZ)

Therefore their overlap becomes negligible in the long-time limit 7 > y~! (i.e. when the

correspond to the right and left moving packets respectively.

injection is over). In order to further clarify this point, let us focus on Eq. (B.37). The main

(1,2)
n

features of functions Q,.,”", with respect to the s variable, lie in the regions around their zeros

and poles; everywhere else they are not significantly different from 1. If the time ¢ is much
(1,2)
+

greater then all the other variables, the poles and zeros of Qr,

are well separated from those

of 9571_’2) and the product in Eq. (B.36) can be thus converted into a sum
1,2 1,2
H Qg,n )(XTMCT]JIJZ): Z Q}(”,T; )(’xn?CnatlatZ)_l' (B38)
n==+ n==+

A similar decomposition has been used also in Ref. [126], where electron injection into
interacting co-propagating channels is considered. Note that the condition # > #1,#, is equivalent
to r > 7~ ! because of the exponential suppression factor e~ Y(n+n) present in (B.30). As for
variables & and z, a restriction of their integration domain such that they satisfy |&|, luz| > ut
introduces uncertainties of the order of (u¢)~' and #~! in the momentum and energy distribution

respectively. In the long time limit one has > y~! > & ! and these uncertainty thus become
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negligible. Eq. (B.38) shows the separation of the two chiral contributions and the structure in
Eq. (3.58) is proven.
Finally, the correlator €, = €£1) — €£2) reads

AOkEE A?
€r — - . . -~ <
(21a)? l —mz—kn?é} [ —luz—lﬁé}
a 1+242
_ 1,t B.39
X |:Cl—iu<l'2—t]):| ; xn Cna 172) ( )
where 1, = 51,1) — ngg In order to obtain Eq. (3.59) it is necessary to replace t, = T +1,

performing the limit # — oo and inserting the point-splitting term which is discussed in the next
Appendix.

B.4.2 Point splitting procedure

In this Appendix we discuss the point splitting procedure. As explained in the main text, this
procedure results in the insertion of the multiplicative factor ({, — iaﬁ,)Cn* !'in the function
Crn(&,z), see Eq. (3.60a). In the following we show that it ensures the correct representation
of the excess particle density 8p, in terms of the single electron coherence

8p:(s,t) = 8B,(s,1;0,0). (B.40)

We emphasize that this additional factor modifies the functions g, only near {; = 0. Therefore
the energy and momentum distribution will be affected by the point splitting procedure only
for high energies/momenta, i.e. far away from the region we are interested in.

The excess particle density on the r,1) channel can be obtained by computing the following
bosonic expression directly

BrAns,
80y (s,0) = — &9 8 [Ds0n (s — nutr)] = N8 ApAps,

2
X |)L—Re/t ds, /[2 dtle*Y(flthz)*ifo(tzle)
0 0

a 14242 a/n
X la—iu(tz—tl)] a’+[s—nu(t—n)]?"

(B.41)

This expression is consistent with the total injected charge given in Eq. (3.73). Here, we show
that the same result is obtained using the relation in Eq. (B.40) and the expressions summarized
in Egs. (3.57-3.60c). In fact, considering the limit of g, (s,#;&,z) for (£,z) — (0,0), a
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straightforward expansion of the functions Y, leads to

2
i A [? /’ /’2 _ o 4 14242
I ’ = 7A- dr dr y(t1+t) —igg(ta—t1) | 4
C”lgogm(s,t on) (2ma)? Jo 2 Jo 1€ ¢ a—iu(ty—1)
. Gy —iad, [ 2ian oy €y ) }
X lim ) 40 _
{n—0 Cr' a2+(s_nu<t_t2))2 (Cn)
|}L 2 t tr B N B
- Zmnﬂrotr,r,/o dr, ; dr e~ YN H2) g—igo(t=1)
y a 14242 a/n o
a_ibl(lz—l’l) a2+[5—nu(t—t2)]2 .

Then Eq. (B.41) is recovered by taking into account the contribution of g;(s,#;—{;) and
recalling that o,y = ApAyy,. Note that without the insertion of the point-splitting factor, the

above limit would have been zero.

