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Part I: Single-peaked orderings



Single-peaked orderings

Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in
decreasing preference:

a1 : 0 sandwich
a2 : 1 sandwich
a3 : 2 sandwiches
a4 : 3 sandwiches
a5 : 4 sandwiches
a6 : more than 4 sandwiches

We write ai ≺ aj if ai is preferred to aj



Single-peaked orderings

a1 : 0 sandwich
a2 : 1 sandwich
a3 : 2 sandwiches
a4 : 3 sandwiches
a5 : 4 sandwiches
a6 : more than 4 sandwiches

after a good lunch: a1 ≺ a2 ≺ a3 ≺ a4 ≺ a5 ≺ a6

if you are starving: a6 ≺ a5 ≺ a4 ≺ a3 ≺ a2 ≺ a1

a possible intermediate situation: a4 ≺ a3 ≺ a5 ≺ a2 ≺ a1 ≺ a6

a quite unlikely preference: a6 ≺ a5 ≺ a2 ≺ a1 ≺ a3 ≺ a4



Single-peaked orderings

Let us represent graphically the latter two preferences with respect to the
reference ordering a1 < a2 < a3 < a4 < a5 < a6

a4 ≺ a3 ≺ a5 ≺ a2 ≺ a1 ≺ a6 a6 ≺ a5 ≺ a2 ≺ a1 ≺ a3 ≺ a4
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Single-peaked orderings
Definition. (Black, 1948)
Let ≤ and � be total orderings on Xn = {a1, . . . , an}.
Then � is said to be single-peaked for ≤ if the following patterns are
forbidden
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Mathematically:

ai < aj < ak =⇒ aj ≺ ai or aj ≺ ak



Single-peaked orderings

ai < aj < ak =⇒ aj ≺ ai or aj ≺ ak

Let us assume that Xn = {a1, . . . , an} is endowed with the ordering
a1 < · · · < an

For n = 4
a1 ≺ a2 ≺ a3 ≺ a4 a4 ≺ a3 ≺ a2 ≺ a1

a2 ≺ a1 ≺ a3 ≺ a4 a3 ≺ a2 ≺ a1 ≺ a4

a2 ≺ a3 ≺ a1 ≺ a4 a3 ≺ a2 ≺ a4 ≺ a1

a2 ≺ a3 ≺ a4 ≺ a1 a3 ≺ a4 ≺ a2 ≺ a1

There are 2n−1 total orderings � on Xn that are single-peaked for ≤



Single-peaked orderings

Recall that a weak ordering (or total preordering) on Xn is a binary
relation - on Xn that is total and transitive.

Defining a weak ordering on Xn amounts to defining an ordered partition
of Xn

C1 ≺ · · · ≺ Ck

where C1, . . . ,Ck are the equivalence classes defined by ∼

For n = 3, we have 13 weak orderings

a1 ≺ a2 ≺ a3 a1 ∼ a2 ≺ a3 a1 ∼ a2 ∼ a3

a1 ≺ a3 ≺ a2 a1 ≺ a2 ∼ a3

a2 ≺ a1 ≺ a3 a2 ≺ a1 ∼ a3

a2 ≺ a3 ≺ a1 a3 ≺ a1 ∼ a2

a3 ≺ a1 ≺ a2 a1 ∼ a3 ≺ a2

a3 ≺ a2 ≺ a1 a2 ∼ a3 ≺ a1



Single-peaked orderings

Definition. (Black, 1948)
Let ≤ be a total ordering on Xn and let - be a weak ordering on Xn.
Then - is said to be single-plateaued for ≤ if the following patterns are
forbidden
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Single-peaked orderings

Mathematically:

ai < aj < ak =⇒ aj ≺ ai or aj ≺ ak or ai ∼ aj ∼ ak

Examples

a3 ∼ a4 ≺ a2 ≺ a1 ∼ a5 ≺ a6 a3 ∼ a4 ≺ a2 ∼ a1 ≺ a5 ≺ a6
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Part II: Quasitrivial and idempotent semigroups



Quasitriviality

Definition

F : X 2
n → Xn is said to be

quasitrivial (or conservative) if

F (x , y) ∈ {x , y} (x , y ∈ Xn)

idempotent if
F (x , x) = x (x ∈ Xn)

Fact. If F is quasitrivial, then it is idempotent



Associative and quasitrivial operations

Definition.

