
Automatically Securing Permission-Based Software by
Reducing the Attack Surface: An Application to Android

Alexandre Bartel, Jacques Klein,
Yves Le Traon

University of Luxembourg, SnT, Luxembourg
firstName.lastName@uni.lu

Martin Monperrus
University of Lille & INRIA

Lille, France
martin.monperrus@univ-lille1.fr

ABSTRACT
In the permission-based security model (used e.g. in An-
droid and Blackberry), applications can be granted more
permissions than they actually need, what we call a “per-
mission gap”. Malware can leverage the unused permissions
for achieving their malicious goals, for instance using code
injection. In this paper, we present an approach to detect-
ing permission gaps using static analysis. Using our tool on
a dataset of Android applications, we found out that a non
negligible part of applications suffers from permission gaps,
i.e. does not use all the permissions they declare.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Programming by contracts Validation

General Terms
Experimentation, Security, Verification

Keywords
Permissions, permission-based software, call-graph, Android,
security, Soot, static analysis

1. INTRODUCTION
Android is one of the most widespread mobile operating

system in the world accounting 52% market share [10]. More
than 300 000 Android applications available on dozens of ap-
plication markets can be installed by end users. The other
side of the coin is that all kinds of malware are waiting to
be installed on thousands of Android devices. For instance,
Zeus [13] sends banking information to malicious servers.
This motivates researchers and engineers to devise security
models, architectures and tools that are able to mitigate the
malware harmfulness.
The security architecture of Android, the Google Chrome
browser extension system and the Blackberry platform, all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$15.00.

use a similar security model called the permission-based se-
curity model [2]. A permission-based security model can be
loosely defined as a model in which 1) each application is
associated with a set of permissions that allows accessing
certain resources; 2) permissions are explicitly accepted by
users during the installation process and 3) permissions are
checked at runtime when resources are requested.
This permission model entails intrinsic risks. For instance,
not all users may be able to cleverly reject powerful permis-
sions at installation time. Malwares may also use platform
vulnerabilities to circumvent runtime permission checks. Fi-
nally, applications can be granted more permissions than
they actually need, what we call a “permission gap”. Mal-
wares can leverage the unused permissions for achieving their
malicious goals and have many ways to do so, for instance us-
ing code injection or return-oriented programming [4]. Iden-
tifying permission gaps means reducing the risks for an ap-
plication to be compromised, also known as reducing the
application attack surface [16].
Permission gaps appear because the process of declaring ap-
plication permissions is manual and error-prone: Android
framework developers manually document which permissions
are required for each system resource, and Android applica-
tion developers manually declare the permissions they think
are needed. This paper presents an approach to support
those manual software engineering activities with an auto-
mated tool. This approach secures permission-based soft-
ware in the sense that it reduces the attack risks (not in the
sense that the resulting software is unattackable).
Our tool, called COPES (COrrect PErmissions Set), pro-
ceeds as follows. First, using static analysis, it extracts from
the Android framework bytecode a table that maps every
method of the API to a set of permissions the method needs
to be executed properly. Second, COPES lists all framework
methods used by an application, based on static analysis of
the application bytecode. Third, COPES computes the set
of permissions that are required for the application to run,
which means that all permissions in this set are at least used
once in the application, and consequently no permission gap
remains. Eventually, COPES computes the permission gap
as the difference between the declared permissions and the
required permissions. By listing the permission checks per
framework method, COPES can also help Android designers
to comprehensively document the framework.
To sum up, the contribution of this paper is an approach
to identify and fix permission gaps in permission based soft-
ware. More specifically:
• We present a novel methodology to compute a close ap-

proximation of the required permission set and the permis-
sion gap based on static analysis, as opposed to concurrent
work that uses testing [7].
• We evaluate our approach on 679 Android applications
and we show that 124 of them suffer from a permission gap
of one to more extraneous permissions.
The reminder of this paper is organized as follows. In Section
2 we propose generic method for inferring permission gaps.
In Section 3 we explain some technical details. Experiments
we conducted and results are presented and discussed in Sec-
tion 4. We present the related work in Section 5. Finally we
conclude the paper and discuss open research challenges in
Section 6.

