On a natural fuzzification of Boolean logic

Raymond Bisdorff

Faculty of Law, Economics and Finance
University of Luxembourg

Content

introducing logical fuzziness
expressions, contradiction positive truth projection, positive and negative assertions
a first example of logical fuzzification
operator triple $<-$, min, $\max >, \mathcal{L}_{o}$-tautologies and
antilogies, \mathcal{L}_{o}-valued modus ponens
fuzzification/polarization: an adjoint pair
median cut operator, natural fuzzification, examples
a Bochvar-like fuzzification
conjunction and disjunction, De Morgan duality,
Moving On
t -norms are unnatural, semiotical foundation

Introducing logical fuzziness

well-formulated propositional expressions

Let P be a set of constants or ground propositions.

well-formulated propositional expressions

Let P be a set of constants or ground propositions.
Let \neg, \vee and \wedge denote respectively the contradiction, disjunction and conjunction operators.

well-formulated propositional expressions

Let P be a set of constants or ground propositions.
Let \neg, \vee and \wedge denote respectively the contradiction, disjunction and conjunction operators.
The set E of all well formulated finite expressions will be generated inductively from the following grammar:

$$
\begin{aligned}
\forall p \in P & : p \in E \\
\forall x, y \in E & : \neg x|(x)| x \vee y \mid x \wedge y \in E
\end{aligned}
$$

basic credibility calculus

r implements a credibility evaluation of propositional expressions: $r: E \rightarrow[-1,1]:$

basic credibility calculus

r implements a credibility evaluation of propositional expressions:
$r: E \rightarrow[-1,1]:$

$$
x \mapsto \begin{cases}1 & \text { if } x \text { is certainly true } \\ -1 & \text { if } x \text { is certainly false } \\ \left.r_{x} \in\right]-1,1[& \text { otherwise }\end{cases}
$$

basic credibility calculus

r implements a credibility evaluation of propositional expressions:
$r: E \rightarrow[-1,1]:$

$$
x \mapsto \begin{cases}1 & \text { if } x \text { is certainly true } \\ -1 & \text { if } x \text { is certainly false } \\ \left.r_{x} \in\right]-1,1[& \text { otherwise }\end{cases}
$$

basic credibility calculus

r implements a credibility evaluation of propositional expressions:
$r: E \rightarrow[-1,1]:$

$$
x \mapsto \begin{cases}1 & \text { if } x \text { is certainly true } \\ -1 & \text { if } x \text { is certainly false } \\ \left.r_{x} \in\right]-1,1[& \text { otherwise }\end{cases}
$$

where $\forall x, y \in E, r_{x}>r_{y}$ (resp. $r_{x}<r_{y}$) means that propositional expression x is more (resp. less) credible than propositional expression y.

basic credibility calculus

r implements a credibility evaluation of propositional expressions:
$r: E \rightarrow[-1,1]:$

$$
x \mapsto \begin{cases}1 & \text { if } x \text { is certainly true } \\ -1 & \text { if } x \text { is certainly false } \\ \left.r_{x} \in\right]-1,1[& \text { otherwise }\end{cases}
$$

where $\forall x, y \in E, r_{x}>r_{y}$ (resp. $r_{x}<r_{y}$) means that propositional expression x is more (resp. less) credible than propositional expression y.
Such a credibility domain is called \mathcal{L}, and we denote $E^{\mathcal{L}}=\left\{\left(x, r_{x}\right) \mid x \in E, r_{x} \in[-1,1]\right\}$ a given set of such more or less credible propositional expressions, also called for short \mathcal{L}-expressions.

\mathcal{L}-valued contradiction operator

We implement the contradiction operator on \mathcal{L}-expressions by simply changing the sign of the associated credibility evaluation, i.e.

\mathcal{L}-valued contradiction operator

We implement the contradiction operator on \mathcal{L}-expressions by simply changing the sign of the associated credibility evaluation, i.e.

$$
\forall\left(x, r_{x}\right) \in E^{\mathcal{L}}: \neg\left(r, r_{x}\right)=\left(\neg x,-r_{x}\right)
$$

\mathcal{L}-valued contradiction operator

We implement the contradiction operator on \mathcal{L}-expressions by simply changing the sign of the associated credibility evaluation, i.e.

$$
\forall\left(x, r_{x}\right) \in E^{\mathcal{L}}: \neg\left(r, r_{x}\right)=\left(\neg x,-r_{x}\right)
$$

The sign exchange thus implements an antitone bijection on the rational interval $[-1,1]$ where the zero value appears as contradiction fix-point.

