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Abstract

Multi-level optimization stems from the need to tackle complex problems involving multiple decision makers.

Two-level optimization, referred as “Bi-level optimization”, occurs when two decision makers only control part of

the decision variables but impact each other (e.g., objective value, feasibility). Bi-level problems are sequential

by nature and can be represented as nested optimization problems in which one problem (the “upper-level”)

is constrained by another one (the “lower-level”). The nested structure is a real obstacle that can be highly

time consuming when the lower-level is NP � hard. Consequently, classical nested optimization should be

avoided. Some surrogate-based approaches have been proposed to approximate the lower-level objective value

function (or variables) to reduce the number of times the lower-level is globally optimized. Unfortunately, such

a methodology is not applicable for large-scale and combinatorial bi-level problems.

After a deep study of theoretical properties and a survey of the existing applications being bi-level by nature,

problems which can benefit from a bi-level reformulation are investigated. A first contribution of this work

has been to propose a novel bi-level clustering approach. Extending the well-know “uncapacitated k-median

problem”, it has been shown that clustering can be easily modeled as a two-level optimization problem using

decomposition techniques. The resulting two-level problem is then turned into a bi-level problem o↵ering the

possibility to combine distance metrics in a hierarchical manner. The novel bi-level clustering problem has a

very interesting property that enable us to tackle it with classical nested approaches. Indeed, its lower-level

problem can be solved in polynomial time. In cooperation with the Luxembourg Centre for Systems Biomedicine

(LCSB), this new clustering model has been applied on real datasets such as disease maps (e.g. Parkinson,

Alzheimer). Using a novel hybrid and parallel genetic algorithm as optimization approach, the results obtained

after a campaign of experiments have the ability to produce new knowledge compared to classical clustering

techniques combining distance metrics in a classical manner.

The previous bi-level clustering model has the advantage that the lower-level can be solved in polynomial time

although the global problem is by definition NP-hard. Therefore, next investigations have been undertaken to

tackle more general bi-level problems in which the lower-level problem does not present any specific advantageous

properties. Since the lower-level problem can be very expensive to solve, the focus has been turned to surrogate-

based approaches and hyper-parameter optimization techniques with the aim of approximating the lower-

level problem and reduce the number of global lower-level optimizations. Adapting the well-know bayesian

optimization algorithm to solve general bi-level problems, the expensive lower-level optimizations have been

dramatically reduced while obtaining very accurate solutions. The resulting solutions and the number of

spared lower-level optimizations have been compared to the bi-level evolutionary algorithm based on quadratic

approximations (BLEAQ) results after a campaign of experiments on o�cial bi-level benchmarks. Although

both approaches are very accurate, the bi-level bayesian version required less lower-level objective function calls.

Surrogate-based approaches are restricted to small-scale and continuous bi-level problems although many real

applications are combinatorial by nature. As for continuous problems, a study has been performed to apply

some machine learning strategies. Instead of approximating the lower-level solution value, new approximation

algorithms for the discrete/combinatorial case have been designed. Using the principle employed in GP hyper-

heuristics, heuristics are trained in order to tackle e�ciently the NP�hard lower-level of bi-level problems. This

automatic generation of heuristics permits to break the nested structure into two separated phases: training

lower-level heuristics and solving the upper-level problem with the new heuristics. At this occasion, a second

modeling contribution has been introduced through a novel large-scale and mixed-integer bi-level problem

dealing with pricing in the cloud, i.e., the Bi-level Cloud Pricing Optimization Problem (BCPOP). After a series

of experiments that consisted in training heuristics on various lower-level instances of the BCPOP and using



iii

them to tackle the bi-level problem itself, the obtained results are compared to the “cooperative coevolutionary

algorithm for bi-level optimization” (COBRA).

Although training heuristics enables to break the nested structure, a two phase optimization is still required.

Therefore, the emphasis has been put on training heuristics while optimizing the upper-level problem using

competitive co-evolution. Instead of adopting the classical decomposition scheme as done by COBRA which

su↵ers from the strong epistatic links between lower-level and upper-level variables, co-evolving the solution

and the mean to get to it can cope with these epistatic link issues. The “CARBON” algorithm developed

in this thesis is a competitive and hybrid co-evolutionary algorithm designed for this purpose. In order to

validate the potential of CARBON, numerical experiments have been designed and results have been compared

to state-of-the-art algorithms. These results demonstrate that “CARBON” makes possible to address nested

optimization e�ciently.
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1.1 Introduction to Bi-level optimization

In this PhD work, we focus our attention to bi-level optimization problems that stem from both Optimization

and Game Theory. Real life problems such as transportation, planning and management often involve several

decision makers who take optimal decisions depending on the interactions between each other. A bi-level

scenario usually appears when two decisions makers have to take decisions hierarchically, i.e., one after another.

Bi-level optimization problems generalize the non-cooperative Stackelberg Games (see Figure 1.1). They are

two-stage models where the first player is called the “leader” and the second player is called the “follower”.

Taking the point of view of the leader, his problem depends on the reaction of the follower. In order to take the

right decision, it has to compute the optimal strategy of the follower called “ the follower rational reaction”. In

bi-level optimization, the leader problem is referred to as the “upper-level problem” while the follower problem

is called the “lower-level problem”. The order between levels is very important since they do not provide the

same optimal solution. This nested structure implies that a bi-level feasible solution is necessary lower-level

optimal.

Bi-level problems are intrinsically hard even for convex problems. The simplest bi-level linear programs (BLP)

is strongly NP-hard [35, 26]. Exact approaches are thus not e�cient but have been extensively investigated.

Classical approaches are mainly based on reformulations of the bi-level program into a single-level program,

which is then solved using classical optimization algorithms. Unfortunately, integer and mixed integer bi-level

problems (MIBLP) have been seldom investigated and most of the studies found in the literature focus on
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min
x2X

F (x, y)

s.t. G(x, y)  0

min
y2Y

f(x, y)

s.t. g(x, y)  0

Figure 1.1: A Bi-level optimization problem and its general mathematical formulation

specific problems where interesting properties can simplify levels. The last decade has seen a renew of interest

concerning bi-level optimization and notably in Evolutionary Computing. Inspired by nature, these approaches

have been widely used in single-level optimization cases to tackle NP-hard problems and more generally large

and complex optimization systems. Indeed for NP-hard problems and under the assumption that P 6= NP , it

does not exist algorithms with polynomial complexity solving every instance to optimality. The goal is therefore

to reach solutions as close as possible to the optimal ones while guaranteeing a polynomial time complexity.

Since convex bi-level problems are NP-hard contrary to their single-level equivalents, the scope of evolution

computing algorithms has been extended. Nonetheless, bi-level problems are still a real challenge for these

algorithms due to a high computational. Despite their high complexity, bi-level optimization problems model

accurately complex situations.

Bi-level optimization has its root in two fundamental domains: Optimization and Game Theory. The next

section provides a short historical background that describes these two theories that are essential tools to deal

with bi-level applications.

1.2 Historical background

1.2.1 Optimization theory

Optimization is a cross-cutting domain that has applications in many areas such as applied mathematics, finance,

engineering and other domains involving decision making. In fact, human beings optimize unconsciously when

executing tasks. We naturally schedule our life and tend to always want to find the “right” or “best” decision.

In fact, we constantly attempt to discover the “best” decisions according to some utility functions. It is not

excessive to admit that optimizing is natural. In fact, the “least action principle” is quite common in Nature.

Many systems attempt to reach a state of minimum energy, i.e.,” a stable state. Another example is light travels

that are considered as the shortest distance between two points. Optimizations problems and investigations to

resolve them goes back a very long time. Ancient Greek mathematicians had already to deal with optimization

queries. For example, the Heron’s shortest path problem is probably one of the first mathematically stated

optimization problem. Much later, J. Bernouilli challenged the scientific community to find the shape that

connect two points in shortest time of a falling body which is subject to gravity. The answer seems quite simple
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for us today: the line of steepest descent. Later in 1746, Maupertuis proposed the well-know “principle of

least action” which unifies laws of physical motion. The French engineer, Gaspard Monge, was certainly the

first one who investigated optimal transportation and resource allocation in 1781. The 19th century has seen

the beginning of the optimization theory that we know today. Frederich Gauss explained that the “method

of least-squares” can be used to predict orbital locations. However, Adrien Legendre in 1805 was the first one

who mathematically defined the “method of least-squares”. In 1847, Cauchy introduced in “Méthode générale

pour la résolution des systèmes d’équations simultanées” a general method for solving systems of equations

iteratively. The 20th centuries have laid the o�cial foundations of the Optimization Theory. The book “

Theory of Minima and maxima” is the first comprehensive book on Optimization and has been published by

H. Hancok in 1917. The diet problem studied during the second World War was motivated by the U.S. Army

to minimize the feeding cost of soldier while providing healthy diets. George Stigler investigated this problem

and proposed heuristics to solve it. In 1947, George Dantzig made an important breakthrough by inventing the

“Simplex method” for solving linear programming. Even nowadays, most of the existing solvers implement his

simplex method that has very e�cient results in practice despite its worst-case complexity. In 1984, Karmakar

proposed the first algorithm with polynomial time complexity to solve continuous linear programming. In the

middle of the 20th Century, Kuhn and Tucker studied non-linear optimization problems and re-developed some

optimality conditions that had already been discovered by Karush in 1939. These conditions are named after

the three contributors, Karush-Kuhn-Tucker (KKT) conditions. Another important step in optimization has

been done by Bellman who proposed “Dynamic Programming”. The second part of the 20th century has been

very fruitful in terms of scientific contributions. Figure 1.2 describes a taxonomy of optimization problems that

can be encountered today in the literature but also in practice. Many topics have been addressed depending

on their mathematical properties. From Stochastic to Multi-objective programming, the scope of optimization

has been dramatically extended and permits today to cope with very complex and specific problems.

Figure 1.2: Type of optimization problems (source: https://neos-guide.org/content/optimization-taxonomy)

Bi-level problems are optimization problems in which a decision maker attempts to discover the optimal solution

of some defined utility function with respect to a second decision maker with a conflicting utility function.

In fact, bi-level optimization problems generalize the notion of constrained optimization problems in which
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constraints are not only equalities/inequalities expressions but also whole optimization problems. Such kind of

nested modeling often occurs in Game Theory.

1.2.2 Game theory

According to Roger B. Myerson, Game Theory can be described as “the study of mathematical models of

conflict and cooperation between intelligent rational decision-makers”. In other words, games are mathematical

problems in which multiple decision makers are involved. Each decision maker, i.e., player has its own utility

function that defines the desirability of a given strategy. In addition, a player is said “rational” if he attempts

to play the strategy that maximizes his own utility function. Strategies represent all the possible actions of a

given player. A mixed strategy is a randomization scheme of the employed actions with regards to a probability

distribution. In games, players seek for equilibrium states maximizing their own utility function. The so-called

Nash equilibrium describes a state in which no player can unilaterally modify its strategy to improve its current

utility value. As for the Optimization Theory, games have received a great deal of attention. In 1973, J.

Waldegrave established the well-known minimax mixed strategy for zero-sum games with two persons. Later

on, A. Cournot published the book “Researches into the Mathematical Principles of the Theory of Wealth” in

which chapter 7 introduced competition of producers. In 1913, chess is proved strictly determined by Zermelo’s

Theorem, i.e., chess has only one individually rational payo↵ profile in pure strategies. Emile Borel, a french

mathematician, proposed a first formal description of Game Theory in 1921 which has been strengthened by

John Von Neumann in 1928. Game Theory became o�cially a field of study after the release of the book

”Theory of Games and Economic” by Oskar Morgenstern and John Von Neumann in 1944. However, this is

certainly the demonstration of John Nash that finite games have always an equilibrium state which plays a

central role in non-cooperative game theory. Due to the complex interactions between players, several types

of games can be highlighted as depicted in Figure 1.3. Game Theory has a major role in many domains such

Economics, Resource Allocation, Networking and Artificial Intelligence.

Type of 
Games

Cooperative 
and non-

cooperative 

Normal Form 
and Extensive 

Form

Simultaneous 
and 

sequential
Zero sum and 
Non-zero sum

Symmetric 
and 

Asymmetric

Figure 1.3: Type of Games

Bi-level problems also generalize the notion of Stackelberg games [346] clearly depicting an adversarial situation

between two players. Compared to a Cournot games, Stackelberg games give advantage to the leader and are

perfect information games.
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1.3 Thesis roadmap

1.3.1 Research problematic

Beyond their wide scope of applications that we are going to describe in chapter 2, bi-level problems are

extremely challenging from a mathematical point of view. The nested structure makes bi-level optimization

problem NP-hard even if all components (e.g. objective functions, constraints) are linear and continuous. The

bi-level feasible search space is not known apriori even if both upper-level and lower-level search spaces are

clearly defined. In fact, a bi-level feasible solution is necessary lower-level optimal. Consequently, an NP-hard

lower-level problem makes bi-level feasibility NP-hard as well.

As it will be shown in chapter 2, many approaches have been proposed in the literature to solve mostly small-scale

and continuous bi-level optimization problems. Assuming convexity and regularity conditions, they generally

reformulate the original bi-level into a single-level problem by replacing the lower-level problem with its first-

order conditions. Such a strategy enables the use of classical optimization techniques to solve the resulting

single-level problem. On the contrary, very few algorithms have been designed to cope with combinatorial

versions even if they are the most encountered problems in real applications. While classical approaches are

very restricted to some well-posed bi-level problems, bi-level metaheuristics have a wider application scope but

su↵er from the time-consuming nested optimization scheme that has been mostly utilized in the literature.

Indeed, they repeatedly solve one level after the other which justifies the limited numbers of contributions that

attempt to solve large-scale and combinatorial bi-level problems.

In this PhD thesis, we intend to investigate metaheuristic approaches and strategies that extend the scope of

bi-level metaheuristics to large-scale and combinatorial bi-level optimization problems.

1.3.2 Research questions

We identified two main directions to develop a research plan. The first one assumed that nested optimization

is unavoidable and that explicit lower-level optimizations should be minimized using approximation strategies.

The second one would defend the idea of breaking the inherent nested structure. As a consequence, we define

3 main research questions:

• P1: What are the newest strategies in the literature to cope with the nested structure ?

• P2: How can we decrease the number of explicitly nested optimization or at least reduce its computational

cost ?

• P3: What kind of combinatorial bi-level problems could benefit from a bi-level modeling ?

While the first two questions are directly related to resolutions approaches, the third one is dedicated to the

definition of large-scale applications that could benefit from a novel bi-level modeling.

1.3.3 Research objectives

In order to answer the research questions, we first study the theoretical properties of bi-level optimization

problems. A deep study of the advantages and limitations of the existing bi-level metaheuristics provide an

interesting starting point to avoid some unpromising directions. These tasks constitute the first objective O1.
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Directly related to the question P3, we study large-scale and combinatorial applications that can benefit from

an alternative bi-level modeling. This represents the objective O2.

Our third objective O3 explores methodologies reducing the lower-level optimization cost. Indeed, the nested

optimization cost is directly related to the complexity of the lower-level problem. By focusing on more e�cient

strategies to handle it, we could drastically improve bi-level metaheuristics.

Objective O4 investigates a decentralized approach such as coevolution. It is particularly well-suited for large-

scale applications.

Finally the last objective O5 identifies the key characteristics and concepts of bi-level metaheuristics to provide

an hybrid and decentralized algorithm able to tackle large-scale bi-level combinatorial problems.

• O1: Survey the literature on bi-level optimization and study the advantages and limitations of existing

bi-level metaheuristics

• O2: Propose novel bi-level and combinatorial models for real-world applications

• O3: Investigate approaches to reduce lower-level optimization cost for bi-level problems

• O4: Investigate decentralized approaches such as co-evolution

• O5: Propose an hybrid co-evolutionary algorithm for bi-level optimization: CARBON

1.3.4 Thesis methodology and outline

State of the 
Art

Contributions 
to Bi-level 

optimization

Contribution to 
Hyper-heuristic 

domain
Contributions to 
Co-evolutionary 

domain

New 
mathematical 

models
New resolution 

approaches

Bi-level 
Clustering

Bi-level Cloud 
Pricing

Parallel nested 
approach

Surrogate-
based approach Hyper-heuristic

CARBON

Chap 2 .

Chap 6. Chap 3 . Chap 3 . Chap 4 . Chap 5 . and 6.

Chap 7 . 

Figure 1.4: Thesis workflow
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1.3.4.1 Methodology and contributions

Figure 1.4 illustrates the di↵erent paths followed by this thesis to answer the research questions stated in

section 1.3.2. Among the contributions made to the bi-level optimization field, chapters 3 and 6 propose and

introduce formally two novel mathematical models related to real applications in which bi-level modeling can

be naturally beneficial.

The model designed in chapter 3 considers the challenging problem of extracting knowledge from biomedical

repositories while chapter 6 describes a novel two-level pricing model for cloud service computing. New

Resolution approaches are developed for each model in order to tackle their large-scale instances. Furthermore

in chapter 4, we adapt a well-known black-box optimization algorithms to solve general but continuous bi-level

problems through a series of o�cial benchmarks.

Besides the contributions to bi-level optimization field, we also contribute to the hyper-heuristic field of study by

extending its scope of application. We demonstrate that constructive hyper-heuristics are e�cient tool to deal

with complex problems. Chapters 5 and 6 focus on Genetic Programming Hyper-Heuristics, a remarkable

tool to generate automatically heuristics.

Last but not least, we show the relevance of co-evolutionary approaches to cope with large-scale bi-level problems

by addressing the issue of strong epistatic links occurring between both level of decision variables. Using the

knowledge gained through chapters 5 and 6, we develop a hybrid co-evolutionary algorithm for bi-level

optimization.

1.3.4.2 Outline

Chapter 2 lays the theoretical foundations of bi-level optimization problems. After a description of the

di↵erent bi-level applications found in the literature, we discuss the existing bi-level variants and their associated

mathematical formulations. Bi-level optimization is a field of study that overlaps many others. We show the

tight relationship with other classes of problems that can be found in the literature. Finally we will conclude

this chapter with a survey on classical and advanced resolution approaches while studying their strength and

limitations.

Chapter 3 introduces a first contribution to the bi-level optimization field by proposing a novel clustering

model in order to perform bi-level clustering optimization. Extending the well-know “uncapacitated k-median

problem”, we propose a new clustering model relying on a two-level optimization problem obtained using de-

composition techniques. This resulting two-level problem can be turned into a bi-level optimization problem

enabling a novel way to combine distance metrics. In this chapter, we also exhibit some useful properties al-

lowing the e�cient application of classical nested optimization strategies through a hybrid and parallel genetic

algorithm. In order to examine the added value brought by the proposed bi-level clustering, numerical experi-

ments have been performed in cooperation with the Luxembourg Centre for Systems Biomedicine (LCSB) on

real datasets such as disease maps (e.g. Parkinson, Alzheimer).

Chapter 4 dives into more complex and general bi-level problems that do not possess specific properties to

alleviate the computational cost of the lower-level problem. Therefore, we investigate metaheuristics with ap-

proximation techniques, also known as “surrogate-based or model-based approaches”. Particularly well-adapted

to time-consuming and black-box optimization problems, we adapt Bayesian Optimization to tackle general bi-

level problems. After a campaign of experiments on o�cial bi-level benchmarks, we compare our results and

methodology against the bi-level evolutionary algorithm based on quadratic approximations (BLEAQ), i.e., a
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reference in the bi-level evolutionary field. Although these surrogate-based approaches are very promising and

e�cient, they are restricted to small-scale and continuous bi-level problems.

Chapter 5 is an intermediary chapter focusing on the “learning to optimize” paradigm. Like surrogate-

based approaches for continuous problems, we develop a machine learning strategy to generate automatically

heuristics in order to solve e�ciently combinatorial problems. In this chapter, we turn our attention to GP

Hyper-heuristics approaches and experiment them on the multidimensional knapsack problem. Although this

problem is a single-level problem, it allows us to validate the concept of “trained heuristics” on a well-known

combinatorial problem.

Chapter 6 is the extension of chapter 5 to large-scale and combinatorial bi-level optimization problems. At this

occasion, we introduce a second modeling contribution through a novel large-scale and mixed-integer bi-level

problem dealing with pricing in the cloud, i.e., the Bi-level Cloud Pricing Optimization Problem (BCPOP). The

lower-level problem is a parametric optimization problem which strongly depends on the upper-level decision

variables. Consequently, the di↵erent lower-level instances can be considered as family of instances with a

common and parametrized part. Instead of learning the lower-level objective function, we could automatically

learn more e�cient and dedicated heuristics to tackle this family of instances. Using heuristics trained to solve

the lower-level covering problem in a first phase, we tackle the BCPOP using a hybrid genetic algorithm during

a second phase. In order to evaluate the potential of the proposed methodology, we compare our results against

a state-of-the-art algorithm.

Chapter 7 investigates a decentralized approach based on the co-evolutionary paradigm. Our goal is to break

the nested structure and solve both levels during the same optimization process contrary to chapter 6 where a

two-phase approach has been developed. We show that the strong epistatic links between the upper-level and

lower-level decision variables are a real drawback for classical bi-level co-evolutionary metaheuristics. To cope

with this issue, we design a competitive co-evolutionary algorithm, i.e., CARBON that optimize the upper-level

problem while evolving e�cient heuristics for the lower-level problem. Such an approach allows us to work with

two independent populations: one evolving the upper-level solutions while the second one evolves strategies

(heuristics).

Finally, the Conclusion chapter summarizes all the contributions and outcomes that have been successfully

obtained during this PhD work. We also provide some obtained contributions to other related topics that are

directly following the knowledge gained during this PhD thesis. Future works and perspectives are discussed at

the very end of this chapter. We also demonstrate that the “learning to optimize” paradigm can lead to novel

promising research areas.
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2.1 Introduction

The literature contains numerous real-world problems that have been modeled as bi-level programs. Their

current mathematical formulation has been introduced by the seminal work of Bracken and McGill in [51] who

designated them in their works as “mathematical programs with optimization problems in the constraints”.

First applications have also been provided by Bracken et al. in [52] and were related to defense applications.

Many other application domains can be found with suitable bi-level representation. Transportation [272], plan-

ning [66] and management [27] are domains in which bi-level optimization problems can be found in practice

since they naturally involve hierarchical levels of decisions. Famous problems like the “Toll setting problems”

have been intensively studied in the literature [53, 359, 190]. Some bi-levels models have been proposed to

tackle environment economics problems [374],[48]. Their main objectives are to determine a tax policy that

o↵ers a compromise between revenues and environmental impacts. We can also find bi-level problems when

designing the conditions of chemical reactions [306, 158]. Indeed, the amount of reactants transformed into

products strongly depends on the initial conditions and the precise moment where the system reached an equi-

librium state. The optimal design of structures can be also considered using bi-level modeling [167]. Structural

optimization generally requires to minimize the weight or cost of building a structure knowing that some me-

chanical constraints (e.g., forces) are defined in terms of variational equalities. Bi-level modeling has also been

employed for control theory applications which are bi-level by nature [347], [185]. Finally, bi-level optimization

is particularly well-adapted for meta-optimization. For instance, evolutionary algorithms and machine learning

techniques often require a large number of parameters. The determination of those parameters can be achieved

through bi-level optimization [240], [338]. Section 2.2 proposes a classification of the existing bi-level problems

that have been investigated in the literature.

In section 2.3, we formalize bi-level optimization problems and describes some theoretical key aspects that

should be taken into account when considering bi-level mathematical models. Computational complexity and

optimality conditions are discussed in details as well. As aforementioned, bi-level optimization stems form two

well-know and studied theories. Bi-level problems have strong relationship with some other domains (e.g., game

theory, multi-stage problems, semi-infinite programming). These relationships are demonstrated at the end of

the section.

Classical resolution approaches are investigated in section 2.4. Although most of the existing approaches have

been designed to tackle bi-level problems with convex levels, we also dedicate time to discuss non-convex bi-level

programming and more precisely problems with combinatorial levels. Classical approaches can only cope with

very small-scale instances of bi-level problems. This is the reason why section 2.5 is devoted to metaheuristics

for bi-level optimization. Although these approaches cannot guarantee optimal solutions, they made possible

to tackle real bi-level applications with significant higher number of decision variables. As we will discussed it,

large-scale and combinatorial bi-level problems are still a real challenge for metaheuristics. In this PhD work,

we investigate and discuss the properties of the 5 main categories of bi-level metaheuristics existing so far in

the literature.

2.2 Bi-level optimization problems and their applications

To the best of our knowledge, 8 main categories of applications have drawn our attention since they contain

very up-to-date problems. Figure 2.1 illustrates existing applications which have been modeled as bi-level

problems. All these categories have one specificity in common: they are naturally hierarchical. Hereafter,

each of them is described in details and accompanied with real example cases found in the literature. Obviously,
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one should not believe that we provide an exhaustive view of all the existing applications even though we took a

particular attention to obtain the widest possible overview. Finally, Table 2.1 summarizes the di↵erent bi-level

applications described in this section.

Bi-level
problems

Design
section 2.2.4

Chemical
reaction
section 2.2.6

Parameter
tuning
section 2.2.5

Defense
Interdiction
section 2.2.2

Logistic
section 2.2.3

Environmental
section 2.2.7

Pricing
section 2.2.1

Principal–agent
section 2.2.8

Figure 2.1: Bi-level application domains

2.2.1 Pricing problems

Pricing problems often occurs when a first entity influences the objective value of a second one. This very specific

category of bi-level problems occurs naturally in economic, social and management problems. The literature

is replete with many versions of the “Toll setting problem” which has been the first bi-level pricing problem

introduced by Brotcorne et al. in [53]. In this problem, a network of roads is operated by an authority which

set toll prices. Naturally, this authority would like to determine the optimal prices knowing that customers

will try to minimize their travel cost. High toll prices would lead drivers to take secondary roads which could

saturate them and reduce the authorities income. This authority wishes to determine the optimal threshold

that should not be overcome. Toll pricing is highly relevant in the economic context and has been therefore

intensively investigated in [272, 83, 229, 263, 189, 123, 359, 190, 295, 105]. In addition, multi-objective versions

have been studied in [390, 366, 334]

2.2.2 Defense/Interdiction problems

Defense applications are historically the first applications modeled as bi-level problems by J. Bracken and J.

McGill [52]. In the context of the Cold War, defense applications were key of major importance especially at

the Nuclear Era. Most of these problems were designed to determine an optimal defense policy in case of attack.
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Figure 2.2: Toll settings and road pricing problems

Also known as “Interdiction” problems”, bi-level models for defense applications have found today many other

application domains from interdicting Nuclear Weapons [54, 55] to preventing Network Intrusion [379, 196].

In these models, the defender controls the upper-level problem and aims at minimizing the potential damages

caused by an attacker. Therefore, the defender needs to model his problem using two nested optimization levels

in order to take into account the potential reactions of the attacker to interdict damages. From a mathematical

point of view, interdiction problems arises when the upper-level decision maker directly acts on the lower-level

constraints to reduce its operating margin. Further works on interdiction problems and defense applications

have been illustrated in [5, 55, 321, 56].

Figure 2.3: Strategic defense application

2.2.3 Logistic problems

Facility location problem are a famous kind of optimization problems modeling the optimal placement of

facilities while taking into account external factors or constraints. As example, we can consider a company

wishing to open new warehouses in a country to expand its activities. For this purpose, this company knows

several locations to install the future facilities but wants to minimize the total installation cost and shipping

costs. Despite its single-level modeling, facility location problems often involve several decision makers (e.g.

competitor’s facilities, customers and public authorities). A classical facility location problem only focus on

the company’s problem while a bi-level model could also take into account the others actors. For example, a

public authority providing subsidies at some locations or the impact of the presence of existing competitors.

Bi-level modeling and associated resolution approaches have been undertaken in many scientific works such as

[299, 257, 68, 264, 64, 344].
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Figure 2.4: Logistic problems

2.2.4 Design problems

Designing structures, networks or complex objects is a really challenge for private companies and public author-

ities. These problems are generally strongly constrained due to the necessity of guaranteeing security, reliability

and trust. For example when designing a new road network layout, public authorities want to minimize the cost

while ensuring optimal road use for users. In fact all problems where the designer of a solution is not the only user

of these solutions can be considered as a bi-level problem. The designer needs to take into account the actions

undertaken by the other users. As additional example, we could cite the design of any industrial product which

is tested under many extreme conditions of use to measure its reliability. Generally, these problems are modeled

as “Mathematical programming with equilibrium constraint” and are equivalent to bi-level problems. The equi-

librium constraints can represent contact forces, minimum state energy or user optimal decisions. The scope of

this category is very wide and encompass numerous real-world applications. Nevertheless, most of the existing

contributions deal with Network Design Problems [234, 260, 388, 389, 385, 75, 142, 124, 271, 382, 311, 65],

Structural Optimization [167, 79, 401] and Topology Optimization [214, 215].

2.2.5 Parameter tuning problems

Modern optimization algorithms and machine learning approaches contain a certain number of required param-

eters to be set before execution. These parameters have key influences and require time-consuming e↵orts to be

optimized. Classical approaches to tune parameters often rely on brute force strategies and random searches.

They are not suitable for large scale problems and su↵er therefore from a lack of scalability. Recently, bi-level

modeling has been considered as valid alternative for this purpose. Indeed, parameter tuning can be seen as

a two-step process in which a decision maker would like to determine a set of optimal parameters according

to a given algorithm. Consequently, the upper-level problem consists in discovering these parameters while

minimizing the total computing time. The lower-level problem is represented by the algorithm to be tuned

which implements its own objective function. As an example, we could imagine a researcher attempting to
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Network design optimization

Topology optimization Contact shape optimization

Figure 2.5: Structure design optimization problems

discover the best parameters of an evolutionary algorithm. The retro-action which is specific to bi-level opti-

mization is clearly related to the computing time. Indeed, good parameters for the algorithms could lead to

high computing time. Therefore, a trade-o↵ has to be defined. In Machine learning, parameter tuning is also

refereed to as hyper-parameter optimization when dealing with parameters that cannot be estimated with the

same criteria as the one used for the model. Therefore an additional level of optimization has to be added

and is generally denoted as “Meta-optimization”. Such a situation clearly acknowledges the bi-level nature of

parameter tuning. Details on the di↵erent applications of bi-level optimization for parameter tuning can be

found in [38, 39, 338, 240, 12, 220, 277, 223]

Algorithm/model

Parameter 
optimization

Upper-level problem

Lower-level problem

Figure 2.6: Parameter tuning as bi-level optimization problem

2.2.6 Chemical reaction problems

Chemical Reaction Optimization (CRO) problems are very similar to the “Parameter tuning” category described

in section 2.2.6. They are generally modeled as mathematical problems with thermodynamical equilibrium

constraints describing the non-linear chemical reactions . As shown later in section 2, mathematical problems

with equilibrium in the constraints (MPEC) can be easily reformulate as bi-level optimization problems. In

this very specific case, the upper-level decision maker could be considered as the chemical reaction designer

who wishes to determine the best experiments parameters (e.g. amount of reactants, temperature) to ensure a
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maximum of e↵ectiveness. The lower-level decision maker is none other than the chemical system considered

for the reaction. The upper-level decision maker indirectly controls the system by setting the experimental

parameters. However, the thermodynamical equilibrium is solely dependent on the system. At this point, we

would like to refer the readers for more details to [81, 306, 158].

Figure 2.7: Determining parameters for chemical processes

2.2.7 Environmental economic problems

In such real-world applications, a regulating authority has to determine an environment policy maximizing

its tax revenues while minimizing the environmental damages caused by companies. The regulating authority

acts as upper-level decision maker while companies represent lower-level decision makers. A too restrictive

policy could lead companies to stop their activities and would be negative for the economy. In contrast, a too

permissive policy could cause environmental issues. Indeed, the aim of these companies is to solely maximize

their profit. Therefore, the authority has to figure out a compromise leading companies to continue their

activities why satisfying a fair policy. These kind of environmental economic problems are really up to date and

not trivial to cope with. Once again, bi-level programming allows researchers to model them. Their resolution is

a key of major importance especially in the context of globalization. Bi-level models and resolution approaches

have been developed for di↵erent environmental economic domains such as agriculture [49, 48, 374] , mining

[337] and hazardous waste recycling [10].

