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Abstract
Domain modeling is a common strategy for mitigating incompleteness in requirements.
While the benefits of domain models for checking the completeness of requirements are
anecdotally known, these benefits have never been evaluated systematically. We empirically
examine the potential usefulness of domain models for detecting incompleteness in natural-
language requirements. We focus on requirements written as “shall”-style statements and
domain models captured using UML class diagrams. Through a randomized simulation pro-
cess, we analyze the sensitivity of domain models to omissions in requirements. Sensitivity
is a measure of whether a domain model contains information that can lead to the discov-
ery of requirements omissions. Our empirical research method is case study research in
an industrial setting. We have experts construct domain models in three distinct industry
domains. We then report on how sensitive the resulting models are to simulated omissions in
requirements. We observe that domain models exhibit near-linear sensitivity to both unspec-
ified (i.e., missing) and under-specified requirements (i.e., requirements whose details are
incomplete). The level of sensitivity is more than four times higher for unspecified require-
ments than under-specified ones. These results provide empirical evidence that domain
models provide useful cues for checking the completeness of natural-language require-
ments. Further studies remain necessary to ascertain whether analysts are able to effectively
exploit these cues for incompleteness detection.

Keywords Requirements quality assurance · Requirements completeness ·
Natural-language requirements · Domain modeling · Case study research

1 Introduction

Checking the completeness of requirements is one of the most important and yet one of the
most challenging aspects of requirements validation (Basili and Weiss 1981; Davis 1990;
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Schneider et al. 1992; Pohl 1993; Zowghi and Gervasi 2003b). Requirements completeness
is often characterized along two dimensions: internal and external (Zowghi and Gervasi
2003a). Internal completeness is concerned with ensuring that a given requirements specifi-
cation is closed with respect to the statements and inferences that can be made solely based
on that specification (Jaffe et al. 1991). Internal completeness criteria include, among others,
absence of to-be-defined (TBD) items (Boehm 1984). External completeness is concerned
with ensuring that all the information that is pertinent to the definition of a system is found
within the specification (Zowghi and Gervasi 2003a). External completeness is a relative
notion and has to be determined vis-à-vis external sources of information. These sources
may be either humans (stakeholders) (Davis et al. 1993; Moody et al. 1998) or develop-
ment artifacts such as higher-level requirements (Costello and Liu 1995), models (Gigante
et al. 2015; Geierhos and Bäumer 2016), and existing system documentation (Ferrari et al.
2014). External completeness criteria include, among others, absence of missing system
functions (Boehm 1984).

Our work in this article focuses on external completeness. A fundamental property of
external completeness is that it cannot be ascertained in absolute terms. This is because one
can never be entirely sure that all the relevant external sources have been identified, or that
the identified external sources themselves are indeed complete. Despite this limitation, one
can implement measures for improving (but not guaranteeing) the external completeness of
requirements. One such measure is domain modeling (Zowghi and Gervasi 2003a; Ferrari
et al. 2014). A domain model is an explicit representation of the salient concepts in an appli-
cation domain and the relations between these concepts (Evans 2004). Depending on the
context, one may choose among several alternative notations for domain modeling. These
notations include ontology languages such as OWL (W3C OWL Working Group 2012),
entity-relationship (ER) models, and UML class diagrams (Ambler 2004; Holt et al. 2011).

Domain models, by virtue of being structured and succinct, help analysts capture the
domain concepts and relations in a reasonably complete manner. Further, and by virtue of
being predominantly graphical, domain models are accessible to domain experts, provided
that the experts are sufficiently trained in the modeling notation being used. This means
that the experts can more easily review a domain model for completeness than lengthy
requirements documents.

One would expect that the concepts and relations in a domain model should be referred
to in the requirements at least once, but potentially multiple times. A domain model element
that is not referred to in the requirements may be an indication of incompleteness and thus
warrants further investigation. Although this way of using a domain model for completeness
checking of requirements is intuitive and derived from common sense (Zowghi and Gervasi
2003a; Kaiya and Saeki 2005), there is little empirical research that examines in a systematic
manner how useful domain models can be for detecting incompleteness in requirements.

In this article, we present an empirical study aimed at investigating the potential use-
fulness of domain models for detecting incompleteness in natural-language (NL) require-
ments. Our interest in NL requirements is motivated by their prevalent use in industry (Mich
et al. 2004; Pohl and Rupp 2011). Checking the completeness of NL requirements is partic-
ularly challenging, noting that NL requirements specifications may constitute hundreds or
thousands of statements. This makes it important to develop a more detailed understanding
of mechanisms through which one can identify incompleteness issues in NL requirements.
One interesting mechanism to study for this purpose is domain modeling. This is due to both
the widespread use of domain models, and the fact that domain model construction often
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follows established guidelines (Larman 2004; Pohl and Rupp 2011; Whittle et al. 2014). The
latter factor leads to a reasonable degree of consistency in how analysts, irrespective of their appli-
cation domain, go about building domain models. Consequently, empirical observations about
the usefulness of domain models, including for completeness checking of NL requirements,
are likely to generalize beyond the immediate context where the observations are made.

Both NL requirements and domain models are broad terms, each with multiple realiza-
tions. NL requirements may come in a variety of forms, e.g., “shall”-style statements, use
cases, user stories and feature lists (Pohl and Rupp 2011). Similarly, and as already men-
tioned, domain models may be expressed in different notations with different capabilities
and characteristics. Our work in this article necessitates that we pick specific interpreta-
tions for NL requirements and domain models, since different interpretations may lead to
different empirical outcomes.

For this article, we take NL requirements to mean “shall”-style statements (for short,
shall requirements). Shall requirements are common practice in industry (Whittle et al.
2009). For domain modeling, we employ UML class diagrams. Class diagrams are a popular
notation for building conceptual representations of a domain (Reggio et al. 2014). We con-
cern ourselves exclusively with functional requirements, noting that domain models have a
functional nature (Lindland et al. 1994), and further, all the requirements specifications in
our study are functional ones (see Section 3). The general research question we tackle in
this article can thus more precisely be stated as follows:

RQ: Are domain models represented as UML class diagrams potentially useful for
checking the completeness of functional requirements expressed as shall statements?

Example We illustrate through an example the relationship between shall requirements and
domain models represented as class diagrams. Using this example, we explain in a concrete
manner how a domain model can assist with checking the completeness of requirements.

Figure 1a shows a subset of the requirements for a simulator tool in the aerospace
domain. The requirements document from which this subset was taken is the subject of one

Fig. 1 a Examples of shall requirements; b Example domain model represented as a UML class diagram
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of our case studies in Section 3. The requirements in Fig. 1a have been slightly altered from
their original form to facilitate discussion and preserve confidentiality. Figure 1b shows the
domain model fragment pertinent to the requirements of Fig. 1a. This fragment comes from
a domain model built by subject-matter experts. Some small modifications were made to
this model fragment to align it with the altered requirements. For the purposes of our illus-
tration, we assume that both the requirements and the domain model in Fig. 1 are complete,
i.e., free from any incompleteness issues.

