On a natural fuzzification of Boolean logic

Raymond Bisdorff

Faculty of Law, Economics and Finance University of Luxembourg

Content

introducing logical fuzziness

expressions, contradiction positive truth projection, positive and negative assertions

a first example of logical fuzzification

operator triple $< -, \min, \max >, \mathcal{L}_o$ -tautologies and antilogies, \mathcal{L}_o -valued modus ponens

fuzzification/polarization: an adjoint pair

median cut operator, natural fuzzification, examples

a Bochvar-like fuzzification

conjunction and disjunction, De Morgan duality,

Moving On

t-norms are unnatural, semiotical foundation

Introducing logical fuzziness

well-formulated propositional expressions

Let *P* be a set of constants or ground propositions.

well-formulated propositional expressions

Let P be a set of constants or ground propositions. Let \neg , \lor and \land denote respectively the contradiction, disjunction and conjunction operators.

well-formulated propositional expressions

Let P be a set of constants or ground propositions.

Let \neg , \lor and \land denote respectively the contradiction, disjunction and conjunction operators.

The set E of all *well formulated finite expressions* will be generated inductively from the following grammar:

 $\forall p \in P : p \in E, \\ \forall x, y \in E : \neg x \mid (x) \mid x \lor y \mid x \land y \in E.$

r implements a credibility evaluation of propositional expressions: $r: E \rightarrow [-1, 1]$:

r implements a credibility evaluation of propositional expressions: $r: E \rightarrow [-1, 1]$:

$$x \mapsto \begin{cases} 1 & \text{if } x \text{ is } certainly true, \\ -1 & \text{if } x \text{ is } certainly false, \\ r_x \in]-1, 1[& \text{otherwise.} \end{cases}$$

r implements a credibility evaluation of propositional expressions: $r: E \rightarrow [-1, 1]$:

$$x \mapsto \begin{cases} 1 & \text{if } x \text{ is } certainly true, \\ -1 & \text{if } x \text{ is } certainly false, \\ r_x \in]-1, 1[& \text{otherwise.} \end{cases}$$

r implements a credibility evaluation of propositional expressions: $r: E \rightarrow [-1, 1]$:

$$x \mapsto \begin{cases} 1 & \text{if } x \text{ is } certainly \ true, \\ -1 & \text{if } x \text{ is } certainly \ false, \\ r_x \in]-1, 1[& \text{otherwise.} \end{cases}$$

where $\forall x, y \in E, r_x > r_y$ (resp. $r_x < r_y$) means that propositional expression x is more (resp. less) credible than propositional expression y.

r implements a credibility evaluation of propositional expressions: $r: E \rightarrow [-1, 1]$:

$$x \mapsto \begin{cases} 1 & \text{if } x \text{ is } certainly \ true, \\ -1 & \text{if } x \text{ is } certainly \ false, \\ r_x \in]-1, 1[& \text{otherwise.} \end{cases}$$

where $\forall x, y \in E, r_x > r_y$ (resp. $r_x < r_y$) means that propositional expression x is more (resp. less) credible than propositional expression y.

Such a credibility domain is called \mathcal{L} , and we denote $E^{\mathcal{L}} = \{(x, r_x) \mid x \in E, r_x \in [-1, 1]\}$ a given set of such more or less credible propositional expressions, also called for short \mathcal{L} -expressions.

\mathcal{L} -valued contradiction operator

We implement the *contradiction* operator on \mathcal{L} -expressions by simply *changing the sign* of the associated credibility evaluation, i.e.

\mathcal{L} -valued contradiction operator

We implement the *contradiction* operator on \mathcal{L} -expressions by simply *changing the sign* of the associated credibility evaluation, i.e.

$$\forall (x, r_x) \in E^{\mathcal{L}} : \neg (r, r_x) = (\neg x, -r_x).$$

\mathcal{L} -valued contradiction operator

We implement the *contradiction* operator on \mathcal{L} -expressions by simply *changing the sign* of the associated credibility evaluation, i.e.

$$\forall (x, r_x) \in E^{\mathcal{L}} : \neg (r, r_x) = (\neg x, -r_x).$$

The sign exchange thus implements an antitone bijection on the rational interval [-1, 1] where the *zero* value appears as contradiction fix-point.

