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Introducing logical fuzziness
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well-formulated propositional expressions

Let P be a set of constants or ground propositions.

Let ¬, ∨ and ∧ denote respectively the contradiction,
disjunction and conjunction operators.

The set E of all well formulated finite expressions will be
generated inductively from the following grammar:

∀p ∈ P : p ∈ E,

∀x, y ∈ E : ¬x | (x) | x ∨ y | x ∧ y ∈ E.
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basic credibility calculus

r implements a credibility evaluation of propositional expressions:
r : E → [−1, 1]:
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basic credibility calculus

r implements a credibility evaluation of propositional expressions:
r : E → [−1, 1]:

x 7→











1 if x is certainly true,

−1 if x is certainly false,

rx ∈] − 1, 1[ otherwise.
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basic credibility calculus

r implements a credibility evaluation of propositional expressions:
r : E → [−1, 1]:

x 7→











1 if x is certainly true,

−1 if x is certainly false,

rx ∈] − 1, 1[ otherwise.

where ∀x, y ∈ E, rx > ry (resp. rx < ry) means that propositional
expression x is more (resp. less) credible than propositional
expression y.
Such a credibility domain is called L, and we denote
EL = {(x, rx) | x ∈ E, rx ∈ [−1, 1]} a given set of such more or
less credible propositional expressions, also called for short
L-expressions.
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L-valued contradiction operator

We implement the contradiction operator on L-expressions by
simply changing the sign of the associated credibility
evaluation, i.e.

∀(x, rx) ∈ EL : ¬(r, rx) = (¬x,−rx).

The sign exchange thus implements an antitone bijection on the
rational interval [−1, 1] where the zero value appears as
contradiction fix-point.
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Split Truth/Falseness Semantics

rxr
¬p -1/11/-1

-1 -1

µ(¬x, x
¬x) µ(x, rx)

1 1

falsefulness truthfulness

0 0

0

positive (truth oriented) view point
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positive truth projection

We denote the truthfulness possibly induced from the underlying
credibility calculus through a truth projection operator µ, acting as a
positive domain and range restriction on the credibility operator r.
Let (x, rx) ∈ EL be an L-expression:
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positive truth projection

We denote the truthfulness possibly induced from the underlying
credibility calculus through a truth projection operator µ, acting as a
positive domain and range restriction on the credibility operator r.
Let (x, rx) ∈ EL be an L-expression:

µ(x, rx) =

{

(x, rx) if rx ≥ r¬x,

(¬x, r¬x) otherwise.
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positive truth projection

We denote the truthfulness possibly induced from the underlying
credibility calculus through a truth projection operator µ, acting as a
positive domain and range restriction on the credibility operator r.
Let (x, rx) ∈ EL be an L-expression:

µ(x, rx) =

{

(x, rx) if rx ≥ r¬x,

(¬x, r¬x) otherwise.

Truthfulness of a given expression x is thus only defined in case the
expression’s credibility rx exceeds the credibility r¬x of its
contradiction ¬x, otherwise the logical point of view is switched to
¬x, i.e the contradicted version of the expression.
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positive and negative assertions

As rx ≥ r¬x ⇔ rx ≥ 0 it follows that the sign (+ or −) of rx

immediately carries the truth functional semantics of
L-expressions,

an L-expression (x, rx) such that rx ≥ 0 may be called more or
less true (L-true for short),

an expression (x, rx) such that rx ≤ 0 may be called more or
less false (L-false for short),

Only 0-valued expressions appear to be both L-true and
L-false, therefore they are called L-undetermined.

back to content

On a natural fuzzification of Boolean logic – p.9



positive and negative assertions

As rx ≥ r¬x ⇔ rx ≥ 0 it follows that the sign (+ or −) of rx

immediately carries the truth functional semantics of
L-expressions,

an L-expression (x, rx) such that rx ≥ 0 may be called more or
less true (L-true for short),

an expression (x, rx) such that rx ≤ 0 may be called more or
less false (L-false for short),

Only 0-valued expressions appear to be both L-true and
L-false, therefore they are called L-undetermined.

back to content

On a natural fuzzification of Boolean logic – p.9



positive and negative assertions

As rx ≥ r¬x ⇔ rx ≥ 0 it follows that the sign (+ or −) of rx

immediately carries the truth functional semantics of
L-expressions,

an L-expression (x, rx) such that rx ≥ 0 may be called more or
less true (L-true for short),

an expression (x, rx) such that rx ≤ 0 may be called more or
less false (L-false for short),