Split Truth/Falseness Semantics

positive (truth oriented) view point

positive truth projection

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ, acting as a positive domain and range restriction on the credibility operator r. Let $\left(x, r_{x}\right) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L}-expression:

positive truth projection

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ, acting as a positive domain and range restriction on the credibility operator r. Let $\left(x, r_{x}\right) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L}-expression:

$$
\mu\left(x, r_{x}\right)=\left\{\begin{array}{l}
\left(x, r_{x}\right) \text { if } r_{x} \geq r_{\neg x} \\
\left(\neg x, r_{\neg x}\right) \text { otherwise }
\end{array}\right.
$$

positive truth projection

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ, acting as a positive domain and range restriction on the credibility operator r. Let $\left(x, r_{x}\right) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L}-expression:

$$
\mu\left(x, r_{x}\right)=\left\{\begin{array}{l}
\left(x, r_{x}\right) \text { if } r_{x} \geq r_{\neg x} \\
\left(\neg x, r_{\neg x}\right) \text { otherwise }
\end{array}\right.
$$

positive truth projection

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ, acting as a positive domain and range restriction on the credibility operator r. Let $\left(x, r_{x}\right) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L}-expression:

$$
\mu\left(x, r_{x}\right)=\left\{\begin{array}{l}
\left(x, r_{x}\right) \text { if } r_{x} \geq r_{\neg x} \\
\left(\neg x, r_{\neg x}\right) \text { otherwise }
\end{array}\right.
$$

Truthfulness of a given expression x is thus only defined in case the expression's credibility r_{x} exceeds the credibility $r_{\neg x}$ of its contradiction $\neg x$, otherwise the logical point of view is switched to $\neg x$, i.e the contradicted version of the expression.

positive and negative assertions

As $r_{x} \geq r_{\neg x} \Leftrightarrow r_{x} \geq 0$ it follows that the sign (+ or -) of r_{x} immediately carries the truth functional semantics of \mathcal{L}-expressions,

positive and negative assertions

As $r_{x} \geq r_{\neg x} \Leftrightarrow r_{x} \geq 0$ it follows that the sign (+ or -) of r_{x} immediately carries the truth functional semantics of \mathcal{L}-expressions,
an \mathcal{L}-expression $\left(x, r_{x}\right)$ such that $r_{x} \geq 0$ may be called more or less true (\mathcal{L}-true for short),

positive and negative assertions

As $r_{x} \geq r_{\neg x} \Leftrightarrow r_{x} \geq 0$ it follows that the sign (+ or -) of r_{x} immediately carries the truth functional semantics of \mathcal{L}-expressions,
an \mathcal{L}-expression $\left(x, r_{x}\right)$ such that $r_{x} \geq 0$ may be called more or less true (\mathcal{L}-true for short),
an expression $\left(x, r_{x}\right)$ such that $r_{x} \leq 0$ may be called more or less false (\mathcal{L}-false for short),

positive and negative assertions

As $r_{x} \geq r_{\neg x} \Leftrightarrow r_{x} \geq 0$ it follows that the sign (+ or -) of r_{x} immediately carries the truth functional semantics of \mathcal{L}-expressions,
an \mathcal{L}-expression $\left(x, r_{x}\right)$ such that $r_{x} \geq 0$ may be called more or less true (\mathcal{L}-true for short),
an expression $\left(x, r_{x}\right)$ such that $r_{x} \leq 0$ may be called more or less false (\mathcal{L}-false for short),
Only 0 -valued expressions appear to be both \mathcal{L}-true and \mathcal{L}-false, therefore they are called \mathcal{L}-undetermined.

A first example of natural logical fuzzification

The operator triple $<-$, min, max $>$

The classic min and max operators may be used to implement \mathcal{L}-valued conjunction and disjunction.

The operator triple $<-$, min, max $>$

The classic min and max operators may be used to implement \mathcal{L}-valued conjunction and disjunction.

$$
\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in \mathcal{E}^{\mathcal{L}}:
$$

$$
\begin{aligned}
& \left(x, r_{x}\right) \vee\left(y, r_{y}\right)=\left(x \vee y, \max \left(r_{x}, r_{y}\right)\right) \\
& \left(x, r_{x}\right) \wedge\left(y, r_{y}\right)=\left(x \wedge y, \min \left(r_{x}, r_{y}\right)\right)
\end{aligned}
$$

The operator triple $<-$, min, max $>$

The classic min and max operators may be used to implement \mathcal{L}-valued conjunction and disjunction.
$\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in \mathcal{E}^{\mathcal{L}}$:

$$
\begin{aligned}
& \left(x, r_{x}\right) \vee\left(y, r_{y}\right)=\left(x \vee y, \max \left(r_{x}, r_{y}\right)\right) \\
& \left(x, r_{x}\right) \wedge\left(y, r_{y}\right)=\left(x \wedge y, \min \left(r_{x}, r_{y}\right)\right)
\end{aligned}
$$

The operator triple $<-$, min, max $>$ implements on the rational interval $[-1,1]$ an ordinal credibility calculus, denoted for short \mathcal{L}_{o} that gives a first example of what we shall call a natural fuzzification of propositional calculus.