Split Truth/Falseness Semantics

positive (truth oriented) view point

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ , acting as a *positive* domain and range restriction on the credibility operator r. Let $(x, r_x) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L} -expression:

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ , acting as a *positive* domain and range restriction on the credibility operator r. Let $(x, r_x) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L} -expression:

$$\mu(x, r_x) = \begin{cases} (x, r_x) \text{ if } r_x \ge r_{\neg x}, \\ (\neg x, r_{\neg x}) \text{ otherwise.} \end{cases}$$

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ , acting as a *positive* domain and range restriction on the credibility operator r. Let $(x, r_x) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L} -expression:

$$\mu(x, r_x) = \begin{cases} (x, r_x) \text{ if } r_x \ge r_{\neg x}, \\ (\neg x, r_{\neg x}) \text{ otherwise.} \end{cases}$$

We denote the truthfulness possibly induced from the underlying credibility calculus through a truth projection operator μ , acting as a *positive* domain and range restriction on the credibility operator r. Let $(x, r_x) \in \mathcal{E}^{\mathcal{L}}$ be an \mathcal{L} -expression:

$$\mu(x, r_x) = \begin{cases} (x, r_x) \text{ if } r_x \ge r_{\neg x}, \\ (\neg x, r_{\neg x}) \text{ otherwise.} \end{cases}$$

Truthfulness of a given expression x is thus only defined in case the expression's credibility r_x exceeds the credibility $r_{\neg x}$ of its contradiction $\neg x$, otherwise the logical point of view is switched to $\neg x$, i.e the contradicted version of the expression.

As $r_x \ge r_{\neg x} \Leftrightarrow r_x \ge 0$ it follows that the sign (+ or -) of r_x immediately carries the truth functional semantics of \mathcal{L} -expressions,

As $r_x \ge r_{\neg x} \Leftrightarrow r_x \ge 0$ it follows that the sign (+ or -) of r_x immediately carries the truth functional semantics of \mathcal{L} -expressions,

an \mathcal{L} -expression (x, r_x) such that $r_x \ge 0$ may be called *more or less true* (\mathcal{L} -true for short),

As $r_x \ge r_{\neg x} \Leftrightarrow r_x \ge 0$ it follows that the sign (+ or -) of r_x immediately carries the truth functional semantics of \mathcal{L} -expressions,

an \mathcal{L} -expression (x, r_x) such that $r_x \ge 0$ may be called *more or less true* (\mathcal{L} -true for short),

an expression (x, r_x) such that $r_x \leq 0$ may be called *more or less false* (\mathcal{L} -false for short),

As $r_x \ge r_{\neg x} \Leftrightarrow r_x \ge 0$ it follows that the sign (+ or -) of r_x immediately carries the truth functional semantics of \mathcal{L} -expressions,

an \mathcal{L} -expression (x, r_x) such that $r_x \ge 0$ may be called *more or less true* (\mathcal{L} -true for short),

an expression (x, r_x) such that $r_x \leq 0$ may be called *more or less false* (\mathcal{L} -false for short),

Only 0-valued expressions appear to be both \mathcal{L} -true and \mathcal{L} -false, therefore they are called \mathcal{L} -undetermined.

A first example of natural logical fuzzification

The operator triple $< -, \min, \max >$

The classic min and max operators may be used to implement \mathcal{L} -valued conjunction and disjunction.

The operator triple $< -, \min, \max >$

The classic min and max operators may be used to implement \mathcal{L} -valued conjunction and disjunction.

 $\forall (x, r_x), (y, r_y) \in \mathcal{E}^{\mathcal{L}}:$

$$(x, r_x) \lor (y, r_y) = (x \lor y, \max(r_x, r_y))$$

$$(x, r_x) \land (y, r_y) = (x \land y, \min(r_x, r_y))$$

The operator triple $< -, \min, \max >$

The classic min and max operators may be used to implement \mathcal{L} -valued conjunction and disjunction.