Several elements of the domain model of Fig. 1b have correspondences in the require-
ments of Fig. 1a. For example, the concepts of Simulator and Simulation are shared between
both representations. The correspondences are not always at a lexical level. For example,
consider REQ2. At the level of requirements, the conceptual link between Administrator
and Simulation is for performing a specific action (dynamic reconfiguration). In the domain
model, this link is covered by an abstract association, labeled modifies, which does not
directly refer to the above action.

Domain models and requirements have different expressive powers, and not all the
information that can be inferred from domain models and requirements is overlapping or
equivalent (Larkin and Simon 1987). There may be information that is present exclusively
in the domain model – let us denote this information by Donly – as well as information that
is present exclusively in the requirements – let us denote this by Ronly. Assuming that the
requirements are complete, as we do in our example, one may expect that Donly should be
empty. In practice nevertheless, the domain model may contain information that analysts,
by choice, would leave implicit (tacit) in shall requirements. For example, the abstract con-
cepts of User and Communication Interface do not appear in the requirements of Fig. 1a.
Similarly, absent from the requirements is the domain model association between Simulator
and Simulation Node. While the information in Donly is important for correctly interpret-
ing the requirements, the engineers often opt for more suitable means than shall statements,
e.g., a glossary, for expressing such information. Shall requirements should thus not auto-
matically be treated as incomplete merely because one can find additional information in
the domain model.

As for Ronly, the information may have been left out of the domain model for various
reasons, e.g., lack of expressiveness in the domain modeling notation (class diagrams in
our case), or the information being too obvious, too detailed or too abstract for the domain
model. We note again that we are arguing under the assumption that the domain model
is complete. For example, the model of Fig. 1 does not convey the constraint stated in
REQ1 that the simulations shall be configured “via a web service”, although the concepts
of Simulation and Web Service are both present in the model; the subject-matter expert
found this constraint too detailed for the domain model. Similarly, the condition that the
functionality in REQ2 should be rendered “while a simulation is under execution” is not
captured in the model; this condition concerns system behavior and is not readily expressible
in (simple) class diagrams.

We now explain how an analyst can use a reasonably complete domain model for detect-
ing incompleteness in requirements. Suppose that FTP has been unintentionally omitted
from REQ4 of Fig. 1a, i.e., REQ4 reads as: “Simulation nodes shall support the web service
interface.” An inspection of the domain model in Fig. 1b should raise suspicion of incom-
pleteness, since FTP appears in the model but not in the requirements. The domain model
is not always as sensitive to omissions. For example, had “web service” been left out from
REQ4 instead, a simple cross-checking of the domain model against the requirements would
have been unlikely to hint at incompleteness: the term “web service” appears in REQ1 and
thus remains present even after it is removed from REQ4. In this case, it would take more
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omissions, i.e., a larger degree of incompleteness, before the domain model can alert the
analyst to a potential incompleteness. Specifically, it would take REQ1 or at least the “via
web service” constraint of REQ1 to be missing, before the domain model would sense the
omission.

The associations in a domain model may too be used for identifying incompleteness
issues. For example, suppose that REQ2 is missing from the requirements. Although Sim-
ulation and Administrator both appear in other requirements, the fact that these concepts
are associated in the domain model (the modifies association) but never co-located in the
same requirement would be cause for suspecting incompleteness. Attributes can be used in
a similar manner for completeness checking, although not illustrated here for succinctness.

As one can see from our illustration of Fig. 1, domain concepts may be referred to several
times in the requirements. For example, Simulator is referred to three times in the require-
ments (REQ1–3). The same applies to other domain model element types (relations and
attributes), although not illustrated here. The number of times a domain model element is
referred to in the requirements has no bearing on the domain model itself. However and as
exemplified above, the higher the level of repetition, the less sensitive the domain model
becomes to omissions. Repeated references thus need to be considered as an influencing
factor when examining the usefulness of domain models for checking the completeness of
requirements.

Contribution In our illustrating example, we motivated two main factors affecting the use-
fulness of a domain model for checking the completeness of NL requirements. These factors
are: (1) the level of content overlap between the requirements and the domain model, and
(2) how frequently the elements of the domain model are referred to in the requirements.
How these factors come together to determine the sensitivity of domain models to omis-
sions in NL requirements is a topic that needs to be investigated empirically in realistic
contexts. To this end, we conducted three case studies over industrial requirements in dif-
ferent application domains. In all cases, the requirements were written as shall statements.
We had subject-matter experts build a domain model in each case study. As part of this pro-
cess, we established fine-grained traceability between the domain model elements and the
requirements.

Using the resulting domain models and their traceability to the requirements, we then
analyzed the sensitivity of the domain models to omissions in the requirements. Stated oth-
erwise, we analyzed whether one has a chance of detecting omissions via inspecting what
elements in the domain model are missing in the requirements. The strategy employed for
this purpose is a randomized simulation process, through which we randomly removed
entire requirements or parts thereof from the original set of requirements. Subsequently,
using the traceability information between the requirements and the domain model, we
identified domain model elements that were no longer supported (covered) in the require-
ments after the omissions had been applied. For a domain model to have a chance of
being useful for identifying incompleteness in the requirements, the number of unsupported
domain model elements should increase rapidly as larger omissions are seeded into the
requirements.

Our case studies yield consistent conclusions. Most importantly, we observe that domain
models exhibit near-linear sensitivity to both unspecified requirements, i.e., requirements
that are missing, and under-specified requirements, i.e., requirements whose details, e.g.,
constraints and conditions have not been provided. An example constraint in Fig. 1a is “via
web service” (REQ1), and an example condition is “While a simulation is under execution”
(REQ2). The level of sensitivity that domain models show to omissions is more than four
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times higher when whole requirements are removed, compared to when requirements details
are removed.

Despite being promising, our results do not automatically lead to the conclusion that
domain models are useful instruments for completeness checking of requirements by ana-
lysts. What our current study shows is that domain models are sufficiently sensitive to
omissions in NL requirements. We nevertheless do not look into whether analysts can suc-
cessfully detect the omissions for which the domain model holds the right information cues,
nor whether the extra information conveyed by the domain model is actually essential for
completing the requirements. Further, while done in an industrial setting, our case studies
had to be scoped to ensure that the subject-matter experts involved would be able to perform
their tasks without time pressure. In light of the above, future user studies remain necessary
for measuring how well practitioners can exploit the potential offered by domain models for
completeness checking of requirements.

Structure Section 2 outlines background and compares with related work. Section 3 describes
the design of our empirical study. Section 4 reports the results of the study. Section 5
discusses threats to validity. Section 6 concludes the article.

2 Background and RelatedWork

In this section, we outline related research strands concerned with requirements (in)completeness.
We organize our discussion under three headings, covering the foundations (Section 2.1),
approaches for completeness checking of NL requirements (Section 2.2), and empirical
studies on requirements completeness (Section 2.3).

