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Introduction to Gaussian Processes, Neil Lawrence
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Each point can be written as the model+ a corruption:

y1 = ax + c + ω1
y2 = ax + c + ω2
y3 = ax + c + ω3

ω is the difference between real world and model which can be
presented by a probability distribution.

We call ω noise!
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What if our observations are less than model parameters?

Underdetermined system
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How can we fit the y = ax + b
line, having only one point?

Introduction to Gaussian Processes, Neil Lawrence
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If b is fixed =⇒ a = y−b
x
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b ∼ π1 =⇒ a ∼ π2
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I This is called Bayesian treatment.
I The model parameters are treated as random variables.
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Bayesian perspective

Original 
belief

Observations

New belief
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Bayesian formula (inverse probability)

posterior︷ ︸︸ ︷
π(x |y) =

prior︷ ︸︸ ︷
π(x)×

likelihood︷ ︸︸ ︷
π(y |x)

π(y)︸ ︷︷ ︸
evidence

y := observation
x := parameter
π(x) := original belief
π(y |x) := given by the mathematical model that relates y to x
π(y) := is a constant number
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Bayesian formula (inverse probability)

π(x |y) ∝ π(x)× π(y |x)
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BI in computational mechanics

σ

ε

17 / 34



Linear elasticity

σ = Eε
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Linear elasticity

y = Eε+ ω
Ω ∼ πω(ω)

Capital letters denote a random variable
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Linear elasticity

ε

σ

πω(ω) = 1√
2πsω

exp
(
− ω2

2s2ω

)

Noise PDF is modeled through calibration test.
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Linear elasticity

Bayes’ formula:

π(E |y) = π(E)π(y |E)
π(y) = π(E)π(y |E)

k

π(E |y) ∝ π(E )π(y |E )
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Linear elasticity

y = Eε+ ω
Ω ∼ N(0, s2ω)
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Linear elasticity

π(y |E ) =
1√
2πsω

exp
(
− (y − Eε)2

2s2ω

)
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Linear elasticity

Posterior:

π(E |y) ∝ exp
(
− (E−E)2

2s2E

)
exp
(
− (y−Eε)2

2s2ω

)
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Linear elasticity

I Prediction interval: An estimate of an interval in which an observation will fall,
with a certain probability.

I Credible region: A region of a distribution in which it is believed that a random
variable lie with a certain probability.
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Linear elasticity

I Increase in number of observations/measurements makes us more sure of
identification result.
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Prior effect

I Increase in number of observations/measurements decreases the effect of prior.
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Conclusion

I Probability is the natural way of dealing with
uncertainties/unknowns (what Laplace calls it our ignorance).

I From Bayesian perspective (inverse probability) the
parameters are treated as random variables.

I The same logic can be used to model other kinds of
uncertainties/unknowns e.g. model uncertainties and material
variability.

I In Bayesian paradigm our assumptions are clearly stated
(e.g. the prior, model and ...).

I As the number of observation/measurements increases we
become more sure of our identification results.
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