 $\forall (x, r_x), (y, r_y) \in \mathcal{E}^{\mathcal{L}}:$

$$(x, r_x) \lor (y, r_y) = (x \lor y, \max(r_x, r_y))$$
$$(x, r_x) \land (y, r_y) = (x \land y, \min(r_x, r_y))$$

The operator triple $< -, \min, \max >$ implements on the rational interval [-1, 1] an ordinal credibility calculus, denoted for short \mathcal{L}_o that gives a first example of what we shall call a *natural fuzzification* of propositional calculus.

truthfulness of the tautology $(x \lor \neg x)$ is always given, as $\max(r_x, -r_x) \ge 0$ in any case.

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\max(r_x, -r_x) \ge 0$ in any case.

tautological \mathcal{L}_o -valued propositions thus appear as being \mathcal{L}_o -true in any case. Therefore we call them \mathcal{L}_o -tautologies.

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\max(r_x, -r_x) \ge 0$ in any case.

tautological \mathcal{L}_o -valued propositions thus appear as being \mathcal{L}_o -true in any case. Therefore we call them \mathcal{L}_o -tautologies. truthfulness of the antilogy $(x \land \neg x)$ is only defined when $\min(r_x, -r_x) = 0$.

truthfulness of the tautology $(x \vee \neg x)$ is always given, as $\max(r_x, -r_x) \ge 0$ in any case.

tautological \mathcal{L}_o -valued propositions thus appear as being \mathcal{L}_o -true in any case. Therefore we call them \mathcal{L}_o -tautologies. truthfulness of the antilogy $(x \land \neg x)$ is only defined when $\min(r_x, -r_x) = 0$.

More or less "untruthfulness" of such an expression is however always given as $\max(-r_x, -(-r_x)) \ge 0$ in any case and we may call such propositions \mathcal{L}_o -antilogies.

Finally, let us investigate an implicative \mathcal{L}_o -tautology such as the *modus ponens* for instance.

Finally, let us investigate an implicative \mathcal{L}_o -tautology such as the *modus ponens* for instance.

If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg ((x, r_x) \land (\neg y, -r_y))$, i.e. $((\neg x, -r_x) \lor (y, r_y))$ we obtain:

Finally, let us investigate an implicative \mathcal{L}_o -tautology such as the *modus ponens* for instance.

If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg ((x, r_x) \land (\neg y, -r_y))$, i.e. $((\neg x, -r_x) \lor (y, r_y))$ we obtain:

$$\min(r_x, \max(-r_x, r_y)) \ge 0 \implies r_y \ge 0,$$

Finally, let us investigate an implicative \mathcal{L}_o -tautology such as the *modus ponens* for instance.

If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg ((x, r_x) \land (\neg y, -r_y))$, i.e. $((\neg x, -r_x) \lor (y, r_y))$ we obtain:

$$\min(r_x, \max(-r_x, r_y)) \ge 0 \implies r_y \ge 0,$$

 (x, r_x) and $(x, r_x) \Rightarrow (y, r_y)$ being conjointly \mathcal{L}_o -true always implies (y, r_y) being \mathcal{L}_o -true,

Finally, let us investigate an implicative \mathcal{L}_o -tautology such as the *modus ponens* for instance.

If we take the classical negative (Kleene-Dienes) definition of the implication: $\neg ((x, r_x) \land (\neg y, -r_y))$, i.e. $((\neg x, -r_x) \lor (y, r_y))$ we obtain:

$$\min(r_x, \max(-r_x, r_y)) \ge 0 \implies r_y \ge 0,$$

 (x, r_x) and $(x, r_x) \Rightarrow (y, r_y)$ being conjointly \mathcal{L}_o -true always implies (y, r_y) being \mathcal{L}_o -true,

the \mathcal{L} -valued modus ponens is an \mathcal{L}_o -tautology.
Fuzzification/Polarization: an adjoint pair

Let $E^{\mathcal{L}}$ be a set of \mathcal{L} -expressions and let \mathcal{L}^3 denote the restriction of \mathcal{L} to the three credibility values $\{-1, 0, 1\}$.

Let $E^{\mathcal{L}}$ be a set of \mathcal{L} -expressions and let \mathcal{L}^3 denote the restriction of \mathcal{L} to the three credibility values $\{-1, 0, 1\}$.