Figure 2.8: Environmental economic questions for an authority
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2.2.8 Principal–agent problems

The “Principal-agent dilemma” also known as “agency dilemma” reflects the situation in which an institution

or simply a person (the “Principal”) gives authority to another institution or person (the “agent”) to take

decisions on its behalf. However the principal cannot fully observe nor directly control the agent. Closely related

to political science and economics, these problems represent the potential competition between the ownership

entity and the management entity which have generally di↵erent objectives. Theories and characterizations of

the “Principal-agent” problem can be found in [354, 145]. The principal objective is generally to maximize his

utility (e.g. profit) while the agent attempts to minimize the risk or the e↵ort to complete the delegated tasks.

Generally, the decisions in such problems should be defined via a contract where the principal and the agent

found a common agreement in terms of remuneration and e↵orts to realize the tasks. consequently, bi-level

modeling is particularly well-suited for these problems. The upper-level decision maker plays the role of the

“principal” while the lower-level decision maker is the agent. The main goal for the principal is to minimize the

remuneration o↵er. According to the o↵er, the agent will then decide the e↵ort that he is going to provide. The

agent would like to maximize its revenue while minimizing risk and e↵ort. Related works on bi-level modeling

and optimization of “Principal-agent” problems can be found in [72, 396, 403].

Principal Agent

Figure 2.9: The Principal-agent dilemma

Table 2.1: Summary table of bi-level applications

References Applications section n°
[53, 272, 83, 229, 263, 189]

[123, 359, 190, 295, 105, 390, 366, 334]
Pricing problems 2.2.1

[52, 54, 55, 379, 196, 5, 55, 321, 56] Defense/Interdiction problems 2.2.2
[299, 257, 68, 264, 64, 344] Logistic problems 2.2.3

[234, 260, 388, 389, 385, 75, 142, 124, 271, 382]
[311, 65, 167, 79, 401, 214, 215]

Design problems 2.2.4

[38, 39, 338, 240, 12, 220, 277, 223] Parameter tuning problems 2.2.5
[81, 306, 158] Chemical reaction problems 2.2.6

[49, 48, 374, 337, 10] Environmental economic problems 2.2.7
[354, 145, 72, 396, 403] Principal–agent problems 2.2.8

2.3 Theoretical aspects and complexity

2.3.1 Mathematical formulation

Bi-level modeling arises when a decision maker would like to solve a problem which depends on another one.

Unfortunately, it does not fully control the decision vector of this second problem but can influence it. Therefore,

he needs to “forecast” the possible outcomes based on this influence. This second problem can be related to
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another decision maker (e.g. [205, 53, 265, 45]) or a physical/chemical process (e.g. [84, 126, 162]) defining

some equilibrium states. Program 2.1 illustrates the general mathematical formulation of bi-level optimization

problems. This formulation has been first introduced by the seminal work of Bracken and McGill in [51] who

designated them in their works as “mathematical programs with optimization problems in the constraints”. The

obvious nested structure presupposes that a bi-level feasible solution should be a lower-level optimal solution.

min
x2X

F (x, y)

s.t. G(x, y) � 0

min
y2Y

f(x, y)

s.t. g(x, y) � 0

Program 2.1: General Bi-level Optimization Program

where x 2 X ⇢ Rn, y 2 Y ⇢ Rm with F, f : X⇥Y ! R, G : X⇥Y ! Rp and g : X⇥Y ! Rq.

Program 2.1 describes a general bi-level problem where x is the decision vector controlled by the upper-level

decision maker while y is the decision vector provided by the lower-level decision maker. Each decision maker

possesses his own objective function, i.e., F (x, y) for the upper-level decision maker and f(x, y) for the lower-

level decision maker. The vector (x, y) represents the bi-level decision vector. Notice that each objective

function depends on the two levels of variables, i.e., on x and y. Therefore, the upper-level decision maker

must know the decision of the lower-level decision maker before computing F (x, y). Each level can be restricted

with constraints: G(x, y) � 0 for the upper-level and g(x, y) � 0 for the lower-level where the symbol �
represents the element-wise lower or equal operator. Such a nested problem can be designated as bi-level only

if each level has an impact on each other. Else we could solve both problems separately. The degree and the

location of dependences between both levels also permit to categorize bi-level problems into three recurrent

classes. The first one is certainly the most general one and has been formally described in Program 2.1. The

upper-level decision x is part of the lower-level objective function f(x, y) as well as the lower-level constraint

set. The same observation can be made for the lower-level which has an impact on the upper-level constraints

and the upper-level objective function. Such general formulation can be found in [200, 333, 332, 269]. Many

investigations have been devoted to “Pricing” models where the upper-level decision x only interacts with the

lower-level objective value. Those models can embed upper-level constraints which may also depend on the

lower-level decision variables (see Program 2.2a). A very rich literature on some bi-level pricing problems can

be found in [53, 295, 366, 402, 205]. Finally, Program 2.2b depicts “Interdiction ” models. In this case, only

the lower-level constraint set is impacted by the upper-level decision variables. The literature contains several

works investigating interdiction models [318, 6, 17, 55, 177].

min
x2X

F (x, y)

s.t. “G(x, y) � 000

min
y2Y

f(x, y)

s.t. g(y) � 0

(a) Bi-level Pricing program

min
x2X

F (x, y)

s.t. “G(x, y) � 000

min
y2Y

f(y)

s.t. g(x, y) � 0

(b) Bi-level Interdiction program

Program 2.2: General bi-level classes
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Table 2.2: Description of the definitions

Definition Description

(x, y) Bi-level decision vector

x Upper-level decision vector

y Lower-level decision vector

F (x, y) Upper-level objective function

f(x, y) Lower-level objective function

G(x, y)  0 Upper-level set of constraints

g(x, y)  0 Lower-level set of constraints

✓(x):= min{f(x, y) s.t. g(x, y)  0} Lower-level optimal value

for a given x

 (x) = {y 2 Y : g(x, y)  0, f(x, y)  ✓(x)} Lower-level rational decision set

solution set mapping

IR = {(x, y), y 2  (x)} Inducible Region

3. 4. 5. 6. 7. 8.

�1.

1.

2.

3.

4.

5.

min
x�0

F (x, y) = �2x� y

s.t. G1(x, y) = (x� 5)2 � 1� y  0 (1)

min
y�0

f(x, y) = �xy

s.t.g1(x, y) = �(2x� 10)2 + 4� y  0 (2)

IR

2

(1)

(2)

y

x

✓(5):= min{�5y s.t. 4� y  0}

 (5):= {4}

Figure 2.10: Example of a general bi-level problem

Table 6.1 describes the main definitions and properties of a bi-level program. The lower-level problem is a

parametric optimization problem ✓(.) whose parameters are the upper-level decision variables x. Its is very

important for the upper-level decision maker to determine the consequences of his decision. For this purpose,

he wishes to forecast the lower-level rational set, i.e.,  (x) which is a set representing all the optimal lower-

level solutions according to the upper-level decision x. Such a general bi-level program has been pictured in

Figure 4.2. The red curve segment represents the inducible region IR which is essentially the bi-level feasible

search space. Only solution (x, y) 2 IR can be assimilated and considered as bi-level feasible solutions. As an

example, let us consider an upper-level decision x = 5 on the example of Figure 4.2. In this case, the lower-level

problem becomes ✓(5):= min{�5y s.t. 4� y  0} which sparks the lower-level rational set  (5) = {4}.
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2.3.2 Lower-level rational reaction set  (x)

As aforementioned, it may happen that the lower-level rational decision  (x) for a given x 2 X contains more

than a single decision y 2 Y. These decisions are all lower-level optimal but have di↵erent impact on the

upper-level objective value. Figure 2.11 depicts such a situation with the corresponding bi-level program on the

right hand side of the figure. To an undiscerning eye, the bi-level optimal solution is (x̂, ŷ) = (1, 1). However,

if we turn our attention to  (x), we can easily observe that for x = 1,  (x) = {y : 0  y  1}. Indeed at

x = 1, the optimal solution value for the lower-level is 0 for any 0  y  1. In the case of a fairplay lower-level

decision maker returning y = 1, the upper-level can reach the optimal solution (x = 1, y = 1). On the contrary,

a competitor choosing y = 0 definitely prevents the upper-level decision maker to obtain the optimal solution.

In fact for y = 0, the upper-level decision maker realizes the worst outcome. Consequently, it would be more

reasonable for the upper-level decision maker to consider 0  x < 1. The literature is replete with many

examples describing such an issue. The community and more specifically Dempe et al. in [98] illustrated two

possible situations to face this problem of non-uniqueness: the optimistic case and the pessimistic case. In order

to study these both cases, the general Program 2.1 needs to be rewritten to Program 2.3.

x

y

1

1

0

max
x

xy

s.t. 0  x  1

max
y

(1� x)y

s.t. 0  y  1

Figure 2.11: Example of Bi-level program where | (x = 1)| > 1 (source: CO workshop Aussois 2017)

min
x2X

F (x, ŷ)

s.t. G(x, ŷ) � 0

ŷ = �(x)

where �(x) =

⇢
�o(x) in the optimistic case
�p(x) in the pessimistic case.

Program 2.3: Reformulation of the general bi-level optimization program

2.3.2.1 Optimistic rational reaction: �o(x)

In the optimistic approach, it is assumed that the lower-level rational reaction is the most favorable for the

upper-level decision maker. This situation suggests that both decision makers can cooperate together. The

optimistic case is generally referred as to Weak Bi-level Problem and is illustrated by Figure. 2.12. In order to

model it, we have to consider the best scenario which implies that �o(x) = arg min
y2Y

{F (x, y) : y 2  (x)}
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x

y

1

1

0

Figure 2.12: The optimistic case leads to the optimal bi-level solution (x̂, ŷ = (1, 1))

Definition 2.1 (Local optimality). A feasible point (x̂, ŷ) 2 IR, G(x̂, ŷ)  0, ŷ = �o(x̂) is local optimal if

there exists ✏ > 0 with F (x, y) � F (x̂, ŷ) 8 (x, y) 2 IR, G(x, y) � 0, y = �o(x), k(x̂, ŷ)� (x, y)k  ✏.

It is global optimal if ✏ can be taken arbitrarily large.

Theorem 2.2 (Optimality conditions). We first assume that F, f : X ⇥ Y ! R, G : X ⇥ Y ! Rp and

g : X ⇥ Y ! Rq are su�ciently smooth. If the set {(x, y) : g(x, y) � 0} is not empty and compact and the

Mangasarian-Fromovitz constraint qualification [258] are satisfied at each solution (x, y) 2 IR with G(x, y) � 0

(not empty and compact) such that y = �o(x), then the optimistic bi-level problem has a (global) optimal

solution.

Further investigations on the optimistic optimality conditions can be found in the literature. Interested readers

can refer to [162, 292, 242, 98, 96, 100, 217, 29].

2.3.2.2 Pessimistic rational reaction: �p(x)

In the pessimistic case, the collaboration between upper-level and lower-level is no longer possible. The upper-

level decision maker has to consider the worst situation. He needs to bound damages resulting from a bad

selection. Such a situation is clearly the most realistic one when dealing with strong competition between

decision makers. The pessimistic case is generally referred to as Strong Bi-level Problem and can be observed

on Figure 2.13. The worst situation can be modeled by �p(x) = arg max
y2Y

{F (x, y) : y 2  (x)}.

Definition 2.3 (Local optimality). A feasible point (x̂, ŷ) 2 IR, G(x̂, ŷ)  0, ŷ = �p(x̂) is local optimal if

there exists ✏ > 0 with F (x, y) � F (x̂, ŷ) 8 (x, y) 2 IR, G(x, y) � 0, y = �p(x),k(x̂, ŷ)� (x, y)k  ✏.

It is global optimal if ✏ can be taken arbitrarily large.

Theorem 2.4 (Optimality conditions). We first assume that F, f : X ⇥ Y ! R, G : X ⇥ Y ! Rp and

g : X⇥Y ! Rq are su�ciently smooth. If the set {(x, y) : G(x, y) � 0, g(x, y) � 0} is not empty and compact

and the point to set mapping  is lower semicontinuous , then the pessimistic bi-level problem has an optimal

solution.

Corollary 2.5 (Weak optimality conditions). We first assume that F, f : Rn ⇥Rm ! R, G : X ⇥Y ! Rp

and g : X ⇥ Y ! Rq are su�ciently smooth. If the set {(x, y) : G(x, y) � 0, g(x, y) � 0} is not empty and
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x

y

1

1

0

Figure 2.13: The pessimistic case leads to the worst possible bi-level solution (x̂, ŷ = (1, 0))

compact and the point to set mapping  is upper semicontinuous , then the pessimistic bi-level problem has a

weak optimal solution.

Further investigations on the pessimistic optimality conditions can be found in the literature. Interested readers

can refer to [375, 98, 97, 252, 248].

To summarize this section on “Optimality conditions”, we distinguish two cases when the lower-level rational

set  (x) have multiple optimal solutions for a same upper-level decision x. In the optimistic case, the upper-

level decision maker is “able” to influence the lower-level decision maker to obtain the most favorable solution.

An optimistic bi-level problem is solvable if its bi-level feasible region is nonempty and compact, and if the

Mangasarian-Fromowitz constraint qualification holds at all feasible bi-level solutions. Pessimistic bi-level

problems are much more tedious and di�cult. They can only be solved if the feasible region is nonempty and

compact and if the set of lower-level optimal solutions is lower semicontinuous for all upper-level decisions.

Wiesemann et al. introduced an additional condition on the upper-level dependence. They call ‘ ‘independent”

a bi-level problem where the lower-level rational reaction is independent from the upper-level decision x,

though:  (x) =  (x0) 8x, x0 2 X. Here, we only considered the ‘ ‘dependent” version where two upper-

level decision x and x0 may lead to two di↵erent lower-level rational set, i.e.,  (x) 6=  (x0). For more

precision on ‘ ‘independent” bi-level problems and their associated optimality conditions, the reader can

refer to [375].

Remark

2.3.3 The presence of upper-level constraints

We can distinguish two sort of upper-level constraints:

1. Non-connecting upper-level constraints: G(x) � 0 8 x 2 X

2. Connecting upper-level constraints: G(x, y) � 0 8 x 2 X, y 2  (x)

In the first case, the lower-level decision y is absent and thus has no impact on the feasibility of the upper-

level problem. On the contrary, the second case is referred to as “connecting constraints” and has to take into
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account y. As described above, y is obtained by solving the lower-level problem for a given x. Nonetheless, y has

been computed without taking into account G(x, y) � 0. The existence of connecting upper-level constraints

have raised many questions in the bi-level community. Some works in the literature [330, 331] considered that

such constraints could be simply shifted to the lower-level problem. Mersha et al in [269] showed that shifting

constraints violates the essential idea of the modeling concept that is behind bi-level programming. As we

explained it in the chapter Introduction , Bi-level programming represents essentially the needs of a decision

maker to model its problem while taking into account the impact of a third party, i.e, the lower-level decision

maker. The last one is represented by an additional problem in the constraint set of the first one which adds

another level of complexity in the strict sens of the term.

In order to stick to reality and therefore to the hierarchical process, the lower-level problem has to be indi↵erent

to the upper-level constraints. Indeed, nothing forces the lower-level decision maker to satisfy those constraints

since bi-level decision making is not a simultaneous but sequential. The upper-level constraints play no role

into the lower-level problem. In fact, it is quite conceivable that the lower-level decision maker is not aware

of the existence of the upper-level problem. This is the reason why the upper-level decision maker may not

end with a feasible solution if the lower-level rational reaction violates one of the upper-level constraints. This

issue can arise for optimistic and pessimistic cases. Mersha et al in [269] provided a very interesting example

of linear bi-level problems with upper-levels constraints as illustrated on Figure 2.14.

P = min
x�0

F (x, y) = �x� 2y

s.t. 2x� 3y � �12 (1)

x + y  14 (2)

min
y�0

f(y) = �y

s.t.� 3x + y  �3 (3)

3x + y  30 (4)

�2. 2. 4. 6. 8. 10. 12.

�2.

2.

4.

6.

8.

10.

12.

0 x

y
(4)

(2)(3)

(1)

y=8

y=12

IR IR

Bi-level
optimum

Figure 2.14: Example of bi-level problem with upper-level constraints

Figure. 2.14 depicts a scenario where two such connecting constraints restrained the upper-level search space

decision. If the upper-level decision maker chooses the decision x = 6 and by means of optimization obtains

for example y = 8, the upper-level decision maker will wrongly suppose that x = 6 is the best upper-level

decision. Unfortunately such a decision inevitability leads the lower-level decision maker to choose y = 12 since

it is the optimal rational reaction with respects to x = 6. In this case, the upper-level decision maker does not

even obtain a feasible solution. As a result, it is highly important to obtain the best forecast of the possible

lower-level reactions.

2.3.4 Computational complexity

Bi-level problems are very challenging to solve even if the following parts are convex: F , f , X, Y and  (x).

Unfortunately, this situation arises also for two linear levels. Many complexity studies have been undertaken

for linear bi-level problems. In [35, 26], the authors conclude that it is NP-hard. Further investigations [102,

161, 181] strengthened the common observations and conclusions that the linear bi-level problem is strongly
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NP-hard. Using a reduction from 3-SAT, it has also been proven in [261, 361] that local optimality of a given

solution is NP-hard as well. Finally, the number of local optimal solutions can be exponential as mentioned

in [30]. When levels loose their convexity property, the only task consisting to check bi-level feasibility become

strongly NP-hard.

Additionnaly, we can show that linear bi-level problems are equivalent to combinatorial problems. Let us

first demonstrate that combinatorial problems,i.e., NP-hard optimization problems have an equivalent bi-level

formulation.

2.3.4.1 Bi-level equivalent form of a linear combinatorial problem

Let us consider the linear mixed-integer program illustrated by Program 2.4:

min
x,u

cT x + dT u

s.t. Ax + Bu � b

x 2 Rn
+, u 2 {0, 1}m

Program 2.4: A linear mixed-integer problem

where c 2 Rn, d 2 Rm, A 2 Rp⇥n, B 2 Rp⇥m, b 2 Rb.

Note that the binary requirement on the decision variables u can be replaced by the equality constraint:

“ min ”{u,1 � u} with 1 representing all-ones vector and relaxing the decision variables u such that u 2 [0, 1]

This constraints is neither linear nor convex. We can introduce an additional level which could ensure the

binary requirement of u. For this purpose, let us reformulate the non-convex constraint as a mathematical

program. The lower-level decision variables y have been introduced to linearize the “min” operator. Finally,

we have to link both problems (levels) such that the u or 1� u reach the bounds, i.e 0 or 1.

min
x,y,u

cT x + dT u

s.t. Ax + Bu  b

1T y = 0

max
y

1T y

s.t. y � u

y � 1� u

x, y 2 Rn
+, u 2 [0, 1]m

Program 2.5: Resulting linear bi-level problem

Program 2.5 is the resulting bi-level program after linking both levels. As it can be observed, the link is made

through the constraint y = 0 which ensures indirectly that u will be a binary vector. The lower-level objective

should be maximized to guaranty that 1T y = 0 if and only if u = 0 or (1� u) = 0.

2.3.4.2 Linear combinatorial equivalent form of a linear bi-level problem

Let us consider the linear bi-level program illustrated by Program 2.6:

where c1, c2 2 Rn, d1, d2 2 Rm, b2 2 Rq, A1 2 Rp⇥m, A2 2 Rq⇥n, B2 2 Rq⇥m.



Bi-level Optimization: state of the art 25

min
x

cT
1 x + dT

1 y

s.t. A1x + B1y � b1

min
y

cT
2 x + dT

2 y

s.t. A2x + B2y � b2

x 2 Rn
+, y 2 Rm

+

Program 2.6: A linear bi-level problem

Problems (P) and dual (D) are respectively the primal and dual representations of the lower-level problem (see

Program 2.7).

(P) = min
y�0

cT
2 x + dT

2 y

s.t. B2y � b2 �A2x

(a) Primal lower-level problem

(D) = max
u�0

uT (A2x� b2)

s.t. uT B2 ⌫ �d2

(b) Dual lower-level problem

Program 2.7: Primal and dual representations of the lower-level problem

The complementary slackness conditions implies that (b2 � B2y � A2x)T u = (�d2 � uB2)T y and can be used

to replace the lower-level problem with a set of constraints. Notice that the resulting program has only a single

level. In addition, the complementary slackness conditions link the primal and dual lower-level variables.

min
x

cT
1 x + dT

1 y

s.t. A1x + B1y � b1

A2x + B2y � b2

(b2 �B2y �A2x)T u + (d2 + uB2)
T y = 0

� uB2 � d2 � 0

y 2 Rm
+ , u 2 Rm

+ , x 2 Rn
+

Program 2.8: Single-level reformulation

Despite the fact that there is only a single level, the introduction of the complementary slackness constraints does

not facilitate its resolution. To bypass this problem, notice that b2�B2y�A2x � 0 and d2+uB2 � 0. Therefore

the complementary slackness constraints are true if and only if (b2 � B2y � A2x)u = 0 and (d2 + uB2)y = 0.

Both equalities can be linearized by introducing additional binary decision variables. As a result, a linear

mixed-integer program is obtained (see Program 2.9).

Finally, we have shown the equivalence between linear combinatorial (mixed-integer) and linear bi-level prob-

lems. Many equivalences between single-level programs and bi-level programs can be demonstrated. Some

resolution approaches are directly based on them to reduce complex bi-level programs to single-level programs

enabling the usage of classical resolution approaches. The next section describes the relationship existing in

the literature with di↵erent classes of problems.
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min
x

cT
1 x + dT

1 y

s.t. A1x + B1y � b1

A2x + B2y � b2

(b2 �B2y �A2x) �Mz

u �M(1� z)

d2 + uB2 �Mt

y �M(1� t)

� uB2 � d2 � 0

y 2 Rm
+ , u 2 Rm

+ , x 2 Rn
+, z 2 {0, 1}q, t 2 {0, 1}m

Program 2.9: The resulting combinatorial problem

2.3.5 Relationship with others domains

Bi-level optimization does not only concern a specific branch of Optimization. Many relationships can be

established with other domains. Some of these problems are just a matter of reformulation or specific bi-

level versions. The next sections will describe some of them and their correlation to bi-level programming.

This is not an attempt to list exhaustively all related problems but it should explain the reason why bi-level

optimization has been approached from di↵erent perspectives. Hereafter, we discuss various domains that share

many common concepts with bi-level programming and allow us to switch from one to the other just by matter

of reformulation. Finally, we summarize our discussion with Table 2.3.

2.3.5.1 Stackelberg games

Stackelberg duopoly models, also referred as Stackelberg games [346], are non-cooperative games and are

essentially sequential (not simultaneous as in Cournot duopoly) non-zero sum games involving two players.

The first player called “leader” is aware of the problem of the second player called “follower”. Taking the point

of view of the leader, his problem depends on the reaction of the follower. In order to take the right decision, it

has to compute the best response of the follower called “ the follower rational decision”. Bi-level Optimization

are based on the similar concept except that the follower is an equilibrium problem. To some extend, bi-level

optimization generalizes Stackelberg games. For example, two companies F1 and F2 competing on the marked

would like to determine their production levels maximizing their respective profits. One of this company, say

F1, set its production level first. Since its production level will depend on the market reaction, i.e., F2, it wishes

to solve the model illustrated in Program 2.10 where P (ql, qf ) is the unit price of the production. Cl is the unit

cost for the leader production. Cf is the unit cost for the follower production. Many investigations have been

done on Stackelberg games. Detailed information can be obtained in [134, 241, 248, 252, 283].

max
ql,qf

P (ql, qf )ql � Clql

s.t. qf 2 arg max
qf

P (ql, qf )qf � Cfqf

ql, qf � 0

Program 2.10: Stackelberg competition between two companies on the market
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2.3.5.2 Maxmin Problems

Maxmin problems [112, 313] are special kind of bi-level problems where F (x, y) = �f(x, y). In fact, zero-sum

games can be modeled as maxmin problems. They naturally emerge from optimization under uncertainty.

In such case, the player attempting to solve the maxmin problem wishes to react to the worst scenario and

not necessarily to the most probable one. Maxmin optimization is directly related to some kind of robust

optimization. Audet in [18] established the link between linear maxmin problems and linear bi-level problems.

Let us consider the linear maxmin problem formulated for the first time by Falk [120, 121], P = max
x2X

min
y2Y

{cx+dy :

Ax + By � b}. This model can be easily reformulate as follows P = max
x2X

{cx + min
y2Y

{dy : By � b � Ax}}.

Finally, we obtain the two-stage program depicted by Program 2.11 by introducing ŷ at the upper-level objective

function. When the coe�cient vector d associated to the second stage decision variables are di↵erent for the two

stages, Program 2.11 can be assimilated as a bi-level program. Additional information on max-min problems

can be found in [352, 353, 362].

min
x

cT x + dT ŷ

s.t. x 2 X

ŷ 2 arg min
y

dT y

s.t. By � b�Ax

y 2 Y

Program 2.11: A bi-level reformulation of the linear maxmin problem

2.3.5.3 Generalized semi-infinite problems

When an optimization problem contains a formulation involving either an infinite number of constraints or an

infinite number of variables, it is then classified as a semi-infinite problem. Bi-level and semi-infinite problems

are closely related to each other. Let us consider the two following cases:

• The optimistic case ;

• The lower-level rational set  (x) is a singleton.

In both situations, we can reformulate Program 2.1 as a semi-infinite program by returning the lower-level

optimal value ✓(x) = min{f(x, y) s.t. g(x, y) � 0} instead of the optimal lower-level decision variables.

However, this value function reformulation only works for the two aforementioned situations. The added value

of such a transformation is the decomposition of both levels while keeping the dependence through a set of

infinite constraints as depicted by Program 2.12. Semi-infinite programming has been extensively investigated

in the literature [41, 40, 130, 275, 358, 353].

2.3.5.4 Set-valued optimization problems

According to [195],“Set-valued optimization is a vibrant and expanding branch of mathematics that deals with

optimization problems where the objective map and/or the constraints maps are set-valued maps acting between

certain spaces”. Bi-level optimization problems are strongly related to set-valued optimization problems. In
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min
x2X,y2Y

F (x, y)

s.t. G(x, y) � 0

g(x, y) � 0 ,
f(x, y)� ✓(x) � 0

(a) Reformulation of the general bi-level program

min
x2X,y2Y

F (x, y)

s.t. G(x, y) � 0

g(x, y) � 0

f(x, y)� f(x, y⇤) � 0 8 y⇤ 2 {y⇤ : g(x, y⇤)  0}

(b) Equivalence with semi-infinite programming

Program 2.12: Reformulation of the general bi-level program to a semi-infinite program

fact, Program 2.1 can be rewritten as Program 2.13 using the set-value mapping  : Rn ! Rm . This new

formulation is ambiguous as discussed in section 2.3.2. When  (x) is not a singleton for every x 2 X, a choice

between the optimistic or teh pessimistic situation has to be made. Details on set-valued optimization can be

found in [178, 195, 76, 219, 95].

min
x2X,ŷ2 (x)

F (x, ŷ)

s.t. G(x, ŷ) � 0

Program 2.13: Reformulation of the general bi-level problem to a set-valued problem

2.3.5.5 Mathematical problems with equilibrium constraints

An optimization problem with equilibrium constraints (see Program 2.14) can be written as a mathematical

program with some constraints defined as variational equalities that should satisfy equilibrium conditions.

min
x2X,y2Y

F (x, y)

s.t. G(x, y) � 0

ryf(x, y) = 0

Program 2.14: A general mathematical program with equilibrium constraints

where F, f : X⇥Y ! R, G : X⇥Y ! Rp and ryf denotes the partial derivatives of f with respect to y. In the

case of f(x, y) is convex, Program 2.14 can be expressed equivalently as a bi-level problem. Assuming that  (x)

is a singleton for every x, ryf(x, y) = 0 can be replaced by y = arg min
y2Y

{f(x, y) s.t. g(x, y) � 0}. Generally,

bi-level programs are transformed into mathematical programs with equilibrium constraints when convexity

can be assumed. Such a reformulation is more convenient and has been extensively exploited in many works

[31, 253, 115, 161]. Dempe in [99] established a complete annotated bibliography on bi-level programming and

mathematical programs with equilibrium constraints. Deep investigations on the related works and optimality

conditions can be found in his bibliography.

2.3.5.6 Multi-stage problems with recourse

Multi-level programming (e.g. bi-level programming) should not be confused with multi-stage problems. While

a multi-level problem involves several decision makers, a multi-stage problem possesses several levels but only a
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single decision maker. Multi-stage problems with recourse depict situations in which a risk function models some

uncertainties. These uncertainties are due to some external factors that the decision maker cannot controlled.

However, its decision has an indirect influences on those factors. Ralph [307] has shown the link between the

linear bi-level interdiction problem and the linear two-stage problem. In section 2.3.1, we introduced interdiction

models through Program 2.2b. These models generally describe a situation in which the upper-level decision

maker only influences the lower-level feasible search space. The linear interdiction problem can be modeled as

follows: I = min
x2X

{cT x + d1T y : A1x � b1, y 2 min
y2Y

{d2T y : B2y � (b2 � A2x)}}. We assume, hereafter, that we

only have a single lower-level reaction for every upper-level decision x. When d1 = d2, the bi-level interdiction

problem becomes a two-stage problem with recourse. Indeed, we can easily see:

I = min
x2X

{cT x + dT
1 y : A1x � b1, y 2 min

y2Y
{dT

2 y : B2y � (b2 �A2x)}} with d1 = d2

= min
x2X

{cT x + dT
1 y : A1x � b1, y 2 min

y2Y
{dT

1 y : B2y � (b2 �A2x)}}

= min
x2X

{cT x + min
y2Y

{dT
1 y : B2y � (b2 �A2x)} : A1x � b1}

= min
x2X

{cT x + Q(x) : A1x � b1} with Q(x) = min
y2Y

{dT
1 y : B2y � (b2 �A2x)}

Q(x) is the risk function, also called “The value function of the recourse problem”. In two stage stochastic

problem, the uncertainties is modeled by random variables. The recourse is a statistical indicator, i.e, mean

on the value function obtained at the second stage: min
x2X,y2Y

{cT x + E⇠(Q⇠(x)) : A1x � b1} with Q⇠(x) =

min
y2Y

{dT
1 y : W⇠y  (h⇠ � T⇠x)} where ⇠ describes the realization of uncertain data. The concept is very close

to the strategy adopted by the upper-level decision maker in a bi-level program. The decision maker in a

two-stage stochastic problem makes a “here and now ” decision x to observe the average realization outcome

at the second stage. Then according to the gained information, he solves an appropriate optimization problem.

The concept of multi-stage programming relies strongly on decomposition techniques and especially on Bender

decomposition approach [37].

Table 2.3: Some problems with relationship to bi-level programming

References Relationship with section n°
[346, 134, 241, 248, 252, 283] Stackelberg games 2.3.5.1

[112, 313, 120, 121, 352, 353, 362] Maxmin problems 2.3.5.2
[41, 40, 130, 275, 358, 353] Generalized semi-infinite problems 2.3.5.3
[195, 178, 195, 76, 219, 95] Set-valued problems 2.3.5.4

[31, 253, 115, 161, 99] Mathematical problems with equilibrium constraints 2.3.5.5
[307] Multi-stage problems with recourse 2.3.5.6

2.4 Classical resolution approaches

Many algorithms have been proposed since the mid-1970. Most of them focus on specific classes of bi-level

problems. For example, the literature is replete with approaches dedicated to solve linear and convex levels.

Very often strong properties have been assumed like continuous di↵erentiability, convexity and lower semi-

continuity. The introduction of a second-level increases significantly the number of existing bi-level categories.

Some of them have been extensively studied while others have been seldom tackled due to their di�cult nature.
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Therefore, we adopt a taxonomy which focuses more on the di↵erent class of algorithms designed to cope with

bi-level problem. According to the existing literature, we divided this section between two categories: convex

and non convex bi-level problems. All approaches and related works found in the literature are summarized in

Table 2.4.

2.4.1 Approaches for bi-level problems with convex levels

The literature often describes bi-level problems as “convex” when each level is a convex sub-problem. Never-

theless, it is incorrect to conclude that a hierarchy of convex levels lead to a convex global problem. As shown

in section 2.3.4, linear bi-level problems are equivalent to combinatorial problems. All the classical approaches

described in the further sections struggled to cope with problems that would be “easy” to solve in single-level

optimization.

2.4.1.1 Extreme point search

The main property motivating this section is described by Theorem 2.7 and detailed in [26].