B.5 Scaling of the energy and momentum distributions

B.5.1 Momentum distribution

In this Appendix we derive the scaling behavior in Eq. (3.75) of the momentum distribution
near the Fermi points k. Four contributions need to be evaluated, but the calculation is very
similar for each of them. First, we note that the behavior of functions dng/; , (k) for k around
+kg is determined by large values of & in the Fourier transform in Eq. (3.66). Therefore we
can safely neglect the cutoff a with respect to £ as long as the integrals converge. In particular,
for A2 < 1/2, one has from Eq. (3.60a)

A% 2
a { az } a1+2A,

Crn(8,0) =-—+ o 70,8

—2A%
Y 14 : (B.43)

Let us now focus on 8ng — (k ~ kg). The integral over the s variable in Eq. (3.67) can be written,
in the limit a — 0, as
+oo 5
AR~ (5,8, 7)ds = —2i& sin(wA)J (&, 1), (B.44)

—00
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with

1

J(g,r):/o dx

X [B(WE —&x)0(Ex—& — u‘L’)eiﬂAzf +0(Ex—ut)0(—Ex+E+ ur)e_’.ﬂAzf] . (B.45)

2
x x—1—uté! A
x—1 x—uté!

Now, for large & it is consistent to neglect ut with respect to &, obtaining
J(§.7) mJo(E) = 0(=§)e™ 0 (§)e ™ = oAl (B.46)

Inserting Eqgs. (B.43), (B.44) and (B.46) into Eq. (3.66), one finds

A2 a® sin(nA2) tee
ong — (k) ~ _|27r|y 5 Re{ ; dt F(7)
+oo —i(k=kp)§
x / dé ﬁe””‘z— Sg“@} . (B.47)

Interestingly, the T-independence of Jy(§) allows to compute the integral over & without the
need to know the function F (1)

—o0

= —i(k—k
/+ dg € ( ZF)é efiﬂAE sen(§) _
1§14

= 2I'(1 — 242 ) sin(27A2 ) [k — kg = 10 (kp — k). (B.48)

As a result, the power-law exponent 242 — 1 is robust with respect to the approximation made
in Eq. (3.13), which only affects the expression of F(7).

The final step is to evaluate the real part of the integral over 7. This can be done by
exploiting the Fourier representation[223, 222]

¢ g:L(—’)g " 4B E81 BTy Ealu (B.49)
a—iut T(g) \u/ Jo ’

and leads to (for y < &):

B 2ma

400
Re{ A drf(r)}— TR (B.50)
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Then one obtains

242
Sng. (k ~ k) ~ _%m —2A2)sin(wA2 ) sin(27A2)
x|k — kg2 710 (kg — k). (B.51)

The term Ong_ (k =~ kg) follows in a similar way

2A2
Sng. (k ~ kp) ~ %F(l —2A2 )sin(7A2 ) sin(27A2 )

x|k — ke[ 10 (k — k). (B.52)

Thus the formula for dng(k) in Eq. (3.75) is proven by combining the last two equations.
The calculation for dny (k ~ —kg) is similar to the one presented above, the only substantial
difference being the exponents of the functions ¥; n, which are responsible for a different result
when computing the integral over §. Let us consider for example the contribution dny, . We
have

- xL.—(s,&,7)ds = —2i& sin(TALA_)J (&, 1), (B.33)

where J is identical to Eq. (B.45) except for the exponent which now is A, A_ instead of A2 .
Therefore, the asymptotic form of J(&, 7) is Jo(&) = e~ ™A+A-50(8)  Similar expressions hold
for 8ny . Inserting these expressions, together with Eq. (B.43), in Eq. (3.66) one obtains

2A%
ony, (k= —kp) = — %m —2A% )sin(TALA_) |k + ke[

x {sin[m(A;A_ +A%)]0(—k — kg) +sin[w(A> —ALA_)]0(k+kp)},

(B.54a)
P2AL )
Sny+(k~ —ke) ~ —3-T(1 = 2A%)sin(A LA )|k + kg~
x {sin[m(ALA_ +A2)]0(k +kg) + sin[m(A2 —ALA_)]O(—k —kg)} .
(B.54b)

The formula for dny (k) in Eq. (3.75) follows from the last two expressions.
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B.5.2 Energy distribution