Only 0-valued expressions appear to be both L-true and
L-false, therefore they are called L-undetermined.

back to content

On a natural fuzzification of Boolean logic – p.9



positive and negative assertions

As rx ≥ r¬x ⇔ rx ≥ 0 it follows that the sign (+ or −) of rx

immediately carries the truth functional semantics of
L-expressions,

an L-expression (x, rx) such that rx ≥ 0 may be called more or
less true (L-true for short),

an expression (x, rx) such that rx ≤ 0 may be called more or
less false (L-false for short),

Only 0-valued expressions appear to be both L-true and
L-false, therefore they are called L-undetermined.

back to content

On a natural fuzzification of Boolean logic – p.9



A first example of natural logical
fuzzification
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The operator triple < −, min, max >

The classic min and max operators may be used to implement
L-valued conjunction and disjunction.

∀(x, rx), (y, ry) ∈ EL:

(x, rx) ∨ (y, ry) = (x ∨ y,max(rx, ry))

(x, rx) ∧ (y, ry) = (x ∧ y,min(rx, ry))

The operator triple < −,min,max > implements on the
rational interval [−1, 1] an ordinal credibility calculus, denoted
for short Lo that gives a first example of what we shall call a
natural fuzzification of propositional calculus.
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Lo-tautologies and Lo-antilogies

truthfulness of the tautology (x ∨ ¬x) is always given, as
max( rx,−rx) ) ≥ 0 in any case.

tautological Lo-valued propositions thus appear as being
Lo-true in any case. Therefore we call them Lo-tautologies.

truthfulness of the antilogy (x ∧ ¬x) is only defined when
min(rx,−rx) = 0.

More or less “untruthfulness” of such an expression is however
always given as max(−rx,−(−rx) ) ≥ 0 in any case and we
may call such propositions Lo-antilogies.
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Lo-valued modus ponens

Finally, let us investigate an implicative Lo-tautology such as
the modus ponens for instance.

If we take the classical negative (Kleene-Dienes) definition of
the implication: ¬

(

(x, rx) ∧ (¬y,−ry)
)

, i.e.
(

(¬x,−rx) ∨ (y, ry)
)

we obtain:

min( rx,max(−rx, ry) ) ≥ 0 ⇒ ry ≥ 0,

(x, rx) and (x, rx) ⇒ (y, ry) being conjointly Lo-true always
implies (y, ry) being Lo-true,

the L-valued modus ponens is an Lo-tautology.
back to content
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Fuzzification/Polarization: an adjoint pair
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a logical polarization operator

Let EL be a set of L-expressions and let L3 denote the
restriction of L to the three credibility values {−1, 0, 1}.

π : EL → EL3

represents a logical polarization operator
defined as follows:
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a logical polarization operator

Let EL be a set of L-expressions and let L3 denote the
restriction of L to the three credibility values {−1, 0, 1}.

π : EL → EL3

represents a logical polarization operator
defined as follows:

∀(x, rx) ∈ EL:

π(x, rx) =











(x, 1) ⇔ rx > 0

(x,−1) ⇔ rx < 0

(x, 0) ⇔ rx = 0

π is also called a median cut operator.
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defining a natural fuzzification

That π operator indeed implements our split truth/falseness
semantics may be summarized by stating the following
categorical equation.

µ ◦ π = π ◦ µ

a credibility calculus L with operator triple < ¬L,∧L,∨L >

verifying the categorical equation above is called natural.
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examples of natural fuzzifications

example 1 :
the ordinal Lo credibility calculus with the operator triple
< −,min,max > defined on [−1, 1] implements a natural
fuzzification on the category of propositional expressions.

example 2 :
the classic operator triple < 1 − rx,min,max > defined on
[0, 1] implements a natural fuzzification on the category of
propositional expressions, where 1

2
captures the

L-undeterminedness.

back to content
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A Bochvar-like fuzzification
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multiplicative conjunction and disjunction operators

We shall denote Lb a multiplicative credibility calculus whith
operator triple < −,g,f >.

The multiplicative conjunction operator f on a set EL of
L-expressions is defined as follows: ∀x, y ∈ E:

rx∧y = rx f ry =

{

| rx × ry | if (rx > 0) ∧ ry > 0),

− | rx × ry | otherwise.

and the multiplicative disjunction operator g is defined as
follows: ∀x, y ∈ P :

rx∨y = rx g ry =

{

− | rx × ry | if (rx < 0) ∧ (ry < 0),

| rx × ry | otherwise.
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Lb-valued De Morgan duality

First, we may verify that the De Morgan duality properties are
verified in Lb.