 $\pi: E^{\mathcal{L}} \to E^{\mathcal{L}^3}$ represents a logical polarization operator defined as follows:

Let $E^{\mathcal{L}}$ be a set of \mathcal{L} -expressions and let \mathcal{L}^3 denote the restriction of \mathcal{L} to the three credibility values $\{-1, 0, 1\}$.

 $\pi: E^{\mathcal{L}} \to E^{\mathcal{L}^3}$ represents a logical polarization operator defined as follows:

 $\forall (x, r_x) \in E^{\mathcal{L}}:$

$$\pi(x, r_x) = \begin{cases} (x, 1) & \Leftrightarrow & r_x > 0\\ (x, -1) & \Leftrightarrow & r_x < 0\\ (x, 0) & \Leftrightarrow & r_x = 0 \end{cases}$$

Let $E^{\mathcal{L}}$ be a set of \mathcal{L} -expressions and let \mathcal{L}^3 denote the restriction of \mathcal{L} to the three credibility values $\{-1, 0, 1\}$.

 $\pi: E^{\mathcal{L}} \to E^{\mathcal{L}^3}$ represents a logical polarization operator defined as follows:

 $\forall (x, r_x) \in E^{\mathcal{L}}:$

$$\pi(x, r_x) = \begin{cases} (x, 1) & \Leftrightarrow & r_x > 0\\ (x, -1) & \Leftrightarrow & r_x < 0\\ (x, 0) & \Leftrightarrow & r_x = 0 \end{cases}$$

Let $E^{\mathcal{L}}$ be a set of \mathcal{L} -expressions and let \mathcal{L}^3 denote the restriction of \mathcal{L} to the three credibility values $\{-1, 0, 1\}$.

 $\pi: E^{\mathcal{L}} \to E^{\mathcal{L}^3}$ represents a logical polarization operator defined as follows:

 $\forall (x, r_x) \in E^{\mathcal{L}}:$

$$\pi(x, r_x) = \begin{cases} (x, 1) & \Leftrightarrow & r_x > 0\\ (x, -1) & \Leftrightarrow & r_x < 0\\ (x, 0) & \Leftrightarrow & r_x = 0 \end{cases}$$

Let $E^{\mathcal{L}}$ be a set of \mathcal{L} -expressions and let \mathcal{L}^3 denote the restriction of \mathcal{L} to the three credibility values $\{-1, 0, 1\}$.

 $\pi: E^{\mathcal{L}} \to E^{\mathcal{L}^3}$ represents a logical polarization operator defined as follows:

 $\forall (x, r_x) \in E^{\mathcal{L}}:$

$$\pi(x, r_x) = \begin{cases} (x, 1) & \Leftrightarrow & r_x > 0\\ (x, -1) & \Leftrightarrow & r_x < 0\\ (x, 0) & \Leftrightarrow & r_x = 0 \end{cases}$$

 π is also called a *median* cut operator.

defining a natural fuzzification

That π operator indeed implements our split truth/falseness semantics may be summarized by stating the following categorical equation.

defining a natural fuzzification

That π operator indeed implements our split truth/falseness semantics may be summarized by stating the following categorical equation.

 $\mu \circ \pi = \pi \circ \mu$

defining a natural fuzzification

That π operator indeed implements our split truth/falseness semantics may be summarized by stating the following categorical equation.

 $\mu \circ \pi = \pi \circ \mu$

a credibility calculus \mathcal{L} with operator triple $\langle \neg^{\mathcal{L}}, \wedge^{\mathcal{L}}, \vee^{\mathcal{L}} \rangle$ verifying the categorical equation above is called *natural*.

examples of natural fuzzifications

example 1 :

the ordinal \mathcal{L}_o credibility calculus with the operator triple $< -, \min, \max >$ defined on [-1, 1] implements a natural fuzzification on the category of propositional expressions.

back to content

examples of natural fuzzifications

example 1 :

the ordinal \mathcal{L}_o credibility calculus with the operator triple $< -, \min, \max >$ defined on [-1, 1] implements a natural fuzzification on the category of propositional expressions.

example 2 :

the classic operator triple $< 1 - r_x$, min, max > defined on [0, 1] implements a natural fuzzification on the category of propositional expressions, where $\frac{1}{2}$ captures the \mathcal{L} -undeterminedness.

back to content

A Bochvar-like fuzzification

ultiplicative conjunction and disjunction operato

We shall denote \mathcal{L}_b a *multiplicative* credibility calculus whith operator triple $\langle -, \Upsilon, \lambda \rangle$.

ultiplicative conjunction and disjunction operato

We shall denote \mathcal{L}_b a *multiplicative* credibility calculus whith operator triple $\langle -, \Upsilon, \lambda \rangle$.

