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Abstract—This paper recapitulates an analytic control model
for arbitrary island grids and presents findings on the dynamic
behaviour of purely inverter driven island grids. Pole zero plots of
different grid structures are presented and the influence of several
inverter parameters on the grid stability is analysed. Findings
show that for improved grid stability the inverter’s time constants
should also relate to their rated power. Further it is shown how
P-Q rotation in the droop control can improve the integration
density of renewable power sources in the distribution grid.
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I. INTRODUCTION

The management of islanded power grids, detached from the
interconnected European grid, becomes an important option
for load management and recovery of black outs. If e.g. a
sub-grid has sufficient renewable energy resources available,
there is no reason to let the connected customers suffer from
a blackout. Likewise, remote settlements may be operated in
island mode, thus avoiding the installation of costly medium
voltage lines.

The model [1] used in this paper has been developed in or-
der to judge the stability of such island grids [2], even without
rotating synchronous generators and their slowed interactions
due to the mechanical inertias[3]. Previous research for smaller
grids is presented in [4][5] and [6].

In island mode, particularly inverters cannot operate at max-
imum power point, but need to feed in exactly the currently
consumed energy. All generators operate in droop control,
where they behave like controlled AC voltage sources. The
presented control model is suitable for any type of generator,
acting as voltage source in the grid. While it was designed
for island grid analysis, also structurally known part-grids
at weak connection points can be modelled. It is based on
the linearised power equations and is constructed with an
analytical approach, beyond iterative numeric approximations.
Thus it provides comprehensive access to the overall system’s
poles and zeros, allowing for stability analysis and design
of robust controls. The model can comprise any number of
generators and address arbitrary grid structures, without the
need for repetitive manual construction of the differential
equations.

The paper presents insights in the dynamics of inverter
driven micro grids, revealed by the presented model. It shows
the dependency of grid stability on several inverter parameters
like time constants, rated power, as well as on grid parameters
and line characteristics.

II. ARBITRARY GRID MODEL

The presented model is a linear, time-invariant (LTI) control
model with multiple inputs and multiple outputs (MIMO). In
order to capture an arbitrary grid with a potentially very high
number of (small) generators, the model is split in two parts:

1) w grid nodes where generators are connected, acting as
dynamic AC voltage sources,

2) l passive grid nodes where consumers are connected and
power routing depends on the grid structure.

The model separation is depicted in figure 1.
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Figure 1. Separation of generators and passive grid

The generators are droop controlled AC voltage sources.
Their respective output parameters are the voltage phase angle
δ, depending on the currently injected active power P , and
the voltage amplitude u, depending on the actually provided
reactive power Q.

A. Multi Generator Model

The design of the multi inverter model starts with a state
space model of a single inverter, based on a droop controlled
generator model from [7] and [8], as depicted in figure 2.
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Figure 2. Control Model of a Single Inverter

A 3rd order state space model is derived for the ith inverter
in the form ẋi = Aixi + Biui, yi = Cixi, with droops kP
and kQ, damping kD. The state vector is defined as ~xi =
[PG, QG, θ]

T
i and the input vector is ui = [P,Q, ϕ̇POC]

T
i , as

displayed in figure 2:



2

d

dt
~xi =

 − 1
TWR

0 0

0 − 1
TWR

0

kP 0 0

 ~xi +

 1
TWR

0 0

0 1
TWR

0

0 0 −1

 ui

[
δ
u

ϕ̇VSI

]
i

=

[ −kD 0 1
0 kQ 0
kP 0 0

]
xi (1)

ϕ̇Geni is the generator’s injection frequency. ϕ̇POCi is the grid
frequency at the ith generator’s point of connection (POC),
produced by all other generators in the gird. It is used to
calculate the drift angle θ. The power input ~si = [Pi, Qi]

T

and the voltage output ~νi = [δi, ui]
T are separated from the

frequency variables ϕ̇VSI and ϕ̇POC. The reason is, that in
a purely inverter driven power grid each inverter adapts its
injection frequency ϕ̇VSI with high dynamics. During transient
phases there is no central grid frequency, but in each point
of connection, temporarily a different frequency ϕ̇POC is
valid. The generator model separates this frequency aspect
from the power flow aspects. In order to capture all active
generators in the grid, all single inverter state space models
are block-diagonally composed into large dynamic system
matrices. All generator input vectors are stacked to ~sGen =[
~sT1 ~s