Theorem 2.6. An optimal solution (x̂, ŷ) of a linear bi-level problem occurs at an extreme point of S = {(x, y) :

G(x, y) � 0, g(x, y) � 0}.

Candler and Townsley [67] developed an approach for linear bi-level problems with no upper-level constraints

and assumed that for every x,  (x) is a singleton, i.e., | (x)| = 1. The algorithm enumerates extreme points of

the lower-level problem using necessary conditions. Unfortunately, this algorithm has to explore a large number

of extreme points which tend to make it very slow.

The Kth-Best Algorithm is an extreme point search procedure which has been designed by Bialas and Karwan

in [43] for linear bi-level problems. It enumerates extreme points of S until the current one belongs to IR. The

enumeration is ordered according to the upper-level objective values. Obviously IR has to be bounded and

 (x) must be single-valued.

In [94], Dempe proposed a modified simplex procedure for linear bi-level problem with no upper-level constraints.

This procedure relies on specialized rules for updating the basis. Dempe did not provide numerical results but

illustrated his approach on an example.

In [296], Papavassilopoulos adopted a similar enumeration procedure except that all enumerated extreme points

belonged to the inducible region, i.e, IR.

Although the approach proposed by Jaumard and Savard in [161] does not explicitly rely on vertex enumeration,

they proposed to determine which lower-level constraints are binding at optimality. Indeed, a solution is bi-level

feasible if it is not possible to improve the lower-level objective value without violating one of the lower-level

constraints. For this purpose, they proposed a Branch & Bound procedure based on active set enumeration.

Artificial variable ↵i are assigned to each constraint gi(x, y) 8 i 2 {1, ..., q}. The branching procedure is done

by setting ↵i to 1 or 0. Jaumard and Savard extended the algorithm to the non-linear bi-level problem where

F (x, y) and G(x, y) are convex, f(x, y) is quadratic and g(x, y) is a�ne.
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2.4.1.2 Reformulation to single-level problem

As discussed in sections 2.3.5 and 2.3.4, reformulation techniques can be retained to create equivalent single-

level problems. Many works rely on this methodology even if strong assumptions have sometimes to be taken.

Hereafter, we suppose that the lower-level problem has convex and regular properties. In such a situation, it

can be replaced by the corresponding Karush-Kuhn-Tucker (KKT) conditions described in Program 2.15b. The

KKT conditions consist of four mains conditions:

1. Stationarity: ryL(x, y,�) = 0 with the Lagrangean function L(x, y, �) = f(x, y) +
qP

i=1
�igi(x, y)

2. Complementary slackness: �igi(x, y) = 0 8 i 2 {1, ..., q}

3. Primal feasibility: (x, y) 2 {G(x, y) � 0, g(x, y) � 0}

4. Dual feasibility: �i � 0 8 i 2 {1, ..., q}

The reformulation does not change the complexity of the resulting problem. Note that despite the convexity

assumptions made for both levels, the complementary slackness conditions are combinatorial by nature. This

result should not be surprising since in section 2.3.4, we have shown the equivalence between combinatorial and

bi-level problems.

All the contributions listed in this section are based on this reformulation and attempt to e�ciently solve the

resulting combinatorial problem.

Fortuny-Amat and McCarl [132] designed a procedure to tackle the linear bi-level problem. They assigned

binary variables for each complementary slackness conditions. Each binary variable indicates whether the

multiplier �i = 0 or the corresponding lower-level constraint gi is binding. A B&B algorithm is then used to

solve the problem.

Bard and Falk [31] chose an alternative approach to handle the complementary slackness conditions. They

replaced each equality: �igi(x, y) = 0 8 i 2 {1, ..., q} by the two following constraints:
qP

i=1
min{0, wi} + �i = 0

and wi� gi +�i = 0 8 i 2 {1, ..., q}. Although the new formulation remains non-convex, it has the particularity

to be separable. Bard in [30] explained that the complementary term has been replaced by a piecewise and

separable term.

min
x2X

F (x, y)

s.t. G(x, y) � 0

min
y2Y

f(x, y)

s.t. g(x, y) � 0

(a) Bi-level program with convex lower-level

min
x2X,y2Y,�

F (x, y)

s.t. G(x, y) � 0

g(x, y) � 0

�igi(x, y) = 0 8 i 2 {1, ..., q}
ryL(x, y,�) = 0

�i � 0 8 i 2 {1, ..., q}

(b) Single-level program

Program 2.15: Single-level reformulation relying on the KKT conditions

In order to remove the complementarity condition terms, Bard and Moore [33] developed an alternative strategy

consisting in giving all control of the lower-level variables to the upper-level problem. At each step, their

procedure checks if the complementary terms are satisfied. If this is the case, the current solution is a valid

bi-level feasible solution and a potential bi-level optimal candidate.
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Bialas and Karwan in [44] proposed the “Parametric Complementary Pivot ” algorithm. The latter is closely

related to the KKT reformulation and sequentially computes a feasible point (x, y) with the upper-level objective

value F (x, y) bounded by a parameter ↵. This parameter is updated after each step and the procedure stops

when no new feasible solution is found. However as explained in [30], their algorithm must be considered as

an heuristic as shown by [36]. Following the proposed approach, Judice and Faustino in [187] modified the

algorithm to provide guaranty of convergence. It is important to note that the complementary approach has

not been designed for bi-level problems having upper-level constraints.

Further investigations and algorithms based on the ones presented in this section can be found in [7, 161, 330]

2.4.1.3 Descent approaches

Descent methodologies in bi-level optimization aim at decreasing the upper-level objective value while keeping

solutions bi-level feasible, i.e, lower-level optimal. A feasible descent direction d 2 Rn should allow the upper-

level objective value to decrease by computing a new feasible candidate as follows x+↵d with ↵ > 0. Assuming

that  (x) is a singleton for every upper-level decision x, we can define y as function of x, i.e, y: Rn ! Rm.

Therefore the gradient F (x, y(x)) is defined as rxF (x, y) = rxF (x, y) + ryF (x, y)rxy(x). Nevertheless, we

cannot guaranty its availability for every feasible solution (x, y).

In order to tackle this issue, Kolstad and Lasdon [218] attempted to approximate this gradient. Vicente et al. in

[361] proposed a descent algorithm for convex quadratic bilevel programs with linear constraints. The algorithm

moves along the inducible region by using complementary pivoting approach. Bard in [30] reported that this

approach cannot guaranty local optimality unless the upper-level objective function is concave. In [320], Savard

and Gauvin designed a descent algorithm which employ an auxiliary program to compute descent direction.

They basically solve an other linear-quadratic bi-level program to compute d for which exact algorithm exists.

Finally, a bundle approach has been developed by Falk and Liu [122] where the decrease of the upper-level

objective function is controlled according to subdi↵erential data gained from the lower-level.

2.4.1.4 Penalty approaches

The main concept behind this important class of bi-level resolution approaches relies on penalizations of so-

lutions which do not satisfy lower-level optimality. Although they have been extensively used in “non-linear

programming”, it is still a real challenge to measure the extend of violation of the lower-level problem. In

[2, 3], Shimizu and Aiyoshi replaced the lower-level problem by an unconstrained problem with penalization

as follows min
y

{f(x, y) + C�(g(x, y))} where C is a positive real value and �(.) a continuous penalty function.

This function has the following properties with S(x) = {y 2 Y : g(x, y) � 0}

• �(g(x, y)) > 0 if y 2 relint S(x)

• �(g(x, y))! +1 if y ! bd S(x)

relint S(x) and bd S(x) denotes respectively the relative interior and the boundary of S(x). As aforementioned,

the new formulation is not easier to cope with.

In [174], Ishizuka and Aiyoshi adopted a new approach penalizing both objective functions F (x, y) and f(x, y).

The lower-level problem is this time replaced by its stationary conditions to obtain a single-level problem. We

can consider this strategy as an hybrid between single-reformulation and penalty approaches.
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In the same vein, Case in [71] replaced the lower-level problem by its KKT conditions and penalized the

upper-level objective F (x, y). Contrary to previous works, he designed a penalty function relying on the `1

norm.

Anandalingam and White proposed in [11, 373] a penalty approach for linear bi-level problems. Their algorithm

is based on the fact that a bi-level feasible solution should have a lower-level duality gap equals to 0. Therefore,

the problem can be reformulated as a single-level problem with primal and dual lower-level constraints. The

upper-level objective function is penalized by a function evaluating the lower-level duality gap, i.e., the di↵erence

between the dual and the primal objective values of the lower-level problem.

2.4.1.5 Trust-region approaches

Trust-region algorithms are conceived to approximate regions of the objective function with respect to a given

model. When the approximation is accurate enough, these algorithms expand the promising regions otherwise

regions are contracted. These trust-regions are generally modeled as the vicinity around a given point pk such

as a ball with radius rk. The solution sk at iteration k is obtained according the optimization of a model mk

over the trust-region as depicted in Program 2.16 .

min
s

mk(pk + s)

s.t. ksk  rk

Program 2.16: Optimization of a trust-region subproblem

Trust-region algorithms have been developed by [245] for non-linear bi-level problems with convex lower-level

objective function and linear lower-level constraints. In [259], another trust-region approach has been proposed

by Marcotte et al. in combination with line search techniques. They considered bi-level problems with linear

upper-level and linear variational equality at lower-level. Colson et al. in [82] coped with non-linear bi-

level programs. Their iterative approach is based on a linear-quadratic trust-region subproblem that can be

approached globally with dedicated algorithms such as the one designed by Jaumard et al in [261].

2.4.2 Approaches for bi-level problems with non-convex levels

Given the di�culty of addressing bi-level problems with convex levels, it is not a surprise to see very few

approaches to tackle bi-level problems with non-convex levels. Most of the contributions detailed in this section

is dedicated to (mixed-) Integer linear bi-level problems. To the best of our knowledge, non-linear and non-

convex problems have been approached by:

• Mitsos et al in [274] with a bounding algorithm that terminates with a solution satisfying ✏-optimality at

both levels.

• Tsoukalas et al. in [353] with an algorithm relying on a “oracle” deciding whether or not a target objective

value is reachable. If the oracle concludes that the value can be attained, then a feasible solution reaching

this value is returned. A binary search is performed for all target values to detect the global optimal

solution.

• Kleniati and Adjiman in [212, 210] developed a new approach that explores both level spaces using a

single B&B tree. Lower and upper bounds are computed for both levels. In [211], Kleniati and Adjiman

extended their approach for mixed-integer non-linear bi-level problems.
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2.4.2.1 Mixed-integer Bi-level problems: properties

As in single-level optimization, most bi-level optimization problems are mixed-integer problems. The location

of integer variables may have serious consequences on the properties of the inducible region, i.e., IR. Figure

2.15 describes 4 versions of the same linear bi-level problem with no upper-level constraints. Discrete variables

can occur at each level.

Figure 2.15a represents the bi-level problem with only continuous variables, i.e., x 2 R and y 2 R. Even if it

is not a mixed-integer problem, we added it in Figure 2.15 for the sake of exhaustivity. Such bi-level problems

have been discussed in the previous section. The inducible region is a piecewise linear function. The optimal

solution occurs at solution (x̂, ŷ) = (8, 1). In the remainder, such bi-problems will be referred to as CCLBP.

Figure 2.15b depicts a bi-level problem where x 2 Z and y 2 R. Such a configuration will be denoted as

CDLBP. The inducible region is basically a finite set of points (red on Figure 2.15b). Notice that it is very

specific example, the optimal bi-level solution is the same as for the CCLBP, i.e. (x̂, ŷ) = (8, 1).

Figure 2.15c is a pure integer bi-level problem, i.e. x 2 Z and y 2 Z This category will be designated as

DDLBP. The inducible region is a finite set of points. The optimal solution occurs at (x̂, ŷ) = (2, 2). As

observed in this example, the optimal solution may be an interior point of the set {(x, y) 2 Z⇥Z : g(x, y)  0}.

The last example is illustrated by Figure 2.15d with x 2 R and y 2 Z. CDLBP has an inducible region

made by a finite union of quasi-polyhedral sets. If IR 6= ;, it does not mean necessarily that IR is compact.

In this example, there is no optimal solution but only a bound occurring at (2.5, 2.0). Indeed the upper-level

decision maker would realize the best results for x = 2.5 and y = 2. However when x reached x = 2.5, the

lower-level reaction y drops to y = 1. The upper-level decision maker should consider ✏-optimality to get as

close as possible to this bound while avoiding to reach it.

Some interesting properties concerning the di↵erent classes of mixed-integer bi-level problems have been listed

by J. Bard in his book [30]. We have decided to present two of them which links the di↵erent classes between

each others.

Property 2.1. The inducible regions of DCLBP and DDLBP are respectively included in the inducible

regions of CCLBP and CDLBP.

The proof of Property 2.1 is straightforward and can be easily observed through the di↵erent example in Figure

2.15.

Note CCLBP is the relaxed version of DDLBP. The optimal solution value for CCLBP is �18 while the

one for DDLBP is �22. Therefore an additional property can be stated.

Property 2.2. The continuous relaxation an integer bi-level problem does not necessarily provide a valid bound.

For more properties on mixed-integer linear bi-level problems, the reader can refer to [30, 101].

2.4.2.2 Reduction to linear problems

Let’s consider a single-level problem P where x 2 {0, 1}n and y ✓ Rm:
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min
x�0

F (x, y) = �x� 10y

s.t. min
y�0

f(y) = y

s.t.� 25x + 20y  30

x + 2y  10

3x + y  30

2x� y  15

2x + 10y � 15

x, y � 0 (continuous or integers)

Program 2.17: Program described by the 4 examples in Figure 2.15
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(a) Continuous-continuous linear bi-level problem
(CCLBP)
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(b) Discrete-continuous linear bi-level problem
(DCLBP)
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(c) Discrete-Discrete linear bi-level problem
(DDLBP)
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(d) Continuous-discrete linear bi-level problem
(CDLBP)

Figure 2.15: Categories of bi-level problems with possible discrete variables

min
x�0

cT
1 x + dT

1 y (2.1)

s.t. A1x + B1y � b1 (2.2)

x 2 {0, 1}n, y ✓ Rm (2.3)

Without loss of generality, consider c1  0 and d1  0. Let ⇥ : Rn ! R be a continuous function so that

⇥(x) � 0 8 0 < x < 1n and ⇥(x) = 0 iff x 2 {0, 1}n.
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Theorem 2.7. If ⇥ is a concave function there exists a positive real number M such that(2.7) and the following

problem have the same optimal solution:

min
x�0

cT
1 x + dT

1 y + M⇥(x) (2.4)

s.t. A1x + B1y � b1 (2.5)

0 � x1 � 1n (2.6)

(2.7)

In [30], Bard shows that Theorem 2.7 may be used to transform (DCLBP) in a bi-level linear optimization

problem and (DDLBP) as three-level linear optimization problem. However there is no linear equivalent for

(CDLBP). These results are only applicable for binary decision variables and such reduction implies variable

transformation if the binary assumption cannot be made.

2.4.2.3 Resolution approaches for mixed-integer bi-level problems

Like single-level algorithms for integer(mixed-integer) problems, algorithms for discrete bi-level problems should

rely on the generation of bounds. As it has been shown in section 2.4.2.1, the relaxation consisting in solving

the continuous version of a integer bi-level problem may not be valid. Contrary to the convex-linear bi-level

problems, (mixed-)integer bi-level problems have less results in the literature not because they have not been

studied, but because they are strongly hard. Most of the developed algorithms are bi-level version of Branch

and Bound algorithms.

Since relaxing a discrete bi-level problem does not provide necessarily valid bounds, Wen and Yang in [372]

shifted the lower-level constraints to the upper-level problem and removed the lower-level objective function.

The optimal solution value of the resulting single-level problem constitutes a valid lower-bound (upper-bound)

when F is minimized(maximized) and may be used in a Branch & Bound procedure. The authors have shown

that the computational time grows exponentially when the number of upper-level decision variables increases

linearly. Thus, they proposed a heuristic based on a judgment index for the weighted estimated optimal so-

lution of the problem while neglecting the lower-level objective value. They also applied it for the weighted

estimated optimal solution of the problem while neglecting the upper-level objective function. However this

methodology can only solve problems where the upper-level problem has no constraints and variable are all

integers. Furthermore, the lower-level objective function should not contains any integer variables.

Bard and More in [33] developed a solution algorithm for pure binary bi-level problems with constraints at

lower-level. This algorithm is a based on branch & bound approach branching on the upper-level decision vari-

ables. In addition, the upper-level objective is replaced by the constraints F (x, y)  ↵ where ↵ is a parameter

which is successively increased. The authors claimed that this algorithm may be modified to handle integer

decision variables. In [278], Bard and More presented a Branch & Bound algorithm to solve mixed-integer bi-

level optimization problem. They called High point: the optimal solution of the continuous and relaxed bi-level

problem where the lower-level objective function has been removed. The hight point provides valid bounds

used to prune non-promising nodes. They showed that if all variables controlled by the leader are discrete, the

algorithm finds an optimal bi-level solution. They also demonstrated that it is no longer possible to prune a
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node which provides an integer solution. Indeed, the integer solution may not be a bi-level feasible solution

forcing to keep exploring the resolution tree.

A Branch and Cut version for bi-level problems has been introduced by DeNegre and Ralph in [101]. Based

on the branch and bound algorithm provided by Bard and More in [32], they added cuts instead of branching

whenever a non-feasible integer bi-level solution is found. By doing so, they no longer need to deal with non-

feasible bi-level solutions. The authors claimed that the advantage of their procedure rely on standard pruning

and branching rule applied in single-level integer optimization.

A decomposition approach based on Bender Decomposition [37] has been proposed by Saharidis and Ierapetritou

in [316]. The only restriction of this algorithm concerns the integer decision variables which should be controlled

by the upper-level decision maker. They defined the Restricted Master Problem (RMP) as a bi-level problem

without lower-level objective and constraints that involve both continuous and integer variables. The auxiliary

problem is the restriction of the original bi-level problem where all integer variables have been set. This auxiliary

problem (AP) is thus a linear bi-level optimization problem. The authors used the KKT conditions and the

active set strategy [154] to reformulate the AP in order to obtain a linear single-level problem. They use then the

methodology applied in single-level optimization consisting in adding feasibility and optimality cuts until the

RMP becomes optimal. Another Bender Decomposition has been considered by Fontaine and Minner in [131]

who first replaced the continuous lower-level problem with its KKT conditions and obtained a non-linear mixed-

integer problem. This resulting single-level problem is thus non-linear because of the complementary constraints.

To avoid the non-linearity, they added binary values indicating if the dual variables or the complementary slack

variables are equal to 0. By doing so, they can use the standard Benders decomposition developed for the linear

case.

In [236], Li and Guo considered mixed-integer bi-level problems with integer variables at lower-level. Using a

separation approach between the lower-level continuous and integer variables, they were able to transform the

mixed-integer bi-level program into a mathematical program with complementarity constraints. The authors

reported global and local minimizers that are equivalent for both programs.

Hemmati and Smith in [166] proposed a cutting algorithm for the competitive prioritized set covering problem.

This problem represents two decision makers who select items one after another. The authors relied on equalities

that support the convex hull of feasible solutions to apply cuts.

Fischetti et al. in [127] considers mixed-integer bi-level problems where integer variables can occur at both

levels. They developed a new Branch & Cut approach relying on a new class of inequalities.

Camaria et in [69] described two exact algorithms for discrete variables at both levels. The first one is a cutting

algorithm with non-linear cuts. These cuts can be reformulated as bi-level problems with integer upper-level

variables and continuous lower-level variable. Therefore each time a cut is added, a new lower-level is added to

the original bi-level problem. The second algorithm proposed by the authors is Branch & Cut algorithm taking

advantage of the geometrical properties of bi-level problems. The rational behind this idea is the introduction of

inequalities that cut o↵ the largest possible set of integer but not bi-level feasible solutions. Results reported by

the authors have shown that both approaches are faster than existing algorithms applied on the same benchmark

set.
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Table 2.4: Summary table of classical approaches for bi-level optimization

References Type of levels Type of approach section n°
[67, 43, 94, 296, 161] convex Extreme point search 2.4.1.1

[132, 31, 30, 33]
[44, 36, 187, 7, 161, 330]

convex Reformulation to single-level problem 2.4.1.2

[218, 361, 320, 122] convex Descent approaches 2.4.1.3
[2, 3, 174, 71, 11, 373] convex Penalty approaches 2.4.1.4

[245, 259, 82, 261] convex Trust-region approaches 2.4.1.5
[274, 353, 212, 210, 211] general non-convex enumeration, Branch & Bound 2.4.2

[372, 33, 278, 101] mixed-integers Branch & Bound 2.4.2

[316, 131, 236] mixed-integers
Decomposition techniques,

separation
2.4.2

[166, 127, 69] mixed-intergers
cutting algorithms,

Branch & cut
2.4.2

2.5 Metaheuristics for bi-level optimization

Bi-level optimization is a complex and challenging task that requires often strong assumptions to be e�ciently

performed. The simplest versions of bi-level problems are already NP-hard and classical resolution approaches

that we discussed in Section 2.4 do not scale when the number of decision variables increases at both levels.

The complexity induced by multiple levels makes classical approaches non-e�cient even though very important

theoretical results have been reached. For that reason, researchers turned towards metaheuristics.

Metaheuristics (e.g. genetic algorithm [169], ant colony optimization [107], particle swarm optimization [194])

are inspired by nature and have been widely used in single-level optimization cases to tackle NP-hard problems.

Gathering most of the main researchers in the field (e.g. K. Deb, El-G. Talbi), they are the spearhead of the

methodologies challenging large and complex optimization systems. Indeed for NP-hard problems and under

the assumption that P 6= NP [163], it does not exist algorithms with polynomial complexity solving each

instance to optimality. The goal is thus to determine near-optimal solutions while guaranteeing a polynomial

time complexity. Since convex bi-level problems are NP-hard contrary to their single-level equivalents, the

scope of metaheuristics has been extended.

Talbi in [350] proposed a first taxonomy to classify the di↵erent metaheuristics for bi-level optimization that

is illustrated in Figure 2.16. We extend this taxonomy with a new category: “Lower-level approximation

approaches” which relies on machine learning and approximation techniques.

Metaheuristic strategies

Co-evolutionary
approaches

section 2.5.3

Single-level
transformation

approaches

section 2.5.2

Nested
approaches

Multi-criteria
approaches

section 2.5.4

Lower-level
approximation

approaches

section 2.5.5
section 2.5.1

Figure 2.16: Extended bi-level metaheuristics taxonomy
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2.5.1 Nested approaches

2.5.1.1 Description

Nested optimization approaches (see Figure 2.17) sequentially solve the upper-level and the lower-level problems.

Di↵erent metaheuristics and exact optimization algorithms may be combined to give birth to a large set of hybrid

algorithms. Generally, the choice of an algorithm for each level strongly depends on the nature of this same

level. The first classification proposed by Prof. E-G Talbi in [350], the nested approach can be divided into 2

main categories of algorithms: Repairing strategy and Constructing strategy. In Repairing strategy, the lower-

level problem is considered as a constraint which can be violated. The goal is thus to improve the objective

value of the upper-level while trying to repair each time solutions being not optimal for the lower-level problem.

The Constructing strategy sequentially solves the upper-level problem then the lower-level problem to increase

both objectives. Both strategies are very equivalent since each upper-level decision x should be accompanied

by the resolution of the lower-level problem.

Initialization

Upper-level improvement

Evaluation of F(x,y)

Stop ?

Initialization

Lower-level improvement

Evaluation of f(x,y)

Stop ?

x

!"

End

Upper-level problem

Lower-level problem

yes

no

no

yes

Figure 2.17: Repairing strategy

Wang et al in [273] proposed a nested bi-level metaheuristic which is fundamentally an hybrid version to solve

bi-level linear programming problems. Improvements at upper-level are realized with a genetic algorithm while

a standard linear programming solver is in charge of the lower-level. In [365], the same authors extends their

approach to deal with linear-quadratic bi-level programming problems.

In [62], Calvete et al. tackled a continuous-linear bi-level problem by using genetic algorithm (GA). Each en-

coded solution is an extreme point of S = {(x, y) 2 X⇥Y : G(x, y) � 0, g(x, y) � 0}. They applied two di↵erent

crossovers: the first one may generate o↵springs which are not ”basis”(extreme points) while the second keeps

the basis property of the parent. The upper-level objective function is also penalized by an additional term

indicating whether or not the solution is optimal for the lower-level problem.

In order to solve transit scheduling and toll-setting problems, Shepher and Sumalee in [329] and Zhang in [398]

chose a genetic algorithm at upper-level to determine prices while solving the lower-level assignment problem

with classical approaches.



Bi-level Optimization: state of the art 40

Dimitriou et al. in [103] coped with the problem of road network designing and pricing. The upper-level

decision maker is typically the system operator of the roads and the lower-level decision maker represents a set

of customers. The authors applied a genetic algorithm to the upper-level problem while solving the lower-level

using a path enumeration algorithm.

Particle swarm algorithms [143, 225, 239] have been often employed to tackle bi-level problems. Their particular

structure (global and local search) is particularly suitable for solving such problems.

In [238], Li and Wang investigated nonlinear bi-level programming problems in which the lower-level objective

function is a�ne. Using a specific decomposition scheme for the lower-level problem, the authors tackled these

problems by combining a genetic algorithms and non-linear optimization techniques.

Küçukaydin et al. in [228] developed an hybrid tabu search algorithm in order to solve a competitive bi-level

facility location model. The modified tabu search algorithm is combined with a gradient ascent algorithm to

solve the upper-level problem while the lower-level problem is solved with a branch & bound algorithm.

In [367], Wang and Dang proposed a nested optimization approach to tackle nonlinear bi-level programs where

the upper-level problem is non-di↵erentiable and the lower-level problem is non-convex. The upper-level algo-

rithm is mainly a genetic algorithm with modified evolutionary operators. A deterministic approach is utilized

at lower-level.

In [63], Calvete et al. considered a production-distribution problem in which the upper-level problem is a

Mutiple Depot Vehicule Routing Problem (MDVRP) and the lower-level problem is a transportation problem.

They applied an Ant Colony Optimization (ACO) algorithm to solve the upper-level problem while solving

the transportation problem at lower-level. Ant Colony Optimization algorithms are e�cient for solving net-

work problems, several works [14, 61] considered combinations of ACO and specialized metaheuristic to tackle

production bi-level bi-level production-planning problems. In [342], Scrivastava et al. considered a hybrid

metaheuristics at upper-level while considering Petri Net at lower-level to minimize the waiting time of vehicle

at tra�c signal to improve road network tra�c.

Recently, Islam et al. in [175] proposed a nested evolutionary algorithm using di↵erential evolution at both

levels. This approach has been mainly designed to tackle multi-objective bi-level problems.

2.5.1.2 Limitations

Despite the numerous works in the literature, most of the nested approaches described in this section are not

suitable for large scale problems. Nested optimization is time-consuming especially when two population-based

metaheuristics [349] are sequentially applied on the two levels. The e�ciency of nested optimization approaches

strongly relies on the di�culty to approach the lower-level problem. For linear and convex lower-level problems,

fast and accurate resolution approaches exist. Nevertheless when no assumptions can be made, the repetitive

lower-level optimizations quickly become unsuitable in practice.

2.5.2 Single-level transformation approaches

2.5.2.1 Description

The concept behind single-level transformation is closely related to the one addressed by classical methods and

discussed in Section 2.4.1.2. The reformulation of bi-level to single-level optimization problems strongly relies
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on the properties of the lower-level problem. When strong assumptions can be made such as convexity and

twice-di↵erentiability, the approaches described in section 2.4.1.2 can be applied. Therefore, several works made

use of the KKT conditions (see Figure 2.18) to obtain a problem with a single-level. This resulting problem is

generally non-convex and di�cult to tackle. This is the reason why the applicaton of metaheuristics is relevant

in this context. However such transformations limit the scope of bi-level problems that can be considered. For

example, discrete and combinatorial bi-level problems stay out of this scope. Despite this downside, several

works in the literature have taken advantage of reformulation techniques.

Hejazi et al in [165] reduced the linear bi-level to a single-level linear problem. They solved the resulting

problem by applying a genetic algorithm that encodes extreme points.

KKT reformulation has been taken into consideration by Wang et al in [367] before applying a dedicated

constraint handling scheme to solve the resulting single-level optimization problem. The same authors extend

their approach in [369] to handle directly non-convex lower-level problem.

Jiang et al. employed particle swarm algorithms in [183] after reformulating bi-level problems into non-linear

single-level problems with complementary constraints.

Similarly, Li and Wang in [237] turned their attention to fractional linear bi-level programming. As usual, they

first utilized the lower-level optimality conditions to cope with the nested bi-level structure.

Upper-level problem

Lower-level problem

KKT conditions

Single-level problem with non-convex complementary slackness constraints
min(µi, gi(x)) = 0 8i 2 {1, ..., q}

Figure 2.18: Reformulation of the lower-level problem using KKT conditions

In [283], the authors faced the same issue as for a classical approach. They reformulated the linear bi-level

problem as a linear combinatorial problem with single level. In order to get rid of the binary variables used to

linearize the complementary constraints, they evolved a population of binary individuals intended to replace

these variables in the linear combinatorial problem. Evaluation of each individual is performed by assigning the

binary values to the variables and by solving the resulting linear and continuous model with a linear solver.

A dual temperature simulated annealing approach has been considered by Sahin and Ciric in [317]. The authors

demonstrated their approach with di↵erent categories of bi-level problems (e.g. linear, nonlinear, mixed integer

nonlinear bilevel programming problems). In [137], Friesz et al tackled the equilibrium network design problem

using a simulated annealing algorithm as well.

Recently, Sinha et al in [339] reduced bi-level into single-level problems using approximate KKT conditions.

Based on the work of Dutta et al. in [114], the authors relied on the KKT proximity measure obtained
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by relaxing the complementary slackness and equilibrium equations of the KKT conditions. The authors

successfully embedded this measure inside an evolutionary algorithm.

Along similar lines of using KKT conditions, Ren and Wang in [310] solved bi-level linear programming with

fuzzy coe�cients in both objective functions. After KKT reformulation, the single-level optimization problem

is modified into a multi-objective optimization problem which is then optimized with global criteria method.

2.5.2.2 Limitations

As aforementioned, reformulation approaches requires strong assumptions that cannot be made for many practi-

cal and realistic problems. In addition, the resulting problems are still very challenging even if they contain only

a single level. One should also not forget that KKT conditions may induce some non-convex constraints/con-

ditions to handle inequalities in the original problem. Most of the works in the literature applied an additional

mechanism to replace these non-convex constraints (see Figure 2.18) by adding binary variables. Therefore,

this category of approaches is only suitable when the number of constraints are limited.

2.5.3 Co-evolutionary approaches

2.5.3.1 Description

Coevolutionary algorithms are special kind of decentralized algorithms based on independent populations evolv-

ing apart. They may appear similar to the approaches described in the previous section but they do not have

any nested design. Multiple populations explore their own decision space and exchange information (see Fig-

ure 2.19). This exchange can be realized by combining full or partial solutions. Co-evolution occurs when

intimate species influence each other’s evolution. Several co-evolutionary models have inspired the evolution-

ary computing field. The predator/prey model is a famous example. We generally distinguish two classes of

co-evolutionary algorithms: competitive and cooperative. Competitive co-evolution has been first proposed by

Hillis in [168] for sorting networks. Then several applications stemmed from his results and notably in game

theory where players often compete as in bi-level optimization. Competition focuses on the abilities of species

to evolve and develop new skills to outperform the other species during a so called “armed race”. On the

contrary, cooperative co-evolution relies on the skills emerging from species tending to collectively work to solve

a common problem. The seminal work of Potter and De Jong in [303] has shown how cooperative co-evolution

can be employed to optimize multi-dimensional functions. Few works in the literature tried to tackle bi-level

optimization problems by using coevolutionary metaheuristics. The algorithm BIGA (Bi-level Genetic algo-

rithm), designed by Oduguwa and Roy and described in [288], is the first coevolutionary algorithm developed

to handle nested optimization problems. Although its name does not put the emphasis on the coevolutionary

aspect, BIGA uses a coevolutionary operator aiming at synchronizing both populations, one for each level. The

authors described it as a nested optimization algorithm since both problems are iteratively solved. However

the presence of the coevolutionary operator shows that BIGA operates an exchange of information between

both populations. BIGA can be considered as the first coevolutionary bi-level algorithm. Contrary to BIGA,

the algorithm COBRA introduced in [235] by Legillon et al. does not work iteratively and follow the scheme

depicted in Figure 2.19. Two independent populations represent respectively the upper-level and the lower-level

problems which evolve independently from each other. The coevolutionary operator ensures that the bi-level

hierarchical structure is satisfied. Finally, a more recent approach, CODBA, proposed in [73], aims at gener-

ating from the upper-level solutions many lower-level populations. The authors then evaluate in parallel each

sub-populations. Each individual of these lower-level populations mates using crossover with the best archived
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lower-level solutions until no more improvement occurs at lower-level. Although the authors categorized their

algorithm as a bi-level co-evolutionary approach, the fact that it relies on a single thread reduce it to a simple

nested optimization algorithm.
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Upper-level improvement
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Stop ?

