Generalizations of single-peakedness

Jimmy Devillet

University of Luxembourg Luxembourg

January 31, 2019

Part I: Single-peaked orderings

Motivating example (Romero, 1978)

Suppose you are asked to order the following six objects in decreasing preference:

 a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches

a₆: more than 4 sandwiches

We write $a_i \prec a_j$ if a_i is preferred to a_j

 a_1 : 0 sandwich a_2 : 1 sandwich a_3 : 2 sandwiches a_4 : 3 sandwiches a_5 : 4 sandwiches

 a_6 : more than 4 sandwiches

- after a good lunch: $a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6$
- if you are starving: $a_6 \prec a_5 \prec a_4 \prec a_3 \prec a_2 \prec a_1$
- a possible intermediate situation: $a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$
- a quite unlikely preference: $a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$

Let us represent graphically the latter two preferences with respect to the reference ordering $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$

$$a_4 \prec a_3 \prec a_5 \prec a_2 \prec a_1 \prec a_6$$

$$a_6 \prec a_5 \prec a_2 \prec a_1 \prec a_3 \prec a_4$$

Definition. (Black, 1948)

Let \leq and \leq be total orderings on $X_n = \{a_1, \ldots, a_n\}$.

Then \preceq is said to be *single-peaked for* \leq if the following patterns are forbidden

Mathematically:

$$a_i < a_j < a_k \implies a_j \prec a_i \quad \text{or} \quad a_j \prec a_k$$

$$a_i < a_j < a_k \implies a_j \prec a_i \text{ or } a_j \prec a_k$$

Let us assume that $X_n = \{a_1, \dots, a_n\}$ is endowed with the ordering $a_1 < \dots < a_n$

For
$$n=4$$

$$a_1 \prec a_2 \prec a_3 \prec a_4$$
 $a_4 \prec a_3 \prec a_2 \prec a_1$
 $a_2 \prec a_1 \prec a_3 \prec a_4$ $a_3 \prec a_2 \prec a_1 \prec a_4$
 $a_2 \prec a_3 \prec a_1 \prec a_4$ $a_3 \prec a_2 \prec a_4 \prec a_1$
 $a_2 \prec a_3 \prec a_4 \prec a_1$ $a_3 \prec a_4 \prec a_2 \prec a_1$

There are 2^{n-1} total orderings \leq on X_n that are single-peaked for \leq

Recall that a *weak ordering* (or *total preordering*) on X_n is a binary relation \lesssim on X_n that is total and transitive.

Defining a weak ordering on X_n amounts to defining an ordered partition of X_n

$$C_1 \prec \cdots \prec C_k$$

where C_1,\ldots,C_k are the equivalence classes defined by \sim

For n = 3, we have 13 weak orderings

Definition. (Black, 1948)

Let \leq be a total ordering on X_n and let \lesssim be a weak ordering on X_n . Then \lesssim is said to be *single-plateaued for* \leq if the following patterns are forbidden

Mathematically:

$$a_i < a_j < a_k \implies a_j \prec a_i$$
 or $a_j \prec a_k$ or $a_i \sim a_j \sim a_k$

Examples

$$a_3 \sim a_4 \prec a_2 \prec a_1 \sim a_5 \prec a_6$$

$$a_3 \sim a_4 \prec a_2 \sim a_1 \prec a_5 \prec a_6$$

Part II: Quasitrivial and idempotent semigroups

Quasitriviality

Definition

 $F: X_n^2 \to X_n$ is said to be

• quasitrivial (or conservative) if

$$F(x,y) \in \{x,y\} \quad (x,y \in X_n)$$

• idempotent if

$$F(x,x) = x \qquad (x \in X_n)$$

Fact. If F is quasitrivial, then it is idempotent

Definition.

The projection operations $\pi_1 \colon X_n^2 \to X_n$ and $\pi_2 \colon X_n^2 \to X_n$ are respectively defined by

$$\pi_1(x,y) = x, \quad x,y \in X_n$$

 $\pi_2(x,y) = y, \quad x,y \in X_n$

Assume that $X_n = \{a_1, \ldots, a_n\}$ is endowed with a weak ordering \precsim

Ordinal sum of projections

If \lesssim is a total ordering, then $\operatorname{osp}_{\lesssim} = \Upsilon$

Theorem (Länger 1980, Kepka 1981)

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative and quasitrivial
- (ii) $F = \operatorname{osp}_{\preceq}$ for some weak ordering \preceq on X_n

Corollary

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and commutative
- (ii) $F = \Upsilon$ for some total ordering \preceq on X_n

Associative, quasitrivial, and order-preserving operations

Definition.