T
2 ~s

T
3 · · · ~sTw

]T
and all their output voltage vectors are

stacked as ~νGen =
[
~νT1 ~νT2 ~νT3 · · · ~νTw

]T
. The multi generator

model exchanges only the power vector ~s and the voltage
vector ~ν with the subsequently described network model, as
depicted in figure 1.
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Figure 3. Multi Generator Model Block

B. Grid Model

In order to integrate the complete grid structure into the
compound model, the node incidence matrix K is formulated.
It contains the network information as representation of a
directed network graph. K states which of the n nodes are
connected through the t lines (twigs), whilst indicating the
direction of positive power flow.

The node incidence matrix is sorted: All w generator nodes
are on top, all l passive grid nodes are at the bottom. This
allows for partitioning into the upper matrix KG containing
generator nodes and the lower matrix KL containing the load
nodes. The diagonal matrix Y = diag(y1, y2, . . . , yt) contains
the admittances value yi of each of the t lines. It is used
to calculate the power flows through the grid. The vector of
power flows through all grid lines is ~s =

[
~sT1 ~s

T
2 ~s

T
3 · · · ~sTt

]T
.

The vector of voltages (angle and amplitude) at all grid nodes
is ~ν =

[
~νT1 ~νT2 ~νT3 · · · ~νTl

]T
. It can be split into the generator

voltages ~νGen and the load node voltages ~νLoad. The power
flows through t grid lines can be calculated with

~s = −YKT · ~ν. (2)

= −Y
[
KTG KTL

] [ νGen

νLoad

]
(3)

The horizontally partitioned matrix K can also be used to
formulate the power flow balance: all injected powers ~sGen

and all loads ~sLoad drained from the grid equal the sum of the

twig power flows:

−
[
~sGen
~sLoad

]
=

[
KG
KL

]
· ~s (4)

Inserting the twig flows ~s from equation (2) into equation (4)
leads to[

~sGen
~sLoad

]
=

[
KGYKT

G KGYKT
L

KLYKT
G KLYKT

L

]
·
[
~νGen
~νLoad

]
. (5)

Rearranging equation (5) leads to a matrix form where all
known or computable variables are on the right hand side and
the unknown variables ~sGen and ~νLoad are on the left hand
side: [

~sGen

~νLoad

]
=

[
MA MB

MC MD

]
·
[
~νGen

~sLoad

]
. (6)

Vector ~sLoad is defined as compound system input and is thus
known. Vector ~νGen can be calculated as output of the multi
generator model if the generator powers ~sGen are known. The
equation system 6 can be solved with linear algebra and the
four matrices MA,B,C,D are obtained, based on linearised
power equations as described in [9].

C. Compound Model
The multi-generator model (figure 3) fits exactly in the

structure of equation (6), which is depicted in figure 4.
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Figure 4. Matrix structure of equation (6)

Inserting the multi-generator model and separating the in-
tegrator from the resulting state space model allows for for-
mulating of the final system matrices and the MIMO transfer
function matrix G(s) = C (sIn −A)−1 B + D. An extended
explanation of the model can be found in [9].

The presented control model is the first to comprise large
island grids with generator dynamics, active and reactive
power flows in low voltage grids with ohmic/inductive line
characteristics, allowing for stability and dynamics analysis.

III. GRID DYNAMICS ANALYSIS

Most results presented in this section, have been obtained
from power grid models based on a lattice structure with 16
inverter generators.

Figure 5. Investigated Lattice Grid Structure

Generators are indicated by a circle, load nodes by a
triangle. The lines in between are modelled as low voltage
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cables of equal length L, with the characteristics shown in
table I.

Level U0 S0 L R′ X ′

LV 400V 100kVA 500m 0.642 Ω
km 0.083 Ω

km

MV 20kV 50MVA 10km 0.161 Ω
km 0.190 Ω

km

Table I
VALUES OF GRID MODEL

For the analysis, all inverters have exactly the same in-
dividual 5th order model, allowing for basic insights into
the system dynamic’s dependency on basic inverter model
parameters. For all modelled inverters the frequency droop is
droopP = 2%, the voltage droop is droopQ = 4% and the
damping is kD = 0.