The *multiplicative conjunction* operator \land on a set $E^{\mathcal{L}}$ of \mathcal{L} -expressions is defined as follows: $\forall x, y \in E$:

$$r_{x \wedge y} = r_x \wedge r_y = \begin{cases} |r_x \times r_y| & \text{if } (r_x > 0) \wedge r_y > 0), \\ -|r_x \times r_y| & \text{otherwise.} \end{cases}$$

ultiplicative conjunction and disjunction operato

We shall denote \mathcal{L}_b a *multiplicative* credibility calculus whith operator triple $\langle -, \Upsilon, \lambda \rangle$.

The *multiplicative conjunction* operator \land on a set $E^{\mathcal{L}}$ of \mathcal{L} -expressions is defined as follows: $\forall x, y \in E$:

$$r_{x \wedge y} = r_x \wedge r_y = \begin{cases} |r_x \times r_y| & \text{if } (r_x > 0) \wedge r_y > 0), \\ -|r_x \times r_y| & \text{otherwise.} \end{cases}$$

and the *multiplicative disjunction* operator Υ is defined as follows: $\forall x, y \in P$:

$$r_{x \lor y} = r_x \lor r_y = \begin{cases} - |r_x \times r_y| & \text{if } (r_x < 0) \land (r_y < 0), \\ |r_x \times r_y| & \text{otherwise.} \end{cases}$$

the multiplicative conjunctive operator

the multiplicative disjunctive operator

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_b .

$$\forall (x, r_x), (y, r_y) \in E^{\mathcal{L}_b} : r_{x \wedge y} = r_{(\neg (\neg x \vee \neg y))}.$$

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_b .

 $\forall (x, r_x), (y, r_y) \in E^{\mathcal{L}_b} : r_{x \wedge y} = r_{(\neg (\neg x \vee \neg y))}.$

Indeed, if $r_x, r_y > 0$, $r_x \land r_y = r_x \times r_y$.

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_b .

$$\forall (x, r_x), (y, r_y) \in E^{\mathcal{L}_b} : r_{x \wedge y} = r_{(\neg (\neg x \vee \neg y))}.$$

Indeed, if $r_x, r_y > 0$, $r_x \land r_y = r_x \times r_y$. At the same time, $r_{\neg x} \curlyvee r_{\neg y} = (r_{\neg x} \times r_{\neg y}) = -(r_x \times r_y)$.

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_b .

$$\forall (x, r_x), (y, r_y) \in E^{\mathcal{L}_b} : r_{x \wedge y} = r_{(\neg (\neg x \lor \neg y))}.$$

Indeed, if $r_x, r_y > 0$, $r_x \land r_y = r_x \times r_y$. At the same time, $r_{\neg x} \curlyvee r_{\neg y} = (r_{\neg x} \times r_{\neg y}) = -(r_x \times r_y)$. On the contrary, if $r_x, r_y < 0, r_x \land r_y = -(r_x \times r_y)$, then $r_{\neg x} \curlyvee r_{\neg y}) = (r_{\neg x} \times r_{\neg y}) = (-r_x \times -r(y)) = r_x \times r_y$.

First, we may verify that the De Morgan duality properties are verified in \mathcal{L}_b .

$$\forall (x, r_x), (y, r_y) \in E^{\mathcal{L}_b} : r_{x \wedge y} = r_{(\neg (\neg x \vee \neg y))}.$$

Indeed, if $r_x, r_y > 0$, $r_x \land r_y = r_x \times r_y$. At the same time, $r_{\neg x} \curlyvee r_{\neg y} = (r_{\neg x} \times r_{\neg y}) = -(r_x \times r_y)$. On the contrary, if $r_x, r_y < 0, r_x \land r_y = -(r_x \times r_y)$, then $r_{\neg x} \curlyvee r_{\neg y}) = (r_{\neg x} \times r_{\neg y}) = (-r_x \times -r(y) = r_x \times r_y)$. If either $r_x > 0$ and $r_y < 0$ or vice verse, the duality relation