End

Upper-level problem

yes

no

Initialization

Lower-level improvement

Evaluation of f(x,y)
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Lower-level problem

no
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End
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Figure 2.19: Coevolutionary strategy

2.5.3.2 Limitations

To the best of our knowledge, all bi-level co-evolutionary algorithms considered in the literature rely on two

populations. Each population attempts to evolve independently the upper-level and lower-level decision vari-

ables. Trying to optimize independently both levels can raise many issues. For example, it is possible that

pairing two level decisions x and y provides non-feasible solutions. In the light of the few identified works on

bi-level co-evolution, we need to temper these limitations since it exists many kind of co-evolution. This work

for example demonstrates how we can cope with the strong dependent epistatic links between both levels.

2.5.4 Multi-criteria approaches

2.5.4.1 Description

A bi-level program cannot be directly reformulated as a bi-objective program. Indeed as depicted in Figure

2.20, the optimal bi-level solution (x = 4, y = 4) is dominated by any point at the intersection between the

constraint set and the polar cone formed by �F and �f . Marcotte and Savard [262] have demonstrated that

there is no guaranty of Pareto optimality for a bi-level optimal solution except if both objective functions

are collinear. To cope with this issue, Fliege and Vicente in [128] employed a di↵erent strategy. They have

shown that there exists an order relation such that bi-level optimal solutions become non-dominated points

with regards to this order relation. For this purpose, they assume that the lower-level problem is convex and

that f ,g are twice-di↵erentiable. Let us define two bi-level solutions u = (ux, uy) and v = (vx, vy). ux(vx)

represents upper-level variables while uy(vy) stands for the lower-level variables. The order of relation proposed

in [128] is described in Equations 2.8. The authors a�rmed that this new order relation is hard to work with

and proposed to take advantage of the convexity and di↵erentiability assumptions made before. Therefore,

they replaced uy 2 arg min f(ux, .) by ||D2f(ux, uy)|| < 0 where D2f(ux, uy) denotes the gradient of f with

respect to uy. Further inquieries on the relationship between bi-level and multi-criteria problems can be found

in [301, 28, 371, 315].
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u � v :, [ux = vx and f(u)  f(v)] (2.8)

or

[uy 2 arg min f(ux, .) and F (u)  F (v)]
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Figure 2.20: Example of bi-level optimal but not Pareto optimal solution

The application of multi-objective metaheuristics on bi-level problems derives directly from the ability to find a

new relation of order. Russka et al. investigated in [314] the relation between bi-level optimization and multi-

criteria optimization in order to construct multi-objective evolutionary bi-level algorithms. Their approach does

not require any regularity assumptions and relies on some partial order compatible with bi-level optimization.

2.5.4.2 Limitations

As it can be observed, few approaches have been designed to reformulate a bi-level problem into an equivalent

multi-criteria problem. The success of such an approach strongly depends on the capacity to ensure that the

optimal bi-level solutions belongs to the optimal Pareto front of the resulting multi-criteria problem. If this

occurs, any multi-objective evolutionary algorithms could be taken into consideration. For additional details

on single-level and multi-objective evolutionary algorithms, the readers may refer to [397, 400].

2.5.5 Lower-level approximation approaches

2.5.5.1 Description

Most of the approaches discussed so far attempted to tackle the nested structure of bi-level problems by re-

formulating the lower-level or separating both levels. This section introduces a recent category of approaches

adopting a new strategy. Instead of questioning the structure, they attempt to reduce the evaluation cost of

lower-level instances generated during optimization. For this purpose, they focus on meta-modeling approaches

[364] where evaluation functions are very expensive. These approaches rely on surrogate models which aim

at approximating either the lower-level variables (IR) or directly the upper-level solution value for solutions
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belonging to IR. Indeed, it can be valuable to avoid explicit optimization of a lower-level instance for a given

upper-level decision. Approximation of the  (x) could drastically reduce the expensive lower-level optimiza-

tions. Under Lipschitz continuity assumption, two close upper-level decisions x and x0 can be assumed to lead

to two close rational lower-level decisions ŷ and ŷ0. This methodology has been considered by Sinha and Deb

in [332] with the recent bi-level evolutionary algorithm based on quadratic approximations (BLEAQ). This

algorithm tries to approximate the lower-level decision variables with regards to the upper-level decision vari-

ables in order to reduce the number of lower-level optimizations. In [200] and chapter 4, we describe another

approach proposed in the context of this PhD work. It has been designed to approximate directly the upper-

level objective value instead of each lower-level decision variable separately. Later on, Sinha et al. proposed

an improved version of their BLEAQ algorithm [335, 336] to approximate the lower-level objective function

as well. Finding the most accurate surrogate model is generally a real challenge. Therefore, Islam et al. in

[176] investigated the use of multiple surrogate models. Their work is based on Kriging techniques [305] and

Response Surface methods [156]. In [15], Angelo et al. adapted a nested optimization approach based on two

di↵erential evolution algorithms to embed a surrogate model. This hybrid approach has been designed to reduce

the number of lower-level optimizations and have shown promising results.

Initialization

Upper-level improvement

Evaluation of F(x,y)

Stop ?

End

Upper-level problem

yes

no

Create/Update  surrogate 
model(s) 
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Surrogate lower-level problem

Error < ! ?
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yes
Queries

Responses

No cost

Full cost

Figure 2.21: Approximation of the lower-level with surrogate(s)

2.5.5.2 Limitations

Despite their interesting work-flow and results, methods based on lower-level approximation have only been

designed to cope with continuous bi-level optimization problems. The approximation of the lower-level decision

variables lead to a multivalued function which is not trivial to deal with. An alternative consists in constructing

as many surrogate functions as lower-level decision variables. Sinha et al. [332] applied this option and

independently estimated each lower-level variable. This independence assumption can be ine�cient when

dealing with large-scale bi-level problems.
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Table 2.5: Summary table of the existing Bi-level metaheuristics

References Type of approach section n°
[273, 62, 329, 398, 103, 143, 225]

[239, 238, 228, 367, 63, 14, 61, 342, 175]
Nested approaches 2.5.1

[165, 367, 183, 237, 283, 317, 137, 339, 114, 310] Single-level transformation approaches 2.5.2
[288, 235] Co-evolutionary approaches 2.5.3

[262, 128, 301, 28, 371, 315] Multi-criteria approaches 2.5.4
[364, 332, 200, 335, 336, 176, 305, 156, 15] Lower-level approximation approaches 2.5.5

2.6 Conclusion

In this chapter, we have introduced the main properties of bi-level problems and their challenging nested

structure. Deep studies on these problems have shown strong NP-hardness even for the simplest version,

i.e., linear levels. We also highlighted the most relevant relationships with other well-known domains (e.g.

game theory, set-valued optimization, ...). Several strategies have been designed to solve small scale and

mostly continuous bi-level problems. Most of the time, they rely on some kind of reformulation when strong

properties can be assumed. Since the last decade, numerous metaheuristics have been introduced to tackle

complex bi-level problems. Nevertheless, the nested structure has some disastrous e↵ect on the performance of

evolutionary algorithms. Therefore, researchers conceived new hybrid concepts such as meta-modeling to avoid

expensive computations. Unfortunately, meta-modeling literature o↵ers solutions only for continuous bi-level

optimization.
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3.1 Introduction

Biomedical knowledge grows in complexity, and becomes encoded in network-based repositories, which include

focused, expert-drawn diagrams, networks of evidence-based associations and established ontologies. Combining

these structured information sources is an important computational challenge, as large graphs are di�cult to

analyze visually. Visual exploration of biomedical knowledge repositories is important for the expert to handle

the increasingly complex content. A significant amount of this content is encoded as graphs, representing known

or inferred associations between bioentities of various types. Canonical pathway databases like KEGG [191],

Reactome [119] or Wikipathways [227] provide small-scale, manually drawn diagrams of molecular mechanisms.

Another type of repositories, like STRING [348], NDex [304] or SIGNOR [300], relies on large databases of

associations, which are queried and visualized as graphs. These graphs are procedurally generated and rely on

automated layout algorithms.

An important kind of knowledge repository combines the properties of pathway databases and association

repositories. These are middle to large size molecular interaction diagrams, established in the context of

systems biomedicine projects. Such diagrams are in fact knowledge maps, covering di↵erent areas, from basic

molecular biology [287, 286, 70, 188, 282] to various diseases [276, 267, 139, 226]. Especially in the area of

human diseases, they o↵er contextualized insight into interactions between numerous convoluted factors, like

genetic profile, environmental influences or e↵ects of medications.

In order to e�ciently support health research, these knowledge maps have to be useful and interpretable for

domain experts, like life scientists or medical doctors. This is a challenge, as the knowledge mapped into such

diagrams is di�cult to explore because of their size and complexity. This is well reflected by the fact that they

need dedicated software to be used e�ciently [129, 47, 147]. Recently proposed solutions suggest coloring of

entire modules in such diagrams using experimental datasets [47, 319]. However, they rely on existing definitions

of modules, introduced when the maps were drawn. New solutions for aggregating information are needed to

enable the discovery of new knowledge from these established repositories.

In this chapter, we investigate knowledge discovery in manually curated and annotated molecular interaction

diagrams. To evaluate similarity of content we use: i) Euclidean distance based on expert-drawn diagrams, ii)

shortest path distance using the underlying network and iii) ontology-based distance. We employ clustering

with the above mentioned metrics used separately and in pairwise combinations. We propose a novel bi-

level clustering approach together with an evolutionary algorithm for informative combination of distance

metrics. We compare the enrichment of the obtained clusters between the solutions and with expert knowledge.

Moreover, we calculate the number of Gene and Disease Ontology terms discovered by di↵erent solutions, as

an independent measure of cluster quality and assess the relevance of this novel clustering model.

The remainder of this chapter is organized as follows. Section 2 defines the notion of cluster analysis and

provides an overview of the existing clustering approaches in the literature. Then section 3 introduces the novel

bi-level clustering optimization model and its mathematical formulation. A hybrid and parallel evolutionary

algorithm is proposed to solve this new model in section 4. Sections 5 introduces metrics and data considered

in the numerical experiments performed in section 6. Finally, the last section concludes this work and propose

future investigations.
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3.2 Cluster Analysis

3.2.1 Definition

With the emergence of online visual repositories like disease maps [139, 226] or metabolic maps [284], it becomes

important to provide users with high-order interpretation of the content. As these repositories are large and

densely networked diagrams, their visual examination, especially for discovery and data interpretation purposes,

is a challenging task. Clustering approaches are a plausible methodology to address the challenge of visual

exploration and understanding of large, complex networks. Clustering or Cluster Analysis (CA) is an

unsupervised learning approach that consists in regrouping data into clusters based on a similarity measure.

Extensively employed in Data Mining, clustering is a challenging knowledge discovery approach that does no

rely on any apriori information. This is the reason why it is considered as an “unsupervised” approach. The

literature lists 3 main categories of clustering : hard, soft and fuzzy. Hard clustering of a n-dimensional dataset

D = {d1, d2, ..., dn} is a collection C = {C1, C2, ..., Ck} of k subsets where
T
i

Ci = ; and Ci \Cj = ; 8i 6= j. In

other words, hard clustering is a partitioning of the dataset. In a soft clustering, an object di may belong to

several subsets of the collection D. It is basically a covering of all objects where each object belongs at least to

one subset. Contrary to the two previous clustering , a fuzzy clustering describes the degree of memberships in

all subsets of D.

3.2.2 Classical approaches

CA enables to discover relations between data points by grouping them according to a similarity metric. It

is a very important tool in biomedical data interpretation, as it allows to explore and mine high-dimensional

datasets. As a number of CA methods are summarized and compared in a recent review [377], here we would

like to focus on an important aspect of the problem, which is the application of multiple similarity measures,

in particular for graphs.

The literature is rich with clustering algorithms [381]. Since planar clustering is NP-hard [256], the use of

exact optimization solvers is clearly not suitable for large datasets. Thus, most clustering approaches are based

on heuristics, including broadly recognized methods like k-means [151], PAM [380] and hierarchical clustering

[186]. These, and more sophisticated approaches, rely on the notion of similarity between clustered objects,

obtained using various distance metrics [173]. It is worth mentioning that although di↵erent similarity metrics

in clustering were evaluated on the same datasets [148, 246], their combination for improved clustering accuracy

was proposed only recently [89].

Distance functions can be used to define a grid in the data space used by grid clustering algorithms [387],

detecting cluster shapes with a significant reduction of the computational complexity when considering large

data sets. In turn, distribution models [384] estimate density for each cluster based on the distance between

data points, allowing statistical inference of the clustering. An interesting approach is the Formal Concept

Analysis [343]. Here, a concept is an encoding extending the definition of distance or similarity. Generally,

concepts allow to represent clusters with a set of satisfied properties, extending the criterion beyond distance.

For instance, its application to disease similarity analysis [155] introduced a bipartite graph of disease-gene

associations to define clusters of similar diseases.
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3.2.3 Evolutionary Clustering (EC)

As these heuristics may be trapped in local optima, alternatives based on evolutionary computing emerged

recently. Evolutionary algorithms have shown their abilities to overcome the drawbacks encountered in classical

clustering algorithms that can be trapped in local optimal solutions.

Figure 3.1 depicts a general taxonomy of EC algorithms. 3 mains approaches emerge from the literature.

Numerous contributions have been done in hard clustering whether the number of cluster k is known apriori or

not. From binary to real encoding, di↵erent representations have been adopted to model clustering solutions.

Medoid-based [328, 224], centroid-based [24, 270] and label-based representations [251, 280] are certainly the

most encountered in the literature since they do not need extra computations and can be considered as direct

encoding for the clustering problem. Nonetheless, more complex representations have been developed when

dealing with a variable number of clusters. For example, in [254], the authors designed an evolution algorithm

called EvoCluster in which each gene represents a cluster with all necessary information to discover the elements

belonging to it. From the authors point of view, such an encoding has a real advantage over the classical encoding

that can be mostly found in many works. However, its specificity requires the definition of new evolutionary

operators. Several works [85, 171, 170] adopted this encoding and suggested to store the number of clusters in

the genotype. Additionally to the EvoCluster encoding scheme, a graph-based representation has been proposed

in [160] that is particularly well-suited for multi-objective clustering.

Concerning overlapping clustering, many investigations have focused on approach evolving fuzzy partitions.

As for hard clustering, some contributions [233, 394] assume that the number of clusters has been already

determined while more recent publications [293, 298] strengthened the determination of the optimal number

of clusters. Regardless of the fixed or variable number of clusters, evolutionary fuzzy clustering algorithms

are mostly adaptations of the approaches designed for hard clustering. The fact that each element belongs to

each cluster with a certain a�nity enforces the choice of a matrix-based representation. Evolutionary fuzzy

clustering has a broad scope of application going from pattern classification to dynamic system identification.

Last but not least, multi-objective evolutionary algorithms extends the approaches described previously. They

can be selected for hard and overlapping clustering. It turns out that clustering is naturally bi-objective.

Indeed, minimizing the number of clusters and the distance inside each element to their cluster representative is

conflicting. This intra-class distance is minimal when the number of clusters is equal to the number of data while

it reaches a maximum when k = 1. Therefore, a multi-objective evolutionary clustering algorithm [25] does not

provide a single clustering but a set of alternative clusterings that does not “dominate” each other in terms of

size and intra-class distance. In [160], the authors used as fitness vector the compactness and the connectedness

of clusters. While compactness is closely related to the notion of intra-class distances, connectedness measures

the degree of neighbor objects placed in the same cluster. Both objectives are conflicting and the authors

justified their use by claiming that they permit to obtain a stable number of clusters. This property avoids the

convergence to trivial solutions such as k = 1 or k = N with N the number of data. On a similar note, intra-

class and inter-class distances have been proposed as objectives in [312]. Notice that the inter-class distance is

maximal when the intra-class is null.

At this point, we would like to refer the readers to the following surveys [172, 383, 182, 179] for more details

on the EC approaches that has been described in this section. Finally, let us point out some other bio-inspired

approaches and, more broadly, metaheuristics have been successfully taken into account to tackle clustering

problems. This is the case for Particle Swarm Algorithms [355, 88], Ant Colony Algorithms [327, 399] and

Variable Neighborhood Search [8, 232].
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Figure 3.1: Evolutionary clustering taxonomy

3.2.4 Graph clustering in biomedicine

In biomedical research, disease mechanisms are often represented as networks of interactions on di↵erent scales

- from molecular to physiological. These networks are in fact graphs, which can reach substantial size and

complexity, as our knowledge on disease mechanisms expands. In order to make accurate interpretations using

this interconnected body of knowledge, new approaches are needed to visualize meaningful areas and interactions

in large biomedical networks.

Visual exploration of complex graphs requires certain aggregation of information about their content and

structure, providing the user with an overview of dense areas of the graph, and their relationships. This task

can be facilitated by means of graph clustering. Graph clustering groups vertices or edges into clusters that

are homogeneous in agreement with a certain predefined distance function. An example is the application

of local neighborhood measures to identify densely connected clusters in protein-protein interaction networks

[20, 209]. Another approach is to construct clusters based directly on the global connectivity of the graph to

identify strongly connected subgraphs [322, 164]. In these approaches, however, the visualization component

of graph exploration is outside of the scope of analysis. Moreover, focusing on graph structure alone does not

benefit from additional information on edges and vertices, available via various bioinformatics annotations. For

instance, eXamine [104] uses annotations to improve the grouping of network elements for better visualization,

while MONGKIE [180] bases on clustering graph-associated ’omics’ data to improve the visual layout. Another

interesting method, Network2Canvas proposes a novel lattice-based approach to visualize network clusters

enriched with gene-set or drug-set information. Importantly, the approaches discussed above focus either

on large networks without a visual layout (protein-protein interaction networks) or on small-scale molecular

diagrams. However, to the best of our knowledge, the challenge of clustering of large, manually curated molecular

interaction diagrams [139], remains unaddressed.

In this chapter, we focus on graph clustering of large repositories of molecular interaction networks. As these

carry not only the information about their graph structure, but also information about manual layout and

annotation of the elements, we decided to explore the simultaneous use of multiple distance functions to create

the clusters. For this purpose, we propose a novel bi-level clustering optimization problem that is a reformulation

of the well-know uncapacitated k-median problem to a two-levels nested problem.

3.3 A novel bi-level clustering optimization model

3.3.1 A classical mathematical formulation

As discussed in the previous sections, it exits many clustering approaches. In this chapter, we consider medoid-

based clustering where medoids are cluster representatives and clusters are built around them. Medoids provide
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important information concerning a cluster. For instance, they allow to obtain a median element that can

highlight the di↵erences between clusters. Generally, clustering based on k medoids can be modeled as an

uncapacitated k-median problem (UKMP) that can be formalized as follows: “Given a metric space M, a set of

clients C 2M , and a set of facilities F 2M such that |M | = |F [ C|= n, open k facilities in F that minimize

the sum of distances from each client to its nearest open facility” . Clients play the role of elements to be

clustered while medoids can be assimilated to facilities. The only di↵erence lies in the fact that medoids can be

both elements and cluster representatives. Closely related to the well-known “facility location problem”, the

general mathematical model of the UKMP is depicted by Program 3.1. We distinguishes two types of decision

variables:

xjj =

(
1 if element j becomes a cluster representative, i.e, a medoid

0 else.

xij =

(
1 if element i is assigned to cluster represented by medoid j

0 else.

The objective function F represents the total distance from elements to their respective medoids:
P
i

P
j

dijxij

with regards to a distance matrix D. dij is the distance between element i and element j. The set of constraint

(3.2) expresses that each element should be solely assigned to a single cluster. The set of constraints (3.3) ensures

that an element j becomes a cluster representative (medoid) if some elements are assigned to it. Constraint

sets (3.2) and (3.3) are specific to the “facility location problem”. The last constraint really characterizes the

UKMP. It states that the number of medoids and thus clusters should be equal to k.

(UKMP) min
X

i

X

j

dijxij (3.1)

s.t.
X

j

xij = 1 8i 2 {1, ..., N} (3.2)

xij  xjj 8i 2 {1, ..., N} 8j 2 {1, ..., N} (3.3)
X

j

xjj = k (3.4)

xij 2 {0, 1} (3.5)

Program 3.1: The uncapacitated k-median problem (UKMP)

The k-median problem, a fortiori the UKMP, has been proven NP-hard by Kariv and Hakim in [192] using a

reduction of the dominating set problem.

3.3.2 Decomposition of the UKMP into a two-level problem

Medoid-based clustering algorithms have generally two sequential phases that update medoids and then assign

each elements to the cluster with the closest medoid. These two phases are generally repeated until the

algorithm convergence and the update of the medoids does not conduct to a drop of the fitness function value.

As an example, we can cite the k-medoid algorithm in [297] which is the counterpart of k-means when cluster

representatives should be elements from the dataset. Its pseudo-code is depicted by Algorithm 1. Even though

this k-medoid algorithm is an heuristic, it highlights a very interesting property: clustering models can be
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naturally decomposed into two nested optimization problems. The question would be now to find k optimal

medoids knowing that the assignments to these medoids should be optimal in terms of total intra-class distance.

Algorithm 1 Pseudo-code for the k-medoids version implemented in [297]

1: Initialize medoids by randomly peaking k elements in the dataset
2: Assign each element to the closest medoid
3: while Total intra-class distance decreases do
4: for each cluster do
5: Select a new medoid minimizing the total intra-class distance
6: end for
7: Assign each element to the closest medoid
8: end while
9: return population

Mathematically speaking, we can reformulate Program 3.1 as a two-level program by first dividing the decision

variables into two sets as follows:

1. {x11, xjj , ..., xNN} representing the selection variables for the medoid candidates

2. {xij : i 6= j, i 2 {1, ..., N}, j 2 {1, ..., N}} representing the assignment variables for the elements to be

clustered

Then Program 3.1 can be reformulated following the next steps:

(UKMP )

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

min
X

i

X

j

dijxij

s.t.
X

j

xij = 1 8i 2 {1, ..., N}

xij  xjj 8i 2 {1, ..., N} 8j 2 {1, ..., N}
X

j

xjj = k

xij 2 {0, 1}

⌘ (UKMP )0

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

min
X

j

djjxjj +
X

i

X

j:i 6=j

dijxij

s.t.
X

j

xij = 1 8i 2 {1, ..., N}

xij  xjj 8i 2 {1, ..., N} 8j 2 {1, ..., N}
X

j

xjj = k

xij 2 {0, 1}

⌘ (UKMP )00

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

min
X

j

djjxjj +

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

min
X

i

X

j:i 6=j

dijxij

s.t.
X

j

xij = 1 8i 2 {1, ..., N}

xij  xjj 8i 2 {1, ..., N} 8j 2 {1, ..., N}

xij 2 {0, 1}

s.t.
X

j

xjj = k

xjj 2 {0, 1}
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We can easily observed that the original (UKMP ) can be divided into two problems. In fact such a decom-

position is clearly related to Bender’s decomposition [37] and has been discussed in section 2.3.5.6. This is

a kind of “divide & conquer” strategy that permits to separate the original problem into smaller but nested

sub-problems. The (UKMP )00formulation can be further improved to obtain a more general two-level model

as illustrated by (UKMP )000.

(UKMP )000 ⌘

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

min
X

j

djjxjj +
X

i

X

j:i 6=j

dij x̂ij

s.t.

{x̂ij : i 6= j} 2

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

argmin
X

i

X

j:i 6=j

dijxij

s.t.
X

j

xij = 1 8i 2 {1, ..., N}

xij  xjj 8i 2 {1, ..., N} 8j 2 {1, ..., N}

xij 2 {0, 1}
X

j

xjj = k

xjj 2 {0, 1}

Since djj = 0 8j 2 {1, ..., N}, (UKMP )000 can be finally written as follows:

(UKMP )000 ⌘

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

min
X

i

X

j:i 6=j

dij x̂ij

s.t.

{x̂ij : i 6= j} 2

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

argmin
X

i

X

j:i 6=j

dijxij

s.t.
X

j

xij = 1 8i 2 {1, ..., N}

xij  xjj 8i 2 {1, ..., N} 8j 2 {1, ..., N}

xij 2 {0, 1}
X

j

xjj = k

xjj 2 {0, 1}

(3.6)

(3.7)

(UKMP )000 is strictly equivalent to the original version that has not been decomposed. We have now two

nested problems, i.e., a mathematical problem constrained by another one. The outer problem determines first

the medoids by setting all variables xjj that are now parameters for the inner problem. The latter, based on

the provided medoids, determines the optimal assignment of elements to clusters by setting the variables x̂ij .

Notice that the structure of the inner problem looks very familiar. Indeed, it is a “facility location problem”

except that xjj 8 j 2 {1, ..., N} are not variables but parameters. In such a case, constraint (3.6) can be

removed because it is either redundant if xjj = 1, i.e, xij  1 or it forces some assignment variables to become

0, i.e, xij  0. Let us take an example in order to illustrate our last remark. Suppose without lost of generality

that k = 2 with x11 = 1, xNN = 1 and xjj = 0 8 j /2 {1, N} and let us inject this information into the inner

problem.
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{x̂ij : i 6= j} 2

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

argmin
X

i:i 6=1

di1xi,1 +
X

i:i 6=N

diNxi,N

s.t.

xi1 + xiN = 1 8i 2 {1, ..., N}
xi1  1 8i 2 {1, ..., N}
xiN  1 8i 2 {1, ..., N}
xij  0 8i 2 {1, ..., N}, 8j /2 {1, N}
xij 2 {0, 1}

⌘

8
>>>>><

>>>>>:

argmin
X

i:i 6=1

di1xi,1 +
X

i:i 6=N

diNxi,N

s.t.

xi1 + xiN = 1 8i 2 {1, ..., N}
xij 2 {0, 1} 8i 2 {1, ..., N}, j 2 {1, N}

Program 3.2: Inner problem parametrized with x11 = 1, xNN = 1 and xjj = 0 8 j /2 {1, N}

Let us focus on Program 3.2 who describes the inner problem after setting the example. Although the inner

problem looks originally like a “facility location problem”, the fact that all variables xjj 8 j 2 {1, ..., N} are

parameters simplifies greatly the problem. Indeed the search space is drastically reduced going from N2 + N

to k ⇥ N which represents k
N+1 ⇤ 100 percent of the original number of variables. Imagine that the dataset

to be clustered has 100 elements, i.e., N = 100 and that we wish two clusters, i.e.,k = 2. After setting the

medoids, the inner problem search space only contains 1.98 % of all the initial variables. Notice also that the

parametrization of the inner problem with the medoids changes its type. Indeed, we are not dealing anymore

with a “facility location problem” but with a simple assignment problem. This should not be a surprise since

our first assumption was to separate medoid choices from element assignment. In fact, the parametrized inner

problem is an assymetric assignment problem since it restricts all elements from the dataset to belong to a

single cluster while making no restriction on the size of the clusters. This decomposition scheme leverages

a very interesting property. Even if an optimization problem such as the (UKMP ) is NP-hard, it maybe

possible to decompose it into several sub-problems. Some of these sub-problems may be solved in polynomial

time. Indeed, the parametrized inner problem of (UKMP ) is clearly polynomial. To prove it, we will show

that its coe�cient constraint matrix is “totally unimodular”.

Definition 3.1. (Unimodularity)

A square matrix whose determinant is 0, 1, or -1 is called unimodular. A matrix M is totally unimodular (TU)

if the determinant of every square submatrix of M has value 0, 1, or -1.

Theorem 3.2. (Su�cient Condition for TU)[323]

A m⇥ n matrix M is totally unimodular if the following conditions hold:

1. Every element of M is 0, 1, or - 1.

2. Each column of M contains at most two nonzero elements.

3. The m rows of M can be partitioned into two mutually exclusive subsets M1 and M2 such that:

• If any column contains two nonzero elements of the same sign, one element can be placed in M1 and

the other in M2.
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• If any column contains two non zero elements of opposite signs, both elements can be placed in the

same subset.

Suppose the inner problem is parametrized with k medoids. The relations defining the coe↵cient constraint

matrix between elements from the dataset and the medoids can be modeled as a bipartite graph G whose

vertices can be partitioned into two disjoint and independent sets such that all edges only occurs between these

two sets. In the current context, these two sets are clearly the dataset and the medoid set as shown in Figure

3.2.

Corollary 3.3. The incidence matrix of a bipartite graph is totally unimodular

By Theorem 3.2 and Corollary 3.3, the coe�cient constraint matrix of the inner problem is clearly totally

unimodular since it corresponds to the incidence matrix of the bipartite graph G.

Dataset Medoid set

Figure 3.2: Assignment problem as a bi-partite graph

To conclude this section, we have shown that the decomposition of UKMP leads to a two-level problem that

has an inner sub-problem that can be solved with a linear solver due to the total unimodularity of its coe�cient

constraint matrix. This is a very precious information that will be considered when tackling the resolution of

the bi-level version presented in the following section.

3.3.3 From a two-level UKMP to the Bi-level Clustering Optimization Problem

The new two-level formulation representation by (UKMP )000 show us that both sub-problems have the same

objective functions. Both attempt to minimize the total intra-class distance between elements and their re-

spective medoids using the same distance metric. Nevertheless, we could easily imagine that both objective
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functions may rely on di↵erent distance metrics. The medoids could be chosen with regards to a first metric

d1. while the assignment of element to clusters could be performed according to a second metric d2 while

A questions then arises: “What would be the benefit of having di↵erent metrics ?”. Similarities in large and

heterogeneous dataset can be evaluated in many di↵erent ways. For instance, disease maps (e.g. Parkinson,

Alzheimer) can be described using multiple criteria (e.g. network, euclidean, gene ontology). One cannot

consider that a single metric can capture all the knowledge contained in such complex maps. Therefore, some

works [138] focused on metrics combinations to improve clustering. Multi-objective approaches could be also

consider but they add another level of uncertainties. Indeed, such approaches would provide a set of non-

dominated clusterings solutions which would not help to determine which of the objective metrics are the most

relevant. An alternative could be to envisage weighted- sum approaches and try to determine the weights.

This could be very useful to rank the distance metrics. Unfortunately, these approaches are very sensitive and

are strongly dependent on the shape of the Pareto front [116]. Indeed, weighted-sum approaches searches for

supported solutions, i.e., the ones that can be obtained by linear combinations of the multiple objectives. If the

Pareto front is not regular and some area of the objective space are empty, weights may lost their signification.

Figure 3.3 depicts such an example where two distances metrics d1 and d2 are believed to contribute identically

to the combination, i.e., with weight w1 = 0.5 and w2 = 0.5. In this example, the Pareto front is non-regular

with a large area having no solutions in the middle part of the front. Thus, one can wrongly conclude that the

obtained Pareto solution reflects truly a situation where both distance metrics have the same impact. In fact,

the solution obtained in the example of Figure 3.3 is biased toward the second metric, i.e., d2.

0

0.5d1 + 0.5d2

d1

d2

Figure 3.3: Example of weighted-sum on non-regular Pareto front

Contrary to classical approaches, combining distance metrics at di↵erent levels can have a real advantage. First

it does not require any kind of weights and does not have to deal with several non-dominated clustering as for

multi-objective approaches. It also provide a way to compare a distance metric relatively to another. Indeed

as it can be observed for (UKMP )000, the two nested sub-problems depends strongly on each other. The outer

sub-problem is subject to the optimality of the inner sub-problem. This implies that the objective value of

the outer problem strictly depends on the objective value of the inner problem. Therefore, the distance metric

related to the inner problem has clearly higher priority compared to the one defined in the outer problem. In

the case fo the (UKMP )000, both distance metrics are the same. However, if we have two di↵erent metrics, say

d1 and d2, the two-level problem will take into account a hierarchy of metrics to produce an new clustering.