In this Appendix we evaluate the expression in Eq. (3.89) of the energy distribution for small
o. In particular, we focus on the term 8.Ag — in Eq. (3.87). The other contributions can be
evaluated in the same way. First of all, we note that the behavior of function 6. Ag _ at small @
is described by large z in the Fourier transform in Eq. (3.87). One then has

a

(B.55)

2 . .
14242 jq| T2A% LimAZsign(2)
a—iuz

Cr-(0,2) = { - A AR

Moreover, in complete analogy with the previous Appendix, the integral over s in Eq. (3.87)
can be expressed as

~+oo
Xk (5,uz,7) ds = —2iuzsin(wA> )J (uz,T), (B.56)

where function J and its asymptotic expression are provided in Eqgs. (B.45) and (B.46) respec-
tively. Next, substituting these expressions in Eq. (3.87), one obtains

AP sin(z42) oo a2 e gion
SAg—(@)~ T =5 Red | dr]-"(r)(—) /w dZ!zl”‘% . (B.57)

T 2ny 272 u -

The integral over z yields

teo et 2 2\, 242 1
/ dzHW:ZF(l—ZA_)sin(nA_)a) 21 (B.58)
. B

Finally, using Eq. (B.50), one finds (@ > 0)

242 T'(1 —2A2
“) [(-24%) sin?(7A2 )w4> 1. (B.59)

S Ar_ (0~ 0) ~ (— =

u

The result for 8 Ar 1 () is exactly the same, while for the L-channel we also find 6 A 4 (w) =
0 AL — (@), with

SAL_(0~0)~ (9)

u

242 T(1—242)

= sin?(TALA_ )X L. (B.60)

Combining the last two results we readily arrive at Eq. (3.89).






Appendix C

Quantum quenches in LL

C.1 The generalized Gibbs ensemble

Here we want to briefly show how to build the so-called generalized Gibbs ensemble (GGE)
reached by a LL in the thermodynamic limit!. Since the diagonalized LL Hamiltonian H in Eq.
2.25 is quadratic in the bosons 3 4, the occupation numbers of each mode are conserved by
the unitary evolution of the system

[H,ﬁ,';vqﬁn’q} —0. (C.1)

These constraints strongly influence the time evolution of the system and it has been conjectured
[172] (and analytically demonstrated [174]) that it eventually reach a steady state described by

the GGE density matrix
1

e Zn-,q ln,qﬁ;,qﬁnvq (C-2)
ZGGE

PGGE =

whit Zggg = Tr [exp <— Yngrng ﬁﬁ; q ﬁfmﬂ . The Lagrange multipliers A , are determined

by imposing that the integral of motions B,; .¢Bn.q are equal to their initial (i) value,

(B} B, = (B o = ——— ©3)

e’na —1

It is worth it to underline that the result (C.2) can be obtained by maximizing the von
Neumann entropy S = —Tr[p log p] subject to the constraints imposed by the conservation of
the integral of motions [172, 224]. Moreover, note that if in a system the only two conserved

quantities are the total energy and the total number of particles, the GGE density matrix in

I A system with finite size features finite recurrence times and thus will not reach a steady state.
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(C.2) reduces to the standard equilibrium Gibbs grand canonical ensemble. For more details,
we remind to the literature [174, 172, 168, 173, 224].

C.2 Quenched fermionic and bosonic correlators

C.2.1 Fermionic green functions

Here we compute and express the four different regimes of the lesser local green function in
Eq. 3.106. If both time arguments are negative (n), the Green function is not affected by the

subsequent quench and it thus reduces to the standard equilibrium result
G™(t,7) = Lexp 27 (BL +B%) &4 (ui(t —7))] (1,7 <0). (C.4)
o 21a s ’
Here, we have introduced the equal time bosonic correlator

€4 (%) = (i.4(x,0)01.4+(0,0)) e — (97 (0,0))q (C.5)

whose expectation value on the initial thermal state is [82]

Ci(x)==—In +—1In

C.6
2r F(1+Tw ")? 27 (o

1 [P +Te " =it Y[ 1 < 1 )
T 1 )

1—ixa

with I'(z) the Euler Gamma function and @; = u;a~! a cut-off frequency. Note that, being a

local correlator, one has € (x) = €_(—x) where

€_(x) = (¢~ (x,0)9;,—(0,0))eq — ($7_(0,0))q.- (C.7)

It is worth to notice that G (z,7) depends only on the time difference T =t —7. By contrast,
ift > 0 and 7 < 0 one has

GP(1,7) = ﬁ exp [27: 0, (ByAs+B_A_) € (uilt — 1)+ (uy — up)t)
MO (BiA_ +B_AL) €y (ui(t — 1) — (g +u)t) (C.8)
+ 27TA+A_9+9_(€+(2MJCZ) + €+<—2Mf[>) .