A. Influence of Rated Inverter Power
The rated power of the inverters has a large influence on

the system dynamics. The droop head line is based on each
inverter’s rated power: the smaller the rated power, the steeper
is the headline.
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Figure 6. Droop Control Headline

Figure 7 shows pole zero plots for multiple instances of the
investigated lattice grid model. Each model has been calculated
with a different rated power and its poles and zeros are plotted
in a separate colour. The pole positions and colour gradually
change with the rated power, as indicated by the colour bar
graph on the right.
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Figure 7. Poles for Models with Different Rated Power

It is visible, that for small rated powers, dominant,
conjugate-complex, poorly damped pole pairs appear close to
the imaginary axis. These dominant poles move towards and
across the imaginary axis for models with lower rated inverter
power. A close look at this pole region next to the imaginary
axis is revealed in figure 8.

As each model is calculated with a decreasing rated inverter
power, the systems become unstable. The exact stability limit
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Figure 8. Unstable Poles for Small Rated Power

can be calculated with a robust control toolbox. The physical
reason for the instability can be explained: As indicated in
figure 6, the gradient of the droop headline is relative to the
rated power:

ϕ̇Gen =
droopP

Prated
PG + f0.

As the rated power of each inverter is modelled smaller, the
droop headline becomes steeper. For a given load situation the
inverters react thus more violently with stronger frequency
changes. But strong frequency changes lead to large angle
drifts and thus to large power flow changes through the
grid lines. These, in turn, provoke reactions on all connected
inverters and thus the system becomes structurally unstable.

This instability can be compensated by a suitable choice of
the generator’s lag time constant.

B. Influence of Lag Time Constant

In the model of figure 2, the time constant TWR character-
ises a 1st order lag. Other than classical rotating generators,
who’s time constant is bound to the rotor mass inertia, inverters
can almost arbitrarily set this time constant in their program-
ming. When inverter time constant are too large, the modelled
island grid can become unstable, as figure 9 indicates.
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Figure 9. Unstable Poles for Large Time Constants

Physically, this effect is related to the generator’s rated
power. As has been explained in section III-A, small rated
powers lead to violent frequency reactions and to instability.
Strong frequency changes in the system can be counteracted
by the inverters through a quick reaction. Thus, decreasing the
time constant will enable the inverters to more quickly adapt
to the new power situation and equilibrate the power flows.
The steady state can be reached earlier. This stabilising effect
is illustrated in 10.
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Figure 10. Stabilisation Through Adaptation of Lag Time Constants

Here, inverters have been modelled again with very low
rated powers, similar to figure 7. The main difference is, that in
figure 7 a time constant of TWR = 100ms has been used in the
model, whereas in figure 10 a time constant of TWR = 50ms
has been used. Comparing both illustrations, it becomes visible
that by decreasing the time constant TWR, all poles are shifted
left, entirely back into the left half pane. Decreasing the time
constant stabilises a system with small rated powers.

As a consequence, in inverter driven island grids, the
time constant should be proportional to the inverter’s rated
power.

C. Influence of Line Length

For the given model, several instances have been computed
with different line lengths. The pole zero plots of the different
models are displayed in figure 11.

−120 −100 −80 −60 −40 −20 0
−10

−8

−6

−4

−2

0

2

4

6

8

10
0.70.910.960.980.990.996

0.998

1

0.70.910.960.980.990.996

0.998

1

20406080100

 

 

Pole−Zero Map

Real Axis (seconds−1)

Im
ag

in
ar

y 
Ax

is 
(s

ec
on

ds
−1

)

 200m
 300m
 400m
 500m
 700m
 900m

Low Voltage Grid with
16 VSIs and Variable
Line Segment Length

Figure 11. Pole Constellations for Different Line Lengths

The shorter the lines are, the more dominant pole pairs exist
close to the imaginary axis. It is visible, that for shorter lines,
the poorly damped poles extend further along the imaginary
axis. This can mainly be explained by the power flow cal-
culation through the grid lines. The generators adjust voltage
angle and amplitude at their points of connection. The phase
and amplitude difference between two nodes i and j determine
the power flow through the line k between these nodes. The
linearised power equation, used in the model is:[

Pij
Qij

]
=

[
−Bk Gk
−Gk −Bk

]
·
[
δi − δj
ui − uj

]
, (7)

where Gk is the conductivity of the line segment and Bk
is the susceptibility of the line segment k. Decreasing the line
length will increase the admittance Yk = Gk + jBk. For
similar angle and amplitude constellations the power flows
will be larger for shorter lines. Due to the larger power flows,
the frequency and voltage amplitude reactions of the droops

will be larger. The generators are thus more closely coupled.
The closer dynamic coupling is captured by the model and
expressed by more dominant pole pairs.