2. ANALYZING PERMISSIONS
In this section, we introduce the concept of permission-

based software and propose a generic methodology to com-
pute a mapping from code to permissions that are required
for an application to run.

Permission-based software. Permission-based software is
conceptually divided in three layers: 1) the core platform
which is able to access all system resources (e.g. change
the network policy), it is generally the operating system; 2)
a middleware responsible for providing a clean application
programming interface (API) to the OS resources and for
checking that applications have the right permissions when
they want accessing them; 3) applications built on top of the
middleware, which have to explicitly declare the permissions
they require. Layers #2 and #3 motivate the generic la-
bel “permission-based software”. Since the middleware also
hides the OS complexity and provides an API, it is some-
times called, as in the case of Android, a framework. Permis-
sions can be checked at different levels in the system. We
call high-level permissions the set of permissions that are
checked at the framework level. Low-level permissions are
permissions that are checked at the operating system level.
They are 115 permissions in the Android system, while 8
permissions are checked at a low-level. This shows that the
framework is responsible for much of the work related to
permissions. Note that if a permission is checked at the
operating system level, it is not possible to detect that an
application uses it by only analyzing the framework. We
distinguish 3 kinds of permissions for an application app: 1)
a declared permission is in the permission list of app. 2)
a required permissionis associated with a resource that app
uses at least once. 3) an inferred permission is found by an
analysis to be required by actually app.

Problem with permissions. When developers write mani-
fests, they write declared permission list by trying to guess
required permissions based on documentation and trial-and-
errors. In this paper, we propose to automatically infer a
permission list in order to avoid this manual and error-prone
activity.

Inferring Permissions. Let app be an application. The
access vector for app is a boolean vector AVapp representing
the entry points1 of the framework usable from app. Thus,
the length of vector AV is the number of entry points of the
framework. An element of the vector is set to true if the
corresponding entry point is called by the application. We
define the permission access matrix M as a boolean matrix

1An entry point of a framework is a method that an appli-
cation can use (e.g. public or documented)

which represents the relation between entry points of the
framework and permissions. Rows represent entry points
of the framework and columns represent permissions. A cell
Mi,j is set to true if the corresponding entry point (at row i)
accesses a resource protected by the permission represented
by column j. Let app and F be an application and a frame-
work respectively. The inferred permissions vector, IPapp,
is a boolean vector representing the set of inferred permis-
sions for application app. A cell IPapp(k) is set to true if the
permission at index k is required by app. Otherwise it is set
to false. We have IPapp = AVapp ×M by using the boolean
operators AND and OR instead of arithmetic multiplication
and addition in the matrix calculus.

Extraction of M and AV . Our idea is to perform a static
analysis of the framework to extract M and AV . To extract
M , we compute a call graph for every entry point of the
framework and then detect whether or not permission checks
are present in the call graph. To extract AV , we search for
occurrences of calls to entry points in the application code.

Computing the Permission Gap. The inferred permission
list is computed as explained above. The permission gap is
the difference between the permissions extracted from IPapp

and the declared permissions Pd(app). For instance If the
application declares {p1, p2} and IPapp = {p1}, then the
permission gap is {p2}.

3. STATIC ANALYSIS FOR ANDROID
Our approach to detecting permission gaps presented in

Section 2 is implemented with two tools. One extracts from
a permission-based framework a binary matrix that maps
framework methods to permissions, we call it the mapper.
The other extracts from application code the list of frame-
work methods used, we call it the sniffer. In COPES, both
tools are based on static analysis using the Soot analysis
toolkit.