\mathcal{L}_{o}-tautologies and \mathcal{L}_{o}-antilogies

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\left.\max \left(r_{x},-r_{x}\right)\right) \geq 0$ in any case .

\mathcal{L}_{o}-tautologies and \mathcal{L}_{o}-antilogies

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\left.\max \left(r_{x},-r_{x}\right)\right) \geq 0$ in any case.
tautological \mathcal{L}_{o}-valued propositions thus appear as being \mathcal{L}_{o}-true in any case. Therefore we call them \mathcal{L}_{o}-tautologies.

\mathcal{L}_{o}-tautologies and \mathcal{L}_{o}-antilogies

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\left.\max \left(r_{x},-r_{x}\right)\right) \geq 0$ in any case.
tautological \mathcal{L}_{o}-valued propositions thus appear as being \mathcal{L}_{o}-true in any case. Therefore we call them \mathcal{L}_{o}-tautologies. truthfulness of the antilogy $(x \wedge \neg x)$ is only defined when $\min \left(r_{x},-r_{x}\right)=0$.

\mathcal{L}_{o}-tautologies and \mathcal{L}_{o}-antilogies

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\left.\max \left(r_{x},-r_{x}\right)\right) \geq 0$ in any case.
tautological \mathcal{L}_{o}-valued propositions thus appear as being \mathcal{L}_{o}-true in any case. Therefore we call them \mathcal{L}_{o}-tautologies. truthfulness of the antilogy $(x \wedge \neg x)$ is only defined when $\min \left(r_{x},-r_{x}\right)=0$.

More or less "untruthfulness" of such an expression is however always given as $\max \left(-r_{x},-\left(-r_{x}\right)\right) \geq 0$ in any case and we may call such propositions \mathcal{L}_{o}-antilogies.

\mathcal{L}_{o}-valued modus ponens

Finally, let us investigate an implicative \mathcal{L}_{o}-tautology such as the modus ponens for instance.

\mathcal{L}_{o}-valued modus ponens

Finally, let us investigate an implicative \mathcal{L}_{o}-tautology such as the modus ponens for instance.
If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg\left(\left(x, r_{x}\right) \wedge\left(\neg y,-r_{y}\right)\right)$, i.e.
$\left(\left(\neg x,-r_{x}\right) \vee\left(y, r_{y}\right)\right)$ we obtain:

\mathcal{L}_{o}-valued modus ponens

Finally, let us investigate an implicative \mathcal{L}_{o}-tautology such as the modus ponens for instance.
If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg\left(\left(x, r_{x}\right) \wedge\left(\neg y,-r_{y}\right)\right)$, i.e.
$\left(\left(\neg x,-r_{x}\right) \vee\left(y, r_{y}\right)\right)$ we obtain:

$$
\min \left(r_{x}, \max \left(-r_{x}, r_{y}\right)\right) \geq 0 \Rightarrow r_{y} \geq 0
$$

\mathcal{L}_{o}-valued modus ponens

Finally, let us investigate an implicative \mathcal{L}_{o}-tautology such as the modus ponens for instance.
If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg\left(\left(x, r_{x}\right) \wedge\left(\neg y,-r_{y}\right)\right)$, i.e.
$\left(\left(\neg x,-r_{x}\right) \vee\left(y, r_{y}\right)\right)$ we obtain:

$$
\min \left(r_{x}, \max \left(-r_{x}, r_{y}\right)\right) \geq 0 \Rightarrow r_{y} \geq 0
$$

$\left(x, r_{x}\right)$ and $\left(x, r_{x}\right) \Rightarrow\left(y, r_{y}\right)$ being conjointly \mathcal{L}_{o}-true always implies $\left(y, r_{y}\right)$ being \mathcal{L}_{o}-true,

\mathcal{L}_{o}-valued modus ponens

Finally, let us investigate an implicative \mathcal{L}_{o}-tautology such as the modus ponens for instance.
If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg\left(\left(x, r_{x}\right) \wedge\left(\neg y,-r_{y}\right)\right)$, i.e.
$\left(\left(\neg x,-r_{x}\right) \vee\left(y, r_{y}\right)\right)$ we obtain:

$$
\min \left(r_{x}, \max \left(-r_{x}, r_{y}\right)\right) \geq 0 \Rightarrow r_{y} \geq 0
$$

