Characterizations and classifications of quasitrivial semigroups

Jimmy Devillet

University of Luxembourg
Luxembourg
in collaboraton with Jean-Luc Marichal and Bruno Teheux

Part I: Single-plateauedness and 2-quasilinearity

Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary relation $\precsim ~ o n ~ X ~ t h a t ~ i s ~ t o t a l ~ a n d ~ t r a n s i t i v e . ~$

Defining a weak ordering on X amounts to defining an ordered partition of X

Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary relation $\precsim ~ o n ~ X ~ t h a t ~ i s ~ t o t a l ~ a n d ~ t r a n s i t i v e . ~$

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X=\left\{a_{1}, a_{2}, a_{3}\right\}$, we have 13 weak orderings

Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary relation \precsim on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition of X

For $X=\left\{a_{1}, a_{2}, a_{3}\right\}$, we have 13 weak orderings

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} & a_{1} \sim a_{2} \prec a_{3}
\end{array} \quad a_{1} \sim a_{2} \sim a_{3}
$$

Single-plateaued weak orderings

Definition. (Black, 1948)
Let \leq be a total ordering on X and let \precsim be a weak ordering on X.
Then \precsim is said to be single-plateaued for \leq if

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k} \quad \text { or } \quad a_{i} \sim a_{j} \sim a_{k}
$$

Examples. On $X=\left\{a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}\right\}$

Single-plateaued weak orderings

Definition. (Black, 1948)
Let \leq be a total ordering on X and let \precsim be a weak ordering on X. Then \precsim is said to be single-plateaued for \leq if

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k} \quad \text { or } \quad a_{i} \sim a_{j} \sim a_{k}
$$

Examples. On $X=\left\{a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}\right\}$

$$
a_{3} \sim a_{4} \prec a_{2} \prec a_{1} \sim a_{5} \prec a_{6}
$$

$$
a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}
$$

Single-plateaued weak orderings

Q: Given \precsim is it possible to find \leq for which \precsim is single-plateaued?
Example: On $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ consider \precsim and \precsim^{\prime} defined by

Single-plateaued weak orderings

Q: Given \precsim is it possible to find \leq for which \precsim is single-plateaued?
Example: On $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ consider \precsim and \precsim^{\prime} defined by

$$
a_{1} \sim a_{2} \prec a_{3} \sim a_{4} \quad \text { and } \quad a_{1} \prec^{\prime} a_{2} \sim^{\prime} a_{3} \sim^{\prime} a_{4}
$$

Single-plateaued weak orderings

Q: Given \precsim is it possible to find \leq for which \precsim is single-plateaued?
Example: On $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ consider \precsim and \precsim^{\prime} defined by

$$
a_{1} \sim a_{2} \prec a_{3} \sim a_{4} \quad \text { and } \quad a_{1} \prec^{\prime} a_{2} \sim^{\prime} a_{3} \sim^{\prime} a_{4}
$$

Yes!

Single-plateaued weak orderings

Q: Given \precsim is it possible to find \leq for which \precsim is single-plateaued?
Example: On $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ consider \precsim and \precsim^{\prime} defined by

$$
a_{1} \sim a_{2} \prec a_{3} \sim a_{4} \quad \text { and } \quad a_{1} \prec^{\prime} a_{2} \sim^{\prime} a_{3} \sim^{\prime} a_{4}
$$

Yes! Consider \leq defined by $a_{3}<a_{1}<a_{2}<a_{4}$

Single-plateaued weak orderings

Q: Given \precsim is it possible to find \leq for which \precsim is single-plateaued?
Example: On $X=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ consider \precsim and \precsim^{\prime} defined by

$$
a_{1} \sim a_{2} \prec a_{3} \sim a_{4} \quad \text { and } \quad a_{1} \prec^{\prime} a_{2} \sim^{\prime} a_{3} \sim^{\prime} a_{4}
$$

Yes! Consider \leq defined by $a_{3}<a_{1}<a_{2}<a_{4}$

No!

2-quasilinear weak orderings

Definition.

We say that \precsim is 2-quasilinear if

$$
a \prec b \sim c \sim d \quad \Longrightarrow \quad a, b, c, d \text { are not pairwise distinct }
$$

Proposition

Ascume the axiom of choice

2-quasilinear weak orderings

Definition.