The Mapper COPES’ Mapper uses the Soot call graph
analysis Spark [15]. We run Spark in context-insensitive,
path-insensitive, flow-insensitive, field-sensitive mode to gen-
erate the call graph. In context-insensitive mode, every call
to a same method are merged to a single edge independently
of the context (receiver and parameters values). A path-
insensitive analysis ignores conditional branching hence takes
into account all paths of method bodies. The call graph con-
struction is flow-insensitive since it does not consider the
order of executions of instructions. It is also field-sensitive
because it uses and propagates initialization data (e.g. con-
structor calls) to reduce the number of egdes.
Spark requires an entry point (usually a main) in order to
apply its edge removal techniques. In the case of an API
(such as the Android API), there is no “main”. Hence, we
build one call graph per public method of the Android API
by creating one fake main method per public class of the
framework (for Android, android.* and com.android.*).
We can also build an artificial main calling all public meth-
ods, which is conceptually equivalent yet less scalable2.

The Sniffer An Android application has no main as well.
Hence, the sniffer does not need to construct a call graph. As
a result, the Sniffer simply searches for all static occurrences
of methods of the Android framework into the application
bytecode.

2we were not able to extract such a call graph on a machine
with 24GB RAM

Handling Services A “vanilla” mapper does not work since
some calls to the framework are invisible to the static anal-
ysis because runtime binding are used within Android ser-
vices. An Android servive is a component defined by an
application to communicate within the application or with
other components of the system. Applications also com-
municate with the operating systems using a special kind
of services called system serviceswhere the system enforces
permission checks for protected resources. The permission
checks associated to services are mostly implemented in Java,
but Android also checks permissions elsewhere (e.g. in C++
services).In this paper, we focus on the former (Java ser-
vices). Applications synchronously communicate with oth-
ers services (deployed from other applications or the OS)
through a mechanism called Binder. When communicat-
ing with another service, the first step is to dynamically
get a reference to the service by calling Context.getSystem

Service(); and then a method is called on the reference.
The main problem is that a default call graph does not see
those runtime references.

Our solution is as follows. Since the binding uses a lookup
table that is instantiated once at boot time within the system
server, we intercept this lookup table and use it in a Soot
plugin to redirect every proxy call to the concrete instance of
the class which implements the service. In other terms, we
feed the call graph engine with this domain specific informa-
tion that it does not know from code. Note that when using
a field-sensitive (such as Spark) or context-sensitive analysis,
services must be properly initialized. Otherwise, their fields
would point to null and method calls on those fields would
not be considered during the call graph construction. We re-
solve this issue by providing a special initialization class to
Spark containing services objects with proper initialization.

Our analysis considers other important technical details
described in [3].

4. EVALUATION
Extracted Permission Maps. In the Android v2.2 frame-

work, 115 permissions are defined. As already said, our
static analysis method does not deal with: 8 low-level kernel
permissions; 30 permissions checked at the level C++ ser-
vices; 8 permissions checked at the level of content providers.
Removing these permissions from the initial set of 115 per-
missions and by taking care of overlapping permissions (for
instance, a permission can be checked at both C++ ser-
vice and content provider levels) yields a set of 71 high-
level permissions. In the following, our discussion and com-
parison will only consider this set of 71 permissions. We
ran the Mapper described in Section 3. As a result, on
the 126660 entry points (methods of the Android frame-
work), our tool infers that 112824 methods have no permis-
sion checks, whereas 9562 methods have at least one per-
mission checks (with a median of 2 permission checks and
a maximum of 50 permission checks). The total number of
permission checks is 137408. In terms of CPU cost, the com-
putation of the permission map M is performed in about 11
hours on a Desktop Dell dual quad-core 2.4GHz with 24 Gio
RAM.