$\left(x, r_{x}\right)$ and $\left(x, r_{x}\right) \Rightarrow\left(y, r_{y}\right)$ being conjointly \mathcal{L}_{o}-true always implies $\left(y, r_{y}\right)$ being \mathcal{L}_{o}-true,
the \mathcal{L}-valued modus ponens is an \mathcal{L}_{o}-tautology.
back to content

Fuzzification/Polarization: an adjoint pair

a logical polarization operator

Let $E^{\mathcal{L}}$ be a set of \mathcal{L}-expressions and let \mathcal{L}^{3} denote the restriction of \mathcal{L} to the three credibility values $\{-1,0,1\}$.

a logical polarization operator

Let $E^{\mathcal{L}}$ be a set of \mathcal{L}-expressions and let \mathcal{L}^{3} denote the restriction of \mathcal{L} to the three credibility values $\{-1,0,1\}$. $\pi: E^{\mathcal{L}} \rightarrow E^{\mathcal{L}^{3}}$ represents a logical polarization operator defined as follows:

a logical polarization operator

Let $E^{\mathcal{L}}$ be a set of \mathcal{L}-expressions and let \mathcal{L}^{3} denote the restriction of \mathcal{L} to the three credibility values $\{-1,0,1\}$. $\pi: E^{\mathcal{L}} \rightarrow E^{\mathcal{L}^{3}}$ represents a logical polarization operator defined as follows:
$\forall\left(x, r_{x}\right) \in E^{\mathcal{L}}$:

$$
\pi\left(x, r_{x}\right)=\left\{\begin{array}{lll}
(x, 1) & \Leftrightarrow & r_{x}>0 \\
(x,-1) & \Leftrightarrow & r_{x}<0 \\
(x, 0) & \Leftrightarrow & r_{x}=0
\end{array}\right.
$$

a logical polarization operator

Let $E^{\mathcal{L}}$ be a set of \mathcal{L}-expressions and let \mathcal{L}^{3} denote the restriction of \mathcal{L} to the three credibility values $\{-1,0,1\}$. $\pi: E^{\mathcal{L}} \rightarrow E^{\mathcal{L}^{3}}$ represents a logical polarization operator defined as follows:
$\forall\left(x, r_{x}\right) \in E^{\mathcal{L}}$:

$$
\pi\left(x, r_{x}\right)=\left\{\begin{array}{lll}
(x, 1) & \Leftrightarrow & r_{x}>0 \\
(x,-1) & \Leftrightarrow & r_{x}<0 \\
(x, 0) & \Leftrightarrow & r_{x}=0
\end{array}\right.
$$

a logical polarization operator

Let $E^{\mathcal{L}}$ be a set of \mathcal{L}-expressions and let \mathcal{L}^{3} denote the restriction of \mathcal{L} to the three credibility values $\{-1,0,1\}$. $\pi: E^{\mathcal{L}} \rightarrow E^{\mathcal{L}^{3}}$ represents a logical polarization operator defined as follows:
$\forall\left(x, r_{x}\right) \in E^{\mathcal{L}}$:

$$
\pi\left(x, r_{x}\right)=\left\{\begin{array}{lll}
(x, 1) & \Leftrightarrow & r_{x}>0 \\
(x,-1) & \Leftrightarrow & r_{x}<0 \\
(x, 0) & \Leftrightarrow & r_{x}=0
\end{array}\right.
$$

a logical polarization operator

Let $E^{\mathcal{L}}$ be a set of \mathcal{L}-expressions and let \mathcal{L}^{3} denote the restriction of \mathcal{L} to the three credibility values $\{-1,0,1\}$. $\pi: E^{\mathcal{L}} \rightarrow E^{\mathcal{L}^{3}}$ represents a logical polarization operator defined as follows:
$\forall\left(x, r_{x}\right) \in E^{\mathcal{L}}$:

$$
\pi\left(x, r_{x}\right)=\left\{\begin{array}{lll}
(x, 1) & \Leftrightarrow & r_{x}>0 \\
(x,-1) & \Leftrightarrow & r_{x}<0 \\
(x, 0) & \Leftrightarrow & r_{x}=0
\end{array}\right.
$$

π is also called a median cut operator.

defining a natural fuzzification

That π operator indeed implements our split truth/falseness semantics may be summarized by stating the following categorical equation.

defining a natural fuzzification

That π operator indeed implements our split truth/falseness semantics may be summarized by stating the following categorical equation.

$$
\mu \circ \pi=\pi \circ \mu
$$

defining a natural fuzzification

That π operator indeed implements our split truth/falseness semantics may be summarized by stating the following categorical equation.