2.1 Foundations

2.1.1 General Definitions

In his pioneering work, Boehm (1984) defines a requirements specification to be complete
if there are no (1) to-be-determined items, (2) nonexistent references such as inputs and out-
puts, (3) missing specification items such as interface specifications, (4) missing functions,
and (5) missing product information. The IEEE 29148:2011 (IEEE 2011) standard proposes
a more overarching definition: A requirements statement is complete if it “needs no further
amplification because it is measurable and sufficiently describes the capability and charac-
teristics to meet the stakeholder’s need”. A requirements specification (set of requirements)
is complete if the set “needs no further amplification because it contains everything perti-
nent to the definition of the system or system element being specified. In addition, the set
contains no to-be-defined, to-be-specified, or to-be-resolved clauses”.

Zowghi and Gervasi (2003b) distinguish the notions of internal and external complete-
ness for requirements. We already discussed this distinction in Section 1. Ferrari et al.
(2014) elaborate external completeness into backward and forward. Backward complete-
ness is measured against the body of knowledge established prior to the development of a
requirements specification. An example of such knowledge represented as explicit artifacts
would be transcripts from stakeholder interviews. Forward completeness is, in contrast,
measured against the (accumulated) body of knowledge after a requirements specification
has been produced. Examples of such knowledge would be late-stage requirements models
and design models.
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A question that arises in our work is whether measuring the completeness of NL require-
ments against a domain model constitutes backward or forward checking. Since domain
modeling can potentially span the entire requirements engineering process (Larman 2004),
both backward and forward checking are possibilities. In our case studies of Section 3, the
domain models are at the level of maturity that one would expect at late-stage requirements
engineering. Our mode of using domain models thus coincides with forward checking of
NL requirements. In general, forward checking is more plausible than backward check-
ing for NL requirements. This is because, usually, NL requirements specifications are the
contractual basis for a system to be built, and thus the first artifacts to be produced. Most
development activities, including domain modeling, are often deferred to after the require-
ments have met the contractual necessities; there is little (financial) justification in building
a domain model when the system to be built has not been signed off on. This makes
backward checking of NL requirements inapplicable in many practical situations.

2.1.2 Completeness of Conceptual Models

There is considerable research on the completeness of conceptual models, including con-
ceptual models of requirements. While our work in this article is motivated by improving
the completeness of NL requirements rather than that of models of requirements, the instru-
ment whose usefulness we are investigating for this purpose is a (domain) model. As we
alluded to in Section 1 and will explain further in Section 3, our case studies involve
having subject-matter experts construct domain models that are as complete as possible.
Using existing work on the completeness of conceptual models, we explain below what a
“complete domain model” means in our context.

Lindland et al. (1994) define a model to be (semantically) complete with respect to a
given domain if the model contains all the correct and relevant statements in that domain.
Lindland et al. (1994) further introduce the notion of feasible completeness, where a con-
ceptual model contains only a subset of the statements in a domain. A conceptual model
is feasibly complete with respect to a domain, if any further enhancement of the model is
deemed less beneficial than accepting the model as-is.

The notion of feasible completeness is important for domain models: As illustrated over
the example of Fig. 1, experts make conscious choices as to what information to include in
and exclude from the domain model. In a real setting, one can thus expect an ideal domain
model to be only feasibly complete. In our case studies of Section 3, feasible completeness
is what we aim to achieve for the domain models built.

2.2 Checking the Completeness of NL Requirements

One can employ various strategies for checking the completeness of requirements. These
include (1) attempting to mold the requirements into structured templates (Pohl and Rupp
2011; Eckhardt et al. 2016) or models (Heimdahl and Leveson 1996; Heitmeyer et al. 610;
Schuette and Rotthowe 1998); (2) engaging closely with the stakeholders during require-
ments elicitation and validation (Moody et al. 1998; Salger et al. 2009); (3) following a
multi-perspective elicitation approach (Nuseibeh et al. 1994) and later reconciling the per-
spectives (Easterbrook et al. 2005; Sabetzadeh and Easterbrook 2006; Khatwani et al. 2017;
Dalpiaz et al. 2018); (4) employing formal synthesis and verification (Alrajeh et al. 2012;
Zhou et al. 2014); (5) cross-validating requirements against other development artifacts,
e.g., higher-level requirements (Costello and Liu 1995), system documents (Ferrari et al.
2014) and ontologies (Kaiya and Saeki 2005; Gigante et al. 2015; Geierhos and Bäumer
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2016); and (6) requirements reviews and inspections (Basili et al. 1996; Fusaro et al. 1997;
Porter and Votta 1998; Thelin et al. 2003).

Below, we review existing work on completeness checking of NL requirements, focusing
on external completeness.

Costello and Liu (1995) propose to assess the completeness of requirements by checking
whether all high-level requirements have been decomposed into lower-level ones. (Ferrari
et al. 2014) develop an approach based on natural language processing (NLP) for complete-
ness checking of requirements. The approach works by comparing the terminology used
in a requirements document against those used in legacy system specifications and stake-
holder interviews. Dalpiaz et al. (2018) employ a combination of NLP and visualization
for extracting and contrasting concepts that originate from different stakeholder viewpoints.
The contrasts are treated as potential incompleteness issues. Kaiya and Saeki (2005) propose
to check the completeness of requirements by (manually) mapping requirements concepts
to the concepts in a domain ontology. The unmapped concepts in the ontology are taken
as indicators of potential incompleteness. Using NLP, Gigante et al. (2015) extract from a
set of requirements and an external source – in their case, higher-level requirements – sys-
tematic information in the form of (subject, predicate, object) triplets. They then compare
the triplets from the two sources to determine how complete the given set of requirements
is. Kamalrudin et al. (2011) employ NLP to extract from textual requirements lightweight
models known as essential use case models (Constantine and Lockwood 1999). The com-
pleteness of these models is then analyzed by comparing them against a set of best practices
specified in a pattern library.

The above approaches work by either directly or indirectly matching (cross-validating)
the constituents of requirements sentences, e.g., noun phrases and verb phrases, against an
external source. Our evaluation of the usefulness of a domain model as an external source
for completeness checking draws on the same general principle. With the exception of Kaiya
and Saeki (2005), however, none of the above approaches measure requirements complete-
ness against a domain model. As for the work of Kaiya and Saeki’s, there is no empirical
evaluation provided on completeness checking. Further and more importantly, the focus of
our work differs from that of Kaiya and Saeki’s: they propose a simple metric for require-
ments completeness, taking for granted that there is a relationship between NL requirements
and domain models. As we argued in Section 1, however, the exact nature of this relation-
ship has never been investigated. Our work sheds empirical insights on the characteristics of
the relationship between NL requirements and domain models, and examines the usefulness
of this relationship for detecting omissions in requirements.