The opposite regime (¢ < 0, 7 > 0) can be easily obtained by exploiting G, (t,7) = —GF" (F,1)*.
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Finally, the fourth regime, when both ¢ and 7 are positive, is the most interesting one and

can be expressed as

GPP(1,F) = 2—7;exp [27: 02 (A% +A%) € (—us(t —7)) +2m 6% (A2 +A%) €, (usp(t — 7))
+27FA_A+6+6_(€+(MJC(I+ZT))+Q:+(—Mf(t+f)))
—27TA7A+9+97<Q:+<M]‘I)+€+(—I/tft)+€+<2Mff)+€+(—2uff>) .

(C.9)

Analytical structure

The expressions (C.4), (C.8), and (C.9) in terms of the bosonic correlator (C.6) allows to study
their analytical structure. Focusing for simplicity on the zero-temperature limit one can easily
show that each term

2rac(s) _ (_1 ) (€.10)

1 —ixa!

has a branch point in x = 0. Using the notation f =t — T we can thus conclude that

e GPP(t,t — 1) has branch points in T~ 0, ¢, 2t and ¢ ~ 0.

uitufs

¢ G"(t,t — 7) has branch points in T ~ 1=, t% and ¢ ~ 0.

* G (t,t — ) has branch points in 7 ~ 0.

C.3 Asymptotic analysis of quench-induced dynamics

C.3.1 Bosonic correlators

To properly study the relaxation dynamics of the quenched system, it is useful to derive
asymptotic expressions for the bosonic cross-correlator Dy, (2, T) (see Eq. (3.113) and Eq.

(0)

(3.114)). For the zero-temperature contribution of Dy (%, 7) the relevant time scale is T and

for t > 7 one finds 0.0 ’ 3
2 =2 (2) ()
D - _ _ il 11

Oc,fa(taﬂL-) T 2t +Ol (1D

Inspecting the temperature-dependent term ADgy _(t,T), an additional time scale (AT)™!

emerges and two different regimes of the gamma functions, present in Eq. (3.114), have to be
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102 t 10°

Fig. C.1 Plot of ﬁ |ADg,.—(t,7)| as a function of time ¢ for different temperatures: 7 = 104
(red), T = 1073 (green), T = 102 (yellow), T = 10~ ! (blue). Here, 7= 10, K; = 0.9, Ky = 0.6,
time units a)f_l and temperature units @j.

considered
27(T At 1+2Ta)flefﬂ:TAt t> (AT)!
ID(1+Tw " +iTAr)| ~ (T A1) ] (AT) :
I2(1+Tw ) [1-(TA)T(1,1+Te; )] 1< (AT)!
(C.12)

where I'(n,z) is the n-th order polygamma function.
Inserting Eq. (C.12) in the expression (3.114) for ADy _o(t, T) and considering the reason-
able temperature regime 7' < ®j, one obtains the leading terms

0.0_ | 2(TAT)’T(1,1+Tw ") t<t< (AT)™!

ADg _q(t,T) = :
T (14270 ) (£) T< (AT) ' <t

(C.13)

The validity of this asymptotic expansion is confirmed in Fig. C.1, where we have numerically
evaluated ADy _q(t,T) as a function of time ¢ for different temperatures and at fixed 7. At short
time ¢ < (AT)~! the thermal component of the cross-correlator saturates to a time-independent

value, while a power law decay o< t =2 is evident for # > (AT)~!, in accordance with Eq. (C.13).
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By combining the asymptotic expressions (C.11) and (C.13) one eventually get the complete
asymptotic expression (3.116) for Dy (2, 7).

C.3.2 Non-equilibrium spectral function

Here we discuss the asymptotic expansion of the non-equilibrium spectral functions.

