Generalizations of single-peakedness

Jimmy Devillet
University of Luxembourg
Luxembourg

January 31, 2019

Part I: Single-peaked orderings

Single-peaked orderings

Motivating example (Romero, 1978)
Suppose you are asked to order the following six objects in decreasing preference:

$$
\begin{array}{ll}
a_{1}: & 0 \text { sandwich } \\
a_{2}: & 1 \text { sandwich } \\
a_{3}: & 2 \text { sandwiches } \\
a_{4}: & 3 \text { sandwiches } \\
a_{5}: & 4 \text { sandwiches } \\
a_{6}: & \text { more than } 4 \text { sandwiches }
\end{array}
$$

We write $a_{i} \prec a_{j}$ if a_{i} is preferred to a_{j}

Single-peaked orderings

a_{1} : 0 sandwich
a_{2} : 1 sandwich
a_{3} : 2 sandwiches
a_{4} : 3 sandwiches
a_{5} : 4 sandwiches
a_{6} : more than 4 sandwiches

- after a good lunch: $a_{1} \prec a_{2} \prec a_{3} \prec a_{4} \prec a_{5} \prec a_{6}$
- if you are starving: $a_{6} \prec a_{5} \prec a_{4} \prec a_{3} \prec a_{2} \prec a_{1}$
- a possible intermediate situation: $a_{4} \prec a_{3} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{6}$
- a quite unlikely preference: $a_{6} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{3} \prec a_{4}$

Single-peaked orderings

Let us represent graphically the latter two preferences with respect to the reference ordering $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}$

$$
a_{4} \prec a_{3} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{6}
$$

$$
a_{6} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{3} \prec a_{4}
$$

Single-peaked orderings

Definition. (Black, 1948)
Let \leq and \preceq be total orderings on $X_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$.
Then \preceq is said to be single-peaked for \leq if the following patterns are forbidden

Mathematically:

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k}
$$

Single-peaked orderings

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k}
$$

Let us assume that $X_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ is endowed with the ordering $a_{1}<\cdots<a_{n}$

For $n=4$

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} \prec a_{4} & a_{4} \prec a_{3} \prec a_{2} \prec a_{1} \\
a_{2} \prec a_{1} \prec a_{3} \prec a_{4} & a_{3} \prec a_{2} \prec a_{1} \prec a_{4} \\
a_{2} \prec a_{3} \prec a_{1} \prec a_{4} & a_{3} \prec a_{2} \prec a_{4} \prec a_{1} \\
a_{2} \prec a_{3} \prec a_{4} \prec a_{1} & \\
a_{3} \prec a_{4} \prec a_{2} \prec a_{1}
\end{array}
$$

There are 2^{n-1} total orderings \preceq on X_{n} that are single-peaked for \leq

Single-peaked orderings

Recall that a weak ordering (or total preordering) on X_{n} is a binary relation \precsim on X_{n} that is total and transitive.

Defining a weak ordering on X_{n} amounts to defining an ordered partition of X_{n}

$$
C_{1} \prec \cdots \prec C_{k}
$$

where C_{1}, \ldots, C_{k} are the equivalence classes defined by \sim
For $n=3$, we have 13 weak orderings

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} & a_{1} \sim a_{2} \prec a_{3} \\
a_{1} \prec a_{3} \prec a_{2} & a_{1} \prec a_{2} \sim a_{3} \sim a_{2} \sim a_{3} \\
a_{2} \prec a_{1} \prec a_{3} & a_{2} \prec a_{1} \sim a_{3} \\
a_{2} \prec a_{3} \prec a_{1} & a_{3} \prec a_{1} \sim a_{2} \\
a_{3} \prec a_{1} \prec a_{2} & a_{1} \sim a_{3} \prec a_{2} \\
a_{3} \prec a_{2} \prec a_{1} & a_{2} \sim a_{3} \prec a_{1}
\end{array}
$$

Single-peaked orderings

Definition. (Black, 1948)
Let \leq be a total ordering on X_{n} and let \precsim be a weak ordering on X_{n}. Then \precsim is said to be single-plateaued for \leq if the following patterns are forbidden

Single-peaked orderings

Mathematically:

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k} \quad \text { or } \quad a_{i} \sim a_{j} \sim a_{k}
$$

Examples

$$
a_{3} \sim a_{4} \prec a_{2} \prec a_{1} \sim a_{5} \prec a_{6} \quad a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}
$$

Part II: Quasitrivial and idempotent semigroups

Quasitriviality

Definition

$F: X_{n}^{2} \rightarrow X_{n}$ is said to be

- quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad\left(x, y \in X_{n}\right)
$$

- idempotent if

$$
F(x, x)=x \quad\left(x \in X_{n}\right)
$$

Fact. If F is quasitrivial, then it is idempotent

Associative and quasitrivial operations

Definition.