2.3 Empirical Studies on Requirements Completeness

There are controlled experiments that compare the level of requirements completeness
achieved by different requirements specification approaches. Yadav et al. (1988) compare
the completeness of requirements specified using data flow diagrams (Gane and Sarson
1979) and the integrated definition method (Bravoco and Yadav 1985). No statistically-
significant results are obtained for completeness. España et al. (2009) compare use case
models (Cockburn 1997) against an information systems development approach, called
communication analysis (España et al. 2009). They conclude that communication analysis
yields more complete requirements specifications with respect to a reference model. The
notion used for measuring completeness is feasible functional completeness – a restriction
of Lindland et al.’s definition of feasible completeness (see Section 2.1.2) to functional
requirements. Menzel et al. (2010) propose a functional requirements specification approach
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based on structured templates for interfaces, inputs, outputs and system function behaviors.
They compare this functional approach against a use-case-based approach (Koenig et al.
2007) using a notion of completeness defined around goals and their associated information
elements. They observe that both approaches have their own merits depending on the type
of information being specified.

Our work differs from the above in three main ways: First, our study context is dif-
ferent, centering around shall requirements and domain models expressed as UML class
diagrams. Second, our goal is not to compare alternative specification approaches. Instead,
we examine how a complementary approach, namely domain modeling, contributes to
improving requirements completeness. Third, and from the perspective of empirical foun-
dations, our work builds on case study research in an industrial setting rather than controlled
experiments.

3 Study Design

In this section, we describe the design of our case studies. There are three case studies in
total, which we refer to as Case A, Case B, and Case C. Case A concerns a simulator mod-
ule for aerospace applications. The illustrative requirements in Fig. 1 come from Case A.
Case B concerns a sensor platform for cyber-physical systems, and Case C, a content man-
agement system for safety assurance purposes. The functional requirements in all three case
studies are expressed as shall statements. Throughout the remainder of the article, we take
the term “requirement” to mean an individual shall statement. Case A has 163 functional
requirements, Case B has 212, and Case C has 110. Our analysis uses only a subset of these
requirements, as we explain momentarily.

The main components of our study are: (1) constructing feasibly complete domain mod-
els, (2) establishing traceability between the domain models and the requirements, and
(3) simulating potential omissions in the requirements and examining, using the traceabil-
ity information, whether the domain models contain cues leading to the detection of these
omissions.

An important challenge in our study design is that constructing a feasibly complete model
for an entire industrial domain requires significant time commitment from subject-matter
experts. To ensure that the experts in our study had sufficient time to make the domain mod-
els as complete as possible, we had to scope the domain modeling activity. We did so by
picking a random subset of the requirements in each case study, and orienting domain model
construction around the set of concepts in these requirements. The experts were allowed
to add additional concepts to this set as they deemed appropriate. To avoid bias, this scop-
ing was done in a way that the experts could not know, at domain modeling time, which
requirements the domain concepts originated from. We describe the scoping process more
precisely in Section 3.3.

3.1 Research Questions

RQ1. How sensitive are domain models to omissions in requirements? To study the use-
fulness of domain models for completeness checking of requirements, we need to determine
how closely domain models and requirements relate to one another. RQ1 (answered in
Section 4) aims to quantitatively analyze the sensitivity of domain models to omissions in
requirements. Sensitivity is a measure of whether a domain model contains the information
necessary for inferring the presence of requirements omissions.
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RQ2. How is sensitivity related to the intrinsic properties of a requirements document?
As we argue in our answer to RQ1, domain models are in general sensitive to omissions
in requirements. We nevertheless see a degree of variation in sensitivity across our case
studies. RQ2 (also answered in Section 4) was prompted by the variation observed in RQ1.
Outside an evaluation setting, one cannot directly analyze sensitivity due to the absence of
a gold standard. RQ2 seeks to provide a surrogate mechanism for approximating sensitivity
based exclusively on the intrinsic properties of a requirements document and independently
of a domain model.

3.2 Case Selection

Our case selection was opportunistic, but subject to certain criteria: First, we were inter-
ested in projects whose requirements documents had been already finalized. This criterion
was aimed at ensuring that the requirements were as complete as possible. Second, our
study requires significant involvement from domain experts for building the domain mod-
els and performing other tasks explained later in this section. Reliable access to experts was
therefore a critical criterion to fulfill in our study. Finally, we wanted to cover cases from
different domains. This is important for improving the external validity of our study, and
further to avoid potential bias in our results due to the specificities of a particular domain.

3.3 Data Collection Procedure

Our data collection is aimed at: (1) constructing (feasibly complete) domain models, (2)
defining potential but realistic omissions from requirements, (3) tracing requirements to
domain model elements, and (4) gathering data that enables us to argue about the repre-
sentativeness of the results obtained from our case studies. In Case A, two experts were
involved in data collection; in each Case B and Case C, there were three experts involved
(eight experts across the three case studies). In each case study, at least one of the experts
had directly participated in writing the requirements. All the experts had at least five years of
domain experience, were familiar with UML, and had built domain models before. Below,
we describe the steps of our data collection.

3.3.1 Domain Model Construction

Figure 2 outlines the procedure used for domain model construction. As explained at the
beginning of Section 3, we had to scope domain modeling to a subset of the domain con-
cepts. We did so as follows: In each case study, we randomly selected 35 requirements. Let
us denote by R the subset of requirements selected for a given case study. We extracted all
the atomic noun phrases (NPs) from the sentences in R. Following object-oriented domain
modeling guidelines (Larman 2004), we considered each NP as a candidate domain con-
cept. Without revealing R to the domain experts, we had them review the NPs extracted
from these requirements and select the genuine domain concepts. The experts were allowed
to make lexical adjustments to an NP before accepting it as a domain concept. Let us denote
by S the set of domain concepts resulting from the experts reviewing the NPs extracted
from R.

To create a domain model, we asked the experts to focus on the concepts in S . This
helped ensure that (1) the experts had sufficient time to make the domain model as complete
as possible in so far as the concepts in S are concerned, (2) the concepts in S are readily
traceable to R (by virtue of how S was built). The experts were further told that they were
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Fig. 2 Procedure for domain model construction. The noun phrases provided to the experts are for scoping
domain modeling and ensuring that feasible completeness is achievable

free to introduce any additional concepts they deemed necessary for properly elaborating the
concepts in S . Examples of additional concepts introduced by the experts are abstractions
such as User and Communication Interface in the model of Fig. 1b.

The construction of the domain models adhered to established best practices in object-
oriented analysis (Larman 2004). The experts followed an exploratory process for domain
modeling, relying on both their expertise and the existing development artifacts, e.g., system
descriptions and requirements documents (shown as “Domain Documentation” in Fig. 2).
Two researchers (the first two authors) acted as facilitators during modeling. Specifically,
the researchers helped kick-start the modeling activities by offering the experts a brief
refresher training on UML class diagrams and domain modeling. The researchers further
answered any questions the experts had about domain modeling choices and best practices
as well as the modeling notation. The modeling activities concentrated on specifying the
core domain model elements, namely concepts (classes), concept attributes, and relations
(associations and generalizations). In our context where the domain models are expressed
as class diagrams, one can further provide logical domain constraints using the Object Con-
straint Language (OCL) (Object Management Group 2004). This was not attempted in our
case studies, since our experts were not adequately familiar with OCL. Excluding OCL con-
straints is a reasonable decision in regard to representativeness, since OCL has not yet been
broadly adopted by practitioners (Chimiak-Opoka 2009). We note that the researchers were
not physically present during the entire course of modeling activities. In all three case stud-
ies, the experts did a portion of the modeling work offline but collaboratively. The results
were then provided to the researchers.