Function ASZ)
(2)

In order to study A, (@,1), it is useful to introduce z = 7 — 7 and expand the integrand retaining
only the leading term in z/¢. The result reads

(2)
Ar (wat) - a (a)ft)v++"f_27’ f(T7w)7
(C.14)
with
417
1 g 2vetv) [P e DL+ Tt +2iT Az)|
T,0) =~ [[(1+Tw ’ /d o '
f( 70)) (27.[)24')/[ ( +1a; )] 0 ze 1+4(l)]2c22
(C.15)
Using Eq. (C.12), one can identify two asymptotic regimes
2 f va 1 —
AP (0,1) ~ % ¢ (st)
(C.16)
r2(1+To )" t < (AT)"!
[247'(277:)25 (TAt)§(1+2Ta)i’1)} e 2T A (Vi+v-) > (AT)_l,
with
E=Vvi+v. -2y (C.17)

a non-universal exponent encoding the strength of the interaction quench. The first regime, for
t < (AT)~!, is a typical interaction-dependent power law. On the other hand, for # > (AT)~!,

a fast exponential decay kicks in and kills Aﬁz) (m,t) in the long-time limit.

Function A"

The asymptotic behaviour of A" (w,t), defined in Eq. (3.118), can be computed along the

lines of AY” (@, t). In this case, the integrand contributes only for T ~ ¢ (integration boundary)
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and T ~ t(u; +us)u; . One can show that
A (o0,1) = A (0,0) + AP (0,1), (C.18)
where the contribution stemming from the expansion for T — ¢ is given by

1

3) ~ Mt o0t —&
Ay (C(),f) ~ {uf[F(l +Ta)i_1)]25 (271')2} ((Ofl‘)

(C.19)
27 T(1+To 1) t < (AT)™!
x [(TAt)(l—i—ZTwi")é (277;)5_27’22”“’1'_]] e TTAE § s (AT)_l
while the one for 7 — #(u; +us)u; ' is given by
A(4)(w t) N (_i)v,—zy‘]'(a)) eia)t(l—}—’;{) (260 t)-\/,
T \a@aPn(+ Ta; !
(C.20)
L(1+To ")2V-—4 t < (AT)™!
[2n.<TAt)(1+Twi’1)](v,ny)effrTAt(v,fZY) > (AT)fl '
where function j(w) reads
() = /w dzeo [ — L V+_2y\r(1 +To +iTAZ)|" (C.21)
J ) ¢ 1—|—i(1)fz i ¢ . .

As one can see, A" (w,t) qualitatively behaves like A@(m,t). There is a regime t <

(AT)~! where it features non-universal power-law decays. Here one can show that, for direct
quenches (K; < K;) & < v_, while for inverse quenches (K; > K;) the opposite holds (see Sec.
C.3.3). In any case, when temperature effects kick in at long times ¢ > (AT)~', both power

laws are killed by a fast and non-universal exponential decay.

C.3.3 Quench-dependent exponents

In studying the behavior of the transient of the non-equilibrium spectral 8A,(®,?), defined

in , we encountered several quench-dependent exponents. Here we will give their explicit
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expressions in terms of K; and Ky and study their behavior. In particular one has

K;—K;)*(1+K?
v = & )2( D5 (C22)
8K?Ki
Kr+K;)*(1+K?

v_:( f 1)2( 7) > 1 (©23)
Ki+K7)(1+ KK
v,-2y:< i+ Kr)(1+K; f)Z
AKK ¢

K} +3K%(1+K?)+K?
_ Ky 3K 1K) L>. (C.25)

3K}K,~ -

1 (C.24)

By looking at Table 3.1, it is clear that in the regime t < (AT)~! there is a competition
between three power laws: the universal one #~2 and the two non-universal ones S and V-,
In order to identify the leading term in the decay, it is useful to plot & as well as

(K} +1)— (K7 +1)

—V_ =
. AKK

(C.26)

for reasonable quenches, i.e. for 0.5 < K;, Ky < 1 [225]. Fig. C.2a shows that & > 1 does not
dramatically exceed 1. Fig. C.2b shows that the difference vanishes along the non-quench
line K; = Ky: in the lower triangle where K; > K the quenches are direct and the dominant
exponent is . By contrast, in the upper triangle (inverse quenches) the dominant exponent is
v_. Note that, in any case, the difference between the exponent is rather small and it is likely
that both of them have to be taken into account to properly describe the transient of the spectral

function.
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(a) Values of the non-universal exponent & (K;, Kr)

(b) Function & (K;,Ky) — v_(K;,Ky), which van-
" ishes along the red line K; = Ky

Fig. C.2 Study of the non-universal exponents £ and v_.