The two formulations (3.8) and (3.9) represent the bi-level clustering optimization model that has two di↵erent

objective functions at each level. While medoids are chosen to minimize the total intra-class distance with

regards to d1, elements are assigned to medoids and thus clusters that minimize the total intra-class distance

with regards to d2.
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(3.9)

We will now take the notations adopted in the bi-level optimization field. This means that the outer problem

will be referred to as the upper-level problem while the inner problem will be named the lower-level problem. xjj

are the upper-level decision variables and all xij with i 6= j are the lower-level decision variables. As discussed in

chapter 2, the two formulations (3.8) and (3.9) are equivalent even if the description in (3.8) using the “argmin”

notation seems more explicit. Indeed, it explicitly mentions that the upper-level objective function can only be

evaluated once the “optimal” lower-level variables are known. In the formulation (3.9), the “argmin” operator

is replaced by the “min” operator hiding the lower-level optimality of the lower-level variables. Nevertheless,

both formulations are commonly found in the literature and it was worth discussing them in a real application

cases such as the Bi-level Clustering Optimization Problem.

3.4 A nested hybrid and parallel evolutionary algorithm

3.4.1 A hierarchical discovery of new knowledge

In complex data repositories and notably in biomedical networks, a hierarchical view (see Figure 3.4) is very

informative. Researchers do not only want to determine clusters but also would like to discover the mechanisms

behind the similarities of aggregated data. For this purpose, a common practice is to produce multiple cluster-

ings with varying k in order to obtain multiple layers of visualization. Hierarchical clustering approaches are
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particularly well-suited for such analyses since the dendrogram generated by these approaches permits obtain

all clustering with 1  k  N . One main issue is that the hierarchical views are discovered with a mechanism

that is hierarchical by nature. Regarding of the validity or quality of the clustering, hierarchical approaches

will always output a results for any k. We would like to obtain a data-driven approach that would not produce

a clustering with k clusters if it is not relevant. Consequently, we adopt an alternative methodology relying on

a bi-objective reformulation of (3.9) where the constraint setting the number of clusters is added as a second

upper-level objective.

    5 

Visual interpretation requires knowledge aggregation 

Figure 3.4: Visual interpretation requires knowledge aggregation
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Program 3.3: Bi-objective bi-level clustering model

The two objectives aim to minimize both the intra-class inertia and the number of clusters respectively. These

both objectives are negatively correlated since the intra-class inertia is minimal when the number of cluster

equals the number of data points, while a single cluster generates a maximal intra-class inertia. Thus, optimizing

Program 3.3 results in a set of clusterings, which are alternatives or non-dominating solutions.

For this purpose, a hybrid and parallel multi-objective evolutionary algorithm is considered to determine the

best centroids at upper-level with regards to the bi-objective vector min F = (
P
i

P
j

d1ijxij ,
P
j

xjj) while an

embedded exact optimization algorithm optimizes the lower-level problem min{f =
P
i

P
j

d2ijxij :
P
j

xij =

1 8i 2 {1, ..., N}, xij � xjj  0 8i 2 {1, ..., N} 8j 2 {1, ..., N}} where xij , xjj 2 {0, 1}.
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3.4.2 Encoding a clustering

The encoding retained for solving the bi-objective BCOP is the binary medoid-based representation as illus-

trated in Figure 3.5. Let us recall that a solution in Evolutionary Computing is called an “individual” which

is composed of a chromosome field (e.g. list, matrix) and a fitness value field (e.g. scalar, vector). Each

chromosome is an aggregation of genes that represents an instantiation of the abstract decision variables. This

instantiation depends naturally on the type (e.g. binary, integer, floating values). Binary medoid-based rep-

resentation means that the chromosome of each individual will be a binary vector. For each individual and

thus medoid vector, the optimal assignment of the remaining elements from the dataset to the clusters needs

to be performed. Therefore, this encoding cannot be considered as a direct encoding since it requires some

extra-computations to obtain a complete clustering. Nonetheless, we consider here that each medoid vector is

assumed to have an unique corresponding assignment which corresponds to the optimal lower-level solution.

3.4.3 Evaluation of the encoded clustering

In order to compute the total intra-class inertia, the assignment of each element to a cluster (medoid) is required.

As aforementioned, the medoid-based representation implemented in this work requires the optimal resolution

of the lower-level problem, i.e, assignment problem. Each evaluation of an individual , i.e, medoid vector

requires a lower-level optimization to obtain a complete clustering (see Figure 3.5). According to the taxonomy

on bi-level metaheuristics described in chapter 2, the proposed approach can be qualified as “Nested” and one

could believe that it may su↵er from intensive lower-level optimization calls. Fortunately, we demonstrated in

section 3.3.2 that the lower level problem is polynomial due to “total unimodularity” of its constraint coe�cient

matrix.

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

Find optimal assignment according to second metric

Compute total intra-class distance according to first metric

chromosome
fitnessEncoding

Evaluation

Figure 3.5: Evaluation of a solution
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3.4.4 Workflow

At the time of this work, the version 3 of the Non-dominated Sorting Genetic Algorithms developed by Deb

was not released yet. Thus, we turned our attention into NSGA-II [93], i.e., the previous version that has

been extensively exploited in numerous works. NSGA-II is undoubtedly the most well-known and referenced

algorithm in the multi-objective literature. It is a genetic algorithm with a panmictic (i.e., non-structured)

population which is evolved by applying the typical genetic operators (selection, crossover, and mutation);

then, the individuals are sorted according to their rank, and the best solutions are chosen to create a new

population. In the case of having to select some individuals with the same rank, a density estimation based on

measuring the crowding distance to the surrounding individuals is used to improve diversity.

The application of NSGA-II is straightforward and does not require any modification of the algorithm (see

Algorithm 2). Nonetheless, NSGA-II requires the full clustering, i.e., medoids and labels in order to compute

the fitness value of an individual. Algorithm 3 details the process that permits to evaluate an individual. Line

3 generates an linear assignment program minimizing the total intra-class inertia with regards to the distance

metric d2. In order to obtain the labels indicating the reference cluster of each element from the dataset, line 4

calls a linear solver. In this work, we selected the IBM ILOG CPLEX optimizer which is the most widely used

large-scale solver. Finally, line 5 computes the total intra-class distance according to the distance metric d1.

This distance becomes the fitness value of an individual.

Algorithm 2 Pseudo-code of NSGA-II for the BCOP

1: Input: n // population size
2: P  random population medoid vectors(n) // P is the population of medoid vectors
3: while not termination criteria() do do
4: for i  1 to n do do
5: parents  select parents(P,2)
6: o↵spring  mate(parents)
7: o↵spring  mutate(o↵spring)
8: evaluate fitness(o↵spring)
9: P  P [ o↵spring

10: end for
11: R  P [ Q
12: ranking crowding(R)
13: P  select best(P,n)
14: end while
15: return P

Algorithm 3 evaluate fitness(o↵spring)

1: Input: o↵spring, i.e., a medoid vector
2: Parameters: d1 as upper-level metric and d2 as lower-level metric
3: LP problem  generate assignment problem(o↵spring,d2)
4: assigned labels  call linear solver(LP problem)
5: intra distance  compute total distance(o↵spring,assigned labels,d1)
6: number of clusters  count clusters(assigned labels)
7: return ( intra distance ,number of clusters )

Figure 3.6 summarizes graphically the bi-level clustering optimization problem as well as the nested multi-

objective bi-level evolutionary algorithm proposed to tackle it. As illustrated in this figure, evolutionary

computing is performed at upper-level while exact optimization is applied at lower-level. The next section

introduces now more precisely the biomedical repositories used as benchmarks to assess the model and the

resolution approaches described so far.
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NSGA-IIUpper-level problem:
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Figure 3.6: Graphical recap of the problem and the implemented resolution approaches

3.5 Tackling visual knowledge exploration in complex biomedical

repositories

We used two separate disease map repositories as the evaluation datasets: the Parkinson’s disease map (PD

map, pdmap.uni.lu) and the AlzPathway map (AlzPathway, alzpathway.org).

The PD map is a manually-curated repository about Parkinson’s disease, where all interactions are supported

by evidence, either from literature or bioinformatic databases [139]. Similarly, the AlzPathway [276] is a map

drawn manually on the basis of an extensive literature review about Alzheimer’s disease. Both diagrams are

human-drawn, so the use of Euclidean distance is reasonable, as the clusters will reflect the curators’ knowledge.

In turn, network and ontology-based distances will represent relationships di�cult to comprehend by eye.

The PD map version from December’15 contains 2006 reactions connecting 4866 elements. Of these we selected

3056 elements of type gene, mRNA and protein. The AlzPathway (see Figure 3.8) contains 1015 reactions con-

necting 2203 elements, 1404 of which of type gene, mRNA and protein. For these elements, we extracted graphic

coordinates for Euclidean distance and graph structure for network distance. For ontology-based distance, En-

trez identifiers ncbi.nlm.nih.gov/gene are needed. For the PD map, HGNC symbols (www.genenames.org)

were used to obtain Entrez ids. For the AlzPathway, Entrez ids were obtained from the Uniprot identifiers

uniprot.org.

To test the robustness of our approaches in the situation, when the content of a molecular interaction network

changes, we prepared a reorganized version of AlzPathway (AlzPathway Reorg). The CellDesigner file for this

new version is provided in Figure 3.9. The AlzPathway Reorg is rearranged in such a way that a number of nodes

is duplicated, edge lengths are shortened and the content is grouped together locally. Overall, 225 new elements

were added, 140 of which of type gene, mRNA and protein, and 16 reactions were removed as redundant.

The resulting map in comparison to AlzPathway has an overall smaller Euclidean distance (0.372 ± 0.183 vs

0.378 ± 0.182) and bigger network distance (0.890 ± 0.278 vs 0.601 ± 0.420).

We propose to combine di↵erent distance functions to improve the clustering results of large molecular interac-

tion maps. We approach the problem by applying three distinct distance functions to the Parkinson’s disease

map as our use case. We then optimize the bi-level clustering approach to obtain clusterings from pairwise

pdmap.uni.lu
alzpathway.org
uniprot.org
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Figure 3.7: The Parkinson’s disease map: a knowledge repository describing molecular mechanisms of Parkin-
son’s disease

Figure 3.8: The Alzheimer’s disease map: a knowledge repository describing molecular mechanisms of
Alzheimer’s disease
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Figure 3.9: The Alzheimer’s disease map after reorganizations

combinations of these metrics. We compare our algorithm against hierarchical clustering applied for the same

set of distance functions. We evaluate the solutions by comparing against expert-provided groupings of the

considered map contents, and by enrichment analysis of the obtained clusters.

Di↵erent distance functions can be applied to manually curate molecular interaction networks, reflecting distinct

aspects of their contents. When clustering the contents of these disease maps, we considered the three following

distances: Euclidean, network distance and ontology-based.

3.5.1 Euclidean distance

We calculated the Euclidean distance between elements of the maps by obtaining absolute values of (x, y)

coordinates of elements of type gene, mRNA and protein. The rationale behind this distance function is that

the distance between manually drawn elements reflects expert’s knowledge about their similarity.

3.5.2 Network distance

We calculated the network distance between elements of the maps by constructing a graph from the interactions

of the elements of type gene, mRNA and protein. PD map and AlzPathway are encoded in SBGN [285], which

is essentially a hypergraph - interactions with elements are allowed. We transformed such a hypergraph into a

graph by replacing each multi-element interaction by a clique of pairwise interactions between all elements in

this interaction. The network distance over the resulting graph is the set of pairwise shortest paths between all

elements in the graph. For unconnected elements, we set the distance to 2 ⇤max(shortest path).
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3.5.3 Ontology-based distance

Ontologies are restricted sets of defined terms allowing the representation and description of features in specific

and complex system of knowledge. The Gene Ontology (GO) project has been initiated to provide shared

vocabularies in order to characterize specific gene product properties. It enables the analysis of relationships

between gene products. We used the GOSemSim [391] method to calculate pairwise similarity between the

elements of the considered disease maps. The distance (d) was calculated as d = 1/(1 + similarity). Three

versions of the distance matrix were calculated, for Biological Process, Cellular Compartment and Molecular

Function.

3.6 Clustering evaluation

3.6.1 Expert-based evaluation

In order to evaluate the performance of the considered clustering approaches we applied an external evaluation

criterion. Both disease maps have already been compartmented by experts. These compartments constitute a

form of expert-based clustering. Therefore, we would like to measure how similar are the clustering generated

with the proposed approach to this expert-based knowledge. For this purpose, we have to rely on an supervised

evaluation criterion. This measure relies on a “confusion matrix” (see Figure 3.10) that can only be considered

for supervised cases where the problem is divided into classes that are known and fixed. In this work, the

obtained clusterings will have di↵erent sizes, i.e., number of cluster k. In addition, confusion matrices focus on

labels although two clusterings can be identical even if they do not have the same labels.

True Positive 
(TP)

False Positive 
(FP)

False Negative 
(FN)

True Negative 
(TN)
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Figure 3.10: Confusion matrix

To cope with these issues and being able to apply classical supervised criterion, the confusion matrix can be

created on pairs of data indicating whether or not two elements are in the same cluster. For example, a True

Positive case will mean that two elements which are in the same cluster are also in the same compartment

defined by the expert.

Now that a supervised criterion can be selected. We decide to take the F-measure which allows to assess how

well the clustering is reflecting previously defined classes of data points [133]. It combines “precision” (P ) and

“recall”(R) as follows:

F� = (1 + �2).
P.R

P + R
(3.10)
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We calculate the F-measure with � = 5, also called F5 measure, using as target classes the annotation areas,

e.g. ”Mitophagy” or ”Glycolysis”, available in the PD map and both versions of AlzPathway.

The F-measure evaluates the performance of clustering in recreating previously defined groups, but is not

capable of indicating how well a given set of clusters captures new knowledge. Therefore, we adopt an additional

evaluation criteria which should inform us on the abilities of the created clusters to discover novel knowledge.

3.6.2 Discovery-based evaluation

To evaluate the discovery potential of a given clustering solution we performed an enrichment analysis for Gene

Ontology [392] and Disease Ontology terms [393].

N genes altogether
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n genes in a cluster
m genes 
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Ontology (e.g. GO, DO)Clustered map

Figure 3.11: Enrichment analysis for a clustering

Enrichment analysis is a statistical approach and well-know procedure that is performed on gene sets. Given a

set of genes, enrichment analysis will determine the ontology terms that are over-represented using the existing

annotations for the given gene set.

Figure 3.11 describes how enrichment analysis is performed. It mostly relies on hyper-geometric tests. Indeed

suppose that a cluster represents a sample of n genes from a total population of N genes. It is know that the

considered GO/DO term contains m genes. What is the probability to have the same k genes in our cluster and

in the considered GO/DO term ? By evaluating each cluster on all terms, we obtain an enrichment analysis

that allows us to evaluate the over-representation of terms. This provide us additional knowledge and a measure

to evaluate clusters with regards to biological functions. An adjusted p-value cuto↵ has been set to 0.05, 0.01

and 0.001 for enrichment analyses for both Gene and Disease Ontology.
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3.7 Numerical experiments

3.7.1 Parameters

3.7.1.1 Bi-level Clustering Optimization

We considered the Non-dominated Sorting Genetic Algorithm (NSGA-II) [93], a well-known multi-objective

genetic algorithm. Such algorithms proved their e�ciency on various numerical and combinatorial problems.

As linear exact solver, we use the IBM ILOG CPLEX Optimizer’s mathematical programming technology [230]

which is one of the most e�cient mathematical programming solver on the market according to experiments

realized in [60] on commercial and open-source solvers. Each generation of the algorithm involves standard

evolutionary operators (e.g. selection, crossover and mutation. The evolutionary algorithm iterated for 300

generations in 30 independent runs in order to obtain good statistical confidence. Binary tournament was

chosen as a selection method. We set the probability of a single-point crossover to 0.8, and the probability of

a bit-flip mutation to 1.0
Numberofdata . Concerning the CPLEX solver, no specific parameters have been selected.

The stopping condition is the optimality of the solution. This is not an issue since the resulting assignment

problem can be solved in polynomial time. Each of the 30 independent runs returns a set of non-dominated

solutions called Pareto front. Once the 30 runs have been performed, all fronts are merged together and the

F-measure is computed for each solution. Since we are only interested in solutions with di↵erent clustering

sizes and the merge operation can introduce duplicates, we filtered the solutions according to the best F-

measure. According to Program 3.3, di↵erent combinations of distance metrics are experimented for the distance

functions: Euclidean (Eu), network (Net), Gene Ontology for Biological Process (GO BP), Gene Ontology for

Molecular Function (GO MF) and Gene Ontology fo Cellular Compartment (GO CC). For the sake of simplicity

and avoid rewriting the bi-level model for each distance combination, bi-level clustering experiments will be

stated as follows: d1 > d2 where d1 is the upper-level distance metric and d2 the lower-level distance metric.

For example, GO BP > Eu will describe a bi-level clustering optimization where d1 is the GO BP metric and

d2 the Eu metric.

3.7.1.2 Comparison with Hierarchical Clustering

Hierarchical Clustering is a set of multi-level approaches to group or separate data. While classical clustering

approaches discover a single partition, hierarchical clustering generates a cluster tree called “dendrogram” that

represents a series of partitions from an unique cluster to as many clusters as data. There are two types

of hierarchical clustering, Divisive and Agglomerative. While the divisive approach is a top-down procedure

starting from a cluster containing all data, the agglomerative approach is a bottom-up alternative that consider

first each data as a cluster. In order to compare the results obtained after solving the bi-level clustering

optimization model using the proposed hybrid and parallel evolutionary algorithm, the agglomerative approach

using the proven Ward grouping (HCW) [370] has been performed on :

• Each distance metric separately (e.g. Eu, Net, GO BP, GO MF, GO CC)

• Pairwise products between the distance metrics normalized to the [�1, 1] range (e.g. EU*Net, Eu*GO

BP, Net*GO BP)
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3.7.1.3 Comparison with expert-based clustering

Evaluations are also performed for annotation areas already existing on the PD map and both versions of

AlzPathway. Thus it gives us a baseline for comparing expert-based organization of knowledge with di↵erent

clustering approaches.

3.7.2 Computing platform

Experiments have been conducted on the High Performance Computing (HPC) platform of the University of

Luxembourg [357]. The algorithm has been implemented in Python with the DEAP library [141]. Hierarchical

Clustering and enrichment analysis have been realized with the R language. Tables 3.1 describes all parameters

defined for the parallel and hybrid approach. In order to tackle the large scale of these maps, we decided to

evaluate all individuals of the population in parallel using a master-slave mechanism.

Parameters

Iterations 30000

Independent runs 30

Selection Binary tournament

Crossover operator Single-Point

Crossover probability 0.8

Mutation operator bit flit

Mutation probability 1
#elements

population size 100

Parallelism type Master-slave

Parallelized method evaluation of Individuals

Table 3.1: Experimental parameters

3.7.3 Results

3.7.3.1 Hierarchical clustering

We compared the quality of hierarchical clustering with Ward grouping (HCW) on the contents of the PD map

and two versions of AlzPathway (the original and the reorganized). For this purpose, we applied expert-based

evaluation to assess how well the clusters reflect the areas drawn in the maps to annotate groups of elements

and interactions with a similar role. The results of our comparisons are illustrated in Figures 3.12 and 3.13

, with Figure 3.12 showing the particular F-measure scores for each map and distance metric. Figure 3.13

illustrates the ranking of particular distance metrics, constructed using F-measure summed for all three maps.

Of three HCW with single distance functions, the Euclidean o↵ers superior results over the other two for small

cluster sets, while the network distance function is superior for larger sets. Pairwise combinations of distance

metrics improve overall quality of clustering. Interestingly, Gene Ontology-based distance, while having the

worst quality of clustering, when in combination with the Euclidean distance improves the quality of smaller sets

of clusters. Reorganization of the content, seen in comparison of two versions of AlzPathway, has a moderate

e↵ect on the quality of the clustering, with a small improvement for cases with small number of clusters.
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Figure 3.12: Hierarchical clustering (HCW) quality for di↵erent distance metrics. The values of F-measure
(� = 5) for hierarchical clustering are based on di↵erent distance functions and their pairwise combinations.
Eu: Euclidean distance, Net: Network distance, GO BP: Gene Ontology-based (Biological Process) distance
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Figure 3.13: Ranking of di↵erent distance functions by summed F-measure

3.7.3.2 Bi-level clustering

Similarly, we calculated the F-measure for the results of bi-level clustering optimization. The results are

presented in Figures 3.14 and 3.15. A comparison of the quality of di↵erent clusterings across the three maps

shows grouping according to the “lower-level” distance function, with Gene Ontology-based metric being the

worst-performing, and Euclidean being the best performing. As di↵erent combinations of distance functions

yield varying number of clusterings, these pairings are the best observable in the PD map. For both instances of

the AlzPathway there is either a small number, or no clusterings produced with GO BP as a lower-level distance

metric. Reorganization of the content, seen in comparison of two versions of AlzPathway, has a bigger impact

on moderate the quality of the clustering than in the case of hierarchical clustering, where both combinations

of GO BP and network distance no longer yield a viable clustering.

A direct comparison of the best performing clustering schemes, as seen in Fig 3.16, shows that HCW with the

combined metrics o↵ers the best F-measure values for the solutions with small and large number of clusters.

The middle part of the clustering range is covered by the bi-level clustering. All Fmeasure results are provided

in Annexe B.2.

3.7.3.3 Bi-level clustering improves knowledge discovery

Next, we evaluated the impact of the bi-level clustering on discovery of new knowledge, in comparison to HCW

with combined distance functions. We performed an enrichment analysis for each set of clusters generated by

each solution in the three maps. Each cluster was considered as a separate group of genes. We looked for

enriched terms in Gene Ontology and Disease Ontology, with the cuto↵ threshold for adjusted p-value=0.001.

Figures 3.17 and 3.18 illustrate the results of our comparison for five best-performing approaches per map. With

the same cuto↵ we calculated the enrichment of expert-provided annotation areas (‘expert”) in the considered

maps as a reference point to the performance of our clustering approaches.

The majority of the proposed clustering approaches discovers more unique terms than the expert-provided

annotation for larger number of clusters. Notably, for the PD map, both hierarchical (Ward) and bi-level

clustering approaches discovered more terms in the Disease Ontology than expert annotation for any number
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Figure 3.16: Ranking of HCW and Bi-level clustering approaches for selected distance metrics. A com-
bined ranking of the best performing distance functions (for hierarchical and bi-level clustering) by F-measure

summed across three maps.

of clusters (Figure 3.17). This also holds true for AlzPathway and AlzPathway Reorg, but given that only one

DO term was discovered for expert annotation.

When comparing the performance of hierarchical and bi-level approaches, for larger number of clusters the

bi-level clustering provides clusters enriched for more terms, both for Disease and Gene Ontology. Table 3.2

summarizes the highest scores for the selected clustering approaches. The table of complete results can be

found in Annexe B.1. For the PD map and AlzPathway maps, four out of five best distance metrics are bi-level

solutions.

Interestingly, the bi-level clustering provides smaller number of clustering. This is due to the criterion in the

evolutionary algorithm that stops further exploration of the search space if subsequent iterations o↵er no gain
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in the objective functions. These results may suggest, which distance functions o↵er better exploration of the

search space and clustering properties.

When comparing AlzPathway and AlzPathway Reorg, one can notice that the restructuring of the map changed

significantly the numbers of unique terms discovered, as well as ordering of the best performing combinations

of metrics. However, bi-level clustering GO BP > Eu and GO BP > Net remained relatively stable with

their amounts of discovered terms. Interestingly, the reorganization moderately reduced the amount of Disease

Ontology terms, while significantly increasing the amount of Gene Ontology discovered terms.

We performed the enrichment analysis for higher adjusted p-value cuto↵s : p � adj < 0.05 and p � adj < 0.1

(data not shown). We observed that the numbers of enriched terms for all clustering solutions as well as the

expert-based one converge to the same levels.
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Figure 3.17: Discovered Disease Ontology terms by best performing bi-level and hierarchical clustering
approaches. The curves represent the cumulative amount of unique terms enriched in all clusters in a given
clustering. The adjusted p-value= 0.001 was used as a cuto↵ threshold for the significance of an enriched term.
For bi-level clustering, the distance functions are arranged d1 > d2, with Euclidean: Euclidean distance, Net:

Network distance, GO: Gene Ontology-based (Biological Process) distance

3.7.3.4 Examples of the discovered clusters

Here, we discuss two examples of clustering results. Both examples come from bi-level clustering of the contents

of the Parkinson’s disease map. Even though these distance pairs did not score high F-measures, their results

reflect properly the content of the map and reveal new knowledge. To additionally validate the content of the

clusters, we compared their content with the transcriptome of the brain area specific to Parkinson’s disease -

the substantia nigra [149].
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Figure 3.18: Discovered Gene Ontology terms by best performing bi-level and hierarchical clustering ap-
proaches. The curves represent the cumulative amount of unique terms enriched in all clusters in a given
clustering. The adjusted p-value= 0.001 was used as a cuto↵ threshold for the significance of an enriched term.
For bi-level clustering, the distance functions are arranged as d1 > d2 , with Eu: Euclidean distance, Net:

Network distance, GO: Gene Ontology-based (Biological Process) distance

Elements belonging to the cluster (unique names, 38 total): 
Box A) ATG12, BBC3, BCL2L1, BCL2L11, BID (p15), FBXW7, GSK3B, 
MAPK1, MAPK10, MAPK8IP3, MCL1, NDRG1, PARK2, PIN1, TRIM17
Box B) ENO1, LDH, LDHA, LDHB,  PKLR, SLC16A1, SLC16A4, SLC16A7

Supplementary figure: Cluster example 1, Eu > Net bilevel clustering

Elements belonging to the cluster (unique names, 117 total): 
ATP13A2, BAG5, FBXW7, GBA, GSK3A, HAX1, KCNN3, MUL1, PARK7, 
PARL, PINK1, PRKCD, TOMM6, TXN, VPS35

Supplementary figure: Cluster example 2, GO BP > Net bilevel clustering

A)

B)

Figure 3.19: Bi-level clustering optimization for Eu > Net configuration
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Table 3.2: Number of unique terms enriched for di↵erent clusterings. Best values for each map are marked
in bold.

PD map AlzPathway AlzPathway Reorg

Enrichment with
DO

clusters/terms

GO

clusters/terms

DO

clusters/terms

GO

clusters/terms

DO

clusters/terms

GO

clusters/terms

Expert-based 36 / 275 36 / 1449 20 / 1 20 / 43 20 / 1 20 / 70

GO BP >Eu 61 / 353 61 / 2203 51 / 76 51 / 196 32 / 76 32 / 720

GO BP >Net 59 / 368 59 / 2211 48 / 72 48 / 196 35 / 13 35 / 409

Eu >GO BP 52 / 363 52 / 1860 3 / 5 3 / 19 3 / 1 3/1

Eu >Net 88 / 372 88 / 1929 68 / 101 68 / 238 98 / 17 98 / 18

Net >Eu 67 / 158 67 / 1463 71 / 85 71 / 343 65 / 1 65 / 23

Eu*Net 93 / 339 98 / 1641 58 / 75 90 / 201 41 / 8 2 / 1

Eu*GO BP 89 / 334 97 / 1669 61 / 86 97 / 179 13 / 6 90 / 14

Net*GO BP 81 / 289 86 / 1563 49 / 47 55 / 182 2 / 1 97 / 136

Example of Figure 3.19 is based on Euclidean-Network distances, scoring the highest for enrichment of the

Disease Ontology terms. The cluster contains elements classified by experts as ”Apoptosis” (Box A), but also

elements that by the original classification of the PD map belong to the ”Glycolysis” area (Box B). Interestingly,

elements of Box B are known regulators of apoptosis in various contexts, including the neuronal environment

with ENO1 [386] and SLC16A4 [243], and di↵erent types of cancer [1, 16, 140]. This can be considered as a

novel regrouping of the content in the PD map, which would be di�cult to discover optically, as the network

distance between the elements of Box A and B cannot be immediately discerned by eye. When compared to

the Parkinson’s disease transcriptome dataset, 19 out of 38 cluster elements were down-regulated, suggesting

the importance of the contained mechanisms for the pathology of the disease.

Example of Figure 3.20 is based on Gene Ontology-Network distances, scoring the highest for enrichment of

the Gene Ontology terms. When this cluster is displayed in the Parkinson’s disease map, it becomes evident

that Euclidean distance was not used for its construction, as its elements are dispersed across the map. Never-

theless, the majority of the cluster contents are connected to the processes of response to oxidative stress and

maintenance of mitochondrial homeostasis. There are, however, a number of elements that extend this picture.

One of them is KCNN3, member of potassium calcium-activated channel family. Though originally curated in

the map in the context of pathology of alpha-synuclein, its appearance in this cluster is supported by literature

evidence [106]. Similarly, evidence supports inclusion of ATP13A2 in the mechanisms regulating oxidative stress

[157]. On the other hand, the presence of GSK3A, another novel element, may be questionable. Even though

its role in nerve regeneration was recently demonstrated [152], its association, together with PRKCD, may be

due to the GO Biological Process annotation with cardiac myocyte function [395]. Still, when compared to

the Parkinson’s disease transcriptome dataset, 94 out of 117 cluster elements were down-regulated, which gives

confidence in its contents and corresponds well to the fact, that reactive oxygen species play a major role in

Parkinson’s disease [139].

3.7.3.5 Robustness of distance metrics in the evaluated scenarios

Three classification concepts are available in Gene Ontology: Biological Process (BP), Cellular Compartment

(CC) and Molecular Function (MF). Thus, the ontology-based distance calculated according to these criteria

may yield di↵erent results and, potentially, has di↵erent impact on the clustering results. Our metric of choice

was Biological Process, as conceptually the closest to the nature of disease maps, describing processes of health

and disease. To clarify the potential impact of the remaining concepts on the clustering quality, we compared

clustering quality and enrichment of both hierarchical and bi-level approaches for all three. Annexes B.1, B.2,

B.3 and B.4 contain all the results of this comparison.
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Elements belonging to the cluster (unique names, 38 total): 
Box A) ATG12, BBC3, BCL2L1, BCL2L11, BID (p15), FBXW7, GSK3B, 
MAPK1, MAPK10, MAPK8IP3, MCL1, NDRG1, PARK2, PIN1, TRIM17
Box B) ENO1, LDH, LDHA, LDHB,  PKLR, SLC16A1, SLC16A4, SLC16A7

Supplementary figure: Cluster example 1, Eu > Net bilevel clustering

Elements belonging to the cluster (unique names, 117 total): 
ATP13A2, BAG5, FBXW7, GBA, GSK3A, HAX1, KCNN3, MUL1, PARK7, 
PARL, PINK1, PRKCD, TOMM6, TXN, VPS35

Supplementary figure: Cluster example 2, GO BP > Net bilevel clustering

A)

B)

Figure 3.20: Bi-level clustering optimization for GO BP > Net configuration

F-measure values for hierarchical clustering are similar to each other, with GO BP having the highest impact

on the clustering of the PD map, and GO CC on the AlzPathway Reorg. Nevertheless, this e↵ect is rather

moderate. Interestingly, the bi-level clustering results indicate that PD map and AlzPathway (original) could

benefit from GO MF as the upper-level distance metric. Still, inclusion of these results would not alter the

ranking of the distance metrics.

The number of enriched terms for Disease and Gene Ontology is also the highest for the BP-based ontology

distance for PD map and AlzPahway Reorg. In case of the original AlzPathway, GO CC and MF as upper-

level distance metrics o↵er improvement in the discovered GO terms, but only for GO MF > Eu combination

this improvement is significant. Overall, GO BP remains the most robust metric considered in our clustering

analysis.

3.8 Conclusions

Large diagrams representing biomedical knowledge become an important part of workflows for interpretation of

experimental data and generation of new hypotheses. Clustering approaches may provide a high-level overview

of this complex content by grouping together similar elements. Di↵erent distance functions may be applied for

this purpose. Here we investigated their impact on the clustering of the Parkinson’s disease (PD map) and

Alzheimer’s disease (AlzPathway) maps.