$$
\mu \circ \pi=\pi \circ \mu
$$

a credibility calculus \mathcal{L} with operator triple $<\neg^{\mathcal{L}}, \wedge^{\mathcal{L}}, \vee^{\mathcal{L}}>$ verifying the categorical equation above is called natural.

examples of natural fuzzifications

example 1 :

the ordinal \mathcal{L}_{o} credibility calculus with the operator triple $<-$, min, max $>$ defined on $[-1,1]$ implements a natural fuzzification on the category of propositional expressions.

examples of natural fuzzifications

example 1 :
the ordinal \mathcal{L}_{o} credibility calculus with the operator triple $<-$, min, max $>$ defined on $[-1,1]$ implements a natural fuzzification on the category of propositional expressions.
example 2 :
the classic operator triple $<1-r_{x}$, min, max $>$ defined on $[0,1]$ implements a natural fuzzification on the category of propositional expressions, where $\frac{1}{2}$ captures the \mathcal{L}-undeterminedness.

A Bochvar-like fuzzification

altiplicative conjunction and disjunction operato

We shall denote \mathcal{L}_{b} a multiplicative credibility calculus whith operator triple $<-, \curlyvee, \curlywedge>$.

altiplicative conjunction and disjunction operato

We shall denote \mathcal{L}_{b} a multiplicative credibility calculus whith operator triple $<-, \curlyvee, \curlywedge>$.
The multiplicative conjunction operator λ on a set $E^{\mathcal{L}}$ of \mathcal{L}-expressions is defined as follows: $\forall x, y \in E$:

$$
r_{x \wedge y}=r_{x} \curlywedge r_{y}=\left\{\begin{aligned}
\left|r_{x} \times r_{y}\right| & \text { if } \left.\left(r_{x}>0\right) \wedge r_{y}>0\right) \\
-\left|r_{x} \times r_{y}\right| & \text { otherwise }
\end{aligned}\right.
$$

altiplicative conjunction and disjunction operato

We shall denote \mathcal{L}_{b} a multiplicative credibility calculus whith operator triple $<-, \curlyvee, \curlywedge>$.
The multiplicative conjunction operator λ on a set $E^{\mathcal{L}}$ of \mathcal{L}-expressions is defined as follows: $\forall x, y \in E$:

$$
r_{x \wedge y}=r_{x} \curlywedge r_{y}=\left\{\begin{aligned}
\left|r_{x} \times r_{y}\right| & \text { if } \left.\left(r_{x}>0\right) \wedge r_{y}>0\right) \\
-\left|r_{x} \times r_{y}\right| & \text { otherwise }
\end{aligned}\right.
$$

and the multiplicative disjunction operator \curlyvee is defined as follows: $\forall x, y \in P$:

$$
r_{x \vee y}=r_{x} \curlyvee r_{y}=\left\{\begin{aligned}
-\left|r_{x} \times r_{y}\right| & \text { if }\left(r_{x}<0\right) \wedge\left(r_{y}<0\right), \\
\left|r_{x} \times r_{y}\right| & \text { otherwise } .
\end{aligned}\right.
$$

the multiplicative conjunctive operator

the multiplicative disjunctive operator

\mathcal{L}_{b}-valued De Morgan duality

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_{b}.

$$
\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in E^{\mathcal{L}_{b}}: r_{x \wedge y}=r_{(\neg(\neg x \vee \neg y))}
$$

\mathcal{L}_{b}-valued De Morgan duality

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_{b}.

$$
\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in E^{\mathcal{L}_{b}}: r_{x \wedge y}=r_{(\neg(\neg x \vee \neg y))} .
$$

Indeed, if $r_{x}, r_{y}>0, r_{x} \curlywedge r_{y}=r_{x} \times r_{y}$.

\mathcal{L}_{b}-valued De Morgan duality

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_{b}.

$$
\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in E^{\mathcal{L}_{b}}: r_{x \wedge y}=r_{(\neg(\neg x \vee \neg y))} .
$$

Indeed, if $r_{x}, r_{y}>0, r_{x} \curlywedge r_{y}=r_{x} \times r_{y}$.
At the same time, $r_{\neg x} \curlyvee r_{\neg y}=\left(r_{\neg x} \times r_{\neg y}\right)=-\left(r_{x} \times r_{y}\right)$.

