Generalizations of single-peakedness Jimmy Devillet University of Luxembourg Luxembourg January 31, 2019 Part I: Single-peaked orderings ### Motivating example (Romero, 1978) Suppose you are asked to order the following six objects in decreasing preference: a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches a₆: more than 4 sandwiches We write $a_i \prec a_j$ if a_i is preferred to a_j a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches a_6 : more than 4 sandwiches - after a good lunch: $a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6$ - if you are starving: $a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1$ - a possible intermediate situation: $a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$ - a quite unlikely preference: $a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$ Let us represent graphically the latter two preferences with respect to the reference ordering $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$ $$a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$$ $$a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$$ Definition. (Black, 1948) Let \leq and \leq be total orderings on $X_n = \{a_1, \ldots, a_n\}$. Then \preceq is said to be *single-peaked for* \leq if the following patterns are forbidden ### Mathematically: $$a_i < a_j < a_k \implies a_j \prec a_i \quad \text{or} \quad a_j \prec a_k$$ $$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$ Let us assume that $X_n = \{a_1, \dots, a_n\}$ is endowed with the ordering $a_1 < \dots < a_n$ For $$n=4$$ $$a_1 \prec a_2 \prec a_3 \prec a_4$$ $a_4 \prec a_3 \prec a_2 \prec a_1$ $a_2 \prec a_1 \prec a_3 \prec a_4$ $a_3 \prec a_2 \prec a_1 \prec a_4$ $a_2 \prec a_3 \prec a_1 \prec a_4$ $a_3 \prec a_2 \prec a_4 \prec a_1$ $a_2 \prec a_3 \prec a_4 \prec a_1$ $a_3 \prec a_4 \prec a_2 \prec a_1$ There are 2^{n-1} total orderings \leq on X_n that are single-peaked for \leq Recall that a *weak ordering* (or *total preordering*) on X_n is a binary relation \lesssim on X_n that is total and transitive. Defining a weak ordering on X_n amounts to defining an ordered partition of X_n $$C_1 \prec \cdots \prec C_k$$ where C_1,\ldots,C_k are the equivalence classes defined by \sim For n = 3, we have 13 weak orderings Definition. (Black, 1948) Let \leq be a total ordering on X_n and let \lesssim be a weak ordering on X_n . Then \lesssim is said to be *single-plateaued for* \leq if the following patterns are forbidden #### Mathematically: $$a_i < a_j < a_k \implies a_j \prec a_i$$ or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$ #### **Examples** $$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$ $$a_3 \sim a_4 \prec a_2 \sim a_1 \prec a_5 \prec a_6$$ Part II: Quasitrivial and idempotent semigroups # Quasitriviality #### Definition $F: X_n^2 \to X_n$ is said to be • quasitrivial (or conservative) if $$F(x,y) \in \{x,y\} \quad (x,y \in X_n)$$ • idempotent if $$F(x,x) = x \qquad (x \in X_n)$$ **Fact.** If F is quasitrivial, then it is idempotent #### Definition. The projection operations $\pi_1 \colon X_n^2 \to X_n$ and $\pi_2 \colon X_n^2 \to X_n$ are respectively defined by $$\pi_1(x,y) = x, \quad x,y \in X_n$$ $\pi_2(x,y) = y, \quad x,y \in X_n$ Assume that $X_n = \{a_1, \ldots, a_n\}$ is endowed with a weak ordering \precsim ### Ordinal sum of projections If \lesssim is a total ordering, then $\operatorname{osp}_{\lesssim} = \Upsilon$ ### Theorem (Länger 1980, Kepka 1981) Let $F: X_n^2 \to X_n$. The following assertions are equivalent. - (i) F is associative and quasitrivial - (ii) $F = \operatorname{osp}_{\preceq}$ for some weak ordering \preceq on X_n #### Corollary Let $F: X_n^2 \to X_n$. The following