In this chapter, a medoid-based clustering optimization is proposed through the decomposition of the “unca-

pacitated k-median problem”. Even if the latter is NP-hard, it does mean that some part of the problem

cannot be exactly and e�ciently solved. We have shown that the two-level clustering problem obtained after

decomposition possesses an inner level playing the role of an assignment problem. Indeed, the decomposition
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separates the medoid selection from the assignment of elements to the medoids (clusters). We also discussed

the relation between this two-level and bi-level problems. We conclude that, by opting for di↵erent distance

metrics at both level, a bi-level clustering problem is obtained. Additionally, we demonstrated the utility of

combining di↵erent distance metrics to meaningfully cluster the contents of a complex visual repository on

human disease (e.g. Parkinson disease and Alzheimer map). We proposed a bi-level clustering approach as a

solution for combining two distance functions and exploring their relationship.

In order to investigate the relationships between di↵erent distance functions we performed a bi-level clustering

for the pairwise combinations of di↵erent distance metrics (e.g. Euclidean, network distance and ontology-

based). The results are clearly grouped by the lower-level distance metric, with the Euclidean distance scoring

the highest. Additionally, because of the stopping criterion in the evolutionary algorithm, the upper-level

Gene Ontology-distance provides smaller sets of clusters. This is understandable, as the Gene Ontology-based

distance describes the conceptual similarity between the contents of the map and has no reflection of the actual

structure of the diagram. In turn, the expert-based annotations reflect visual areas of the PD map. Therefore,

Gene Ontology-based distance will not perform well to define meaningful cluster medoids in the PD map.

We also evaluated the impact of combined distance functions on knowledge discovery in the maps. For each set

of clusters from both HCW and bi-level clustering, we performed an enrichment analysis for Disease Ontology

and Gene Ontology terms. Our results showed that the number of unique terms for both ontologies grows

with growing size of cluster sets, and surpasses the expert-provided annotation areas. Notably, for the cluster

set size = 36 (the number of expert-provided areas) all selected clustering solutions - one hierarchical (ward)

and four bi-level clusterings - provide more unique terms for both ontologies. This result, in combination with

F-measure results, suggests that the clusters may o↵er an improvement to the existing annotation of the maps.

Bi-level clustering in direct comparison with HCW produces cluster sets with the higher number of enriched

terms. It is worth noticing that HCW based on combination of Eu*Net distance functions performs better than

Net > Euclidean bi-level clustering, but worse than Eu > Net clustering. This suggests a hierarchy of distance

functions, and their importance in the exploration of the PD map.

The proposed bi-level clustering optimization problem can be considered as a “weak” bi-level problem since

the lower-level problem is polynomial. This is the reason why there was no restrictions to consider a nested

metaheuristic that iteratively solve both levels. Nevertheless, many bi-level optimization problems have NP-

hard levels which implies that nested optimization becomes unsuitable. The next chapter will be dedicated to

the resolution of general bi-level optimization problems. The mainstream will be to propose a viable alternative

to the state-of-the art algorithms that minimize the time-consuming evaluation of the lower-level optimizations.
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4.1 Introduction

In chapter 2, theoretical complexity of bi-level optimization problems has been discussed in details. Numerous

investigations have shown that these problems are NP-hard even if both levels are separately convex. We recall

that the upper-level problem is constrained by the lower-level problem. Feasibility of the upper-level problem,

and thus bi-level feasibility, is strongly dependent on the optimality of the lower-level problem.

In chapter 3, we pointed out that the bi-level formulation of the uncapacitated k-median problem can lead to a

novel clustering model where di↵erent metrics at each level can help to capture more knowledge by taking into

account the hierarchy that exists between these metrics. We have shown that the lower-level problem of this

bi-level clustering model is similar to an assignment problem once cluster representatives are set. In turn, such

a formulation can be solved with nested optimization approaches’. For this purpose, we took advantages of the

properties of the uncapacitated k-median problem to decompose it into two-levels with di↵erent complexity.

79
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This allowed us to solve exactly and e�ciently lower-level instances. Nonetheless, the global complexity of a

bi-level problem is as hard as its strongest sub-problems (level). This means that it remains NP-hard even if

it can be considered as a “weak ” bi-level problem.

Now we are interesting to more general problems in which the lower-level problem is not necessarily solvable

in polynomial time and no advantageous properties can guide us to reformulate them. The last decade has

seen a renewed interest for bi-level optimization, especially in the field of evolutionary computing. This is

probably due to the new optimization needs to cope with problems having multiple decision makers. As a

matter of fact, we can clearly observe that standard evolutionary computing could be challenged by “strong”

bi-level problems, i.e., where both levels are NP-hard. First, bi-level feasibility implies lower-level optimality

which cannot be guaranty which such approaches. Then, the computations time can be repellent in case of

population-based approaches. Indeed, each upper-level solution would require a lower-level optimization. The

number of lower-level function evaluations would be definitely voluminous.

In chapter 2 and section 2.5, a state-of-the-art on bi-level metaheuristics has been provided. Among the

numerous works that can be listed in the literature, some interesting approaches attempted to approximate

lower-level decision variables in order to decrease dramatically the number of evaluations. The reader may refer

to section 2.5.5 to obtain an overview of them.

Among the listed approaches, the Bilevel Evolutionary Algorithm based on Quadratic Approximations (BLEAQ)

is a reference in evolutionary bi-level optimization due to its capacity to tackle not only single but multi-objective

bi-level problems. Hereafter, we are only interested to the single objective bi-level problems that are still a real

challenge for decision makers. Sinha et al. in [332] developed the BLEAQ algorithm in order to approximate the

lower-level optimal solutions using the upper-level ones while reducing the number of lower-level optimizations.

Although BLEAQ is very innovative, a genetic algorithm is still employed at upper-level which necessitates nu-

merous of fitness evaluations. In addition, the authors are required to perform multi-output approximations of

the lower-level decision variables. To tackle this issue, they considered m independent single-output regressions

by building as many approximate functions as lower-level variables.

The drawbacks of BLEAQ lie in the fact that it requires the creation of multiple and independent “surrogate

functions” to estimate each lower-level decision variable which is not suitable for large-scale lower-level problems.

In addition, the independence assumption between the surrogate functions is not reflecting the existing links

between the lower-level variables. BLEAQ restricts the surrogates to quadratic approximation functions while

the mapping between upper-level and lower-level variables can be highly not convex.

In this work, we propose to tackle these issues by considering Bayesian optimization. Instead of generating

several approximate functions for each lower-level variable, we make use of gaussian processes to predict directly

the upper-level fitness value. Bayesian optimization also embeds an acquisition function which permits to

determine the most promising search areas during optimization. Therefore, this approach attempts to minimize

the number of fitness evaluations by nature. Generally in the literature, acquisition functions are optimized

using local search approaches, i.e., L-BFGS-B [279] which tend to be trapped in local optimum. This is the

reason why we propose to use an evolutionary algorithm and more precisely “Di↵erential evolution” to detect

better acquisition points and thus better search areas. Bayesian optimization stemmed from the need to

optimize black-box problems with expensive objective functions. It has been categorized as a hyper-parameter

optimization algorithm and has been widely employed for the optimization of parameters in Machine Learning

models.

The remainder of this chapter is organized as follows. Section 2 introduces bayesian optimization. Section 3

formalizes the problem and then states explicitly how Bayesian optimization can be adapted to solve bi-level
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problems. General bi-level benchmarks are introduced in section 4 while section 5 focuses on the experimentation

protocol and parameters. Section 6 provides comparison results with a state-of-the-art algorithm, namely the

Bi-level Evolutionary Algorithm based on Quadratic approximations (BLEAQ). Finally, section 7 concludes

this work and propose future investigations.

4.2 Bayesian optimization (BO)

Since discovering IR could be a hard task, it is therefore complex to evaluate the upper-level objective function

on it.

Bayesian Optimization algorithm is a Kriging approach [87] that relies on Gaussian Processes to generate a

surrogate function approximating the true objective function of a complex problem. A initial set of random

points are chosen in the feasible space and are evaluated with the true objective function. Gaussian processes are

then fitted to them to obtain a first estimation of this true objective function. From that point, the algorithm

will consider the surrogate function to start the search by determining a next and promising point that could

be sampled. For this purpose, an auxiliary function, i.e., the acquisition function is build and then solved.

One could wonder why the next point is not directly determined by optimizing directly the surrogate function.

The answer lies in the fact that the surrogate function is only a rough estimation that does not capture all the

topology of true objective function. The acquisition function adjusts the surrogate function to maximize the

chance to discover a new promising point. The bayesian algorithm converges once the acquisition function is

unable to generate a new improving point given a certain tolerance threshold.

Bayesian optimization has been mostly employed in machine learning [78, 308] as an alternative to the grid search

and random search algorithms. They are well-suited for multi-level optimization problems as they take into

account the evaluation cost. Bayesian optimization is a model-based approach which aims at solving problems

with time consuming evaluation functions. It is often assimilated as a black-box optimization algorithm where

the formal expression of the objective function may be unknown or very di�cult to obtain. To overcome this

issue and reduce computation cost, bayesian optimization generates a surrogate model of the unknown function

using gaussian processes[46]. It samples promising zones in the feasible region by computing a distribution

of the objective function. This distribution gives us a prior knowledge on location of the optimal solution.

Bayesian optimization is thus characterized by two important mechanisms:

• A probability measure on F describing our prior beliefs on it ;

• The acquisition function which allows to gain information on the location of the minimum value of the

objective function.

Considering a cost function F (x), gaussian processes determine the probability distribution of the function

F (x) at each x. These distribution are Gaussian and thus characterized by a mean value µ(x) and a variance

�2(x). Hence a probability distribution over functions can be defined as follows:

P (F (x)|x) ⇠ N (µ(x), �2(x)) (4.1)

Obviously, the parameters µ(x) and �2(x) have to be estimated. This is done by fitting the Gaussian processes

to the data. Using several observations, we obtain a sample of a multivariate Gaussian distribution [42],

determined by a mean vector and a covariance matrix. In fact, Gaussian processes generalize the notion of
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multivariate Gaussian distribution. For complex non-linear functions, the covariance matrix can be defined

using a kernel function k(x, x0). This covariance matrix defines the correlation between data. Two distant data

x and x0 should not influence each other while two close data are strongly correlated.

F (x) ⇠ GP(µ(x), k(x, x0)) (4.2)

where GP stands for Gaussian processes. The squared exponential kernel is often used and defined as follows:

k(x, x0) = l · exp

✓
�kx� x0k2

2�2

◆
with parameters l and �2 (4.3)

To fit the Gaussian process to the data, the likelihood is optimized from the evaluations of each observations.

Each time a new point is added to the model, a re-optimization is performed to maximize the likelihood. The

question is now :’How should we determine a new point ?’. This is achieved by optimizing an acquisition

function which statistically models our confidence to find the location of the optimal value. Several acquisition

functions exist such as the Maximum Probability of Improvement (MPI), the Expected Improvement (EI), or

the Lower-Confidence Bounds (LCB) and are computed as follows:

• acqMPI(x) = �(�(x)).

• acqEI(x) = �(x)(�(x)�(�(x)) + �(�(x))).

• acqLCB(x) = µ(x)� k�(x).

where �(x) = F (xbest�µ(x))
�(x) , � is the standard cumulative distribution function, � the standard normal proba-

bility density function and k is a parameter allowing to balance exploration-exploitation.

Finally, Algorithm 4 depicts the di↵erent steps of the standard bayesian optimization algorithm.

Algorithm 4 Bayesian Optimization

1: X =initRandom(n);
2: Y =problem.evaluate(X)
3: model=GP(X, Y )
4: model.update()
5: while not has converged() do
6: acq = getAcquisition(k);
7: xnew =acq.optimize();
8: ynew =problem.evaluate(xnew);
9: model.update(xnew,ynew);

10: end while
11: return model.best;

4.3 Adaption to general bi-level problems

4.3.1 The upper-level objective function as a black-blox

The contribution of this work is two-fold. First, we adapt the bayesian algorithm (see algorithm 4 to bi-level

problems). And finally, we improve the optimization of the acquisition function by considering a di↵erential

evolution algorithm. As discussed in the introduction, it is very time consuming to adopt a nested strategy
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approach which sequentially solves both levels. In [332], the authors of BLEAQ focused on localization of IR.

Under the assumption that  (x) = {ŷ}, i.e., singleton, for each x, they tried to establish a relation between

x and ŷ to avoid repetitive lower-level optimizations. They assume that under Lipschian continuity 2 close

solutions x and x0 will lead to close rational solutions ŷ and ŷ0. Consequently, they attempt to estimate ŷ

from x. Unfortunately, to generate these approximate functions, they have to deal with multi-output regression

to determine m functions minimizing the approximation error. In addition, these approximate functions are

restricted to be quadratic functions. Contrary to BLEAQ, we suggest to estimate the upper-level objective

function F (x, ŷ) instead of all ŷ separately. Under the same assumption that  (x) is a singleton, the optimal

solution ŷ is unique and we can conclude that it may exist a surrogate function F 0 : Rn 7! R with F 0(x) =

F (x, ŷ). Notice that if  (x) is not a singleton, two alternatives exist:

• The optimist case: we choose ŷ = arg min{F (x, y) : y 2  (x)}.

• The pessimist case: we choose ŷ = arg max{F (x, y) : y 2  (x)}.

According to this new representation, we only focus on x. By doing so, we obtain a black-box function and

we do not need to deal explicitly with the lower-level decision variables y at the UL. Therefore, it allows us

to decouple x and y implying that a complex model is replaced by a function modeling its e↵ects. Gaussian

processes require no assumption to approximate the true objective function contrary to the work proposed in

[332] which only uses quadratic approximations.

Bi-level problems are evaluated in two-steps in order to compute the upper-level function F (x, y). Indeed,

the upper-level decision maker has no control on y. He can only observe the lower-level rational decision

ŷ 2  (x) which strongly depends on x. In some ways, F (x, y) can be rewritten by F (x, ŷ). The upper-level

objective function F is in a way a function that only dependents on x. So we will now consider F 0(x) =

F (x, ŷ = arg min{F (x, y) : y 2  (x)} in the singleton or the optimistic case while the pessimistic case would

be F 0(x) = F (x, ŷ = arg max{F (x, y) : y 2  (x)}. Figure 4.1 depicts a surrogate function obtained from the

example described in Figure 4.2. The updated model allows us to plot at each upper-level decision variables

x, the mean fitness value and a confidence interval around the mean value . We can distinguishes two types of

upper-level solutions x:

• The first one represents the upper-level solutions which have been evaluated to compute F 0(x) according to

the lower-level problem. This is the reason why the variance at these points is null. They have already been

selected by the acquisition solver during the optimization.

• The second one represents the upper-level solutions which have not been explicitly evaluated. This is the

reason why we only have a confidence interval around F 0(x). They are potential points to be selected by the

acquisition solver.

In order to evaluate explicitly an upper-level solution x and obtain F 0(x), we have to perform a lower-level

optimization to determine ŷ. This optimization is realized using the Sequential Least Squares Programming

(SLSQP) algorithm developed by Kraft [294]. SLSQP is a gradient-based procedure for non-linear optimization

problems supporting inequality and equality constraints. This algorithm requires a initial guess to start the

optimization. Instead of using a random initial guess, we select as starting point the lower-level optimal solution

obtained by the closest upper-level solution x0. Figure 4.2 depicts this situation where the lower-level problem

is optimized according to the upper-level decision x = 3. The upper-level decision x0 = 2 is the closest that

has been explicitly evaluated so far. The lower-level rational decision set according to x0 is  (2) = {3}. This

strategy is based on the idea that two close upper-level decision variables should have closed optimal lower-level

solutions. In this case, the number of evaluations required by the SLSQP algorithm is drastically reduced.
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4.3.2 Improving the acquisition function using di↵erential evolution

As described in the previous section, bayesian optimization is well-adapted to problem with time-consuming

function evaluations. For instance, it has been used with success to optimize machine learning algorithms[368].

The main advantage is a clever search in order to limit the number of evaluations contrary to some other

metaheuristics. As its name suggests it, the acquisition function allows to find the next point to be evaluated

according to some information gain obtained from the previous iterations. This is clearly a very e�cient way of

learning promising areas of the true objective function. The acquisition function should be globally optimized

since it is generally a function with multiple local maxima. Therefore and contrary to most of the Bayesian

optimization implementation we have seen so far, we considered a di↵erential evolutionary algorithm to search

its global optimal solution becoming the next acquisition point. Such global algorithms have been successfully

applied inside Bayesian optimization algorithms in [244] . Since we need to spare a maximum number of function

evaluations, it is really important to find the most promising areas. Di↵erent strategies can be considered:
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• Select the best acquisition point

• Select a set of promising acquisition point

In the second case, the number of function evaluations will increase but we are more likely to escape local

optimal solutions. In this work, we only test the first case where only a single acquisition point is selected.

Future investigations will focus on di↵erent strategies of optimizing the acquisition function.

In this work, the LCB acquisition function will be preferred because it allows to detect the most promising

solutions in terms of mean and deviation. Large k values put the emphasis on exploration while small k values

focus on the best expected performance.

4.4 General Bi-level Benchmarks

As general bi-level problems, we considered the benchmarks introduced by Sinha et al in [332]. Table 4.1

describes the first five benchmarks, i.e., TP1 - TP5 while Table 4.2 presents the remaining five benchmarks

going from TP6 to TP10. Both tables detail the mathematical formulation of each bi-level problems as well

as their size and best known solutions. Although these benchmarks have small size in terms of number of

upper-level and lower-level variables, their structure and properties make them di�cult to solve using classical

bi-level approaches. To the best of our knowledge, they are the only reported benchmarks with associated best

known solutions found in the literature. They embeds linear and non-linear objective functions and constraints

at both levels. Therefore, we can qualified them as general bi-level problems. One exception can be noticed:

they take only into account continuous decision variables. This will be the subject of a discussion at the end

of this chapter and constitutes one of the main drawback of the approaches based on the approximation of the

lower-level problem.

4.5 Experimental setups

4.5.1 Comparison with BLEAQ on Bi-level Benchmarks

The 10 bi-levels problems, previously introduced and proposed in [332], have been selected to evaluate the

potential of bayesian optimization to solve bi-level problems. This set of benchmarks including linear and

non-linear levels will a↵ord us to compare the Bayesian approach with the BLEAQ algorithm.

BLEAQ is an evolutionary algorithm that focuses on quadratic approximations of the set-value mapping  :

Rn ! Rm that characterize bi-level problems (see Figure 4.3). As starting point, BLEAQ creates an initial

and random population of upper-level individuals that encodes the original upper-level variables. For the

first generation, a full and global lower-level optimization using a second evolutionary algorithm is undertaken

for all individual of the initial population. Once all lower-level solutions have been computed, a multiple

quadratic approximation models between the upper-level variables and each lower-level variables are established.

Depending on whether or not the approximation error is below a predefined threshold, the model is used to

predict further optimal lower-level variables for any new upper-level variables, i.e., any new generated individual.

This reduces the number of call to the second evolutionary algorithm to determine the new lower-level optimal

variables. However the authors of BLEAQ reported that caution should be taken while accepting solutions

from the approximation model. Indeed, poor solutions might drive the algorithm to a wrong bi-level optimal
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Table 4.1: Benchmark problems TP1-TP5 with x as upper-level variables and y as lower-level variables

Problem Formulation Best known sol. value

TP1
n=2 m=2

min
x

(x1 � 30)2 + (x2 � 20)2 � 20y1 + 20y2

s.t. x1 + 2x2 � 30

x1 + x2  25

x2  15

min
y

(x1 � y1)
2 + (x2 � y2)

2

s.t. 0  yi  10, i = 1, 2

upper= 225.0
lower= 100.0

TP2
n=2 m=2

min
x

2x1 + 2x2 � 3y1 � 3y2 � 60

s.t. x1 + x2 + y1 � 2y2  40

0  xi  50 i = 1, 2

min
y

(y1 � x1 + 20)2 + (y2 � x2 + 20)2

s.t. x1 � 2y1 � 10

x2 � 2y2 � 10

� 10  yi  20 i = 1, 2

upper= 0.0
lower= 100.0

TP3
n=2 m=2

min
x

� (x1)
2 � 3(x2)

2 � 4y1 + (y2)

s.t. (x1)
2 + 2x2  4

xi � 0 i = 1, 2

min
y

2(x1)
2 + (y1)

2 � 5y2

s.t. (x1)
2 � 2x1 + (x2)

2 � 2y1 + y2 � �3

x2 + 3y1 � 4y2 � 4

yi � 0 i = 1, 2

upper= -18.6787
lower= -1.0156

TP4
n=2 m=3

min
x

� 8x1 � 4x2 + 4y1 � 40y2 � 4y3

s.t. xi � 0 i = 1, 2

min
y

x1 + 2x2 + y1 + y2 + 2y3

s.t. y2 + y3 � y1  1

2x1 � y1 + 2y2 � 0.5y3  1

2x2 + 2y1 � y2 � 0.5y3  1

yi � 0 i = 1, 2, 3

upper= -29.2
lower= 3.2

TP5
n=2 m=2

min
x

rt(x)x� 3y1 � 4y2 + 0.5t(y)y

s.t. xi � 0 i = 1, 2

min
y

0.5t(y)hy � t(b(x))y � 0.333y1 + y2 � 2  0

s.t. y1 � 0.333y2 � 2  0

yi � 0 i = 1, 2

where t(.) denotes the transpose of vector

h =


1 3
3 10

�
, b(x) =


�1 2
3 �3

�
x, r = 0.1

upper= -3.6
lower= -2.0
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Table 4.2: Benchmark problems TP6-TP10 with x as upper-level variables and y as lower-level variables

Problem Formulation Best known sol. value

TP6
n=1 m=2

min
x

(x1 � 1)2 + 2y1 � 2x1

s.t. x1 � 0

min
y

(2y1 � 4)2 + (2y2 � 1)2 + x1y1

4x1 + 5y1 + 4y2  12

4y2 � 4x1 � 5y1  �4

4x1 � 4y1 + 5y2  4

4y1 � 4x1 + 5y2  4

s.t. yi � 0, i = 1, 2

upper= -1.2091
lower= 7.6145

TP7
n=2 m=2

min
x

� (x1 + y1)(x2 + y2)

1 + x1y1 + x2y2
s.t. (x1)

2 + (x2)
2  100

x1 � x2  0

xi � 0 i = 1, 2

min
y

(x1 + y1)(x2 + y2)

1 + x1y1 + x2y2
0  yi  xi i = 1, 2

upper= -1.96
lower= 1.96

TP8
n=2 m=2

min
x

|2x1 + 2x2 � 3y1 � 3y2 � 60|

s.t. x1 + x2 + y1 � 2y2  40

0  xi  50 i = 1, 2

min
y

(y1 � x1 + 20)2 + (y2 � x2 + 20)2

s.t. 2y1 � x1 + 10  0

2y2 � x2 + 10  0

� 10  yi  20 i = 1, 2

upper= 0.0
lower= 100.0

or 200.0

TP9
n=10 m=10

min
x

10X

i=1

(|xi � 1| + |yi|)

s.t.

min
y

e
(1+ 1

4000

10P
i=1

(yi)
2�

10Q
i=1

cos(
yip
i
))

10P
i=1

(xi)
2

� ⇡  yi  ⇡ i = 1, 2, 3, ..., 10

upper= 0.0
lower= 1.0

TP10
n=10 m=10

min
x

10X

i=1

(|xi � 1| + |yi|)

s.t.

min
y

e
(1+ 1

4000

10P
i=1

(yixi)
2�

10Q
i=1

cos(
yixip

i
))

10P
i=1

(xi)
2

� ⇡  yi  ⇡ i = 1, 2, 3, ..., 10

upper= -3.6
lower=-2.0
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solution. For every new generation, the approximation model is improved until convergence of the algorithm

to the optimal solution. The authors highlighted the fact that, at termination, BLEAQ provides not only the

optimal solution but also an approximation of the mapping between upper-level and lower-level variables.

Figure 4.3: Approximation of the set-value mapping  : Rn ! Rm between upper-level and lower-level
decision variable applied in BLEAQ (source: Sinha et al. [332])

4.5.2 Experimental protocol and parameters

For both approaches, experiments have been conducted on the High Performance Computing (HPC) platform

of the university of Luxembourg[357]. Each run was completed on a single core of an Intel Xeon E3-1284L v3

@ 1,8 GHz, 32Gb of RAM server, which was dedicated to this task. The GPyOpt python library [184] has been

selected to apply bayesian optimization. The LCB acquisition function has been considered to determine the

next promising point with parameter k = 2. The di↵erential algorithm implemented to optimize the acquisition

function is the one proposed by the python scipy library with default parameters: strategy=’best1bin’, max-

iter=1000, popsize=15,mutation=(0.5, 1), recombination=0.7. The scipy library implements SLSQP as well.

Concerning the BLEAQ algorithm, the authors provided a MATLAB code located at http://www.bilevel.org

in the resources section. We kept the same parameters described in [332] and performed 30 runs on each

benchmark using the provided code.

The stopping criteria for both algorithms is the convergence. The bayesian algorithm proposed in this chapter

uses the same criteria as BLEAQ except that the criteria is not applied on a population but on the last acquired

points.

The next section will first describe the results obtained after applying the adapted bayesian algorithm proposed

in this chapter on the 10 benchmarks. A comparison between the results obtained with BLEAQ are discussed

to show the main advantages brought by the bayesian approach.

4.6 Experimental results

4.6.1 Results and discussion

Numerical results have been summarized in Tables 4.3, 4.4 and 4.5. Table 4.3 represents the average best

fitnesses obtained over all runs. A Wilcoxon rank-sum test [376] has been realized to determine if the fitness
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di↵erences are statistically significant for both levels. P-values have been provided in Table 4.4. In addition,

Table 4.5 illustrates the average number of evaluations for both levels over all runs. The ”ULcalls” column

represents the average number of objective function calls at upper-level while the ”LLcalls” column indicates

the average aggregated number of objective function calls at lower-level. We can easily observe that the number

of evaluations obtained with the Bayesian algorithm is much lower than for BLEAQ. This is the reason why no

statistical tests have been computed in this case. In general, BLEAQ achieves better accuracy even if results

for both approach are very close. Indeed, BLEAQ makes use of an evolutionary algorithm to perform lower-

level optimization while the bayesian algorithm implemented to tackle these bi-level benchmarks only invokes

a local search, i.e SLSQP. Nevertheless on TP9 benchmark, the fitness at upper-level is better than the best

known solution. For TP9 and TP10, the average fitnesses are better for the Bayesian algorithm despite the

fact that these both benchmarks have been generated from complex single-level benchmarks with multiple local

optimal solutions (see http://www.bilevel.org). We also noticed the ability of the Bayesian algorithm to face

multi-modal problems. Indeed, the Bayesian algorithm provides two solutions with fitnesses (F, f) = (0, 100)

and (F, f) = (0, 200) which are both upper-level optimal solutions. The same observation has been made for

the TP8 benchmark. On the contrary, BLEAQ never detects the solution providing the fitness values (0, 200).

In a competitive and real-life application, such solution could be preferred by the upper-level decision maker

since the fitness associated to the lower-level problem is definitely higher while still optimal for the upper-level

decision maker. These promising results show the advantage of such surrogate optimization algorithms over

traditional evolutionary computing techniques when function evaluations are complex and time-consuming.

Bayesian BLEAQ
Average UL fitness LL fitness UL fitness LL fitness

TP1 253.6155 70.3817 224.9989 99.9994
TP2 0.0007 183.871 2.4352 93.5484
TP3 -18.5579 -0.9493 -18.6787 -1.0156
TP4 -27.6225 3.3012 -29.2 3.2
TP5 -3.8516 -2.2314 -3.4861 -2.569
TP6 -1.2097 7.6168 -1.2099 7.6173
TP7 -1.6747 1.6747 -1.9538 1.9538
TP8 0.0008 180.6452 1.1463 132.5594
TP9 0.0012 1.0 1.2642 1.0
TP10 0.0049 1.0 0.0001 1.0

Table 4.3: Average best fitnesses for both levels

p-values UL fitnesses LL fitnesses
TP1 5.09354939843e-08 6.62154466203e-08
TP2 1.99180208303e-05 0.000455639542651
TP3 1.33535344389e-11 1.33535344389e-11
TP4 1.33535344389e-11 0.827259346563
TP5 4.88497305946e-08 9.352489315e-05
TP6 1.33535344389e-11 3.21862967172e-09
TP7 1.06973503522e-10 1.06973503522e-10
TP8 1.91908665211e-09 0.00204782236
TP9 2.58028430416e-08 7.11788655392e-06
TP10 1.97034447118e-11 1.97034447118e-11

Table 4.4: Wilcoxon Rank-Sum Test for both levels
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Bayesian BLEAQ
Average UL calls LL calls UL calls LL calls

TP1 211.1333 1558.8667 588.6129 1543.6129
TP2 35.2581 383.0645 366.8387 1396.1935
TP3 89.6774 1128.7097 290.6452 973.0
TP4 16.9677 334.6774 560.6452 2937.3871
TP5 57.2258 319.7742 403.6452 1605.9355
TP6 12.1935 182.3871 555.3226 1689.5484
TP7 72.9615 320.2308 494.6129 26682.4194
TP8 37.7097 413.7742 372.3226 1418.1935
TP9 16.6875 396.3125 1512.5161 141303.7097
TP10 21.3226 974.0 1847.1 245157.9

Table 4.5: Average number of function evaluations for both levels
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Figure 4.4: Gaussian process state after TP5 optimization

4.6.2 Example of landscape obtained after bayesian optimization

Figure 4.4 depicts the posterior mean, the standard deviation and the current acquisition function after applying

the bayesian algorithm on the benchmark TP5. Red dots indicates data points that have been sampled so far by

the algorithm. The posterior mean shows that a large number of points concentrate around the best solution.

Furthermore, the standard deviation is also very low in this area indicating a strong confidence on the location

of the optimal solution. Finally, the landscape of the acquisition function suggests that the next acquired

point would be probably in this area confirming the convergence and therefore termination of the algorithm.

Additional landscapes for the remaining benchmarks are provided in Annex C.

4.7 Conclusions

Bi-level optimization problems are special kind of optimization problems involving two decisions makers. These

hierarchical problems require to optimize iteratively two problems called the upper-level and the lower-level

because the decision variables are partially controlled by each of them. This nested optimization scheme

is time-consuming when both levels are NP-hard. In this chapter, a surrogate-based algorithm has been

proposed to tackle these complex problems. Based on gaussian processes, bayesian optimization is a global

and free-derivative optimization algorithm which has been intensively employed to discover optimal machine

learning hyper-parameters (e.g. neural network, support vector machine) by creating a surrogate model which

is fine-tune until the convergence occurs. Bayesian optimization makes no assumption on the characteristic
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of the optimized function to approximate it. It also embeds a mechanism to detect new promising points

after refinement of the model at each iteration. These properties make bayesian optimization a very good

candidate algorithm to tackle hierarchical problems such as bi-level problems. Indeed, the upper-level objective

value is generally non-convex over the inducible region IR. Numerical experiments on 10 bi-level benchmarks

confirmed that bayesian optimization can dramatically reduce the number of evaluations and thus the number

of lower-level optimizations while guaranteeing very good and accurate results. Future works could consider

di↵erent algorithms to perform lower-level optimizations other than SLSQP to improve accuracy. In fact, the

combination of multiple and di↵erent lower-level optimization solvers would certainly be the best approach to

do such optimizations. In addition, new optimization techniques could be proposed to solve the acquisition

function. For example, multi-objective optimization could use to consider several acquisition functions instead

of optimizing only one at a time.

Even if surrogate-based approaches can dramatically reduce the number of evaluation required to compute the

bi-level optimal solution, they have some limitations that reduce their scope of applications. In the case of

BLEAQ, the approximations of the set-value mapping  : Rn ◆ Rm would be very time consuming due to the

number of lower-level decision variables. For bayesian optimization, a large number of decision variables would

require to train a large dataset which could be very time consuming due to the gaussian processes. Indeed,

the computational bottleneck in using gaussian processes is the inversion of the covariance matrix that can

grow very rapidly, especially for large scale problems. An additional issue with surrogate-based approaches

is the fact that they cannot cope with combinatorial problems although most real applications are generally

combinatorial or discrete. Consequently, tackling e�ciently large scale combinatorial bi-level problems remains

a real challenge. In the next chapter, we investigate this issue and propose to rely on the concept of “learning

to optimize” in order to o↵er an e�cient solution to tackle any large scale combinatorial bi-level problem.
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5.1 Introduction

In chapter 2, we listed several strategies to tackle bi-level optimization problems. Due to their high complexity,

metaheuristics for bi-level optimization are the most suitable techniques when assumptions such as convexity

and regularity cannot be applied. Through chapter 3, we have shown the relevance of a bi-level clustering model

obtained after decomposition into two-levels, of which one has polynomial complexity. A nested optimization

approach was therefore e�cient tackle. Therefore, we proposed a parallel and hybrid evolutionary approach to

tackle this novel bi-level clustering problem. Unfortunately, general bi-level problems can have more complex

properties and often have NP-hard lower-level. Chapter 4 has been dedicated to such general problems. We

studied the possibility to employ surrogate-based approaches such as bayesian optimization to replace the costly

and numerous evaluations of the lower-level problem. Despite their real advantage for continuous and small-scale

problems, surrogate-based approaches are hold in check by large-scale and combinatorial bi-level problems.

