# Characterizations and classifications of quasitrivial semigroups

Jimmy Devillet

University of Luxembourg Luxembourg

in collaboraton with Jean-Luc Marichal and Bruno Teheux

Part I: Single-plateauedness and 2-quasilinearity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Weak orderings

## Recall that a *weak ordering* (or *total preordering*) on a set X is a binary relation $\leq$ on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For  $X = \{a_1, a_2, a_3\}$ , we have 13 weak orderings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Weak orderings

Recall that a *weak ordering* (or *total preordering*) on a set X is a binary relation  $\leq$  on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For  $X = \{a_1, a_2, a_3\}$ , we have 13 weak orderings

### Weak orderings

Recall that a *weak ordering* (or *total preordering*) on a set X is a binary relation  $\leq$  on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For  $X = \{a_1, a_2, a_3\}$ , we have 13 weak orderings

| $a_1 \prec a_2 \prec a_3$ | $a_1 \sim a_2 \prec a_3$                            | $a_1\sima_2\sima_3$ |
|---------------------------|-----------------------------------------------------|---------------------|
| $a_1 \prec a_3 \prec a_2$ | $\textit{a}_1 \prec \textit{a}_2 \sim \textit{a}_3$ |                     |
| $a_2 \prec a_1 \prec a_3$ | $a_2 \prec a_1 \sim a_3$                            |                     |
| $a_2 \prec a_3 \prec a_1$ | $a_3 \prec a_1 \sim a_2$                            |                     |
| $a_3 \prec a_1 \prec a_2$ | $a_1 \sim a_3 \prec a_2$                            |                     |
| $a_3 \prec a_2 \prec a_1$ | $a_2\sima_3\preca_1$                                |                     |

**Definition**. (Black, 1948) Let  $\leq$  be a total ordering on X and let  $\preceq$  be a weak ordering on X. Then  $\preceq$  is said to be *single-plateaued for*  $\leq$  if

$$a_i < a_j < a_k \implies a_j \prec a_i$$
 or  $a_j \prec a_k$  or  $a_i \sim a_j \sim a_k$ 

**Examples.** On  $X = \{a_1 < a_2 < a_3 < a_4 < a_5 < a_6\}$ 

$$\begin{vmatrix} a_{3} \sim a_{4} \prec a_{2} \prec a_{1} \sim a_{5} \prec a_{6} \end{vmatrix}$$

$$\begin{vmatrix} a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6} \end{vmatrix}$$

$$\begin{vmatrix} a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6} \end{vmatrix}$$

$$\begin{vmatrix} a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6} \end{vmatrix}$$

$$\begin{vmatrix} a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6} \end{vmatrix}$$

ヘロン 人間 とくほと くほとう

ж.

**Definition**. (Black, 1948) Let  $\leq$  be a total ordering on X and let  $\preceq$  be a weak ordering on X. Then  $\preceq$  is said to be *single-plateaued for*  $\leq$  if

$$a_i < a_j < a_k \implies a_j \prec a_i$$
 or  $a_j \prec a_k$  or  $a_i \sim a_j \sim a_k$ 

**Examples.** On  $X = \{a_1 < a_2 < a_3 < a_4 < a_5 < a_6\}$ 

$$a_{3} \sim a_{4} \prec a_{2} \prec a_{1} \sim a_{5} \prec a_{6}$$

$$a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}$$

$$a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}$$

$$a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}$$

$$a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}$$

$$a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}$$

$$a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}$$

#### **Q:** Given $\precsim$ is it possible to find $\leq$ for which $\precsim$ is single-plateaued?

**Example:** On  $X = \{a_1, a_2, a_3, a_4\}$  consider  $\preceq$  and  $\preceq'$  defined by

 $a_1 \sim a_2 \prec a_3 \sim a_4$  and  $a_1 \prec' a_2 \sim' a_3 \sim' a_4$ 

Yes! Consider  $\leq$  defined by  $\mathsf{a}_3 < \mathsf{a}_1 < \mathsf{a}_2 < \mathsf{a}_4$ 