As shown in Fig. 2, in all three case studies, partial sketches of a domain model were
already existing. For Case A and Case B, the sketches were built on the request of the system
clients in order to improve the understandability of certain concepts. In Case B, the sketches
were developed mainly for structuring the design process. The experts in our study used
these existing sketches as a starting point, pruning what was not related to the concepts in
S , and further elaborating the parts pertinent to this subset of concepts.

Domain modeling was concluded before we continued with the remainder of data col-
lection. This was necessary to avoid bias, since the next steps of data collection make the
selected subset of requirements, R, known to the experts.
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3.3.2 Identifying Omittable Requirement Segments

Answering RQ1 involves simulating realistic requirements omissions. We consider two
classes of omissions: (1) omitting requirements in their entirety; and (2) omitting segments
of individual requirements. The former represents requirements that are missing from a
requirements specification; the latter represents requirements that are present but deficient
in their details.

Omitting entire requirements is straightforward as, in none of our case studies, we had
requirements that cross-referenced other requirements. There were thus no obvious inter-
requirements dependencies. Omitting segments of individual requirements is more involved:
Different segments of a requirement may not be removable arbitrarily due to being seman-
tically interdependent. Semantic interdependencies, as we elaborate later in this section, are
the logical links between different constituents of a sentence, and are instrumental in making
a sentence coherent and meaningful as a whole. Further, even when such interdependencies
are accounted for, there is only so much content that can be left out before a requirement
becomes trivial and thus easily deemable as incomplete by an expert without any additional
instruments such as a domain model.

To simulate the omission of requirement segments in a realistic manner, both semantic
interdependencies and the significance of the content of segments need to be considered. We
derived the omittable segments as follows: First, two researchers independently reviewed
the requirements in each case study, and marked the atomic segments that could potentially
be removed. We chose the granularity of an omission to be at least one full noun phrase.
The main criterion to decide whether a segment was omittable was the plausibility of the
segment being overlooked in realistic conditions. For every segment deemed omittable, each
researcher further assigned a semantic type according to the shall-requirement slots defined
by the IEEE 29148:2011 standard (IEEE 2011). These slots are: Subject, Object, Action,
Condition, and Constraint. For detailed definitions and examples, consult the standard.1 As
a reliability measure, interrater agreement was computed (see Table 1). An agreement was
counted when both researchers found a segment omittable and assigned the same semantic
type to it. Other situations counted as disagreements. Differences were reconciled through
discussion. The resulting omittable segments were reviewed and approved by the experts in
each case study.

Figure 3 illustrates omittable segments in three requirements. For example, by omitting
from REQ5 the segments denoted Object52 and Constraint52, we obtain the following: “The
simulator shall be able to transfer the simulation execution plan to the user help desk via
FTP.” Note that not all that can be removed from a grammatical standpoint constitutes a
legitimate omittable segment. For example, one can remove “to the user help desk” from
REQ5 and still get a meaningful sentence. Nevertheless, forgetting to include the destination
of a transfer was found to be unrealistic by the experts. This segment is thus not omittable.

In the next step, the researchers collaborated with the experts to identify the interdepen-
dencies between the omittable parts. Our findings about interdependencies are indeed part
of our results. Nevertheless, we elect to present these findings here, rather than in Section 4,
because our analysis procedure (Section 3.4) requires knowledge of the findings.

1Briefly, subjects, actions (verbs), and objects are the core linguistic parts of NL requirements. Conditions are
measurable attributes. They further qualify requirements, and may be employed for limiting the options open
to a designer, or for expressing information necessary for validation and verification. Constraints restrict the
design or implementation of the systems engineering process.
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Fig. 3 Examples of omittable requirement segments

In our case studies, all omittable segments fall into one of the following types: Object,
Condition, or Constraint. Objects are, in principle, omittable only when several of them are
present. For example, in REQ5 there are two omittable segments of type Object: Object51
and Object52. It is plausible that one of the two is omitted, as long as the other one stays. In
general, omitting objects is subject to the restriction that at least one object should remain.
With regard to omittable segments of type Condition, we did not observe any interdependen-
cies in our case studies. This is not meant to suggest that conditions with interdependencies
can never exist. We just happened to have no instances in our case studies.

For constraints, we observed three possibilities in our case studies. Let C =
{C1, · · · , Cn} be the set of omittable segments of type Constraint in a given requirement:

(a) There are no interdependencies between Ci : Any subset of C (including the whole C)
can thus be omitted. For example, in REQ5 of Fig. 3, Constraint51 and Constraint52 can
be omitted independently, potentially both at the same time.

(b) At least one Ci needs to be retained: This is similar to what was said earlier about
objects. For example, in REQ6 of Fig. 3, it is plausible that one or two out of the
three constraints Constraint61, Constraint62 and Constraint63 can be omitted. However,
removing all three at the same time is not possible, because doing so, according to the
experts, would render the remainder of the requirement evidently incomplete.

(c) If Ci is removed then Cj has to be removed as well. This typically happens when Cj

is a subordinate of Ci . For example, in REQ7 of Fig. 3, removing Constraint71 implies
that Constraint72 has to be removed at the same time.

In our case studies, we did not observe situations where a segment of one type, e.g.,
Object, would be related to a segment of another type, e.g., Constraint. Our simulation
analysis accounts for all identified interdependencies to ensure that the seeded omissions
are as realistic as possible.

3.3.3 Tracing Requirements to the Domain Model

In the last step of data collection, we had the experts in each case study trace the selected
requirements, denoted R earlier, to the respective domain model. Recall from Section 3.3.1
that each domain model was built around the set of concepts derived from R. This set of
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concepts was earlier denoted S . Traceability from R to S is automatic and already consti-
tutes a large fraction of all the traceability links. What the experts were tasked to do was to
identify whether and how each requirement in R was related to the remaining domain model
elements. We illustrate this using the example of Fig. 4. Here, REQ2 from Fig. 1 is being
traced to the domain model. Traceability to S = {Simulator, Simulation,Administrator} is
implied. What the expert provides in addition is that “the ability to dynamically reconfig-
ure” in REQ2 maps on to the domain model association labeled modifies. Establishing this
link requires expertise, as only an expert can conclusively say whether dynamic reconfigu-
ration is, at a conceptual level, a modification. In total, tracing REQ2 to the domain model
yields five trace links, noting that the term “simulation” appears twice in the requirement.

Once the constituents of the requirements in R have been traced to the domain model as
illustrated in Fig. 4, traceability from the omittable segments of these requirements to the
domain model can be derived automatically on demand. This is done by taking the union
of all trace links originating from a given omittable segment. In our example of Fig. 4,
REQ2 has a condition, Condition2

1. The term “simulation” in Condition2
1 is traceable to

the domain model. This induces a trace link from Condition2
1 to Simulation. We note that

the traceability relation from R to the domain model is not surjective (onto), meaning that
not all the elements in the domain model have some corresponding text segment in the
requirements. For example, no requirement is traced to Communication Interface and User,
since these abstractions are tacit in the requirements.