Permission Gaps in Real Applications. We ran our tool
on a dataset of Android applications from the official An-
droid Market. We consider the top 50 downloaded applica-
tions of all 34 top-level categories of the Android Market,
as well as the top 500 of all applications and the top 500

of new applications (on February, 23rd 2012). As a result,
after deduplicating the applications that appear in several
rankings, the dataset contains 2057 applications. For sake
of soundness, we discard 1378 applications using reflection
and/or class loading. On the 679 remaining applications,
124 are declaring one or more permissions which they do
not use. In all, among applications suffering from a per-
mission gap, 64.5% have an attack surface of 1 permission,
23.4% have an attack surface of 2 permissions, 12.1% of 3
or more permissions. We manually ran a sample of them
without the extraneous permission to verify the correctness
of our analysis (i.e. whether the extraneous permission is
actually not used at runtime).

5. RELATED WORK
We have presented an approach to reduce the attack sur-

face of permission-based software. The concept of “attack
surface” was introduced by Manadhata and colleagues [16],
it describes all manners in which an adversary can enter the
system and potentially cause damage. This paper describes
a method to identify the attack surface of Android appli-
cations, which is a important research challenge given the
sheer popularity of the Android platform. In the context
of Android, reducing the attack surface is adhering to the
principle of least privileges introduced by Saltzer [19].

While the Android permission model is different from the
one implemented in Java, the following pieces of research
present related and relevant points to put our contribution
in perspective. Koved and al. described a new static analy-
sis [14] to generate a permission list for a Java2 program (in
the Java permission model). An improved methodology was
presented by Geay et al. [11]. We also use static analysis
but in the context of Android which differs from a Java en-
vironment especially with respect to the binder mechanism
linking Android API to services. As shown in our evaluation,
the binder prevents off-the-shelf Java static analysis tools to
resolve remote call to a service. Related to role-based ac-
cess control, Pistoia et al. [18] formally model RBAC and
statically check the consistency of a JavaEE based RBAC
system. We check that permission lists of Android applica-
tions respect the principle of least priviledge. The concepts
are the same (Android permissions could be approximated
to roles, and we check which roles are needed at every point
of the Android framework) but the target systems are not.
We use a similar approach for solving the Binder problem as
they do for solving the remote method invocation problem.
A major difference though is that in the case of Android
system services and context must be initialized beforehand
to simulate a correct system state.

The Android security model has been described as much
in the gray literature [6] as in the official documentation
[1]. Different kinds of issues have been studied such as so-
cial engineering attacks [13], collusion attacks [17], privacy
leaks [12] and privilege escalation attacks [9, 4]. In con-
trast, this paper does not describe a particular weakness but
rather a software engineering approach to reduce potential
vulnerabilities. Different authors empirically explored the
usage of the Android model. For instance, Barrera et al. [2]
presented an empirical study on how permissions are used.
Other empirical studies include Felt’s one [8] on the effec-
tiveness of the permission model. Enck et al [5] presented
an approach to detect dangerous permissions and malicious
permission groups. They devised a language to express rules

which are expressed by security experts. Rules that do not
hold at installation time indicate a potential security prob-
lem hence a high attack surface. Our goal is different, we
don’t aim at identifying risks identified by experts, but to
identify the gap between the application’s permission speci-
fication and the actual usage of platform resources and ser-
vices. Contrary to [5], our approach is fully automated and
does not involve an expert in the process. Finally, Felt et
al. [7] concurrently worked on the same topic as this pa-
per. They published a very first version of the map between
developer’s resources (e.g. API calls) and permissions. In-
terestingly, we took two completely different approaches to
identify the map: while they use testing, we use static anal-
ysis. As a result, our work validates most of their results
although we found several discrepancies [3]. But the key dif-
ference is that our approach is fully automated while theirs
requires manually providing testing “seeds” (such as input
values). However, in the presence of reflection, their ap-
proach works better if the tests are appropriate. Hence, we
consider that both approaches are complementary, both at
the conceptual level for permission-based architectures, and
concretely for reverse-engineering and documenting Android
permissions.