If either $r_x > 0$ and $r_y < 0$ or vice versa, the duality relation is equally verified.

the negational fix-point, the zero value, figures as logical "*black hole*" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

the negational fix-point, the zero value, figures as logical "*black hole*" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

$$\forall (x, r_x) \in E^{\mathcal{L}_b} : r_x \land 0 = r_x \curlyvee 0 = 0.$$

the negational fix-point, the zero value, figures as logical "*black hole*" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

$$\forall (x, r_x) \in E^{\mathcal{L}_b} : r_x \land 0 = r_x \curlyvee 0 = 0.$$

The natural logical consequence of combining more and more fuzzy propositions will sooner or later necessarily end up with a completely undetermined proposition.

the negational fix-point, the zero value, figures as logical "*black hole*" as is usual in the three-valued Bochvar logic, absorbing all possible logical determinism through any of both binary operators.

$$\forall (x, r_x) \in E^{\mathcal{L}_b} : r_x \land 0 = r_x \curlyvee 0 = 0.$$

The natural logical consequence of combining more and more fuzzy propositions will sooner or later necessarily end up with a completely undetermined proposition.

 $\forall (x, r_x), (y, r_y) \in E^{\mathcal{L}_b}$ such that $r_x \neq 0$ we have:

$$|r_x| > |r_x \land r_y|,$$

$$|r_x| > |r_x \land r_y|.$$

we must show that the curly operators Υ and \land verify $\mu \circ \pi = \pi \circ \mu$:

$$\mu(\pi(x \lor y, r_x \curlyvee r_y)) = \pi(\mu(x \lor y, r_x \curlyvee r_y)),$$

$$\mu(\pi(x \land y, r_x \land r_y)) = \pi(\mu(x \land y, r_x \land r_y)).$$

we must show that the curly operators Υ and \land verify $\mu \circ \pi = \pi \circ \mu$:

$$\mu(\pi(x \lor y, r_x \curlyvee r_y)) = \pi(\mu(x \lor y, r_x \curlyvee r_y)),$$

$$\mu(\pi(x \land y, r_x \land r_y)) = \pi(\mu(x \land y, r_x \land r_y)).$$

if $r_x > 0$ or $r_y > 0$, $\mu(\pi(x \lor y, r_x \curlyvee r_y))) = \mu(x \lor y, 1) =$ $(x \lor y, 1) = \pi(x \lor y, r_x \curlyvee r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y);$

we must show that the curly operators Υ and \land verify $\mu \circ \pi = \pi \circ \mu$:

$$\mu(\pi(x \lor y, r_x \curlyvee r_y)) = \pi(\mu(x \lor y, r_x \curlyvee r_y)),$$

$$\mu(\pi(x \land y, r_x \land r_y)) = \pi(\mu(x \land y, r_x \land r_y)).$$

if $r_x > 0$ or $r_y > 0$, $\mu(\pi(x \lor y, r_x \curlyvee r_y))) = \mu(x \lor y, 1) =$ $(x \lor y, 1) = \pi(x \lor y, r_x \curlyvee r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y);$ if $r_x < 0$ and $r_y < 0$, $\mu(\pi(x \lor y, r_x \curlyvee r_y)) = \mu(x \lor y, -1) =$ $(\neg(x \lor y), 1) = \pi(\neg(x \lor y), r_x \land r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y)).$

we must show that the curly operators Υ and \land verify $\mu \circ \pi = \pi \circ \mu$:

$$\mu(\pi(x \lor y, r_x \curlyvee r_y)) = \pi(\mu(x \lor y, r_x \curlyvee r_y)),$$