D. Influence of P-Q-Rotation

The droop control concept has been developed for high
voltage inductive lines: There the active power flow can be
controlled through the generator frequency and the reactive
power flow can be independently controlled through the gen-
erator’s voltage amplitude. That is because the resistive part
of high voltage lines can be neglected. This is no longer the
case in medium or low voltage grids, where the lines have an
ohmic-inductive characteristic. As a consequence, a frequency
change will not only provoke a change in active power flow,
but also influence the reactive power flow. Vice versa, a
voltage amplitude change will not only cause a reactive power
change but will also influence the active power flow. Thus in
ohmic-inductive grids there is a cross coupling effect between
active and reactive power. The cross coupling can be partly
counteracted by rotating the P-Q-coordinates in the generator
before feeding them in the droop control. The compensatory
scheme has been described in [10] and shall not be repeated
here. This section sheds light on the dynamic situation of the
island grids when power rotation is introduced in the generator
control.

For the following investigations, the model of a line grid
has been built, as indicated by figure 12. Depending on the

Figure 12. Line Structure

number of generators in the model, line segments were added
according to the values in table I.

Figure 13 shows the pole zero plot of a line grid with 50
inverter generators. The poles of the model in non-rotated
power coordinates are displayed in blue, the poles of the P-
Q-rotated model are displayed in green.
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Figure 13. Pole Constellations for Rotated and Non-Rotated Power (LV)

It is visible, that in the centre of the plot, the poles of the
power rotated model are less damped and extend further into
the complex pane. But more important, close to the imaginary
axis, the non-rotated model shows poorly damped, dominant
pole pairs close to the imaginary axis. The power rotated
model has a higher stability margin.

The influence of the P-Q-rotation on two aspects is invest-
igated:
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1) Medium vs. Low Voltage: Figure 14 shows a comparison
between a low voltage grid with power rotation in the gen-
erators (blue) and a medium voltage model without power
rotation (orange).
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Figure 14. Pole Constellations for Rotated LV grid and Non-Rotated MV
grid

As noted in table I, the medium voltage grid has a different
line characteristic than the low voltage grid. Due to the
more inductive line characteristic, the cross coupling effect is
smaller in the medium voltage grid. In figure 14 the medium
voltage grid model has no dominant, conjugate complex poles
close to the imaginary axis. By power rotation, an ohmic
(LV) grid can be better controlled with a (droop) concept
developed for inductive grids.

2) Integration Density: Particularly when a high number
of inverters is integrated in the grid, the positive effect of the
power rotation becomes visible. For a model of a 20km LV
line generators are distributed along the line with even spacing.
Figure 15 shows the pole zero plot for lines with an increasing
number of integrated inverters with power rotation.
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Figure 15. Grids of Inverters with P/Q-Rotation Remain Stable for High
Number of Inverters

Only for a very high number of inverters, dominant,
conjugate-complex pole pairs appear. Generally all poles re-
main in the negative real half pane. Figure 16 shows the pole
zero plot of similar grid models, but without power rotation in
the generator control. Already for low numbers of generators
in the system, dominant poles exist. For increasing numbers
of generators in the system, these poles move far beyond the
imaginary axis into the positive real half pane and the system
becomes unstable.

This indicates, that the power rotation enables a much
higher density of distributed, renewable power sources in
low voltage island grids.

IV. CONCLUSION

Based on a compound island grid control model, aspects of
grid dynamics have been investigated: A pole zero analysis
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Figure 16. Grids of Inverters without Rotation can Integrate Less Sources

shows that small rated power in conjunction with large time
constants can lead to system instability. Close inverter coupling
through short grid lines leads to weakly damped, dominant
pole pairs. Rotation of P/Q coordinates improves applicability
of droop concept in LV lines and allows a higher integration
density of inverters before stability limits are reached.
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