 $F: X_n^2 \to X_n$ is said to be \leq -preserving for some total ordering \leq on X_n if for any $x, y, x', y' \in X_n$ such that $x \leq x'$ and $y \leq y'$, we have $F(x, y) \leq F(x', y')$

Definition.

A uninorm on (X_n, \leq) is an operation $F: X_n^2 \to X_n$ that

- has a neutral element $e \in X_n$ $(\Leftrightarrow F(x,e) = F(e,x) = x \ \forall x \in X_n)$ and is
 - associative
 - commutative
 - ≤-preserving

Associative, quasitrivial, and order-preserving operations

 \leq : total ordering on X_n

Theorem (Couceiro et al., 2018)

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, and \leq -preserving
- (ii) $F = \operatorname{osp}_{\precsim}$ for some weak ordering \precsim on X_n that is single-plateaued for \le

Theorem (Couceiro et al., 2018)

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, quasitrivial, commutative, and \leq -preserving
- (ii) F = Y for some total ordering \leq on X_n that is single-peaked for \leq
- (iii) F is an idempotent uninorm on X_n

Associative, idempotent, and commutative operations

Lemma

Let $F: X_n^2 \to X_n$. The following assertions are equivalent.

- (i) F is associative, idempotent, and commutative
- (ii) $F = \Upsilon$ for some join-semilattice ordering \preceq on X_n

Example. On $X_4 = \{a_1, a_2, a_3, a_4\}$, consider the total ordering \leq and the join-semilattice ordering \leq

 \leq : total ordering on X_n

 \preceq : join-semilattice ordering on X_n

$$\Upsilon(a_1,a_4)=a_4$$
 and $\Upsilon(a_3,a_4)=a_3$ \Rightarrow Υ is not \leq -preserving

What are the \leq for which Υ are \leq -preserving?

$$a \le b \le c \implies b \le a \lor c \quad (*)$$

 \leq does not satisfy (*)

$$a \le b \le c \implies b \le a \lor c \quad (*)$$

 \leq satisfies (*)

$$\Upsilon(a_1, a_2) = a_3$$
 and $\Upsilon(a_2, a_2) = a_2 \Rightarrow \Upsilon$ is not \leq -preserving

$$a < b < c \implies (a \neq b \land c \text{ and } c \neq a \land b)$$
 (**)

 \leq satisfies (*) but not (**)

Nondecreasingness

Definition. We say that \leq is *nondecreasing for* \leq if it satisfies (*) and (**)

F is associative, idempotent, and commutative iff $F = \Upsilon$

Theorem (Devillet et al., 2018)

For any $F: X^2 \to X$, the following are equivalent.

- (i) F is associative, idempotent, commutative, and \leq -preserving
- (ii) $F = \Upsilon$ for some \preceq that is nondecreasing for \leq

Nondecreasingness

 C_n : *n*th Catalan number

Proposition (Devillet et al., 2018)

 C_n is

- ullet the number of nondecreasing join-semilattice orders on X_n
- the number of associative, idempotent, commutative, and \leq -preserving binary operations on X_n

Some references

N. L. Ackerman.

A characterization of quasitrivial *n*-semigroups.

To appear in Algebra Universalis.

S. Berg and T. Perlinger.

 $Single-peaked\ compatible\ preference\ profiles:\ some\ combinatorial\ results.$

Social Choice and Welfare 27(1):89–102, 2006.

D. Black.

On the rationale of group decision-making.

J Polit Economy, 56(1):23–34, 1948

Z. Fitzsimmons.

Single-peaked consistency for weak orders is easy.

In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages 127–140, June 2015. arXiv:1406.4829.

T. Kepka.

Quasitrivial groupoids and balanced identities.

Acta Univ. Carolin. - Math. Phys., 22(2):49-64, 1981.

H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups.

Semigroup forum, 20:151-156, 1980.