Although there is no extension for combinatorial problems, the concept of “learning knowledge” from the

problem to improve the resolution could be also investigated in the discrete/combinatorial case. Through the

last two parts and four chapters, we have shown that the key issue to solve bi-level problems depends strongly
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on our capacity to solve the various instances generated at the lower-level. Therefore our e↵orts should be

dedicated to tackle e�ciently every lower-level instances that can be generated during bi-level optimization.

For this purpose, there already exists many metaheuristics and bio-inspired approaches that have been designed

to tackle general NP-hard problems. Nonetheless, the “No free Lunch Theorem” [378] states that there is

no universal metaheuristic that can perform better across all existing problems. Therefore the number of

publications in the metaheuristics field escalated during the last two decades and went from 100 in 1995 to

10500 published papers per year in 2017 (see Figure 5.1). This current plethora of metaheuristic algorithms

requires also to determine the optimal parameters which is not trivial. Instead of manually searching for and

fine-tuning metaheuristics, we could develop a methodology to learn optimization algorithms for dedicated

problems. In this situation, we do not try to approximate the objective function as for continuous problem but

the path that leads to an algorithm producing a good approximation.

Figure 5.1: Number of publication in the metaheuristic field

In this part, we introduce the “learning to optimize” paradigm based on training algorithms on a set of instances

in order to tackle e�ciently a problem. This is largely motivated by the fact that we need to be able to tackle any

lower-level instances encountered during bi-level optimization. It is perfectly suitable for discrete/combinatorial

problems where no strong properties help us to characterize optimal solutions. One solutions is therefore to

learn knowledge from a large set of known instances. We solely believe that we can determine automatically

rules that can guide us to find a path to near optimal solutions. Before applying this paradigm on bi-level

optimization, we focus first on single-level combinatorial problems.

Consequently, this chapter is a transition allowing us to define and explore more in details the “learning to

optimize” paradigm. Our aim is now to develop an automatic procedure guiding us to generate dedicated and

e�cient heuristics to cope with NP-hard problems and by extension NP-hard lower-level problem. We suggest

to learn automatically the extraction of this knowledge using a machine learning mechanism producing e�cient

heuristics as outputs. Here, we attempt to learn full or partial heuristics to obtain fast but e�cient solvers. For

this purpose, the recent approach referred to as GP Hyper-Heuristics could serve as learning model. Based on

Genetic Programming, GP hyper-heuristics are constructive hyper-heuristic algorithms in which a population

of self-made heuristics is evolved until a certain convergence criterion is met. Introduced by Koza in [221], GP

makes use of a tree-based encoding representation and was initially designed to evolve functions and programs.

Recent works [21, 110] have shown that GP can be extended and considered as a learning model for code

generation. Terminal and function sets are key elements for GP. They are the nodes and leaves of each solution

represented as a Tree. The concept behind GP hyper-heuristics is very similar to a machine learning model.

In order to obtain a final population of heuristics with high abilities of approximation, the algorithm will learn

from a set of various instances, i.e., the training set and validate the heuristics on a test set containing unseen

instances.
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Hyper-heuristics have been originally designed to determine the best selection of heuristics, ”heuristics to choose

heuristics”, for solving optimization problems. Despite their very good results, they were constrained by the

existing knowledge of a problem. It means that for a new problem with few existing heuristics, the chance

to produce an e�cient hyper-heuristic is low. GP hyper-heuristic can be a very good alternative in this case.

Successful attempts in the literature (e.g. [109], [9],[21]) relied on this new class of hyper-heuristics that search

through the space of heuristics instead of the space of solutions and use specific instances data and properties

(e.g., columns for a mathematical problem) as inputs for the design of heuristics.

Designing e�cient heuristics requires a deep understanding of the problem and can be time consuming. This is

the reason why a learning mechanism could both ease and improve the problem analysis and resolution. Previous

works have shown that automatic generation of heuristics can challenge human-based heuristics. Nevertheless,

existing approaches rely on a training mechanism which generates size-dependent heuristics, contrary to human-

based heuristics, which could mitigate their utility.

In this chapter, we propose to test this approach by generating automatically new competitive and general

heuristics for a well-known single-level problem: the Multi-dimensional Knapsack problem (MKP). Our con-

tribution relies on a new definition of the terminal and function sets enabling the generation of e�cient and

size-independent heuristics. Additionally, we argue that this new terminal set should contain all information

helping a decision maker to discriminate good items from bad ones. Such information can be found in the

literature or using other resolution approaches. For instance, the LP relaxed solution is an additional knowl-

edge which enhance the design of new heuristics. Experiments have been conducted on instances from the

OR-Library and results show that this improved approach outperforms state-of-the-art approaches comprising

human-based heuristics and original heuristic generation approaches.

This chapter is organized as follows. An overview of hyper-heuristics is provided in section 2 and the MKP

is introduced in section 3. Then the improved GP hyper-heuristic is described in details in section 4. The

experimental setup and results are discussed in section 5. Finally, the last section provides our conclusions and

proposes some possible perspectives.

5.2 Hyper-heuristic: overview

Described as “heuristics to choose heuristics” by Cowling et al. [86], the term “hyper-heuristics” has been first

introduced by Denziger et al. in [150] and referred to approaches combining artificial intelligence (A.I.) methods.

Contrary to algorithms searching in the space of solutions, hyper-heuristic algorithms search in the space of

algorithms, i.e., heuristics in order to determine the best heuristics combination to solve a problem. Burke et al.

in [57] compared hyper-heuristics as “o↵-the-pegs” methods which are generic approaches providing solutions of

acceptable quality as opposed to “made-to-measure” techniques. This need of generalization is clearly related

to machine learning approaches. Therefore, hyper-heuristics can be classified as learning algorithms and have

been motivated by the following factors: the di�culty of maintaining problem-specific algorithms and the need

of automating the design of algorithms. Two methodologies of hyper-heuristics rose from the literature: the

first one is referred to as heuristic selection while the second one is described as heuristic generation.

Heuristic selection is the legacy approach which consists in determining the best subset of heuristics solving a

problem. Among these approaches, we can distinguish constructive and perturbative methods. Constructive

methods generate a solution step by step, starting from a partial or empty solution. The construction of a

full solution is achieved through the selection and application of the heuristic to this partial solution. For

this purpose, a pre-existing set of constructive heuristics should be provided in order to determine the best
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heuristics to apply at a given state of the search. The resolution then stops when the solution is complete.

Constructive methods have been applied for instance on vehicle routing [146], 2D packing [247], constraint

satisfaction [290] and scheduling [144]. On the contrary, perturbative methods start from a valid solution and

attempt to modify it using a pre-existing set of perturbative heuristics. At each step, one heuristic is selected

from this set and applied to the solution. According to a specific acceptance strategy factor (e.g., deterministic

or non-deterministic), the new solution is accepted or rejected. It is also possible to perturbate multiple solutions

at once but it has been seldom used in the literature. Scheduling [193], space allocation [22] and packing [23]

are problems where such pertubative methods have been exploited.

More recently, a growing interest has been devoted to heuristic generation. The motivation behind this approach

is the automatic generation mechanism which does not rely on a possible set of pre-existing heuristics. Instead

of searching in the space of heuristics, the hyper-heuristic searches in the space of components, i.e., instances

data. Building a complete heuristic is not a trivial task but can be performed using Genetic Programming (GP)

[13]. In contrast to Genetic Algorithms (GA) where solution vectors are improved via genetic operators, GP

evolves a population of programs until a certain stopping criterion is satisfied. Programs are expressed as tree

structures which means that their length is not defined a priori contrary to GA solutions. The suitability of

GP to produce heuristics has been outlined in a survey published by Burke et al. [58]. The major advantage

brought by GP is the possibility to automatize the assembly of building blocks, i.e., terminal sets and function

sets emerging from knowledge gained on the problem. For the MKP, this knowledge can be easily retrieve in the

literature. The dynamic length of the tree encoding is an advantage if some size limitations are implemented.

Indeed, large programs will tend to have over-fitting symptoms meaning that the generated heuristics will be

very e�cient on the instances trained by the GP but not on unseen ones. These are typically the same issues

faced by machine learning models. GP hyper-heuristics, i.e., heuristic generation, encountered real success in

cutting and packing [59], function optimization [289] and other additional domains [118],[356],[281].

It is also worth mentioning the recent approaches such as Cartesian GP and Grammar-based GP that are

improvements of the classical GP. Cartesian GP is an alternative form of GP that encodes a graph representation

of a computer program. Cartesian GP defines explicitly a size preventing bloat but can be very sensitive to

parameters. In Grammar-based GPs [50, 341, 340], a grammar in Backus-Naur Form (BNF) is considered to

map linear genotypes to phenotype trees and have less structural di�culties than a classical GP.

This work relies on hyper-heuristics using classical GP and on a more general definition of the terminal sets in

order to remove the size limitation problem mentioned in [109].

5.3 Multi-dimensional 0-1 Knapsack

The Multi-dimensional 0-1 Knapsack (MKP) is a NP-hard combinatorial problem [163] which extends the

well-know 0-1 Knapsack problem for multiple sacks. The objective is to find a subset of all items maximizing

the total profit and fitting into the m sacks. Each item j gives a profit pj and occupies some space aij in the

sack i. Each sack i has a maximum capacity bi which should not be exceeded. The Multi-dimensional 0-1

Knapsack can be formally expressed as a 0-1 Integer Linear Program (ILP) as presented in Program 5.1.

More practically, the MKP is a resource allocation problem which has been first employed as a capital budgeting

model ([249, 266]). Like the standard knapsack problem, this problem received wide attention from many

communities, including operation research and evolutionary computing). Multiple heuristics and metaheuristics

have been designed to tackle the MKP in addition to the existing exact approaches which can only handle small

instances. Among the existing heuristics for MKP, greedy heuristics are designed to be fast, i.e., polynomial
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maximize
nX

j=1

pjxj (5.1)

subject to
nX

j=1

aijxj  bi 8i 2 {1, ..., m} (5.2)

xj 2 {0, 1} 8j 2 {1, ..., n} (5.3)

Program 5.1: 0-1 ILP for the multi-dimensional knapsack

time complexity. Generally, they are constructive methods which can be primal or dual heuristics. A primal

heuristic starts from a feasible solution and tries to improve the objective value while keeping the solution

feasible. On the contrary, a dual heuristic starts from an upper-bound (in case of maximization) solution,

i.e., not feasible and attempts to make it feasible while minimizing the impact on the objective value. For

example, the authors in [324] used a dual heuristic with a starting solution consisting in taking all items.

The heuristic aims at removing items according to an increasing ratio until feasibility is reached. The ratio

or score of each item j is computed as follows: rj = pjPm
i wiaij

. Weights are sometimes omitted since they

add a new level of complexity and are specific to the considered instances. Using Lagrangian relaxation, the

authors in [255] improved the dual heuristic published in [324]. Concerning primal heuristics, they attempt

to add items until all constraints are satisfied. In this case, items with the largest ratios have the priority

([213],[250],[351]). These new heuristics using dual multipliers give insights about the variables to set. The

work proposed by Magazine and Oguz has been then extended by [363]. Further improvements based on

surrogate constraints [302], bound tightness [136], threshold acceptance [113] and noising approaches [74] have

contributed to improve such heuristics. The interested reader may refer to the survey on MKP heuristics

from Fréville [135]. Metaheuristics have been also considered to tackle MKP instances. They are stochastic

algorithms which successfully tackled many combinatorial optimization problems. The MKP is one of those

problems which have been diligently investigated. A simulated annealing (SA) algorithm has been first employed

in [360] in which a specific random move should maintain feasibility during the search. Then a Tabu Search

(TS) algorithm has been designed in [90] with a dynamic management of the tabu list managed to outperform

the SA algorithm. This dynamic management is ensured by maintaining feasibility through DROP-ADD moves.

After that, diverse metaheuristics have been considered to solve the MKP during the last decade including Ant

Colony Optimization [125], Genetic algorithms [231], Memetic algorithms [80], Particle Swarm algorithms [77],

Fish Swarm Algorithms [19] and Bee Colony algorithms [345]. Finally, machine learning algorithms such as

Augmented Neural Networks [92] have also been studied to provide approximate solutions for MKP.

5.4 Automatic Heuristic Generation for the Multi-dimensional 0-1

Knapsack

5.4.1 GP Hyper-Heuristic workflow

We extend the approach developed in [109] and also based on GP hyper-heuristics. Referred to as bio-inspired

algorithms, GPs belongs to the class of evolutionary algorithms inspired by Darwin’s theory of evolution.

Contrary to GAs, GPs makes use of tree encodings to represent solutions. Proposed by Koza [13], a GP uses

a dynamic-length encoding due to the tree representation and are thus good candidates for evolving programs

or mathematical expressions. According to [309], the key choices to use a GP are the definition of the terminal
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set and function set. Indeed, the terminal set consists in all external inputs, constants or functions without

parameters which are leaf nodes of the tree solution while the Function set determines all operators (e.g.,

arithmetic, logic, etc.), i.e., the intermediate nodes.

A GP hyper-heuristic starts with a random population of heuristics which are evolved in order to obtain

heuristics with high resolution abilities. The GP trains the population of heuristics to solve a set of instances,

i.e., the training set. The obtained heuristics are also wished to be able to tackle e�ciently new encountered

instances by using the knowledge gained during the training phase. This work-flow is very similar to a supervised

learning algorithms which learns on a training data and validates the training on test data. Nonetheless to

qualify GP hyper-heuristics as supervised learning methods, we should normally know the optimal solution of

the training instances. For that, two possible choices exist. One can either consider small training instances and

solve them exactly in order to have a strict supervised knowledge or consider another approach which optimizes

while learning. Drake in [109] chose this second approach which does not rely on any a priori knowledge about

the optimal solution. In this work, we also consider this second approach as well while trying to obtain more

general heuristics.

Generating full and valid programs requires a lot of computation. It is also very di�cult to obtain valid

programs even for simple tasks. Nevertheless, they have been recently employed and are referred to as to

Grammar-based GP [50]. Terminal and functions sets are modeled using a specific Grammar which ensure that

the closure property will be satisfied. Such Grammar-based GP is dedicated to small and simple tasks. Indeed,

the advantage provided by GP hyper-heuristics is to reduce the combinatorial explosion by searching in the

heuristic space. However, the use of a large grammar would not go in this direction. As an alternative, it is

more e�cient to identify the dynamic part of an heuristics, i.e., parts which should evolve and have a direct

impact on the heuristic results. For example, on the MKP, a constructive and greedy heuristic will sort all

items according to a scoring function (1st phase) and then try to add items (2nd phase) to the sacks while

following the order induced by the scoring function. It is clear that the second phase will be common to all

generated heuristics whereas the first phase has a key element: the scoring function. Therefore, an e�cient

way to train heuristics is to train scoring functions. A GP hyper-heuristic is thus devoted to the generation of

mathematical functions able to score the available items which can be added to the sacks (see Algorithm 8).

[109] were the first to introduce such strategy for the MKP problem. Each solution, i.e. scoring function is

represented as a syntax tree depending on the definition of the terminal and function set (see Table 5.1). Each

scoring function in the population is then inserted to the greedy heuristic template (see Algorithm 10) in order

to evaluate the relevance of the function to obtain an e�cient insertion order. In order to drive the algorithm

to produce e�cient heuristics optimizing the MKP, the fitness of a scoring function is obtained as the sum of

each profit computed (see Algorithm 10) on the training instances (see Algorithm 9).

5.4.2 Generation of size-independent heuristics

The previous section introduced the concept of GP hyper-heuristics and how they have been implemented to

tackle the MKP. The original approach proposed by [109] has the disadvantage to yield heuristics which depend

on the size of the training instances. Despite their good approximation results, the trained heuristics cannot

be employed to solve instance of di↵erent size.

The contribution of this work lies in the fact that we focus on learning generic heuristics applicable on di↵erent

instances size. For this purpose, we update the terminal and function sets. They are crucial since they contain
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Algorithm 5 Genetic programming hyper-heuristic
1: hall of fame  create empty HOF(size=1)
2: population  gen ramped half and half(NPOP,min,max)
3: for ind in population do
4: ind.fitness  evaluate(ind,training instances)
5: end for
6: hall of fame  update HOF(hall of fame)
7: while gen  NGEN do
8: parents selection(population)
9: o↵springs  ;
10: for ind in parents do
11: if random()  CXPB then
12: mate  sample(parents,1)
13: o↵spring1,o↵spring2  crossover(ind,mate)
14: o↵springs  o↵springs [ {o↵spring1,o↵spring2}
15: else if random()  CXPB+MUTPB then
16: mutant  mutation(ind)
17: o↵springs  o↵springs [ {mutant}
18: else
19: repro ind  copy(ind)
20: o↵springs  o↵springs [ {repro ind}
21: end if
22: end for
23: for ind in o↵springs do
24: ind.fitness  evaluate(ind,training instances)
25: end for
26: hall of fame  update HOF(hall of fame)
27: population  o↵springs
28: end while
29: return hall of fame

Algorithm 6 evaluate(ind,training instances)
1: profits 0
2: for instance in training instances do
3: func  compile(ind)
4: value  greedy heuristic(instance,func).solve()
5: profits  profits + value
6: end for
7: return profits

Algorithm 7 greedy heuristic template(instance,function)
1: value  0
2: solution  [0,0,...,0]
3: sacks  [0,0,...,0]
4: indexes  sort(items,func)
5: while indexes 6= ; do
6: index  indexes.pop head()
7: if sacksi + Ai,index  rhsi8i 2 {1, ..., m} then
8: solutionindex  1
9: value value + pindex

10: for i 2 {1, ..., m} do
11: sacksi  sacksi + Ai,index

12: end for
13: end if
14: end while
15: return value

the building blocks for the construction of the scoring functions. The sorting mechanism of the greedy/con-

structive heuristic relies on these functions and discriminate interesting items from unattractive ones. This

notion of discrimination is again very close to the one defined in machine learning which often relies on feature

selection. The latter, also known as attribute selection, aims at selecting a subset of relevant attributes to build

a model. Feature selection is essential for interpretation purpose, shortening training time, reducing over-fitting

and avoiding the so called curse of dimensionality. For GP hyper-heuristics, terminals and functions set should

be chosen to achieve the same process. Here, both sets represent the features of the learning model.

In [109], the authors chose the sets described in Table 5.1 which consist of all elements defining the properties

of an item (e.g., price, resource consumption, etc.) namely a column of the mathematical program defining

the MKP. The drawback of such an approach is the dependence between the training instances and the test

instances. Indeed both should have the same number of constraints. Despite the very good results reported in

their work, they cannot apply their generated heuristics to instances having a di↵erent number of constraints.

We propose to reconsider another terminal set which should be able to reach a better generalization level.
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According to Table 7.1, we propose a new set where none of the terminal elements are depend on the instance

size. In order to discriminate good items from bad ones, we also add the solution of the LP relaxation as prior

knowledge which is clearly a very good feature for our learning purpose. We keep the average di↵erence which

was originally introduced by [109]. In fact, good indicators can be found due to the numerous works existing in

the literature. Many of these indicators have been already proposed to generate e�cient approximation of the

MKP. The sets shown in Table 7.1 are not exhaustive and could be easily completed with new features which

would permit to discriminate more accurately profitable instances from valueless ones.

The next two sections describe the conducted experiments which attest the better generalization results of our

approach. We first detail the parameterization and the benchmarks used in both Drake’s work [109] and this

one. Then a detailed analysis of the results is provided.

Table 5.1: Functions and terminal sets implemented in [109]

Name Description
Operators

+ Add two inputs
- Substract two inputs
* Multiply two inputs
% Divide two inputs with protection

Terminal sets/ Arguments

pj Profit of the current item j

avgDiffj =
P

i bi�aij
m

Average di↵erence between the capacity
and the resource consumption for item j

a1j Ressource consumption of item j for sack 1
a2j Ressource consumption of item j for sack 1

a...,j ...
amj Ressource consumption of item j for sack m

Table 5.2: Functions and terminal sets implemented in this work

Name Description
Operators

+ Add two inputs
- Substract two inputs
* Multiply two inputs
% Divide two inputs with protection

mod Modulo b.t.w. two inputs with protection
Terminal sets/ Arguments

pj Profit of the current item j

avgDiffj =
P

i bi�aij
m

Average di↵erence between the capacity
and the resource consumption for item jP

i aij Total ressource consumption of item j for sack i
maxi aij Max ressource consumption of item j for sack i

x̄j Solution value for item j after LP relaxation

5.5 Numerical experiments

5.5.1 Setups and parameters

As for the experiments realized in [109], the OR-Library instances have been considered. They have been

originally introduced in [80] and consist of 270 instances (see Table 5.3). These are classified according to

the number of variables n 2 {100, 250, 500}, number of constraints m 2 {5, 10, 30} and the tightness ratio

r 2 {0.25, 0.50, 0.75}.

In order to evaluate the e�ciency of the heuristics on these instances, we adopt as performance measure the

%-gap (see equation 7.2) between a lower-bound and an upper-bound. Lower bounds are provided by the

heuristics, i.e. vh while the continuous LP relaxation, i.e. vlp will be the reference upper bound. In addition,

we multiply by 100 all gaps such that results are comparable with the work described in [109].
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Table 5.3: OR-Library benchmarks

Tightness ratio
Instance set 0.25 0.50 0.75 Total

OR5x100 10 10 10 30

OR5x250 10 10 10 30

OR5x500 10 10 10 30

OR10x100 10 10 10 30

OR10x250 10 10 10 30

OR10x500 10 10 10 30

OR30x100 10 10 10 30

OR30x250 10 10 10 30

OR30x500 10 10 10 30

All instances 90 90 90 270

Table 5.4: GP parameters

Generations 50
Population size 100

Crossover Probability (CXPB) 0.85
Mutation Probability (MUTPB) 0.1

Reproduction Probability 0.05
Tree initialization method Ramped half-and-half

Selection Method Tournament selection with size=7
Depth limitation 17

Crossover Operator One point crossover
Mutation Operator Grow

%-gap = 100 ⇤ vlp � vh

vlp
(5.4)

Concerning the GP hyper-heuristic, Table 5.4 describes all the GP parameters and GP operators considered for

these experiments. The GP algorithm will perform 50 generations with a population size of 100 syntax trees

that represent each a possible scoring function. Contrary to GA, GP makes a di↵erent use of the evolutionary

operators. First of all, their probabilities should sum to 1. For example, in the case of Table 5.4, 85% of the

solutions will mate with another one, 10% will face mutations and only 5% will be kept without any modifications

for the next generation. In order to keep control of the size of each syntax tree, we added a limitation operator

which guaranty us that a solution will not have a depth greater than 17 nodes. The crossover operator and

mutation operators are the same as utilized in [109].

Finally, we adopt the same protocol as described in [109] to train heuristics. All instances have been divided into

groups depending on the number of variables, the number of constraints and the tightness ratio as illustrated

in Table 5.3. The GP hyper-heuristic has been applied on all of these groups containing each ten instances.

Five random instances have been selected as training instances while the remaining five instances have been

considered as test instances. The fitness value of a heuristic is thus the sum of the fitness value on the five

training instances. However, the reported %-gaps are only computed on the test instances. For each group, five

GP hyper-heuristic runs have been performed in order to obtain an average %-gap and the best heuristic has

been recorded.

Experiments have been conducted on the High Performance Computing (HPC) platform of the University of

Luxembourg [357]. Each run was completed on a single core of an Intel Xeon E5-2680 v3 @ 2.5 GHz, 32Gb of

RAM server, which was dedicated to this task. The python library DEAP [108] has been considered for the

GP implementation.
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Table 5.5: Performance of the best found heuristics on the ORlib instances based on average gap (%)

Original approach Improved approach (AHG)

Instance set 0.25 0.50 0.75 Average 0.25 0.50 0.75 Average
OR5x100 4.98 2.05 1.36 2.80 1.22 0.94 2.00 1.39

OR5x250 3.08 1.66 0.77 1.84 0.55 0.36 0.73 0.55

OR5x500 2.38 1.64 0.71 1.58 0.23 0.13 0.33 0.23

OR10x100 7.39 3.54 2.26 4.40 1.74 1.65 2.97 2.17

OR10x250 4.43 2.78 1.15 2.79 0.81 0.41 0.99 0.74

OR10x500 3.77 1.97 0.99 2.24 0.44 0.26 0.43 0.38

OR30x100 8.67 4.70 2.43 5.27 2.81 1.55 5.83 3.39

OR30x250 5.73 3.25 1.70 3.56 1.62 1.01 1.73 1.45

OR30x500 4.80 2.54 1.40 2.91 0.71 0.46 0.95 0.71

All instances 5.03 2.68 1.42 3.04 1.12 0.75 1.77 1.22

5.5.2 Results

The average %-gap obtained after 5 runs is provided in Table 5.5. The left part of this table represents the

results from [109] while the right part corresponds to the improved approach (AHG) that we have proposed in

this work.

Each row depicts a specific instance set ORnXm divided into groups of di↵erent tightness ratios. For instance,

the average %-gap obtained for the instance set OR5x100 with tightness ratio 0.25 is 4.98 in the original

approach. Gray shaded cells indicate that the average %-gap is better for the considered approach. For

example, the average %-gap obtained for the instance set OR5x100 with tightness ratio 0.25 is lower and then

better for the heuristics obtained with the AHG approach.

Table 5.5 shows us that each instance set ORnXm has a better average %-gap when solved with the AHG

approach. When considering tightness ratios, we can observe that AHG outperforms all instances with r = 0.25

and r = 0.5 while this is not the case for r = 0.75. The tightness ratio defines the scarcity of capacities. The

closer to 0 the tightness ratio the more constrained the instance. Indeed, a ratio r = 0.25 implies that about

25% of the items can be packed contrary to a ratio r = 0.75 where 75% of the items can be packed. These

results show that the proposed AHG approach is able to handle more e�ciently highly constrained instances.

We can find a simple reason for these di↵erences. The learning proposed in [109] depends on the size of the

instance which means that the cardinality of the terminal set increases with the number of constraints. As a

consequence, the heuristic space search is enlarged which increases the possibility of combinations of terminal

elements. Another reason could be due to over-fitting but the %-gap on the training instances have not been

provided by the authors. In the case of over-fitting, the GP hyper-heuristic would probably perform very well

during the training phase but the resulting heuristics would be specific to the training instances impacting the

%-gap on test instances. On instances with r = 0.75, the problem is less constrained and a general heuristic has

less di�culties to find to pack items e�ciently which explains the small di↵erences between both approaches.

Table 5.6 confirms that the absolute di↵erence increases with the tightness ratio. The dark grey shaded cells

represents highest deviation while the white ones depict the smallest deviation for each instance set.

Table 5.7 presents the %-gap obtained by di↵erent existing methods found in the literature on the same bench-

marks. The approach proposed in this work, i.e. AHG, obtains a good rank, i.e., 5th position which show that

the automatic generation of heuristic is a promising domain. This table is not exhaustive and we are sure that

while writing these lines, new challenging methods have been proposed.
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Table 5.6: Absolute deviation between both approach based on average gap (%)

Tightness ratio
Instance set 0.25 0.50 0.75

OR5x100 3.76 1.11 0.64
OR5x250 2.53 1.30 0.04
OR5x500 2.15 1.51 0.38
OR10x100 5.65 1.89 0.71
OR10x250 3.62 2.37 0.16
OR10x500 3.33 1.71 0.56
OR30x100 5.86 3.15 3.40
OR30x250 4.11 2.08 0.45
OR30x500 4.09 1.93 0.35

Table 5.7: Comparisons with multiple existing approaches over all ORlib instances in terms of gap (%)

Type Reference %-gap
MIP [111] (CPLEX 12.2) 0.52
MA [80] 0.54

Selection HH [111] 0.70
MA [404] 0.92

AHG this work 1.22
Heuristic [302] 1.37
Heuristic [136] 1.91

Metaheuristic [159] 2.28
GHH [109] 3.04
MIP [80](CPLEX 4.0) 3.14

Heuristic [4] 3.46
Heuristic [363] 6.98
Heuristic [255] 7.69

Automatic generation of heuristics are general approaches which have been proposed to facilitate the generation

of good performing and fast algorithms to solve problems. Table 5.7 shows that training heuristics can

provide better results than human-based algorithms.

The generated heuristics obtained from the previous experiments are claimed to be applicable on any MKP

instances. The question is now to determine if they are e�cient enough to solve other unknown instances.

Therefore, we applied them on all the other groups to observe whether or not the learning process was able to

reach a good level of generalization.

Figure 5.2 depicts multiple boxplots representing the distribution of the %-gap obtained after applying each

heuristic on the 27 groups. On the Y axis, each row represents a heuristic trained on one specific group (n, m, r)

with n the number of variables, m the number of constraints and r the tightness ratio. On the X axis, the scale

provides the average %-gap obtained after applying the heuristic on the 10 instances of each groups. In other

words, the red dots represents the average %-gap obtained one each group.

We can easily observe that all groups and thus heuristics reach nearly the same performance. We applied the

non-parametric Kruskal-Wallis test in order to evaluate if the results are statistically di↵erent. The obtained

statistic is 36.28 and the p-value is 0.08. According to an ↵-level set to 0.05, we can conclude that the null

hypothesis is accepted and thus the heuristics have similar performance even if they were trained of di↵erent

instance size. Tables D.1,D.2 and D.3 in the Annexes provide all the numeric values summarized in 5.2. These

3 tables represent respectively the application of the generated heuristics on instances with n = 100, n = 250

and n = 500.
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In this section, we observed that we can automatically generate e�cient algorithm to cope with an optimization

problem like the MKP. In addition, we proposed better features to be embedded in the terminal and function

sets. Results confirmed that the generated heuristics are better than the ones obtained in [109] and some

human-based heuristics. Last but not least, we were able to generate more general heuristics which are not

dependent on the training instances. A Kruskal-Wallis test confirmed that the generated heuristic have similar

median performance on all instances.

Figure 5.2: Performance of the generated heuristics on all 270 instances

5.6 Conclusion and Perspectives

Through this chapter, we investigate a new alternative inspired by machine learning and relying on the paradigm

“Learning to optimize”. The mainstream consists in generating automatically heuristics using GP hyper-

heuristic to automatically solve combinatorial problems. We retained Multi-dimensional 0-1 knapsack instances

as benchmarks to test the proposed approach. GP hyper-heuristics are recent hyper-heuristic approaches based

on heuristic generation contrary to heuristic selection. Relying on Genetic Programming, they make possible to

train heuristics or parts of heuristics. In this chapter, only a part of a greedy/constructive heuristic is learned,

namely the scoring functions that allow to find an inserting order in the sacks and are the major component

of such greedy heuristics. By defining new terminal sets and functions sets, a genetic programming algorithm

has been applied on training instances in order to find e�cient and discriminative scoring functions. After the

training phase, all functions have been embedded into a greedy heuristic template to become real heuristics.

The proposed GP hyper-heuristic is based on [109]. Despite the novelty of this work, we observed that the

author’s approach yields heuristics working only on instances having the same number of constraints as the

ones used for training. It would be more valuable to automatically create heuristics for any instance size of

the MKP. In order to enable the creation of such heuristics, more general features should be provided to the

training algorithm, i.e., GP. For example, an LP relaxed solution provides very relevant information and could

be used as additional input data in the GP.
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Here, our main concern was to adapt GP hyper-heuristic to tackle any instance size by redefining more general

terminal and function sets. We applied strictly the same experiment protocol defined in [109] and showed that

the new terminal set enable to tackle any MKP instance size e�ciently.