Appendix D

Mapping from parafermions to fermions

Here we want to describe in details the procedure which allows to derive the full-lattice mapping
between FPFs and fermions, stated in Eq. (4.42) of the fourth chapter. First of all, it is worth

noting that the parafermionic algebra of o; and f3; is handed down to the FPFs in their properties:

dd;=idid;, didj=—idid forl<j, (D.1)
di"dm - dt " =1 form=1,2,3 (D.2)

4 .
d}=0 Vj. (D.3)

As stated in the fourth chapter, the key idea of our mapping to electrons is to identify
the single-site four-dimensional parafermionic Fock space with the Fock space of spin-1/2
fermions. We thus focus on a single site with FPF annihilation operator d and fermionic
operators ¢4 |. A natural choice of a FPF basis is {|0), |1),|2),(3)}, where |n) are the eigenstates
of the FPF number operator N with eigenvalue n. As for the fermions, we can for instance
choose the basis

{IE), cl|E), ic[c]|E), —ic]|E)}, (D.4)

where |E) denotes the vacuum state, c¢s|E) = 0. The identification between these two bases

induces the mapping in Eq. (4.41) of the fourth chapter,
d= CICTQ — c?cici + icchi +c4, (D.5)

which automatically satisfies the algebra of Eq. (D.2) and Eq. (D.3). In order to demonstrate the
validity of the mapping in Eq. (D.5), we note that the action of the FPF annihilation operator
d on the basis states |n) is known by construction and reads d|n) = |[n— 1) for n = 1,2,3

and d|0) = 0. Its fermionic counterpart must behave in the same way when applied to the
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corresponding four fermionic basis states | f,,). Using the projectors on these states, one has

d =0 fo)(fol + eyl fi) (il —icyl o) (fal = ]I f3) (3]
=cr(1—=ny)(ny) —icy(mny) — c¥(1 —np)ny (D.6)
=cr+ CICTQ + ic?cTci — c;cici,

which corresponds to Eq. (4.41). This relation can be inverted, resulting in

cr=d—d'd*—dPd?, (D.7)
¢, = —id* —id"d* +id"*d> . (D.8)

The next step is to extend this mapping over the full lattice. As pointed out in Ref. [210], an

FPF annihilation operator on site j can be built as

dj=itr<iM]®  RledR]e- o] (D.9)
— —
J— -J

where N, = d;dp + d;,zdf7 + d;?’dg is the FPF number operator on site p and the I are identity
operators on a single site. This construction ensures that the FPF commutator algebra in Eq.

(D.1) is fulfilled. As for the fermions, one uses the standard Jordan-Wigner strings,

cjo = (—1)EeXr<im0 @ IR IR - o1 (D.10)
j—1 L—j

where n,s = c;ocpo is the number of fermions with spin o on site p. Combining the above

equations, one readily obtains the full lattice mapping

dj= iLp<j(Np+2np1+2ny) (CLCchji +cjr— c%clcﬁ + ic}cncﬂ) (D.11)
cjp = EriCNp P2 2 (g — dld — (= 1)2e<iNe 4P d3] (D.12)
cjy = Er<iCNp P2t P2 () [(— 1) Er<i™e &3 4 dTdF — dT7d3) . (D.13)

Interestingly, as stated in the main text, because of the definite odd fermion parity of Eq.
(D.11) every parafermionic operators D which conserves the number of FPFs modulo 4 is

transformed into a fermionic operator C without string factors. To see this, consider a generic
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operator D which involves FPF operators on m adjacent lattice sites

D=d[®a® .. d[%d . (D.14)

where o, Br € {0,1,2,3}. Using the mapping in Eq. (D.11), its fermionic expression factorizes

into a form
D — lZp<] [ZT:O(Bi_ai)] (N17+2nm~+2np¢) C, (D. 15)

with the operator C containing, up to prefactors, only fermion operators on sites j, ..., j+m.
Requiring that D conserves the total number of FPFs modulo 4 then implies

i (Bi — a;) = 0 (mod 4), (D.16)
i=0

so the string factor cancels. This remarkable result is at the heart of the locality of our mapping

between parafermion chain Hamiltonians and electronic systems.