3.3.4 Gathering Complementary Data for Analyzing Representativeness

As noted earlier in this section, our case studies consider only a fraction (R) of the under-
lying documents. To be able to examine whether our results are representative of the
documents in their entirety, we needed to collect additional data from the full requirements
documents. This additional data collection step, which took place after the data collection
activities described in Sections 3.3.1, 3.3.2 and 3.3.3, is composed of two parts: First, for
each case study, two researchers (first two authors) annotated all the omittable segments of
the remaining requirements (i.e., the requirements outside R) in exactly the same manner
as described in Section 3.3.2. Subsequently, interrater agreement was measured between

Fig. 4 Examples of trace links from a requirement to the domain model
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the two sets of independently derived annotations for the full requirements documents (see
Table 2). Next, and leveraging the domain knowledge gained from prior interactions with
the experts (discussed in Section 3.3.2), the two researchers collaboratively identified the
interdependencies between the omittable segments for the requirements outside R. In any
situation where there was doubt about the interdependencies, the experts were consulted for
clarification and validation.

Finally, all the keyphrases, i.e., Noun Phrases (NPs) and Verb Phrases (VPs), were
marked up in the requirements. NPs and VPs provide near-complete coverage of the
meaning-bearing parts of the requirements, noting that NPs and VPs are the two major sen-
tence constituents in many languages including English (Krzeszowski 2011). We extracted
the keyphrases automatically using an NLP technology known as text chunking (Ramshaw
and Marcus 1995; Jurafsky and Martin 2008). The chunker we used, Apache OpenNLP
Chunker (2018), has been demonstrated to be highly accurate over requirements docu-
ments (Arora et al. 2015). Nevertheless and for quality assurance reasons, the first author
examined all the automatically extracted keyphrases, and where necessary, made slight
corrections.

3.4 Analysis Procedure

Our analysis is a form of Monte-Carlo simulation (Robert and Casella 2005). We present
our simulation algorithm in Fig 5. The inputs to the algorithm are: (1) the outcomes of our
data collection procedure, described in Section 3.3, (2) the type of omissions to simulate
(T ), and (3) the number of simulation runs (n).

Following a randomized process, the algorithm seeds into requirements progressively
larger sets of omissions of a given type (L. 5-6 of the algorithm), e.g., omissions of
constraints (T = Cons) or whole requirements (T = Req).

As noted earlier, for omissions of type Object and Constraint, one has to consider the
interdependencies between the omittable segments. A randomly-selected set of omittable
segments, denoted E in the algorithm (L. 6), may violate the interdependencies. Such vio-
lations need to be resolved by making modifications to E (L. 7-8). Noting the simple nature
of the interdependencies in our case studies (Section 3.3.2), we can resolve any violations in
E through a simple algorithm (not discussed), without using search-based or backtracking
solvers.

Next, we identify the domain model elements which are supported by some trace link
before the selected omissions are applied, but not after the omissions are applied (L. 9-11).
This gives us the set U . The loss of support for the elements in U may also have implications
for the domain model elements that are tacit in the requirements. For example, suppose
that U contains both Administrator and Operator from the model fragment of Fig. 1b; this
happens when E contains REQ1, REQ2, and REQ3 of Fig. 1a. With Administrator and
Operator no longer supported, the abstraction of User loses its support too. This implied
loss of support for the domain model elements that are tacit in the requirements is captured
by the set X (L. 12).

What is recorded in the output (scatter plot) at the end of each iteration of the loop of L. 5
is a tuple. The first value in the tuple is the number of omissions seeded, i.e, |E |; the second
value is the percentage of domain model elements that have lost their support either directly
or indirectly, i.e., |U |+ |X | normalized by the total number of domain model elements. The
sensitivity of the domain model to omissions is measured by how quickly the percentage
of unsupported domain model elements grows as increasingly larger sets of omissions are
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applied. Since the loop of L. 5 has a random component, it has to be run multiple times to
account for random variation (L. 4). The scatter plot resulting from running the algorithm
of Fig. 5 is the basis for answering RQ1 in Section 4.

4 Results and Discussion

In this section, we (i) discuss the results of our case studies, (ii) answer the research ques-
tions posed in Section 3.1, and (iii) argue about the representativeness of the requirements
samples used in our case studies.

Table 1 provides key statistics about the outcomes of our data collection as per the proce-
dures discussed in Sections 3.3.1, 3.3.2 and 3.3.3. For each case study, the table provides the
following information: (1) the number of omittable elements of different types: as explained
in Section 3.3.2, an omittable element can be an entire requirement or a certain segment of
a requirement, namely a condition, constraint, or object; (2) the number and type of inter-
dependencies between the omittable constraints and objects (the types were discussed in
Section 3.3.2); (3) interrater agreement, computed as Cohen’s κ (1960), for the identifica-
tion and classification of omittable segments by two coders. The κ scores indicate strong,
almost perfect or perfect agreement in all case studies; (4) the number of domain model ele-
ments (of which the number of elements tacit in the requirements is shown in brackets); and
(5) the number of trace links from the requirements to the domain model.

Fig. 5 Simulation algorithm for computing sensitivity
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Table 2 provides statistics about the complementary data that we gathered according to
the procedure described in Section 3.3.4 and with the goal of examining the representative-
ness of our case studies. Specifically, Table 2 provides the following for each case study:
the same information as in Table 1 under (1), (2), and (3), but now for the full requirements
documents. The κ scores over the full documents indicate strong, almost perfect or perfect
agreement; and (4) the number of keyphrases (NPs and VPs) in the full documents.

The amount of time the researchers spent with the experts for data collection is ≈8 hours
for each Case A and Case B, and ≈6 hours for Case C. These numbers should be inter-
preted with caution as they do not represent the full effort invested by the experts; we recall
from Section 3.3.1 that the experts (1) did not create the domain models from scratch but
rather based their work on existing domain-model sketches, and (2) did parts of the domain
modeling offline without the researchers being present.

RQ1. Figure 6 shows the output (scatter plots) for n = 100 runs of our simulation algo-
rithm (Fig. 5). Each plot shows, for each case study, the relationship between the number
of omissions of a certain type (x-axis) and the percentage of domain model elements that
are no longer supported as the result of the omissions (y-axis). The plots further show, for
each case study, the mean curve of the 100 runs. Before presenting our conclusions from
these plots, we note that in the plots of Fig. 6c and d, the maximum number of omitted con-
straints and objects, respectively, is less than the total number of these two omittable types in
Table 1. For instance, in the plot of Fig. 6c, the maximum number of constraints omitted in

Fig. 6 Plots showing the relationship between unsupported domain model elements and number of omissions
of different types
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Case A is 34, although the total number of constraints marked as omittable in this case study
is 42. This, we recall from our discussion of Section 3.3.2, is due to the interdependencies
between segments of these two types.