We say that \precsim is 2-quasilinear if

$$
a \prec b \sim c \sim d \quad \Longrightarrow \quad a, b, c, d \text { are not pairwise distinct }
$$

Proposition

Assume the axiom of choice.
\precsim is 2-quasilinear $\Longleftrightarrow \exists \leq$ for which \precsim is single-plateaued

Part II: Quasitrivial semigroups

Quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $F=\max \leq$ on $X=\{1,2,3\}$ endowed with the usual \leq

Quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $F=\max _{\leq}$on $X=\{1,2,3\}$ endowed with the usual \leq

Quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Example. $F=\max _{\leq}$on $X=\{1,2,3\}$ endowed with the usual \leq

Projections

Definition.

The projection operations $\pi_{1}: X^{2} \rightarrow X$ and $\pi_{2}: X^{2} \rightarrow X$ are respectively defined by

$$
\begin{array}{lll}
\pi_{1}(x, y)=x, & & x, y \in X \\
\pi_{2}(x, y)=y, & & x, y \in X
\end{array}
$$

Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

$$
\exists \precsim:\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

$$
\exists \precsim:\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Quasitrivial semigroups

Order-preservable operations

Definition.

$F: X^{2} \rightarrow X$ is said to be \leq-preserving for some total ordering \leq on X if for any $x, y, x^{\prime}, y^{\prime} \in X$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have $F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right)$

Definition.
We say that $F: X^{2} \rightarrow X$ is order-preservable if it is \leq-preserving for some \leq

Order-preservable operations

Definition.

$F: X^{2} \rightarrow X$ is said to be \leq-preserving for some total ordering \leq on X if for any $x, y, x^{\prime}, y^{\prime} \in X$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have $F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right)$

Definition.
We say that $F: X^{2} \rightarrow X$ is order-preservable if it is \leq-preserving for some \leq

Q: Given an associative and quasitrivial F, is it order-preservable?

Order-preservable operations

Definition.

$F: X^{2} \rightarrow X$ is said to be \leq-preserving for some total ordering \leq on X if for any $x, y, x^{\prime}, y^{\prime} \in X$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have $F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right)$

Definition.
We say that $F: X^{2} \rightarrow X$ is order-preservable if it is \leq-preserving for some \leq

Q: Given an associative and quasitrivial F, is it order-preservable?

Order-preservable operations

[^0]
Order-preservable operations

2-quasilinearity : $a \prec b \sim c \sim d \quad \Longrightarrow \quad a, b, c, d$ are not pairwise distinct

Theorem

Assume the axiom of choice.
F is associative, quasitrivial, and order-preservable

Order-preservable operations

2-quasilinearity : $a \prec b \sim c \sim d \quad \Longrightarrow \quad a, b, c, d$ are not pairwise distinct

Theorem

Assume the axiom of choice.
F is associative, quasitrivial, and order-preservable
$\exists \precsim: F$ is of the form $(*)$ and \precsim is 2-quasilinear

Order-preservable operations

Order-preservable operations

Final remarks

In arXiv: 1811.11113 and Quasitrivial semigroups: characterizations and enumerations (Semigroup Forum, 2018)
(1) Characterizations and classifications of quasitrival semigroups by means of certain equivalence relations
(2) Characterization of associative, quasitrivial, and order-preserving operations by means of single-plateauedness
(3) New integer sequences (http://www.oeis.org)

- Number of quasitrivial semigroups: A292932
- Number of associative, quasitrivial, and order-preserving operations: A293005
- Number of associative, quasitrivial, and order-preservable operations: $A x \times x \times x x$
- . . .

Some references

N. L. Ackerman.

A characterization of quasitrivial n-semigroups.
To appear in Algebra Universalis.
S. Berg and T. Perlinger.

Single-peaked compatible preference profiles: some combinatorial results.
Social Choice and Welfare 27(1):89-102, 2006.
\square D. Black.

On the rationale of group decision-making.
J Polit Economy, 56(1):23-34, 1948

M. Couceiro, J. Devillet, and J.-L. Marichal.

Quasitrivial semigroups: characterizations and enumerations.
Semigroup Forum, In press. arXiv:1709.09162.

J. Devillet, J.-L. Marichal, and B. Teheux.

Classifications of quasitrivial semigroups.
arXiv:1811.11113.

H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups.
Semigroup Forum, 20:151-156, 1980.

[^0]: 2-quasilinearity
 a, b, c, d are not pairwise distinct