Appendix E

Fermionic description of the exactly
solvable model

E.1 Fermionic ground states

In this section we focus on the properties of the four degenerate fermionic ground states of Hy,
defined in Eq. (4.26) of the fourth chapter. Following Ref. [226], the ground states |y,,) of H;

(where m =0, ...,3 is the number of FPF modulo 4) can be expressed as
1 L
W) = VAT Z ®|”j> (E.)

{n;} such that j=1
Y jnj=m (mod 4)

where |n;) is the single-site state with n; FPF. The proof of Eq. (E.1) is obtained by introducing
the operator

£ = % [djiN/ +dP? —i(djﬂ —l—dﬁlﬂ (E2)

which allows to write the Hamiltonian as

L—1
Hy=-2J(L—1)+2] ) &1E;, (E.3)
j=1

where the second term is non-negative. A state is a ground state if £;|y) = 0V, a condition
which is fulfilled by Eq. (E.1). Note that excited states can be obtained from the ground states
|wn) by applying é; The energy gap between the ground states and the first excited states is
2J.
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Our mapping allows us to express these ground states in terms of fermions: one simply
has to replace each FPF single-site state |n;) with the corresponding fermionic one, which we
will call | fnj>. This will allow us to directly study some interesting fermionic properties of the
ground states. In the following, the integer indexes of |y,,) and |f,) are always understood

modulo 4.

E.2 Fermionic edge operators

The goal here is to show that, despite the intrinsic non-locality of B (see Eq. (4.51) in the
fourth chapter), it is still possible to find local operators at either edge of the fermionic chain
that cycle through the four degenerate ground states |y;,).

If we focus on the left edge (j = 1), it is easy to show that the parafermionic operator a;
actually does the job. Indeed, being on the first site of the chain, its fermionic expression has no
string factors (see Eq. (4.51) in the fourth chapter). Moreover, it decreases by one the number

of FPF modulo 4 on the first chain site. Therefore, one has for all ground states,

W) = |Win—1) (E.4)

Things are more complicated at the right edge (j = L), where one has to take care of string
factors. For notational convenience, let us introduce the following state of a fermionic chain

with S sites

1 S
|b5) = ——— fi) - (E.5)
v4s-l {n;} E:’h that @ !

Y jnj=m (mod 4)

This allows us to express the four ground states as

1
i) = 5 (15 @ ) + 151 © ) + 1057 8 o) + 165 ) @1 fn3))  (E6)

In view of the chosen fermionic basis (see Eq. (D.4)), the state |b5[1) contains an even or an
odd number of fermionic operators acting on the empty chain, depending on whether m is even
or odd, respectively. As a consequence, in order to be able to cycle between the four ground

states, a local fermionic edge operator y7, must satisfy

L—1 L—1
yL(®]I> | fn) = (1) ! (@H) | fu-1) - (E.7)
Jj=1

j=1
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It is easy to show that

YL = CITJTnLi — icLL”LT + CLT(I - nLL) + icL(l — nLT) (E.8)

satisfies the above condition and thus represents a fermionic edge operator which cycles

between the four ground states
VelWm) = [Yin—1) (E.9)

E.3 Effects of local fermionic perturbations

Here we compute, using DMRG simulations, the effects of some local fermionic perturbations
on the 4-fold degeneracy of the ground states. At first, we focus on a magnetic field along the y
axis (see Eq. (4.52) in the fourth chapter)

L L
— NN T _ :

Hy = By Zl i(€] ein—chicin) =By Z] (Mj+ingny. ;) (E.10)

j= i=
which explicitly contains the local order parameter M and it is therefore expected to split the 4
ground states into two doublets. They are separated by energy AE, which grows linearly with
the system size, as shown in Fig. E.1. The saturation around AE, ~ 2J is due to the presence of

the bulk gap.

By contrast, magnetic fields in the (x,z)-plane and chemical potential terms

H.=B.Y 0 ¢y jco, (E.11)
J,0

Hy=B:Y ¢} cjs+he. (E.12)
J

Hy=pY clico; (E.13)
J,0

lead to a degeneracy lifting which is exponentially suppressed with the system length L. This is
clearly shown in Fig. E.2 where we display the energy splitting AE), between the ground state
and the fourth eigenstate of the system when a chemical potential term H), is added to H;. The
energy splittings AE, and AE, (due to H, and H, respectively) happen to be the same as AE,.