\mathcal{L}_{b}-valued De Morgan duality

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_{b}.

$$
\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in E^{\mathcal{L}_{b}}: r_{x \wedge y}=r_{(\neg(\neg x \vee \neg y))}
$$

Indeed, if $r_{x}, r_{y}>0, r_{x} \curlywedge r_{y}=r_{x} \times r_{y}$.
At the same time, $r_{\neg x} \curlyvee r_{\neg y}=\left(r_{\neg x} \times r_{\neg y}\right)=-\left(r_{x} \times r_{y}\right)$.
On the contrary, if $r_{x}, r_{y}<0, r_{x} \curlywedge r_{y}=-\left(r_{x} \times r_{y}\right)$, then $\left.r_{\neg x} \curlyvee r_{\neg y}\right)=\left(r_{\neg x} \times r_{\neg y}\right)=\left(-r_{x} \times-r(y)=r_{x} \times r_{y}\right.$.

\mathcal{L}_{b}-valued De Morgan duality

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_{b}.

$$
\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in E^{\mathcal{L}_{b}}: r_{x \wedge y}=r_{(\neg(\neg x \vee \neg y))} .
$$

Indeed, if $r_{x}, r_{y}>0, r_{x} \curlywedge r_{y}=r_{x} \times r_{y}$.
At the same time, $r_{\neg x} \curlyvee r_{\neg y}=\left(r_{\neg x} \times r_{\neg y}\right)=-\left(r_{x} \times r_{y}\right)$.
On the contrary, if $r_{x}, r_{y}<0, r_{x} \curlywedge r_{y}=-\left(r_{x} \times r_{y}\right)$, then $\left.r_{\neg x} \curlyvee r_{\neg y}\right)=\left(r_{\neg x} \times r_{\neg y}\right)=\left(-r_{x} \times-r(y)=r_{x} \times r_{y}\right.$.
If either $r_{x}>0$ and $r_{y}<0$ or vice versa, the duality relation is equally verified.

absorbing \mathcal{L}_{b}-undeterminedness

the negational fix-point, the zero value, figures as logical "black hole" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

absorbing \mathcal{L}_{b}-undeterminedness

the negational fix-point, the zero value, figures as logical "black hole" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

$$
\forall\left(x, r_{x}\right) \in E^{\mathcal{L}_{b}}: r_{x} \curlywedge 0=r_{x} \curlyvee 0=0
$$

absorbing \mathcal{L}_{b}-undeterminedness

the negational fix-point, the zero value, figures as logical "black hole" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

$$
\forall\left(x, r_{x}\right) \in E^{\mathcal{L}_{b}}: r_{x} \curlywedge 0=r_{x} \curlyvee 0=0
$$

The natural logical consequence of combining more and more fuzzy propositions will sooner or later necessarily end up with a completely undetermined proposition.

absorbing \mathcal{L}_{b}-undeterminedness

the negational fix-point, the zero value, figures as logical "black hole" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

$$
\forall\left(x, r_{x}\right) \in E^{\mathcal{L}_{b}}: r_{x} \curlywedge 0=r_{x} \curlyvee 0=0 .
$$

The natural logical consequence of combining more and more fuzzy propositions will sooner or later necessarily end up with a completely undetermined proposition.
$\forall\left(x, r_{x}\right),\left(y, r_{y}\right) \in E^{\mathcal{L}_{b}}$ such that $r_{x} \neq 0$ we have:

$$
\begin{aligned}
& \left|r_{x}\right|>\left|r_{x} \curlywedge r_{y}\right|, \\
& \left|r_{x}\right|>\left|r_{x} \curlyvee r_{y}\right| .
\end{aligned}
$$

\mathcal{L}_{b} is a natural fuzzification

we must show that the curly operators \curlyvee and \curlywedge verify $\mu \circ \pi=\pi \circ \mu$:

$$
\begin{aligned}
& \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right) \\
& \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right) .
\end{aligned}
$$

\mathcal{L}_{b} is a natural fuzzification

we must show that the curly operators \curlyvee and \curlywedge verify $\mu \circ \pi=\pi \circ \mu$:

$$
\begin{aligned}
& \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right), \\
& \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right) .
\end{aligned}
$$

if $r_{x}>0$ or $\left.r_{y}>0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)\right)=\mu(x \vee y, 1)=$ $(x \vee y, 1)=\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right.$;

\mathcal{L}_{b} is a natural fuzzification

we must show that the curly operators \curlyvee and \curlywedge verify $\mu \circ \pi=\pi \circ \mu$:

$$
\begin{aligned}
& \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right), \\
& \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right) .
\end{aligned}
$$

if $r_{x}>0$ or $\left.r_{y}>0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)\right)=\mu(x \vee y, 1)=$ $(x \vee y, 1)=\pi\left(x \vee y, r_{x} \vee r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \vee r_{y}\right)\right.$;
if $r_{x}<0$ and $r_{y}<0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\mu(x \vee y,-1)=$ $(\neg(x \vee y), 1)=\pi\left(\neg(x \vee y), r_{x} \curlywedge r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)$.