From Fig. 6a, we observe that the mean curves for Case A and Case B show a virtually
linear increase in the percentage of domain model elements that lose support (i.e., are no
longer supported) as more requirements are omitted in their entirety. In Case C, the level of
sensitivity to the omission of requirements is still high, but the sensitivity is visibly lower
than in Case A and Case B. Stated otherwise, it takes more omissions in Case C than in
Case A and Case B for the domain model elements to lose their support.

A number of influencing factors may be at play, distinguishing Case C from the other two
cases. While a thorough examination of these factors is difficult and requires more case stud-
ies, we observe one important distinction between Case C and the other two. In Section 1,
we argued that the frequency of appearance of domain concepts in the requirements has an
impact on the sensitivity of domain model to omissions. In Case C, the domain concepts
appear considerably more frequently in the requirements than in Case A and Case B. The
mean frequency of appearance of domain concepts in the requirements, – in other words,
the average number of trace links from the requirements or segments thereof to the domain
concepts – in Case C is 7.4 (SD = 10.9); this frequency is 1.5 (SD = 1.6) in Case A and 1.7
(SD = 2.6) in Case B. Consequently, in Case C, when compared to the other two cases, the
domain concepts on average have more support in the requirements. This partly explains
why Case C has lower sensitivity to the omission of requirements.

Figure 6b, c and d show the sensitivity of the domain models in our case studies to omis-
sions of conditions, constraints, and objects, respectively. The slopes of the mean curves
are not comparable across the different plots in Fig. 6 due to the axes of the plots hav-
ing different scales. We compare the slopes of the mean curves using Fig. 7. For each case

Fig. 7 Sensitivity of domain models to different types of omissions in NL requirements
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study, this figure shows how quickly domain model elements lose support as the number of
omissions of different types increases. In all case studies, the omission of whole require-
ments has a much larger impact than the omission of requirement segments. For instance,
in Case A, the omission of five requirements on average leaves 12.5% of the domain model
elements unsupported. Omitting the same number of conditions, constraints, and objects on
average leaves only 1.5%, 2.3% and 4% of the domain model elements unsupported, respec-
tively. More precisely, the level of sensitivity, as indicated by the slope of a linear function,
is on average 4.4 times higher for requirement omissions than for the other three omis-
sion types considered. This suggests that domain models are more sensitive to unspecified
requirements, i.e., requirements that are missing, than under-specified requirements, i.e.,
requirements whose details are incomplete. One explanation for this phenomenon is that
the non-omittable segments are more essential than the omittable ones to the meaning of
the requirements. Consequently, domain concepts, which are, by definition, core to a given
domain and thus to the requirements specified within that domain, are more likely to find
their place in the non-omittable segments. A complementary explanation is that, compared
to the omittable segments, the non-omittable segments constitute a larger proportion of the
overall content of the requirements, thus making the non-omittable segments responsible
for a larger proportion of the overlap between the domain model and the requirements. For
example, in Fig. 4, Condition2

1 (the only omittable segment in the underlying requirement)
is traced to one domain model element, whereas the non-omittable segments are traced to
four domain model elements.

We make the following further remarks about the plots in Figs. 6 and 7. In Case B, (1)
there is only one condition which, when omitted, has no impact, (2) there are two omittable
objects, out of which at most one can be removed in any given simulation run. The average
impact for an object omission in Case B is 1.5%. In Case C, (1) there are no omittable
objects, (2) if omitted in equal numbers, the impact of constraint omissions and condition
omissions is almost the same, as suggested by the slopes of the curves in Fig. 7 for Case C.

The answer to RQ1 is that domain models show near-linear sensitivity to omissions
in requirements. The level of sensitivity is, on average, 4.4 times higher when require-
ments are removed in their entirety than when conditions, constraints and objects are
removed.

RQ2. As noted in RQ1, there is variation across our case studies in terms of how sensitive
domain models are to the omission of requirements. For example, the impact of omitting 10
requirements from Case A is the loss of support for 23.4% of the domain model elements.
In comparison, this number is 22.7% for Case B and 15.3% for Case C. A natural question
that arises here is the following: In a real setting, how can one know the level of sensitiv-
ity of a domain model to different omissions? When a domain model is already existing,
answering the above question helps the analysts gauge the utility of the model for detect-
ing incompleteness in requirements. When a domain model is non-existing, answering this
question is one (but not the only) important parameter in deciding whether a domain model
is worthwhile building.

Obviously, outside an evaluation setting, one would not have a gold standard to perform
the same type of analysis as in RQ1. The goal should therefore be to somehow predict
sensitivity based on the intrinsic characteristics of a requirements document. A useful such
characteristic, implied by our discussion in RQ1, is the frequency of terms. However, this is
only one of potentially many influencing factors. For example, how quickly the support for
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the associations of a domain model is lost is more likely to be influenced by the frequency
of pairs of terms collocated in the same sentence, rather than the frequency of individual
terms.

Our current study does not allow us to systematically examine the factors that influence
the sensitivity of domain models to omissions in requirements. In lieu of such an exami-
nation, we have developed a useful surrogate for predicting sensitivity, which we present
next: we propose to run the simulation algorithm of Fig. 5 with the y-axis replaced with
the percentage of unsupported keyphrases (NPs and VPs) as opposed to the percentage of
unsupported domain model elements, which is not measurable outside an evaluation setting.
The idea of using unsupported keyphrases as a surrogate comes from the observation that
NPs and VPs are the main meaning-carrying units of requirements statements (Arora et al.
2017). Determining whether a keyphrase is still supported after a set of omissions is trivial:
the phrase either still appears (is supported) in the document after the omissions, or it no
longer does (is unsupported).

Fig. 8 Using unsupported keyphrases as a surrogate for predicting sensitivity
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Figure 8 plots for each case study unsupported keyphrases against unsupported domain
model elements, organized by omission type. As in RQ1, the plots have been generated
by 100 runs of our simulation algorithm in Fig. 5. We note that the y-axis for requirement
omissions has a range of 0–100%, whereas the range for other omission types is 0–25%.
Generally speaking, the mean curves for unsupported keyphrases and unsupported domain
model elements follow the same trend, taking into account the fact that the curves for omis-
sions of type Condition and Object cannot be reliability compared due to the low prevalence
of these omission types across our case studies.

Using keyphrases as a surrogate for domain model elements is most practical for pre-
dicting sensitivity to requirement omissions. Although the results of Fig. 8 suggest that
keyphrases yield a good sensitivity predictor for constraint omissions as well, building such
a predictor is not very practical. This is because doing so would require the analysts to first
delineate all the constraints in a given requirements document.

To precisely analyze the curves in Fig. 8 obtained for whole requirement omissions,
we computed the correlation between the percentage of unsupported keyphrases and the
percentage of unsupported domain model elements, using the datapoints resulting from the
100 simulation runs. The Pearson’s correlation coefficient (Warner 2012) for Case A is
0.97440 (p <0.0001), for Case B is 0.98005 (p <0.0001), and for Case C is 0.96838 (p <

0.0001).

The answer to RQ2 is that to predict domain model sensitivity to the omission of
requirements, one can run the simulation algorithm of Fig. 5 by replacing the y-axis
with the percentage of unsupported NPs and VPs.