$$\mu(\pi(x \land y, r_x \land r_y)) = \pi(\mu(x \land y, r_x \land r_y)).$$

 $\begin{array}{l} \text{if } r_x > 0 \text{ or } r_y > 0, \mu(\pi(x \lor y, r_x \curlyvee r_y))) = \mu(x \lor y, 1) = \\ (x \lor y, 1) = \pi(x \lor y, r_x \curlyvee r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y); \\ \text{if } r_x < 0 \text{ and } r_y < 0, \mu(\pi(x \lor y, r_x \curlyvee r_y)) = \mu(x \lor y, -1) = \\ (\neg(x \lor y), 1) = \pi(\neg(x \lor y), r_x \land r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y)). \\ \text{if } r_x > 0 \text{ and } r_y > 0, \mu(\pi(x \land y, r_x \land r_y)) = \mu(x \land y, 1) = \\ (x \land y, 1) = \pi(x \land y, r_x \land r_y) = \pi(\mu(x \land y, r_x \land r_y); \end{array}$

we must show that the curly operators Υ and \land verify $\mu \circ \pi = \pi \circ \mu$:

$$\mu(\pi(x \lor y, r_x \curlyvee r_y)) = \pi(\mu(x \lor y, r_x \curlyvee r_y)),$$

$$\mu(\pi(x \land y, r_x \land r_y)) = \pi(\mu(x \land y, r_x \land r_y)).$$

$$\begin{split} &\text{if } r_x > 0 \text{ or } r_y > 0, \mu(\pi(x \lor y, r_x \curlyvee r_y))) = \mu(x \lor y, 1) = \\ &(x \lor y, 1) = \pi(x \lor y, r_x \curlyvee r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y); \\ &\text{if } r_x < 0 \text{ and } r_y < 0, \mu(\pi(x \lor y, r_x \curlyvee r_y)) = \mu(x \lor y, -1) = \\ &(\neg(x \lor y), 1) = \pi(\neg(x \lor y), r_x \land r_y) = \pi(\mu(x \lor y, r_x \curlyvee r_y)). \\ &\text{if } r_x > 0 \text{ and } r_y > 0, \mu(\pi(x \land y, r_x \land r_y)) = \mu(x \land y, 1) = \\ &(x \land y, 1) = \pi(x \land y, r_x \land r_y) = \pi(\mu(x \land y, r_x \land r_y); \\ &\text{if } r_x < 0 \text{ or } r_y < 0, \mu(\pi(x \land y, r_x \land r_y)) = \mu(x \land y, -1) = \\ &(\neg(x \land y), 1) = \pi(\neg(x \land y), r_x \curlyvee r_y) = \pi(\mu(x \land y, r_x \land r_y)). \end{split}$$

Moving On

Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility calculus one may define on propositional expressions, let us explore two directions for further investigations:

Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility calculus one may define on propositional expressions, let us explore two directions for further investigations:

1) consider the t-norm concept as potential generalization

Generalizing the natural fuzzification triples

In order to situate now the whole family of natural credibility calculus one may define on propositional expressions, let us explore two directions for further investigations:

- 1) consider the t-norm concept as potential generalization
- 2) follow the semiotical intuitions of C.S. Peirce
Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [-1; 1] verifies the following four axioms:

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [-1; 1] verifies the following four axioms:

(T1) $T(1, r_x) = r_x, \forall r_x \in [-1; 1]$

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [-1; 1] verifies the following four axioms:

(T1) $T(1, r_x) = r_x, \forall r_x \in [-1; 1]$ (T2) $T(r_x, r_y) = T(r_y, r_x), \forall r_x, r_y \in [-1; 1]$

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [-1; 1] verifies the following four axioms:

(T1) $T(1, r_x) = r_x, \forall r_x \in [-1; 1]$ (T2) $T(r_x, r_y) = T(r_y, r_x), \forall r_x, r_y \in [-1; 1]$ (T3) $T(r_x, T(r_y, r_z)) = T(T(r_x, r_y), r_z), \forall r_x, r_y, r_z \in [-1; 1]$

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [-1; 1] verifies the following four axioms:

(T1) $T(1, r_x) = r_x, \forall r_x \in [-1; 1]$ (T2) $T(r_x, r_y) = T(r_y, r_x), \forall r_x, r_y \in [-1; 1]$ (T3) $T(r_x, T(r_y, r_z)) = T(T(r_x, r_y), r_z), \forall r_x, r_y, r_z \in [-1; 1]$ (T4) $T(r_x, r_y) \leq T(r_u, r_v)$ if $-1 \leq r_x \leq r_u \leq 1, -1 \leq r_y \leq r_v \leq 1$