Interestingly, both H), and H;, conserve the total number of FPF modulo 4 and they thus

feature a local expression also in terms of parafermions: neglecting an inessential constant
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Fig. E.1 Lifting of the ground-state degeneracy AE), [units J] for Hamiltonian H; + Hy, as a
function of system length L for different values of By [units J].

term, one has indeed

Hp = Z(,LH-O'B -~Ze’4 ,u Tb +h.c.. (E.14)
J,0
Therefore it is clear that they cannot lift the four-fold degeneracy in an infinite system. Moreover,
note that the H = H; + Hy correspond to well known nearest-neighbor four-state clock model
[11,211, 194] which features full topological protection for small B, and u.

E.4 Fermionic spectral function

In this section we are going to compute analytically the fermionic spectral function for the two
exactly solvable models presented in the main text: H; [see Eq. (4.47)] which belongs to the SI
phase and H® [see Eq. (4.48)] which belongs to the WI phase.
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Fig. E.2 Liftings of the ground state degeneracy AE), [units J] as a function of system length L.
Here we choose u = 1.6J

E.4.1 Hamiltonian H;

Let us consider the Hamiltonian H; which contains exact parafermionic edge states. Here we
will prove that, despite string factors, its fermionic spectral function is non-vanishing only at
the edges of the chain, where it has the universal prefactor 1/4. To this end, we observe that the
only non-vanishing matrix elements of the fermionic annihilation operators on a single site are

(foler|f1) =1, (fzler] o) = —1,

(fileylfa) = =i, (foleylfs) = —i. (E.15)
This, together with the expression for the ground states in Eq. (E.6), allows to prove by direct
calculation
(Wi ezl i) P =
Yint1|CLo |Wm) |~ = 16
‘<1Vm|CLG|‘//m>|2 = |<l//m+2|CLO'W’m>|2 =0. (E.16)
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The same argument applies for the left edge of the chain (j = 1), since the ground states can be

equivalently expressed also as

1
i) = 5 (L) @65~ + ) @ 1657 + f2) @ 105~ + fs) @ 657)) . B1D)

This leads us to

1
Z|<l,/,|cj(,|qu>|2:g for j=1,L. (E.18)
[

Let us now consider a bulk site k£ ¢ {1,L} and prove that the matrix elements of ¢, between

the ground states are zero. The key observation is that |y,,) can also be expressed as

3

1
) = 7 X (1571 ® ) @ 025) + 1657 @ | fr) 0512

4a=0
+167) @ | fn2) @ 1B5E) + 161 @ ) @ 165H)) (E.19)

Since a is not fixed, the matrix elements reads

3
(Wins1|Cko | W) o Z

a—

|<l//mlck0|l/fm>| |<Wm+2|ckc|l/fm>| =0 (E.20)

with the factor (—1)“ stemming from the anticommutation of ¢y, with the fermionic operators

.t

contained in |bX~1). Since the above results hold also for the fermionic creation operators ¢ o

the properties of the spectral function discussed in the main text are proved.

E.4.2 Hamiltonian H(?

Here we focus on the non-interacting Hamiltonian H(? (see Eq. (4.48)) which consists of two

uncoupled Majorana chains

H? = —JiLZI [T X1+ T 2] (E.21)
=
with
Xo,j = % [CI)'J +co,j—1 (CT_GJ +C—G7j)] (E.22)
Toj = % gy teayti(ch;—co)]| (E.23)
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It is possible to define two non-local fermionic operators

fo = (TGL+l%G 1) (E.24)

l\)lr—*

which commute with H?) and allows to label the four ground states of the system

[@0)s 191) = £][90), [92) = £1£][do), [#3) = £]|90) (E.25)

where here |@p) is the ground state of H (2) annihilated by both f5 (0 =1,]). Given the
expression in Eq. (E.22)-(E.25), one can immediately show that

3 1
ZO|<¢m|C;,o|¢n>|2 = Z, |<¢m|cj 6|¢n>| ( ],1+51 L) 4 (E.26)

foralln =0,1,2,3 and o, thus proving Eq. (4.58) in the main text.
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