\mathcal{L}_{b} is a natural fuzzification

we must show that the curly operators \curlyvee and \curlywedge verify $\mu \circ \pi=\pi \circ \mu$:

$$
\begin{aligned}
& \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right) \\
& \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right) .
\end{aligned}
$$

if $r_{x}>0$ or $\left.r_{y}>0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)\right)=\mu(x \vee y, 1)=$ $(x \vee y, 1)=\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right.$;
if $r_{x}<0$ and $r_{y}<0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\mu(x \vee y,-1)=$ $(\neg(x \vee y), 1)=\pi\left(\neg(x \vee y), r_{x} \curlywedge r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)$. if $r_{x}>0$ and $r_{y}>0, \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\mu(x \wedge y, 1)=$ $(x \wedge y, 1)=\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right.$;

\mathcal{L}_{b} is a natural fuzzification

we must show that the curly operators \curlyvee and \curlywedge verify $\mu \circ \pi=\pi \circ \mu$:

$$
\begin{aligned}
& \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right) \\
& \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right) .
\end{aligned}
$$

if $r_{x}>0$ or $\left.r_{y}>0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)\right)=\mu(x \vee y, 1)=$ $(x \vee y, 1)=\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right.$;
if $r_{x}<0$ and $r_{y}<0, \mu\left(\pi\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)=\mu(x \vee y,-1)=$ $(\neg(x \vee y), 1)=\pi\left(\neg(x \vee y), r_{x} \curlywedge r_{y}\right)=\pi\left(\mu\left(x \vee y, r_{x} \curlyvee r_{y}\right)\right)$.
if $r_{x}>0$ and $r_{y}>0, \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\mu(x \wedge y, 1)=$ $(x \wedge y, 1)=\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right.$;
if $r_{x}<0$ or $r_{y}<0, \mu\left(\pi\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)=\mu(x \wedge y,-1)=$ $(\neg(x \wedge y), 1)=\pi\left(\neg(x \wedge y), r_{x} \curlyvee r_{y}\right)=\pi\left(\mu\left(x \wedge y, r_{x} \curlywedge r_{y}\right)\right)$.

Moving On

Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility calculus one may define on propositional expressions, let us explore two directions for further investigations:

Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility calculus one may define on propositional expressions, let us explore two directions for further investigations:

1) consider the t-norm concept as potential generalization

Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility calculus one may define on propositional expressions, let us explore two directions for further investigations:

1) consider the t-norm concept as potential generalization
2) follow the semiotical intuitions of C.S. Peirce

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.
a t-norm T defined on the interval $[-1 ; 1]$ verifies the following four axioms:

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.
a t-norm T defined on the interval $[-1 ; 1]$ verifies the following four axioms:
(T1) $T\left(1, r_{x}\right)=r_{x}, \forall r_{x} \in[-1 ; 1]$

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.
a t-norm T defined on the interval $[-1 ; 1]$ verifies the following four axioms:
(T1) $T\left(1, r_{x}\right)=r_{x}, \forall r_{x} \in[-1 ; 1]$
(T2) $T\left(r_{x}, r_{y}\right)=T\left(r_{y}, r_{x}\right), \forall r_{x}, r_{y} \in[-1 ; 1]$

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.
a t -norm T defined on the interval $[-1 ; 1]$ verifies the following four axioms:
(T1) $T\left(1, r_{x}\right)=r_{x}, \forall r_{x} \in[-1 ; 1]$
(T2) $T\left(r_{x}, r_{y}\right)=T\left(r_{y}, r_{x}\right), \forall r_{x}, r_{y} \in[-1 ; 1]$
(T3) $T\left(r_{x}, T\left(r_{y}, r_{z}\right)\right)=T\left(T\left(r_{x}, r_{y}\right), r_{z}\right), \forall r_{x}, r_{y}, r_{z} \in[-1 ; 1]$

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.
a t -norm T defined on the interval $[-1 ; 1]$ verifies the following four axioms:
(T1) $T\left(1, r_{x}\right)=r_{x}, \forall r_{x} \in[-1 ; 1]$
(T2) $T\left(r_{x}, r_{y}\right)=T\left(r_{y}, r_{x}\right), \forall r_{x}, r_{y} \in[-1 ; 1]$
(T3) $T\left(r_{x}, T\left(r_{y}, r_{z}\right)\right)=T\left(T\left(r_{x}, r_{y}\right), r_{z}\right), \forall r_{x}, r_{y}, r_{z} \in[-1 ; 1]$
(T4) $T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right)$ if