Unfortunately, the split truth/falseness semantics is not compatible with the formal properties of a t-norm.

a t-norm T defined on the interval [-1; 1] verifies the following four axioms:

(T1) $T(1, r_x) = r_x, \forall r_x \in [-1; 1]$ (T2) $T(r_x, r_y) = T(r_y, r_x), \forall r_x, r_y \in [-1; 1]$ (T3) $T(r_x, T(r_y, r_z)) = T(T(r_x, r_y), r_z), \forall r_x, r_y, r_z \in [-1; 1]$ (T4) $T(r_x, r_y) \leq T(r_u, r_v)$ if $-1 \leq r_x \leq r_u \leq 1, -1 \leq r_y \leq r_v \leq 1$

the multiplicative conjunctive operator \land verifies three of these axioms, i.e. all except the fourth one, so \land is not a t-norm.

What axiom could advantageously replace the "triangular" t-norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval [-1, 1]?

What axiom could advantageously replace the "triangular" t-norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval [-1, 1]? A possibility might be the following:

$$(\mathbf{0} \le r_x \le r_u \le \mathbf{1}), \ (\mathbf{0} \le r_y \le r_v \le \mathbf{1}) \Rightarrow T(r_x, r_y) \le T(r_u, r_v)$$

What axiom could advantageously replace the "triangular" t-norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval [-1, 1]? A possibility might be the following:

$$(\mathbf{0} \le r_x \le r_u \le \mathbf{1}), \ (\mathbf{0} \le r_y \le r_v \le \mathbf{1})$$

$$\Rightarrow \quad T(r_x, r_y) \le T(r_u, r_v)$$

$$(-\mathbf{1} \le r_x \le r_u \le \mathbf{0}), \ (-\mathbf{1} \le r_y \le r_v \le \mathbf{0})$$

$$\Rightarrow \quad T(r_x, r_y) \le \quad T(r_u, r_v)$$

What axiom could advantageously replace the "triangular" t-norm condition in order to make fit conceptually with a natural credibility calculus on the rational interval [-1, 1]? A possibility might be the following:

$$(\mathbf{0} \leq r_x \leq r_u \leq \mathbf{1}), \ (\mathbf{0} \leq r_y \leq r_v \leq \mathbf{1})$$

$$\Rightarrow \quad T(r_x, r_y) \leq T(r_u, r_v)$$

$$(-\mathbf{1} \leq r_x \leq r_u \leq \mathbf{0}), \ (-\mathbf{1} \leq r_y \leq r_v \leq \mathbf{0})$$

$$\Rightarrow \quad T(r_x, r_y) \leq T(r_u, r_v)$$

in some sense we would recover the triangular axiom in *"absolute"* terms, i.e. *T* non-decreasing in both arguments, either in the positive or in the negative point of view.

we may interpret the \mathcal{L}_o and the \mathcal{L}_b credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness

we may interpret the \mathcal{L}_o and the \mathcal{L}_b credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness

the \mathcal{L}_o calculus supposes a same closed universal semiotical reference for all ground propositions $p \in P$ (mathematical logic)

we may interpret the \mathcal{L}_o and the \mathcal{L}_b credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness

the \mathcal{L}_o calculus supposes a same closed universal semiotical reference for all ground propositions $p \in P$ (mathematical logic)

the multiplicative model apparently supposes shared semiotical references for all determined parts and disjoint semiotical references for the logically undetermined parts of each proposition $p \in P$ (error propagation)

we may interpret the \mathcal{L}_o and the \mathcal{L}_b credibility calculus as some limit constructions of a same semiotical foundation of logical fuzziness

the \mathcal{L}_o calculus supposes a same closed universal semiotical reference for all ground propositions $p \in P$ (mathematical logic)

the multiplicative model apparently supposes shared semiotical references for all determined parts and disjoint semiotical references for the logically undetermined parts of each proposition $p \in P$ (error propagation)

this leaves open the case where each ground expression $p \in P$ is completely supported by different and disjoint semiotical references (aggregational logic, multiple logical criteria approach)