6. CONCLUSIONS AND PERSPECTIVES
In this paper, we have presented a generic approach to

reduce the attack surface of permission-based software. The
approach has been fully implemented for Android, a permis-
sion-based platform for mobile devices. Our prototype im-
plementation is able to automatically find 9562 Android
framework entry points which check permissions. In a per-
mission-based framework, all those checks have to be docu-
mented, hence our approach does a significant job in achiev-
ing this task in a systematic manner. For end-user appli-
cations, our evaluation revealed that 124 applications from
the Android Market indeed suffer from permission gaps.

The security architecture of permission based software in
general and Android in particular is complex. In this pa-
per, we abstracted over several characteristics of the plat-
form such as low-level permissions. We are now working on
a modular approach that would be able to analyze native
code and bytecode in concert and to combine the permis-
sion information from both. Furthermore, we are exploring
how to express permission enforcement as a cross cutting
concern, in order to automatically add or remove permis-
sion enforcement points at the level of application or the
framework, according to a security specification.

7. ACKNOWLEDGMENTS
This research is supported by the National Research Fund,

Luxembourg. We also would like to thank Eric Bodden for
his help in using the Soot analysis toolkit.

8. REFERENCES
[1] The android developer’s guide, last-accessed: 2011-09.

http://developer.android.com/guide/index.html.

[2] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application
to android. In ACM Conference on Computer and
Communications Security (CCS 2010), pages 73–84,
Chicago, Illinois, USA, October 4-8, 2010.

[3] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon.
Automatically Securing Permission-Based Software by
Reducing the Attack Surface: An Application to
Android. Report ISBN: 978-2-87971-107-2, University
of Luxembourg, Mar. 2012.

[4] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Proceedings of the 13th International Conference on
Information Security, 2011.

[5] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM CCS, pages 235–245,
New York, NY, USA, 2009.

[6] W. Enck, M. Ongtang, and P. McDaniel.
Understanding android security. IEEE Security and
Privacy, 2009.

[7] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In ACM CCS 2011.

[8] A. P. Felt, K. Greenwood, and D. Wagner. The
effectiveness of application permissions. In Proceedings
of the 2nd USENIX conference on Web application
development, WebApps’11, pages 7–7, Berkeley, CA,
USA, 2011. USENIX Association.

[9] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In Proceedings of the 20th USENIX Security
Symposium, 2011.

[10] Gartner.com. Gartner says sales of mobile devices
grew 5.6 percent in third quarter of 2011; smartphone
sales increased 42 percent. http://goo.gl/HkyA4,
Last accessed: March 2 2012.

[11] E. Geay, M. Pistoia, T. Tateishi, B. G. Ryder, and
J. Dolby. Modular string-sensitive permission analysis
with demand-driven precision. In ICSE, pages
177–187. IEEE, 2009.

[12] C. Gibler, J. Crussel, J. Erickson, and H. Chen.
Androidleaks detecting privacy leaks in android
applications. Technical report, UC Davis, 2011.

[13] S. Hoffman. Zeus banking trojan variant attacks
android smartphones. CRN, 2011.
http://goo.gl/xAEGr.

[14] L. Koved, M. Pistoia, and A. Kershenbaum. Access
rights analysis for Java. ACM SIGPLAN Notices,
37(11):359–372, Nov. 2002.

[15] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In 12th International Conference
on Compiler Construction, 2003.

[16] P. Manadhata and J. Wing. An attack surface metric.
IEEE Transactions on Software Engineering,
37(3):371 –386, may-june 2011.

[17] C. Marforio, A. Francillon, and S. Čapkun.
Application collusion attack on the permission-based
security model and its implications for modern
smartphone systems. Technical Report 724, ETH
Zurich, April 2011.

[18] M. Pistoia, S. J. Fink, R. J. Flynn, and E. Yahav.
When role models have flaws: Static validation of
enterprise security policies. In ICSE, 2007.

[19] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In Proceedings of
the IEEE, 1975.