∀(x, rx), (y, ry) ∈ ELb : rx∧y = r(¬(¬x∨¬y) ).

Indeed, if rx, ry > 0, rx f ry = rx × ry.

At the same time, r¬x g r¬y = (r¬x × r¬y) = −(rx × ry).

On the contrary, if rx, ry < 0, rx f ry = −(rx × ry), then
r¬x g r¬y) = (r¬x × r¬y) = (−rx ×−r(y) = rx × ry.

If either rx > 0 and ry < 0 or vice versa, the duality relation is
equally verified.
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absorbing Lb-undeterminedness

the negational fix-point, the zero value, figures as logical “black
hole” as is usual in the three-valued Bochvar logic, absorbing
all possible logical determinism through any of both binary
operators.

∀(x, rx) ∈ ELb : rx f 0 = rx g 0 = 0.

The natural logical consequence of combining more and more
fuzzy propositions will sooner or later necessarily end up with
a completely undetermined proposition.

∀(x, rx), (y, ry) ∈ ELb such that rx 6= 0 we have:

| rx | > | rx f ry |,

| rx | > | rx g ry | .
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Lb is a natural fuzzification

we must show that the curly operators g and f verify
µ ◦ π = π ◦ µ:

µ(π(x ∨ y, rx g ry)) = π(µ(x ∨ y, rx g ry)),

µ(π(x ∧ y, rx f ry)) = π(µ(x ∧ y, rx f ry)).

if rx > 0 or ry > 0, µ(π(x ∨ y, rx g ry))) = µ(x ∨ y, 1) =
(x ∨ y, 1) = π(x ∨ y, rx g ry) = π(µ(x ∨ y, rx g ry);

if rx < 0 and ry < 0, µ(π(x ∨ y, rx g ry)) = µ(x ∨ y,−1) =
(¬(x ∨ y), 1) = π(¬(x ∨ y), rx f ry) = π(µ(x ∨ y, rx g ry)).

if rx > 0 and ry > 0, µ(π(x ∧ y, rx f ry)) = µ(x ∧ y, 1) =
(x ∧ y, 1) = π(x ∧ y, rx f ry) = π(µ(x ∧ y, rx f ry);

if rx < 0 or ry < 0, µ(π(x ∧ y, rx f ry)) = µ(x ∧ y,−1) =
(¬(x ∧ y), 1) = π(¬(x ∧ y), rx g ry) = π(µ(x ∧ y, rx f ry)).

back to content
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Moving On
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Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility
calculus one may define on propositional expressions, let us
explore two directions for further investigations:

1) consider the t-norm concept as potential generalization
2) follow the semiotical intuitions of C.S. Peirce
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t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not
compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [−1; 1] verifies the following
four axioms:

(T1) T (1, rx) = rx, ∀rx ∈ [−1; 1]

(T2) T (rx, ry) = T (ry, rx), ∀rx, ry ∈ [−1; 1]

(T3) T (rx, T (ry, rz)) = T (T (rx, ry), rz), ∀rx, ry, rz ∈ [−1; 1]

(T4) T (rx, ry) ≤ T (ru, rv) if
−1 ≤ rx ≤ ru ≤ 1,−1 ≤ ry ≤ rv ≤ 1

the multiplicative conjunctive operator f verifies three of these
axioms, i.e. all except the fourth one, so f is not a t-norm.
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bipolar split ’t-norms’ ?

What axiom could advantageously replace the “triangular”
t-norm condition in order to make fit conceptually with a
natural credibility calculus on the rational interval [−1, 1] ?

A possibility might be the following:

in some sense we would recover the triangular axiom in
“absolute” terms, i.e. T non-decreasing in both arguments,
either in the positive or in the negative point of view.
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semiotical foundations (C.S. Peirce)

we may interpret the Lo and the Lb credibility calculus as some
limit constructions of a same semiotical foundation of logical
fuzziness

the Lo calculus supposes a same closed universal semiotical
reference for all ground propositions p ∈ P (mathematical
logic)

the multiplicative model apparently supposes shared semiotical
references for all determined parts and disjoint semiotical
references for the logically undetermined parts of each
proposition p ∈ P (error propagation)

this leaves open the case where each ground expression p ∈ P

is completely supported by different and disjoint semiotical
references (aggregational logic, multiple logical criteria
approach)

back to content
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