**Q:** Given  $\precsim$  is it possible to find  $\leq$  for which  $\precsim$  is single-plateaued?

**Example:** On  $X = \{a_1, a_2, a_3, a_4\}$  consider  $\preceq$  and  $\preceq'$  defined by

 $a_1 \sim a_2 \prec a_3 \sim a_4$  and  $a_1 \prec' a_2 \sim' a_3 \sim' a_4$ 

**Yes**! Consider  $\leq$  defined by  $a_3 < a_1 < a_2 < a_4$ 



**Q:** Given  $\precsim$  is it possible to find  $\leq$  for which  $\precsim$  is single-plateaued?

**Example:** On  $X = \{a_1, a_2, a_3, a_4\}$  consider  $\preceq$  and  $\preceq'$  defined by

 $a_1 \sim a_2 \prec a_3 \sim a_4$  and  $a_1 \prec' a_2 \sim' a_3 \sim' a_4$ 

**Yes!** Consider  $\leq$  defined by  $a_3 < a_1 < a_2 < a_4$ 



No

**Q:** Given  $\precsim$  is it possible to find  $\leq$  for which  $\precsim$  is single-plateaued?

**Example:** On  $X = \{a_1, a_2, a_3, a_4\}$  consider  $\preceq$  and  $\preceq'$  defined by

 $a_1 \sim a_2 \prec a_3 \sim a_4$  and  $a_1 \prec' a_2 \sim' a_3 \sim' a_4$ 

Yes! Consider  $\leq$  defined by  $a_3 < a_1 < a_2 < a_4$ 



No!

**Q:** Given  $\precsim$  is it possible to find  $\leq$  for which  $\precsim$  is single-plateaued?

**Example:** On  $X = \{a_1, a_2, a_3, a_4\}$  consider  $\preceq$  and  $\preceq'$  defined by

 $a_1 \sim a_2 \prec a_3 \sim a_4$  and  $a_1 \prec' a_2 \sim' a_3 \sim' a_4$ 

Yes! Consider  $\leq$  defined by  $a_3 < a_1 < a_2 < a_4$ 



No!

### 2-quasilinear weak orderings

#### Definition.

We say that  $\preceq$  is *2-quasilinear* if

 $a \prec b \sim c \sim d \implies a, b, c, d$  are not pairwise distinct

#### Proposition

Assume the axiom of choice.

 $\precsim$  is 2-quasilinear  $\iff$   $\exists$   $\leq$  for which  $\precsim$  is single-plateaued

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### 2-quasilinear weak orderings

#### Definition.

We say that  $\preceq$  is *2-quasilinear* if

 $a \prec b \sim c \sim d \implies a, b, c, d$  are not pairwise distinct

#### Proposition

Assume the axiom of choice.

 $\precsim$  is 2-quasilinear  $\iff~\exists~\leq~$  for which  $\precsim~$  is single-plateaued

Part II: Quasitrivial semigroups

### Quasitriviality

#### Definition

 $F: X^2 \to X$  is said to be *quasitrivial* (or *conservative*) if  $F(x,y) \in \{x,y\}$   $x,y \in X$ 

**Example.**  $F = \max_{\leq} \text{ on } X = \{1, 2, 3\} \text{ endowed with the usual } \leq$ 



### Quasitriviality

#### Definition

 $F: X^2 \to X$  is said to be *quasitrivial* (or *conservative*) if

$$F(x,y) \in \{x,y\}$$
  $x,y \in X$ 

**Example.**  $F = \max_{\leq}$  on  $X = \{1, 2, 3\}$  endowed with the usual  $\leq$ 



### Quasitriviality

#### Definition

 $F: X^2 \to X$  is said to be *quasitrivial* (or *conservative*) if

$$F(x,y) \in \{x,y\}$$
  $x,y \in X$ 

**Example.**  $F = \max_{\leq}$  on  $X = \{1, 2, 3\}$  endowed with the usual  $\leq$ 



### Projections

#### Definition.

The projection operations  $\pi_1 \colon X^2 \to X$  and  $\pi_2 \colon X^2 \to X$  are respectively defined by

$$egin{array}{rll} \pi_1(x,y)&=&x,\qquad x,y\in X\ \pi_2(x,y)&=&y,\qquad x,y\in X \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Quasitrivial semigroups

#### Theorem (Länger, 1980)

F is associative and quasitrivial

$$\exists \ \preceq \ : F|_{A \times B} = \begin{cases} \max_{\ \preceq \ |A \times B, \ } & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/$$



### Quasitrivial semigroups

#### Theorem (Länger, 1980)

F is associative and quasitrivial

 $\sim$ 

$$\begin{array}{l} \updownarrow \\ \exists \preceq : F|_{A \times B} = \begin{cases} \max_{\preceq} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X_A \}$$



### Quasitrivial semigroups



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - の�?

