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Part I: Single-plateauedness and 2-quasilinearity



Weak orderings

Recall that a weak ordering (or total preordering) on a set X is a binary
relation - on X that is total and transitive.

Defining a weak ordering on X amounts to defining an ordered partition
of X

For X = {a1, a2, a3}, we have 13 weak orderings

a1 ≺ a2 ≺ a3 a1 ∼ a2 ≺ a3 a1 ∼ a2 ∼ a3

a1 ≺ a3 ≺ a2 a1 ≺ a2 ∼ a3

a2 ≺ a1 ≺ a3 a2 ≺ a1 ∼ a3

a2 ≺ a3 ≺ a1 a3 ≺ a1 ∼ a2

a3 ≺ a1 ≺ a2 a1 ∼ a3 ≺ a2

a3 ≺ a2 ≺ a1 a2 ∼ a3 ≺ a1
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Single-plateaued weak orderings

Definition. (Black, 1948)
Let ≤ be a total ordering on X and let - be a weak ordering on X .
Then - is said to be single-plateaued for ≤ if

ai < aj < ak =⇒ aj ≺ ai or aj ≺ ak or ai ∼ aj ∼ ak

Examples. On X = {a1 < a2 < a3 < a4 < a5 < a6}

a3 ∼ a4 ≺ a2 ≺ a1 ∼ a5 ≺ a6 a3 ∼ a4 ≺ a2 ∼ a1 ≺ a5 ≺ a6
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Single-plateaued weak orderings

Q: Given - is it possible to find ≤ for which - is single-plateaued?

Example: On X = {a1, a2, a3, a4} consider - and -′ defined by

a1∼a2≺a3∼a4 and a1≺′a2∼′a3∼′a4

Yes! Consider ≤ defined by a3 < a1 < a2 < a4

-
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2-quasilinear weak orderings

Definition.
We say that - is 2-quasilinear if

a ≺ b ∼ c ∼ d =⇒ a, b, c , d are not pairwise distinct

Proposition

Assume the axiom of choice.

- is 2-quasilinear ⇐⇒ ∃ ≤ for which - is single-plateaued
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Part II: Quasitrivial semigroups



Quasitriviality

Definition

F : X 2 → X is said to be quasitrivial (or conservative) if

F (x , y) ∈ {x , y} x , y ∈ X

Example. F = max≤ on X = {1, 2, 3} endowed with the usual ≤
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Projections

Definition.

The projection operations π1 : X 2 → X and π2 : X 2 → X are respectively
defined by

π1(x , y) = x , x , y ∈ X

π2(x , y) = y , x , y ∈ X



Quasitrivial semigroups

Theorem (Länger, 1980)

F is associative and quasitrivial

m

∃ - : F |A×B =

{
max- |A×B , if A 6= B,

π1|A×B or π2|A×B , if A = B,
∀A,B ∈ X/ ∼

-
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Quasitrivial semigroups
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Order-preservable operations

Definition.

F : X 2 → X is said to be ≤-preserving for some total ordering ≤ on X if
for any x , y , x ′, y ′ ∈ X such that x ≤ x ′ and y ≤ y ′, we have
F (x , y) ≤ F (x ′, y ′)

Definition.

We say that F : X 2 → X is order-preservable if it is ≤-preserving for
some ≤

Q: Given an associative and quasitrivial F , is it order-preservable?
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Order-preservable operations
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Final remarks

In arXiv: 1811.11113 and Quasitrivial semigroups: characterizations and
enumerations (Semigroup Forum, 2018)

1 Characterizations and classifications of quasitrival semigroups by means
of certain equivalence relations

2 Characterization of associative, quasitrivial, and order-preserving
operations by means of single-plateauedness

3 New integer sequences (http://www.oeis.org)

Number of quasitrivial semigroups: A292932
Number of associative, quasitrivial, and order-preserving
operations: A293005
Number of associative, quasitrivial, and order-preservable
operations: Axxxxxx
. . .
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