Representativeness. As discussed in Section 3, each of our case studies considers only
a subset (35 requirements) of the underlying requirements document. It is thus important
to examine whether our analysis of RQ1 would be representative of the full requirements
documents as well.

We argue about representativeness indirectly and through RQ2. In particular, we know
from RQ2 that, keyphrases are a good proxy for measuring the sensitivity of domain model
elements to omissions. If the keyphrase characteristics of the requirements subsets in our
case studies happen to be close to those of the full requirements documents, we can con-
clude that the subsets have not drifted too far from the original documents in terms of their
characteristics. In other words, if we were to answer RQ1 using the full requirements docu-
ments, we would, with reasonable confidence, obtain similar results to those obtained over
the subsets.

Figure 9 shows the keyphrase sensitivity curves for both the requirements subsets and
the full documents, organized by case study. The charts in this figure have been com-
puted using the same method as those in Fig. 8. The only difference is that the x-axis in
the charts of Fig. 9 has been normalized to enable comparing, on a common scale, the
requirements subsets and the full documents. The omittable parts required for applying our
simulation algorithm to the full requirements documents resulted from the data collection
step in Section 3.3.4. Statistics about the identified omittable parts were already provided in
Table 2.

As seen from Fig. 9, while the characteristics of the full requirements documents are
not exactly the same as those of the requirements subsets in our case studies, there are no
remarkable discrepancies between the characteristics. We note that, just like in Fig. 8, the
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Fig. 9 Comparison of the sensitivity of keyphrases to different omission types in the full requirements
documents versus the requirements subsets used in our case studies

y-axis in Fig. 9 has a range of 0–100% for requirements omissions and a range of 0–25%
for the other omission types.

In light of RQ2, and considering that the keyphrase characteristics of the require-
ments in our case studies are not far from those of the full documents the requirements
were drawn from, we conclude that our case studies are reasonably representa-
tive of the full requirements documents. This provides some degree of confidence
that the sensitivity levels observed in RQ1 would generalize to the full requirements
documents.

5 Threats to Validity

Internal Validity. The main threat to the internal validity of our work is subjectivity in mod-
eling. This applies both to what the modelers include in their domain models (subjectivity
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about content), and also to how the modelers express the desired content (subjectivity about
form). To minimize subjectivity about content, we engaged closely with at least two domain
experts in each case study. These experts had an in-depth understanding of their respec-
tive application domains, and made reasoned choices about what belonged in a domain
model. We believe that other experts, under identical circumstances, would have made sim-
ilar choices about content. The potential influence of subjectivity about content is further
mitigated by the fact that we obtain consistent results across multiple case studies: if dis-
tinct case studies yield the same outcome, repeating any one of them with different experts
would be unlikely to affect the findings.

With regard to subjectivity about form, we observe that such subjectivity is common in
domain models represented as class diagrams (Larman 2004). As a simple example, what
one expert might find to be a class may be deemed as an attribute by another expert. To mit-
igate subjectivity about form, we made our analysis independent of domain model element
types. In other words, we do not distinguish classes, attributes, associations and gener-
alizations when analyzing sensitivity; each element, regardless of its type, counts as one
information element.

Conclusion Validity. In measuring sensitivity, we are concerned only with whether domain
models contain the information that is necessary for revealing omissions in requirements. As
we illustrated in our example of Section 1, a domain model may contain information beyond
what one would normally express within the requirements. We denoted such information
by Donly (see page 5). When one systematically inspects the elements of a domain model in
order to identify whether these elements have counterparts in the requirements, any element
that happens to be in Donly will raise a false alarm, i.e., a warning about information that
has been deliberately left tacit in the requirements. Our study is not meant at measuring the
overhead associated with investigating such false alarms. We thus cannot reach conclusions
about the cost-benefit tradeoffs of using domain models for completeness checking. We
do note however that, since detecting incompleteness is generally a very difficult problem,
the above overhead appears to be a reasonable price to pay for the genuine requirements
incompleteness issues that one can identify through a domain model.

Construct Validity. It is paramount to point out that our constructs do not measure whether
analysts actually detect an omission in the requirements when the domain model holds the
right cues about the omission. Stated otherwise, there is no guarantee that human inspectors
would spot an omission even when our analysis indicates they should. What our cur-
rent evaluation measures is the potential of domain models for revealing omissions in the
requirements. To what extent analysts can exploit this potential requires further investigation
and is outside the scope of our current work.

Another consideration related to construct validity is that differences may exist between
the terminology in the requirements and that in the domain model. Such discrepancies, if
ignored, can have a confounding effect on the sensitivity analysis of RQ1. In practice, if
a domain model is to be employed for completeness checking of requirements, one needs to
either reconcile terminological variations in the requirements, or group together the syn-
onym terms. In our evaluation, we mitigated this threat by ensuring that, in each case study,
at least one of the requirements authors was participating. The variations in terminology
were duly accounted for while establishing traceability from the requirements to the domain
model.
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External Validity. Our results are confirmed via three distinct case studies, thus providing
confidence about the external validity of our findings. That being said, we emphasize that
our findings are based upon the assumption that the domain models are reasonably com-
plete. Although built by experts, the domain models in our case studies were scoped to a
fraction of the underlying application domains, so that the experts could take the necessary
time to be thorough in their elaboration. In a non-evaluation setting, the completeness of a
domain model will inevitably be affected by factors such as time and budget constraints,
which our current studies were not subject to. What our results suggest is that, if built with
adequate diligence, domain models are useful instruments for completeness checking of
requirements. Whether one would get similar benefits from domain models constructed “in
the wild” requires further investigation.

6 Conclusion

Domain models are typically used as an apparatus for defining a consistent development
terminology and improving communication between different stakeholders. Our work in
this article was motivated by the anecdotal observation that domain models are additionally
helpful for detecting incompleteness in requirements. To empirically examine this observa-
tion, we conducted three industrial case studies with subject-matter experts. In each case
study, we measured the incompleteness-revealing-power of a domain model by seeding
realistic omissions into the requirements, and determining whether the domain model held
information that would logically signal the presence of the omissions.

Our results provide empirical evidence that domain models can indeed provide use-
ful hints toward the detection of incompleteness in textual requirements. As pointed out
throughout the article, our work focused on domain models built in ideal conditions. A natu-
ral followup to our current work would be to investigate whether domain models built under
time and cost pressures would offer comparable benefits. Another important future avenue
of work is to conduct user studies aimed at assessing how effectively analysts can exploit a
domain model for finding incompleteness issues in requirements. To be able to conclusively
measure the relative usefulness of domain models for detecting such issues, we first need
to establish a baseline by confronting subject-matter experts with requirements from which
some segments have been artificially removed and having them mark the requirements that
are missing information. Finally, in this article, we addressed the issue of completeness
checking solely from the lens of functional requirements. It would be interesting to study
whether models with the capacity to capture non-functional aspects, e.g., goal models, can
be utilized in a similar manner for uncovering incompleteness in textual descriptions of
non-functional requirements.
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