The projection operations π1 : X 2
n → Xn and π2 : X 2

n → Xn are
respectively defined by

π1(x , y) = x , x , y ∈ Xn

π2(x , y) = y , x , y ∈ Xn



Associative and quasitrivial operations

Assume that Xn = {a1, . . . , an} is endowed with a weak ordering -

Ordinal sum of projections

osp- : X 2
n → Xn
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Associative and quasitrivial operations

Theorem (Länger 1980, Kepka 1981)

Let F : X 2
n → Xn. The following assertions are equivalent.

(i) F is associative and quasitrivial

(ii) F = osp- for some weak ordering - on Xn

Corollary

Let F : X 2
n → Xn. The following assertions are equivalent.

(i) F is associative, quasitrivial, and commutative

(ii) F = g for some total ordering � on Xn



Associative and quasitrivial operations
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Associative, quasitrivial, and order-preserving operations

Definition.

F : X 2
n → Xn is said to be ≤-preserving for some total ordering ≤ on Xn if for

any x , y , x ′, y ′ ∈ Xn such that x ≤ x ′ and y ≤ y ′, we have F (x , y) ≤ F (x ′, y ′)

Definition.

A uninorm on (Xn,≤) is an operation F : X 2
n → Xn that

has a neutral element e ∈ Xn (⇔ F (x , e) = F (e, x) = x ∀x ∈ Xn)

and is

associative

commutative

≤-preserving



Associative, quasitrivial, and order-preserving operations

≤ : total ordering on Xn

Theorem (Couceiro et al., 2018)

Let F : X 2
n → Xn. The following assertions are equivalent.

(i) F is associative, quasitrivial, and ≤-preserving
(ii) F = osp- for some weak ordering - on Xn that is single-plateaued for ≤

Theorem (Couceiro et al., 2018)

Let F : X 2
n → Xn. The following assertions are equivalent.

(i) F is associative, quasitrivial, commutative, and ≤-preserving
(ii) F = g for some total ordering � on Xn that is single-peaked for ≤
(iii) F is an idempotent uninorm on Xn



Associative and quasitrivial operations
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Associative, idempotent, and commutative operations

Lemma

Let F : X 2
n → Xn. The following assertions are equivalent.

(i) F is associative, idempotent, and commutative

(ii) F = g for some join-semilattice ordering � on Xn

Example. On X4 = {a1, a2, a3, a4}, consider the total ordering ≤ and the
join-semilattice ordering �

≤
•a1

•a2

•a3

•a4

�
•a1

•a4

•a3

•a2

•a4



Towards a generalization

≤ : total ordering on Xn

� : join-semilattice ordering on Xn

≤
•a1

•a2

•a3

•a4

�
•a1

•a4

•a3

•a2

•a4

g(a1, a4) = a4 and g(a3, a4) = a3 ⇒ g is not ≤-preserving

What are the � for which g are ≤-preserving?



Towards a generalization

a ≤ b ≤ c =⇒ b � a g c (∗)
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� does not satisfy (∗)



Towards a generalization

a ≤ b ≤ c =⇒ b � a g c (∗)
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Towards a generalization

≤
•a1

•a2

•a3
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g(a1, a2) = a3 and g(a2, a2) = a2 ⇒ g is not ≤-preserving



Towards a generalization

a < b < c =⇒ (a 66= b g c and c 6= a g b) (∗∗)

≤
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Towards a generalization

a < b < c =⇒ (a 66= b g c and c 6= a g b) (∗∗)

≤
•a1

•a2

•a3

•a4

�
•a1

•a2

•a4

•a3

•a2

� satisfies (∗) and (∗∗)

Also, g is ≤-preserving



Nondecreasingness

Definition. We say that � is nondecreasing for ≤ if it satisfies (∗)
and (∗∗)

F is associative, idempotent, and commutative iff F = g

Theorem (Devillet et al., 2018)

For any F : X 2 → X , the following are equivalent.

(i) F is associative, idempotent, commutative, and ≤-preserving

(ii) F = g for some � that is nondecreasing for ≤



Nondecreasingness

Cn : nth Catalan number

Proposition (Devillet et al., 2018)

Cn is

the number of nondecreasing join-semilattice orders on Xn

the number of associative, idempotent, commutative, and
≤-preserving binary operations on Xn
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