$$
-1 \leq r_{x} \leq r_{u} \leq 1,-1 \leq r_{y} \leq r_{v} \leq 1
$$

t-norms are unnatural operators

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.
a t -norm T defined on the interval $[-1 ; 1]$ verifies the following four axioms:
(T1) $T\left(1, r_{x}\right)=r_{x}, \forall r_{x} \in[-1 ; 1]$
(T2) $T\left(r_{x}, r_{y}\right)=T\left(r_{y}, r_{x}\right), \forall r_{x}, r_{y} \in[-1 ; 1]$
(T3) $T\left(r_{x}, T\left(r_{y}, r_{z}\right)\right)=T\left(T\left(r_{x}, r_{y}\right), r_{z}\right), \forall r_{x}, r_{y}, r_{z} \in[-1 ; 1]$
(T4) $T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right)$ if

$$
-1 \leq r_{x} \leq r_{u} \leq 1,-1 \leq r_{y} \leq r_{v} \leq 1
$$

the multiplicative conjunctive operator \curlywedge verifies three of these axioms, i.e. all except the fourth one, so \curlywedge is not a t-norm.

bipolar split 't-norms'?

What axiom could advantageously replace the "triangular" t -norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval $[-1,1]$?

bipolar split 't-norms'?

What axiom could advantageously replace the "triangular" t-norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval $[-1,1]$?
A possibility might be the following:

$$
\begin{aligned}
\left(0 \leq r_{x} \leq r_{u} \leq 1\right),(0 \leq & \left.r_{y} \leq r_{v} \leq 1\right) \\
& \Rightarrow T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right)
\end{aligned}
$$

bipolar split 't-norms'?

What axiom could advantageously replace the "triangular" t -norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval $[-1,1]$?
A possibility might be the following:

$$
\begin{aligned}
& \left(0 \leq r_{x} \leq r_{u} \leq \mathbf{1}\right),\left(0 \leq r_{y} \leq r_{v} \leq \mathbf{1}\right) \\
& \quad \Rightarrow \quad T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right) \\
& \left(-\mathbf{1} \leq r_{x} \leq r_{u} \leq \mathbf{0}\right),\left(-\mathbf{1} \leq r_{y} \leq r_{v} \leq \mathbf{0}\right) \\
& \Rightarrow \quad T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right)
\end{aligned}
$$

bipolar split 't-norms'?

What axiom could advantageously replace the "triangular" t-norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval $[-1,1]$? A possibility might be the following:

$$
\begin{aligned}
& \left(0 \leq r_{x} \leq r_{u} \leq \mathbf{1}\right),\left(\mathbf{0} \leq r_{y} \leq r_{v} \leq \mathbf{1}\right) \\
& \quad \Rightarrow \quad T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right) \\
& \left(-\mathbf{1} \leq r_{x} \leq r_{u} \leq \mathbf{0}\right),\left(-\mathbf{1} \leq r_{y} \leq r_{v} \leq \mathbf{0}\right) \\
& \Rightarrow \quad T\left(r_{x}, r_{y}\right) \leq T\left(r_{u}, r_{v}\right)
\end{aligned}
$$

in some sense we would recover the triangular axiom in "absolute" terms, i.e. T non-decreasing in both arguments, either in the positive or in the negative point of view.

semiotical foundations (C.S. Peirce)

we may interpret the \mathcal{L}_{o} and the \mathcal{L}_{b} credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness

semiotical foundations (C.S. Peirce)

we may interpret the \mathcal{L}_{o} and the \mathcal{L}_{b} credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness
the \mathcal{L}_{o} calculus supposes a same closed universal semiotical reference for all ground propositions $p \in P$ (mathematical logic)

semiotical foundations (C.S. Peirce)

we may interpret the \mathcal{L}_{o} and the \mathcal{L}_{b} credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness
the \mathcal{L}_{o} calculus supposes a same closed universal semiotical reference for all ground propositions $p \in P$ (mathematical logic)
the multiplicative model apparently supposes shared semiotical references for all determined parts and disjoint semiotical references for the logically undetermined parts of each proposition $p \in P$ (error propagation)

semiotical foundations (C.S. Peirce)

we may interpret the \mathcal{L}_{o} and the \mathcal{L}_{b} credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness
the \mathcal{L}_{o} calculus supposes a same closed universal semiotical reference for all ground propositions $p \in P$ (mathematical logic)
the multiplicative model apparently supposes shared semiotical references for all determined parts and disjoint semiotical references for the logically undetermined parts of each proposition $p \in P$ (error propagation)
this leaves open the case where each ground expression $p \in P$ is completely supported by different and disjoint semiotical references (aggregational logic, multiple logical criteria approach)