#### Definition.

 $F: X^2 \to X$  is said to be  $\leq$ -preserving for some total ordering  $\leq$  on X if for any  $x, y, x', y' \in X$  such that  $x \leq x'$  and  $y \leq y'$ , we have  $F(x, y) \leq F(x', y')$ 

Definition.

We say that  $F: X^2 \to X$  is *order-preservable* if it is  $\leq$ -preserving for some  $\leq$ 

**Q:** Given an associative and quasitrivial *F*, is it order-preservable?

#### Definition.

 $F: X^2 \to X$  is said to be  $\leq$ -preserving for some total ordering  $\leq$  on X if for any  $x, y, x', y' \in X$  such that  $x \leq x'$  and  $y \leq y'$ , we have  $F(x, y) \leq F(x', y')$ 

#### Definition.

We say that  $F: X^2 \to X$  is *order-preservable* if it is  $\leq$ -preserving for some  $\leq$ 

**Q:** Given an associative and quasitrivial *F*, is it order-preservable?

#### Definition.

 $F: X^2 \to X$  is said to be  $\leq$ -preserving for some total ordering  $\leq$  on X if for any  $x, y, x', y' \in X$  such that  $x \leq x'$  and  $y \leq y'$ , we have  $F(x, y) \leq F(x', y')$ 

#### Definition.

We say that  $F: X^2 \to X$  is *order-preservable* if it is  $\leq$ -preserving for some  $\leq$ 

**Q**: Given an associative and quasitrivial F, is it order-preservable?



2-quasilinearity :  $a \prec b \sim c \sim d \implies a, b, c, d$  are not pairwise distinct

#### Theorem

Assume the axiom of choice.

F is associative, quasitrivial, and order-preservable

### $\downarrow$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

 $\exists \precsim : F$  is of the form (\*) and  $\precsim$  is 2-quasilinear



2-quasilinearity :  $a \prec b \sim c \sim d \implies a, b, c, d$  are not pairwise distinct

#### Theorem

Assume the axiom of choice.

F is associative, quasitrivial, and order-preservable

 $\Rightarrow$ 

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

 $\exists \precsim$  : *F* is of the form (\*) and  $\precsim$  is 2-quasilinear



2-quasilinearity :  $a \prec b \sim c \sim d \implies a, b, c, d$  are not pairwise distinct

#### Theorem

Assume the axiom of choice.

F is associative, quasitrivial, and order-preservable

 $\uparrow$ 

 $\exists \preceq : F$  is of the form (\*) and  $\preceq$  is 2-quasilinear



■ のへで



996

æ

### Final remarks

In arXiv: 1811.11113 and *Quasitrivial semigroups: characterizations and enumerations (Semigroup Forum, 2018)* 

- Characterizations and classifications of quasitrival semigroups by means of certain equivalence relations
- Characterization of associative, quasitrivial, and order-preserving operations by means of single-plateauedness
- O New integer sequences (http://www.oeis.org)
  - Number of quasitrivial semigroups: A292932
  - Number of associative, quasitrivial, and order-preserving operations: A293005
  - Number of associative, quasitrivial, and order-preservable operations: Axxxxx

• . . .

### Some references



#### N. L. Ackerman.

A characterization of quasitrivial *n*-semigroups.

To appear in Algebra Universalis.



#### S. Berg and T. Perlinger.

Single-peaked compatible preference profiles: some combinatorial results. *Social Choice and Welfare* 27(1):89–102, 2006.



#### D. Black.

On the rationale of group decision-making. *J Polit Economy*, 56(1):23–34, 1948



M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. *Semigroup Forum*, In press. arXiv:1709.09162.



J. Devillet, J.-L. Marichal, and B. Teheux. Classifications of quasitrivial semigroups. arXiv:1811.11113.



#### H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups. *Semigroup Forum*, 20:151–156, 1980.