assertions are equivalent. - (i) F is associative, quasitrivial, and commutative - (ii) $F = \Upsilon$ for some total ordering \preceq on X_n # Associative, quasitrivial, and order-preserving operations #### Definition. $F: X_n^2 \to X_n$ is said to be \leq -preserving for some total ordering \leq on X_n if for any $x, y, x', y' \in X_n$ such that $x \leq x'$ and $y \leq y'$, we have $F(x, y) \leq F(x', y')$ #### Definition. A uninorm on (X_n, \leq) is an operation $F: X_n^2 \to X_n$ that - has a neutral element $e \in X_n$ $(\Leftrightarrow F(x,e) = F(e,x) = x \ \forall x \in X_n)$ and is - associative - commutative - ≤-preserving # Associative, quasitrivial, and order-preserving operations \leq : total ordering on X_n #### Theorem (Couceiro et al., 2018) Let $F: X_n^2 \to X_n$. The following assertions are equivalent. - (i) F is associative, quasitrivial, and \leq -preserving - (ii) $F = \operatorname{osp}_{\precsim}$ for some weak ordering \precsim on X_n that is single-plateaued for \le #### Theorem (Couceiro et al., 2018) Let $F: X_n^2 \to X_n$. The following assertions are equivalent. - (i) F is associative, quasitrivial, commutative, and \leq -preserving - (ii) F = Y for some total ordering \leq on X_n that is single-peaked for \leq - (iii) F is an idempotent uninorm on X_n ## Associative, idempotent, and commutative operations #### Lemma Let $F: X_n^2 \to X_n$. The following assertions are equivalent. - (i) F is associative, idempotent, and commutative - (ii) $F = \Upsilon$ for some join-semilattice ordering \preceq on X_n **Example.** On $X_4 = \{a_1, a_2, a_3, a_4\}$, consider the total ordering \leq and the join-semilattice ordering \leq \leq : total ordering on X_n \preceq : join-semilattice ordering on X_n $$\Upsilon(a_1,a_4)=a_4$$ and $\Upsilon(a_3,a_4)=a_3$ \Rightarrow Υ is not \leq -preserving What are the \leq for which Υ are \leq -preserving? $$a \le b \le c \implies b \le a \lor c \quad (*)$$ \leq does not satisfy (*) $$a \le b \le c \implies b \le a \lor c \quad (*)$$ \leq satisfies (*) $$\Upsilon(a_1, a_2) = a_3$$ and $\Upsilon(a_2, a_2) = a_2 \Rightarrow \Upsilon$ is not \leq -preserving $$a < b < c \implies (a \neq b \land c \text{ and } c \neq a \land b)$$ (**) \leq satisfies (*) but not (**) ## Nondecreasingness **Definition**. We say that \leq is *nondecreasing for* \leq if it satisfies (*) and (**) F is associative, idempotent, and commutative iff $F = \Upsilon$ ### Theorem (Devillet et al., 2018) For any $F: X^2 \to X$, the following are equivalent. - (i) F is associative, idempotent, commutative, and \leq -preserving - (ii) $F = \Upsilon$ for some \preceq that is nondecreasing for \leq ## Nondecreasingness C_n : *n*th Catalan number ### Proposition (Devillet et al., 2018) C_n is - ullet the number of nondecreasing join-semilattice orders on X_n - the number of associative, idempotent, commutative, and \leq -preserving binary operations on X_n ### Some references N. L. Ackerman. A characterization of quasitrivial *n*-semigroups. To appear in Algebra Universalis. S. Berg and T. Perlinger. $Single-peaked\ compatible\ preference\ profiles:\ some\ combinatorial\ results.$ Social Choice and Welfare 27(1):89–102, 2006. D. Black. On the rationale of group decision-making. J Polit Economy, 56(1):23–34, 1948 Z. Fitzsimmons. Single-peaked consistency for weak orders is easy. In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages 127–140, June 2015. arXiv:1406.4829. T. Kepka. Quasitrivial groupoids and balanced identities. Acta Univ. Carolin. - Math. Phys., 22(2):49-64, 1981. H. Länger. The free algebra in the variety generated by quasi-trivial semigroups. Semigroup forum, 20:151-156, 1980.