The projection operations $\pi_{1}: X_{n}^{2} \rightarrow X_{n}$ and $\pi_{2}: X_{n}^{2} \rightarrow X_{n}$ are respectively defined by

$$
\begin{array}{ll}
\pi_{1}(x, y)=x, & x, y \in X_{n} \\
\pi_{2}(x, y)=y, & x, y \in X_{n}
\end{array}
$$

Associative and quasitrivial operations

Assume that $X_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ is endowed with a weak ordering \precsim
Ordinal sum of projections

$$
\operatorname{osp}_{\precsim}: X_{n}^{2} \rightarrow X_{n}
$$

If \precsim is a total ordering, then $\operatorname{osp}_{\precsim}=\curlyvee$

Associative and quasitrivial operations

Theorem (Länger 1980, Kepka 1981)
Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative and quasitrivial
(ii) $F=\operatorname{osp}_{\precsim}$ for some weak ordering \precsim on X_{n}

Corollary

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and commutative
(ii) $F=\curlyvee$ for some total ordering \preceq on X_{n}

Associative and quasitrivial operations

Associative, quasitrivial, and order-preserving operations

Definition.

$F: X_{n}^{2} \rightarrow X_{n}$ is said to be \leq-preserving for some total ordering \leq on X_{n} if for any $x, y, x^{\prime}, y^{\prime} \in X_{n}$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have $F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right)$

Definition.

A uninorm on (X_{n}, \leq) is an operation $F: X_{n}^{2} \rightarrow X_{n}$ that

- has a neutral element $e \in X_{n} \quad\left(\Leftrightarrow F(x, e)=F(e, x)=x \quad \forall x \in X_{n}\right)$ and is
- associative
- commutative
- $\leq-$ preserving

Associative, quasitrivial, and order-preserving operations

\leq : total ordering on X_{n}

Theorem (Couceiro et al., 2018)

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and $\leq-$ preserving
(ii) $F=\operatorname{osp}_{\precsim}$ for some weak ordering \precsim on X_{n} that is single-plateaued for \leq

Theorem (Couceiro et al., 2018)

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, commutative, and \leq-preserving
(ii) $F=\curlyvee$ for some total ordering \preceq on X_{n} that is single-peaked for \leq
(iii) F is an idempotent uninorm on X_{n}

Associative and quasitrivial operations

Associative, idempotent, and commutative operations

Lemma

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, idempotent, and commutative
(ii) $F=\curlyvee$ for some join-semilattice ordering \preceq on X_{n}

Example. On $X_{4}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, consider the total ordering \leq and the join-semilattice ordering \preceq

Towards a generalization

\leq : total ordering on X_{n}
\preceq : join-semilattice ordering on X_{n}

$\curlyvee\left(a_{1}, a_{4}\right)=a_{4}$ and $\curlyvee\left(a_{3}, a_{4}\right)=a_{3} \quad \Rightarrow \quad \curlyvee$ is not $\leq-$ preserving
What are the \preceq for which \curlyvee are \leq-preserving?

Towards a generalization

$$
\begin{equation*}
a \leq b \leq c \quad \Longrightarrow \quad b \preceq a \curlyvee c \tag{*}
\end{equation*}
$$

\preceq does not satisfy (*)

Towards a generalization

$$
\begin{equation*}
a \leq b \leq c \quad \Longrightarrow \quad b \preceq a \curlyvee c \tag{*}
\end{equation*}
$$

\preceq satisfies $(*)$

Towards a generalization

$\curlyvee\left(a_{1}, a_{2}\right)=a_{3}$ and $\curlyvee\left(a_{2}, a_{2}\right)=a_{2} \quad \Rightarrow \quad \gamma$ is not $\leq-$ preserving

Towards a generalization

$$
a<b<c \quad \Longrightarrow \quad(a \neq b \curlyvee c \quad \text { and } \quad c \neq a \curlyvee b) \quad(* *)
$$

〔 satisfies ($*$) but not $(* *)$

Towards a generalization

$$
a<b<c \quad \Longrightarrow \quad(a \neq b \curlyvee c \quad \text { and } \quad c \neq a \curlyvee b) \quad(* *)
$$

\preceq satisfies ($*$) and ($* *$)
Also, \curlyvee is \leq-preserving

Nondecreasingness

Definition. We say that \preceq is nondecreasing for \leq if it satisfies $(*)$ and $(* *)$
F is associative, idempotent, and commutative iff $F=\curlyvee$

Theorem (Devillet et al., 2018)

For any $F: X^{2} \rightarrow X$, the following are equivalent.
(i) F is associative, idempotent, commutative, and \leq-preserving
(ii) $F=\curlyvee$ for some \preceq that is nondecreasing for \leq

Nondecreasingness

C_{n} : nth Catalan number
Proposition (Devillet et al., 2018)
C_{n} is

- the number of nondecreasing join-semilattice orders on X_{n}
- the number of associative, idempotent, commutative, and s-preserving binary operations on X_{n}

Some references

N. L. Ackerman.

A characterization of quasitrivial n-semigroups.
To appear in Algebra Universalis.
S. Berg and T. Perlinger.

Single-peaked compatible preference profiles: some combinatorial results.
Social Choice and Welfare 27(1):89-102, 2006.
D. Black.

On the rationale of group decision-making.
J Polit Economy, 56(1):23-34, 1948

Z. Fitzsimmons.

Single-peaked consistency for weak orders is easy.
In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge
(TARK 2015), pages 127-140, June 2015. arXiv:1406.4829.

T. Kepka.

Quasitrivial groupoids and balanced identities.
Acta Univ. Carolin. - Math. Phys., 22(2):49-64, 1981.
H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups.
Semigroup forum, 20:151-156, 1980.