To measure their performance, test instances which have been not provided to the GP hyper-heuristics during

training have served to compute a performance measure, i.e., %-gap. Results have shown that the new terminal

sets and function sets improved the %-gap and outperformed the state-of-the-art approach. In addition, we

proved empirically that it is possible to train heuristics on small instances size and then apply them on larger

instances while obtaining the same performance. Experiments described in this work have shown that the

trained heuristics captured enough information to solve e�ciently instances of various size even if they never

encountered them during the training phase. These promising results indicate us the necessity to perform some

kind of feature detection in optimization problems in order to define appropriate terminal sets and improve

further this automatic mechanism for generating heuristics.

In the next chapter, we will apply the strategy of “learning heuristics” to a large scale and combinatorial

bi-level problem, i.e., the Bi-level Cloud Pricing Problem. The mainstream is to exploit this strategy on the

combinatorial lower-level problem in order to obtain a fast but e�cient heuristics set able to tackle any of its

lower-level instances that can be yield during bi-level optimization.



Chapter 6

The Cloud Bi-level Pricing: a large

scale and combinatorial bi-level

problem

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 BCPOP: mathematical formulation and properties . . . . . . . . . . . . . . . . . . 108

6.3 GP Hyper-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Training heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.2 Scoring functions: training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.2 Application of the new heuristic onto the BCPOP . . . . . . . . . . . . . . . . . . . . 114

6.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Introduction

In chapter 4, we have observed that surrogate-based or model-based approaches are very good candidates to

reduce dramatically the numerous lower-level optimizations that makes bi-level optimization so time consuming.

We contributed to this strategy by demonstrating that bayesian optimization could be extended to solve general

but continuous bi-level optimization problems. Indeed, such algorithms are generally employed for black-blox

problems where the evaluation of a solution can be very time consuming. In fact, bi-level problems can be

considered as an indirect black-blox problem since the Inducible Region (IR), i.e., the bi-level feasible search

space is not know and has to be discovered during optimization. In spite of their promising results, surrogate-

based optimization approaches have some drawbacks that restrict their use to small and continuous bi-level

problems. Large scale and combinatorial bi-level problems such as the Bi-level Cloud Pricing Optimization

Problem (BCPOP) introduced in this chapter are inaccessible for surrogate-based algorithms.
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The BCPOP is a mixed-integer bi-level problem that belongs to the category of Pricing problems (see chapter

2). It has been designed in the context of this thesis to help cloud service providers to find the best selling prices

according to the market. The advent of Cloud Computing [268] has radically changed IT services market where

nearly everything can be now considered as a service [153]. Cloud Computing definitely contributes to shift

the market from monopolistic to perfect competition between cloud service providers and should theoretically

be a benefit for cloud service consumers. However, this shift reduces the di↵erentiation between service prices

increasing the complexity of the market. In order to stand out of the crowd in a very competitive market,

cloud service providers introduced new services in the form of bundles. Although bundles allow cloud service

providers to create new distinctive o↵ers, it renders cloud service decision-making more di�cult. Indeed to

cover their need at minimal cost, cloud service customers have to make combinations of bundles to cover all

their IT needs. On the opposite side, cloud service providers would like to determine the best prices for the

proposed bundles. They should be competitive to other o↵ers while maximizing profits. Generally, these two

optimization problems are solved independently from each other whereas they belong in fact to the same global

problem. The latter can be modeled as a bi-level optimization problem, i.e., the BCPOP. In the context of

cloud pricing, a cloud service provider would like to determine the best prices for its bundles on the market.

It assumes that cloud service customers are rational and wish to minimize their cost while satisfying all their

needs. Setting high prices will discourage cloud service customers to select the proposed o↵ers. However, low

prices may not be su�cient to maximize the profits. In such a situation, prices are strongly dependent on

customers choices. Hence, cloud service providers can only determine the best prices if they are able to measure

or forecast the reactions of the customers to the prices.

A Cloud service provider wants to find the highest prices while being sure that customers will still be attracted by

the bundle o↵ers. The BCPOP models accurately this situation and is definitely more realistic. The counterpart

is that the problem resolution is more di�cult. Indeed, the profits depends on the customer rational reactions

that should be forecast/computed by the provider in order to determine the relevance of its proposed prices.

For this purpose, the provider not only solves its own problem but also has to solve the customer problem as

many times as it wishes to evaluate the impact of the prices. It has to put itself in the ”shoes of the customers”

by solving the same problem to obtain a certain degree of confidence. The BCPOP is an example of bi-level

pricing problem that often occurs when a first entity influences the objective value of a second one. This very

specific category of bi-level problems occurs naturally in economic, social and management problems.

Numerous approaches have been proposed in the literature to solve mostly small-scale and continuous bi-level

optimization problems. On the contrary, very few algorithms have been designed to cope with combinatorial

versions even if they are the most encountered in real applications. The last decade has seen a renewed interest

for bi-level optimization, especially in the field of evolutionary computing. Indeed, the new IT technologies

creates a real need to tackle multi-level optimization. The complexity of a bi-level optimization problem is

strongly related to the complexity of its lower-level problem. In the case of an NP-hard lower-level problem,

only heuristics and meta-heuristics are generally suitable. In some cases, they also reach some limitations.

For example, let us consider population-based meta-heuristics to solve both levels. A trivial way to apply these

meta-heuristics is to consider two populations, i.e., one at each level. Each time, an upper-level solution has to

be evaluated, the meta-heuristic at lower-level is called to determine the lower-level rational reaction. Suppose

that the upper-level population contains 1000 individuals, 1000 lower-level instances have to be solved for each

generation. This implies to call 1000x the meta-heuristic at lower-level to solve each of them. This configuration

is time consuming and should be definitely avoided.

It is unlikely that an existing heuristic or metaheuristic obtains the same e�ciency on all lower-level instances

that can be encountered during bi-level optimization. Some of them can be very hard to optimize. As a results,
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the estimation of the optimal lower-level solution value can be very inaccurate leading to some illusory results

when the upper-level objective value is computed. Due to the numerous lower-level optimizations to perform, we

cannot guarantee that a heuristic nor a metaheuristic solve with the same e�ciency each lower-level instances.

Therefore, we propose to utilize Machine Learning concepts to train heuristics with the aim of obtaining high

generalization abilities. We do not want an algorithm performing very well on some instances and poorly on

some others. We would like to be on average as “e�cient” as possible.

Since nested optimization can be very time-consuming, we decide to train greedy heuristics using a GP hyper-

heuristic algorithm. Greedy heuristics are easy to train since their main mechanism relies on a scoring function

that permit to rank decision variables. As an example, we can cite the scoring function of the knapsack

problem that ranks items according to a ratio computed between the item value and its weight. Hereafter,

we automatically generate heuristics for the lower-level instances as done in chapter 5. Bi-level optimization

is a very specific task which requires to have some knowledge about the lower-level problem. Therefore, we

try to extract automatically this knowledge using a learning mechanism. These trained heuristics will then

serve to create a more robust and stable solver for lower-level instances. The contributions of this work are

two-fold. We first investigate the automatic generation of heuristics (AGH) for the lower-level associated with

the BCPOP. Once generated, we compare the new heuristics with human-based ones to check their relevance.

Once this first task has been performed, we take advantage of these new heuristics to create an hybrid genetic

algorithm (GA+AGH) that can solve e�ciently BCPOP instances. To validate our methodology, we propose

to compare the performance of the trained heuristics against two human-based heuristics and one of the rare

bi-level metaheuristic that can tackle large-scale and combinatorial bi-level problems, i.e., COBRA. The latter

is a state-of-the-art algorithm that adopts a promising decentralized strategy to tackle bi-level problems. We

choose COBRA since it is also an alternative to the classical nested optimization.

The remainder of this chapter is organized as follows. The next section introduces formally the BCPOP and

a remainder on GP hyper-heuristic is provided in Section 3. Section 4 details the proposed methodology to

train lower-level heuristics for large-scale bi-level problems. Experiment designs are discussed in section 5 while

section 6 analyzes the results. Finally, we conclude this chapter and presents some perspectives.

6.2 BCPOP: mathematical formulation and properties

Kie↵er et al. in [206] introduced this bi-level problem in the context of Cloud Pricing. Indeed, determining the

right pricing in the Cloud is a delicate task. Nevertheless, pricing problems can be easily modeled as bi-level

optimization problems as done for the toll setting Problem in [53]. In this problem, a network of roads is

operated by an authority who set toll prices. Naturally, this authority would like to determine the optimal

prices knowing that customers will try to minimize their travel cost. High toll prices would lead drivers to take

secondary roads which could be then saturated them. This authority should determine the optimal threshold

which should not be overcome. The decision vector is not fully controlled by any part. Kie↵er et al. relied on

such a bi-level modeling for the BCPOP.

In the BCPOP, a cloud service provider is searching for an optimal pricing leading cloud service consumers

to buy its bundles while maximizing its own profit. Since the market is very competitive, it has to take

into account the di↵erent competitors. It definitely knows that setting prices too high will lead cloud service

consumers to buy bundles from its competitors while setting prices too low will not provide maximum profits.

In order to model this problem into a bi-level optimization problem, we first need to set the two-level decision

makers. The upper-level decision maker is obviously the cloud service provider looking for an optimal pricing.

The lower-level decision makers will be represented by cloud service customers who want to satisfy their IT
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needs while minimizing their total cost. For the sake of simplicity, we consider a single rational cloud service

customer. Indeed we assume independent cloud service customers whose purchase have no consequences on the

others (e.g. no service limitations, no collective purchases). In this work, the single lower-level decision maker

wishes to select a subset of bundles on the market at minimal cost. This problem can be modeled as a covering

optimization problem (see Program 6.1).

min f =
MX

j=1

cjxj

s.t.
MX

j=1

qk
j xj � bk 8k 2 {1, ..., N}

xj 2 {0, 1} 8j 2 {1, ..., M}

Program 6.1: A covering optimization problem

Variables xj 2 {0, 1}, 8j 2 {1, ..., M} represent the lower-level decision variable indicating whether or not the

bundle j is bought by the cloud service customer. cj represents the price of bundle j. bk, 8k 2 {1, ..., N}
represent the service requirements. They indicate the number of services k which should be covered by the

solution, i.e., a set of chosen bundles. qk
j represent the number of services k occurring in the bundle j. In

addition, qk
j , 8k 2 {1, ..., N} is a column-vector of size N corresponding to the distribution of all services in

bundle j. If the cloud service provider wants to determine whether its prices are bi-level optimal, it must forecast

the rational cloud service customer reaction which is determined by the optimal solution obtained from the

resolution of Model 6.1. Without loss of generality, suppose that the first L bundles belong to the cloud service

provider and the remaining bundles on the market are part of the competitors’ o↵er. The upper-level decision

maker wishes to determine all cj , 8j 2 {1, ..., L} in order to maximize its own profit but its also has to solve

the cloud service customer related instance (see Model 6.1) in order to determine xj 2 {0, 1}, 8j 2 {1, ..., M}

and evaluate its objective function F =
LP

j=1
cjxj . Model 6.2 depicts the resulting bi-level model for the BCPOP

and Table 6.1 summarizes its components.

max
cj ,j2{1,...,L}

F =
LX

j=1

cjxj

s.t. cj � 0 8j 2 {1, ..., L}

min
xj ,j2{1,...,M}

f =
MX

j=1

cjxj

s.t.
MX

j=1

qk
j xj � bk 8k 2 {1, ..., N}

xj 2 {0, 1} 8j 2 {1, ..., M}

lower
-

level

Program 6.2: Bi-level Cloud Pricing Model

It is a bi-level mixed-integer program where the upper-level decision variables are continuous values while the

lower-level decision variables are strictly binary values. These two heterogeneous levels imply that the resulting

Inducible Region (IR) will be made up of discontinuous and non-monotonic piecewise hyperplanes. Even if the

upper-level problem consists in finding the optimal prices, i.e., continuous variables, the lower-level problem is

a combinatorial problem.
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Table 6.1: Description of Model 6.2

Definition Description

xj 2 {0, 1} Lower-level decision variables
cj , 8j 2 {1, ..., L} Upper-level decision variables
cj , 8j 2 {L, ..., M} Prices of competitor products
bk, 8k 2 {1, ..., N} Service requirements
qk
j Number of services k occurring in the bundle j

F =
LP

j=1
cjxj Upper-level objective function

f =
MP

j=1
cjxj Lower-level objective function

MP
j=1

qk
j xj � bk Lower-level covering constraint

6.3 GP Hyper-heuristics

Hereafter, we consider heuristic generation using genetic programming and referred to as “GP hyper-heuristics”.

A GP hyper-heuristic starts with a random population of heuristics which are evolved in order to obtain

heuristics with high resolution abilities (see Algorithm 8). The GP evolves the population of heuristics to solve

a predefined set of instances, i.e., the training set. The obtained heuristics are also wished to be able to tackle

e�ciently new encountered instances by using the knowledge gained during the training phase. This work-flow

is very similar to supervised learning algorithm which learns on a training data and validates this same training

on test data. Nonetheless to qualify GP hyper-heuristics as supervised learning methods, we should normally

know the optimal solution of the training instances. For that, two possible choices exist. One can either consider

small training instances and solve them to optimality in order to have a strict supervised knowledge or consider

another approach which optimizes while learning. Drake in [109] chose this second approach which does not

rely on any a priori knowledge about the optimal solution. In this work, we consider this second approach as

well.

Algorithm 8 Genetic programming hyper-heuristic
1: population  gen ramped half and half(NPOP,min,max)
2: for ind in population do
3: ind.fitness  evaluate(ind,training instances)
4: end for
5: while gen  NGEN do
6: parents selection(population)
7: o↵springs  ;
8: for ind in parents do
9: if random()  CXPB then
10: mate  sample(parents,1)
11: o↵spring1,o↵spring2  crossover(ind,mate)
12: o↵springs  o↵springs [ {o↵spring1,o↵spring2}
13: else if random()  CXPB+MUTPB then
14: mutant  mutation(ind)
15: o↵springs  o↵springs [ {mutant}
16: else
17: repro ind  copy(ind)
18: o↵springs  o↵springs [ {repro ind}
19: end if
20: end for
21: for ind in o↵springs do
22: ind.fitness  evaluate(ind,training instances)
23: end for
24: population  o↵springs
25: end while
26: return population
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6.4 Proposed methodology

Our solution considers a very promising approach relying on hyper-heuristics and more precisely on heuristic

generation. Instead of continuously solving from scratch the lower-level instances parametrized by the prices.

We would like to train heuristics on a set of lower-level instances to improve their performance and maximize

their abilities to solve unseen lower-level instances. We chose heuristics due to the numerous and promising

works on heuristic generation for combinatorial problems. We claim that it is possible to solve approximately

this lower-level problem quickly and more e�ciently by training dedicated heuristics for it. The number of

possible lower-level instances is infinite here. Indeed, the lower-level problem is parametrized by the prices

obtained at upper-level and these prices are continuous values. Therefore, we train heuristics on a subset of

lower-level instances.

6.4.1 Training heuristics

To conceive a set of e�cient heuristics, GP hyper-heuristic will serve as learning model. Introduced by Koza [13],

Genetic Programming makes use of a tree-based encoding representation and was initially designed to evolve

functions and programs. Terminal set and Function set are very important components of GPs. They are nodes

and leaves of each solution represented as a syntax tree. The concept behind GP hyper-heuristic is similar to

a Machine Learning model. To obtain a final population of heuristics with high abilities of approximation, the

algorithm learns from a set of various instances, i.e., the training set and validate the heuristics on a test set. In

this work, we also rely on a non-supervised approach in which training and lower-level optimizations are done

simultaneously because the optimal solutions are unknown.

Instead of generating heuristics from scratch, a specific greedy heuristic template is selected and only relevant

sub-parts are evolved through GP, i.e., the ones impacting heuristics’ results. For the lower-level covering

problem, a greedy heuristic template consisting in sorting all decision according to a scoring function. This

greedy heuristic template starts from a solution where all bundles have been selected. Then the heuristic tries

to remove bundles with regards to the ranking induced by the scoring function. Two phases can be therefore

distinguished: the ranking phase and the deletion phase.

While the deletion phase is common to all generated heuristics, the ranking phase has a key and specific element:

the scoring function. In this case, an easier and more e�cient way to train heuristics is to train scoring

functions instead.

6.4.2 Scoring functions: training and evaluation

According to the GP hyper-heuristic mechanism (see Section 6.3), an initial population of scoring functions is

generated. The encoding of each scoring function is represented by a syntax tree (see Figure 6.1) where the

nodes and leaves represent elements that characterize the instances (e.g., objective coe�cient, matrix coe�cient,

right-hand side members). These elements are described in Table 7.1 and are referred to as “Terminals”. In

order to combine these elements together, we need mathematical operators (e.g., addition, subtraction, division).

They basically represent the intermediate nodes of syntax trees while terminals represents the key elements of

the considered problem.

The population is then evolved using traditional GP evolutionary operators (see Figure 6.2). As it can be

observed in (see Algorithm 10), the heuristic template takes a scoring function as parameters. Therefore, the
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Figure 6.1: Example of a scoring function obtained in this work

Table 6.2: Functions and terminal sets

Name Description
Operators

add Add two inputs
sub Subtract two inputs
mul Multiply two inputs

protectedDiv Divide two inputs with protection
mod Modulo b.t.w. two inputs with protection

Terminal sets/ Arguments

cj Cost of the current bundle j

avgDiffj =
P

k bk�qkj
M

Average di↵erence between the capacity
and the resource consumption for item jP

k qk
j Total services for bundle j

maxk qk
j Max services for bundle jP

k bk total services requirement
x̄j Solution value for bundle j after LP relaxation

fitness value of a specific scoring function can then be obtained by solving all instances using the template

parametrized by this same scoring function. The sum of all objective values obtained on the training set (see

Algorithm 9) becomes the fitness value of the scoring function and measure its abilities to solve the training

instances.

As described above, the heuristic template solves a training instance using the scoring function that ranks the

bundles (lower-level binary decision variables). This ranking mechanism separates interesting bundles from

unattractive ones. After the first phase, the template removes the bundles with regards to the ranking while

minimizing the objective value.

It is noteworthy that a large number of terminals could penalize the training in terms of processing time while

leading also to over-fitting. Terminal selection is therefore a critical task which should shorten training time

and reduce over-fitting. Additionally, it can be interesting to study other related works in the literature to

determine the key elements (see Figure 6.2). As a consequence, we added a prior knowledge on the location

of the optimal solution by providing the solution of the LP relaxation which is clearly a key element for our

training purpose. The LP relaxation in this work consists in replacing the lower-level binary decision variables

by continuous ones while bounding all of them in the interval [0, 1]. The relaxed problem is then solved using a

linear solver. This is the solution of this relaxed problem that is added to the Terminal set described in Table

7.1. The latter could be further enhanced by finding new elements leading to a better discrimination of bundles.

For example, we could consider the solution of the dual variables after LP relaxation.
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Figure 6.2: GP hyper-heuristic workflow

Algorithm 9 evaluate(scoring function,training instances)
1: total costs 0
2: for all instance in training instances do
3: heuristic  heuristic template(scoring function)
4: heuristic solution value  heuristic(instance)
5: total costs  total costs + heuristic solution value
6: end for
7: return total costs

Algorithm 10 heuristic template(scoring function)
1: Take all existing bundles into solution
2: Sort all bundles according to scoring function
3: while true do
4: Try to remove a bundle according to the pre-computed order
5: if If no bundle has been removed then
6: Break;
7: end if
8: end while
9: return solution value

In order to validate the proposed approach on BCPOP instances, the next section is dedicated to the description

of the experiments that have been performed in this work.

6.5 Experimental design

6.5.1 Training

We first train a set of heuristics using a classical GP hyper-heuristic algorithm on lower-level instances. The

lower-level problem is a parametric covering problem with non-binary coe�cient matrix. Despite investigations,

we did not find any library proposing instances for such covering problems. Instead of generating them from

scratch, we turned our attention to the OR-library [34]. This library provides various instances for di↵erent

combinatorial problems. The closest problem with such non-binary matrix coe�cients and binary decision

variables is the Multi-dimensional Knapsack Problem (MKP). We therefore modified the MKP instances found

at the OR-library (http://people.brunel.ac.uk/ mastjjb/jeb/info.html) such that all -constraints becomes �-

constraints. We also ensure that each modified instance has a non-empty search space. All instances used in

this work can be found at https://gitlab.uni.lu/ekie↵er/instances.
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We considered 9 di↵erent instance size with M constraints and N lower-level variables (N, M): (100;5), (100;10),

(100;30), (250;5), (250;10), (250;30), (500;5), (500;10), (500;30). Each class contains 30 instances. To obtain a

robust learning and avoid over-fitting, we decided to use the cross-validation method as validation technique

[216]. For each training, the cross-validation approach generates a new training set and a new test set. The

advantage of the cross-validation approach lies in the fact that each instance belongs at least once to the training

and the test sets.

Figure 6.3: The cross-validation technique (source: https://www.wikipedia.org)

Cross-validation relies on the number of folds (K) to consider, we experimentally set this parameter. Using

K = 5 means that 5 di↵erent trainings are performed for each class of instances. For each training, one fold is

considered as a test set and %-gaps are only computed on test folds to reflect the abilities of the new generated

heuristics to solve new instances. To summarize, we have 9 classes of instances and each class experiences 5

trainings with di↵erent training and test sets. Therefore, we should obtain 5 heuristics per class of instances,

i.e., one per fold. In the end, we only retained the best one among the 5 folds.

Concerning the training algorithm, i.e., GP hyper-heuristic, the population size has been set to 100. 85% of the

programs will be subject to crossover while 10% will be mutated. Finally, 5% of the program is not modified

by evolutionary operations at each generation. Tree initialization method implements the well-known “ramped

half-half” approach and we set a depth limit of 17. One point crossover has been chosen while the “grow”

approach has been retained as mutation operator. Table 6.3 sums up all the GP parameters and GP operators

considered for these experiments.

Table 6.3: GP parameters and operators

Generations 50
Population size 100

Crossover Probability (CXPB) 0.85
Mutation Probability (MUTPB) 0.1

Reproduction Probability 0.05
Tree initialization method Ramped half-and-half

Selection Method Tournament selection with size=7
Depth limitation 17

Crossover Operator One crossover point
Mutation Operator Grow

6.5.2 Application of the new heuristic onto the BCPOP

In this section, we focus on the description of BCPOP instances and their optimization. To create these

instances, 9 random lower-level instances, i.e., one per classes have been generated from scratch. These instances
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have only one level and only represent the lower-level problem. We recall that the lower-level problem consists

in buying a sub-set of bundles on the market while minimizing its own costs.

To obtain BCPOP instances, we have to consider an additional level related to the upper-level decision maker

who wishes to maximize its own profit. The upper-level decision maker would like to determine the optimal

pricing for its bundles. According to the problem description in Section 6.2, we only need an upper-level fitness

function which should maximize the profit obtained by the cloud service provider. Therefore, we first have to

select a subset of bundles from the lower-level instances that belong to the upper-level decision maker. In this

work, we randomly selected 25% of the bundles for each considered instance. The remaining bundles, i.e., 75%

belongs to the competitors.

In bi-level optimization, we face multiple lower-level optimizations. We do not want to find an algorithm that is

particularity good on a single instance but an algorithm that is “robust” for very di↵erent lower-level instances.

Indeed, an algorithm with wide performance variations on di↵erent lower-level instances would be disastrous

for the optimization and could lead to illusory results at upper-level.

For this purpose, we employ a hybrid algorithm that combines a genetic algorithm (GA) for the upper-level

problem and the trained heuristics for solving lower-level instances. This global and hybrid algorithm is referred

to as GA+AGH. The genetic algorithm aims at determining the best prices for the bundles for a lambda cloud

service provider that wishes to maximize its profits. This GA therefore implements a population of individuals

representing the prices of the bundles brought on the market. In order to evaluate each individual, the GA

calls first a heuristic on the individual to obtain the reaction of a cloud service customer to the prices, i.e., all

xj decision with j 2 {1, ..., L}. Once this reaction is known, the individual can be evaluated. The GA repeats

this scheme for all individuals while targeting maximum profits.

For the sake of completeness and in order to measure the e�ciently of the trained heuristics, we propose also

to use 4 other algorithms (heuristics and metaheuristics): (GA+ H1), (GA+H2), (GA+H1H2), (GA+H1H2)

and COBRA.

• GA+H1 combines the same classical GA with the H1 heuristic found in the literature. H1 is a rounding

heuristic which requires to solve the continuous LP relaxation first. Then, the method iterates over the

solution and set xj = 1 if x̂j � 1.0
max

k

P
j

qk
j

else 0.

• GA+H2 combines the same classical GA with the H2 heuristic also found in the literature. H2 is a greedy

heuristic which sorts all bundles according to the following and static scoring function s(xj) = cjP
k

qk
j
. Then

bundles are selected according to this order until all constraints are satisfied.

• GA+H1H2 uses the same classical GA for the upper-level problem and a combination of H1 and H2 for

the lower-level problem. H1H2 can be considered as an hyper-heuristic relying on heuristic selection.

• COBRA [235] attempts to solve bi-level optimization problems by separating the upper-level from the

lower-level problem. The co-evolution mechanism implemented in COBRA (see Algorithm 11) exchanges

individuals from both populations, namely the upper-level population and the lower-level population. An

archiving approach is embedded as well to keep track of the best individuals generated along the evolution

at both levels. Its pseudo-code is described by Algorithm 11.

We adopted the parameters described in Table 6.4 for the implementation of (GA+AGH), (GA+H1), (GA+H2),

(GA+H1H2) and COBRA . Despite their di↵erences, we set the total number of upper-level fitness evaluations

to 50000 for all algorithms at both levels. These algorithms perform the same number of fitness evaluations at
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Algorithm 11 COBRA algorithm [235]
1: pop  create initial pop()
2: popupper  copy upper(pop)
3: poplower  copy lower(pop)
4: while stopping criterion is not met do
5: upper improvement (popupper) and lower improvement (poplower)
6: upper archiving (popupper) and lower archiving (poplower)
7: selection (popupper) and selection (poplower

8: coevolution(popupper,poplower)
9: adding from upper archive (popupper) and from lower archive (poplower)
10: end while
11: return lower archive

upper-level and at lower-level. COBRA requires a second population to solve the lower-level problem. Thus,

the encoding di↵ers from the upper-level.

Table 6.4: Parameters used for both Bi-level evolutionary approaches

GA+(AGH;H1;H2;H1H2) COBRA
Independent runs 30 30
UL encoding real values real values
UL Population size 100 100
UL fitness evaluations 50000 50000
UL Archive size 100 100
UL Fitness evaluations 50000 50000
UL Selection Binary Tournament Binary Tournament
UL Crossover operator Simulated binary Simulated binary
UL Crossover probability 0.85 0.85
UL Mutation operator Polynomial Polynomial
UL Mutation probability 0.01 0.01
LL encoding — binary values
LL fitness evaluations 50000 50000
LL Archive size – 100
LL Selection – Binary Tournament
LL Crossover operator – Two-points
LL Crossover probability – 0.85
LL Mutation operator – swap
LL Mutation probability – 1

#variables

It is not trivial to compare two bi-level evolutionary algorithms since results depend on how each algorithm solves

lower-level instances. According to the bi-level definition (see Chapter 2), two bi-level solutions S1 = (x1, y1)

and S2 = (x2, y2) can be compared if and only if both solutions are bi-level feasible, i.e. they belongs to

IR unless they share the same upper-level decision, i.e., x1 = x2. When handling constraints, metaheuristics

often used some kind of distance to the feasible search space to penalize non-feasible solutions. For bi-level

optimization problems, it is very di�cult to obtain such distance measure since bi-level feasibility implies lower-

level optimality. For comparing two bi-level solutions, we should be able to measure how well they approximate

lower-level optimality. Since each upper-level decision x generates a new lower-level instance, the lower-level

optimal value should be taken relatively to the upper-level solution. Therefore, it makes no sense to compare

two lower-level fitness values coming from di↵erent algorithms. We should not compare the absolute lower-level

fitness values but the distance to their respective optimal value. This is the reason why we have chosen the

%-gap that is defined as follows:

%-gap = 100 ⇤ vh � vlp

vlp
(6.1)



The Cloud Bi-level Pricing: a large scale and combinatorial problem 117

In total, 30 runs are performed for each BCPOP instance and all algorithms. All the experiments have been

conducted on the High Performance Computing (HPC) platform of the University of Luxembourg [357]. The

python library DEAP [108] has been considered for the GP implementation.

6.6 Experimental results

Tables 6.5, 6.6 and 6.7 represent the %-gap obtained for each class of instances on each of the 5 test folds. For

example, Fold 1 in Table 6.5 with instances ( N=100 ; m=5) have an average %-gap of 2.25. This means that

the best heuristic obtained through the learning process on the training instances from the union of fold 2 to

fold 5 provided an %-average gap on the test instances of Fold 1 equals to 2.25. Therefore for each class, 5

heuristics are trained, i.e.one per fold. For Table 6.5, a total of 45 heuristics have been trained and generated

through the GP. In order to fairly evaluate the performance of the novel heuristics, we also apply the H1 and

H2 heuristics on the same test folds for each class of instances. Table 6.6 depicts the performance of the H1

heuristics while Table 6.7 described the performance of the H2 heuristic. We can easily observe that the average

%-gap for all classes and folds is better, i.e., 1.69 than the one obtained for the H1 heuristic, i.e., 7.68 and H2

heuristic, i.e., 9.03. Additionally for each class of instances, the average performance on the 5 folds is always

better for the trained heuristics. Figure 6.4 described the average performance of the three type of heuristics

for each fold. The non parametric kruskal-Wallis test [222] has also been performed to statistically determine if

the results obtained on the 5 folds di↵er for each heuristic type. The 5 tests, i.e., one per fold provided very low

p-values. Assuming an ↵-value=0.05, we can conclude that the performance of the three heuristics on the folds

are statistically di↵erent. Fig. 6.4 clearly shows that the trained heuristics outperforms H1 and H2 in terms

of gap on all classes of instances. These results confirm that we can automatically create e�cient heuristics

using some prior knowledge from the lower-level problem. These heuristics can also be more e�cient than the

human-based ones as shown in Figure 6.4.

# Variable # Constraint  Partition 1 Partition 2  Partition 3  Partition 4  Partition 5 Average
100 5 9.37 9.02 6.39 5.13 15.54 9.09
100 10 6.78 4.88 3.41 4.61 9.34 5.80
100 30 4.86 3.87 2.44 3.16 5.81 4.03
250 5 12.31 12.42 6.37 9.15 19.28 11.90
250 30 9.78 7.22 4.30 4.22 10.91 7.29
250 10 5.04 5.11 3.01 3.78 8.25 5.04
500 5 13.82 11.73 6.74 9.08 16.70 11.61
500 10 9.59 7.72 6.34 6.84 11.75 8.45
500 30 5.75 6.17 3.69 4.16 9.80 5.91

8.59 7.57 4.74 5.57 11.93 7.68

# Variable # Constraint  Partition 1 Partition 2  Partition 3  Partition 4  Partition 5 Average
100 5 8.03 6.10 4.19 4.20 11.70 6.85
100 10 3.62 3.04 1.85 2.24 3.42 2.83
100 30 1.79 1.51 0.99 1.17 2.31 1.55
250 5 13.63 10.74 8.68 9.52 21.53 12.82
250 30 4.77 5.45 3.76 3.94 9.56 5.49
250 10 3.00 3.00 1.94 2.01 4.05 2.80
500 5 29.14 22.81 17.15 22.17 45.66 27.39
500 10 14.77 13.01 9.51 10.99 20.44 13.74
500 30 8.02 7.38 4.91 6.50 12.10 7.78

9.64 8.12 5.89 6.97 14.53 9.03

average

average

Relaxation-based heuristic

scoring function = pij/sum(aij)

9.64

8.12

5.89

6.97

14.53

8.59

7.57

4.74

5.57

11.93

1.76

1.54

1.02

1.33

2.82

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

 Fold 1 (p-value = 0.0006)

Fold 2 (p-value = 0.0006)

 Fold 3 (p-value = 0.0007)

 Fold 4 (p-value = 0. 001)

 Fold 5 (p-value = 0.0015)

%-gap

H2 H1 Learned heuristics

Figure 6.4: Performance of the heuristics in %-gap for each fold

Table 6.8 reports the average lower-level %-gap of the best bi-level solution obtained over the 30 runs for each

random instances and for each algorithm. This average lower-level %-gap measures the abilities of a bi-level

solution (x, y) to solve the lower-level problem parametrized by x. For example, the average %-gap achieved for
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Table 6.5: Automatic heuristic generation performance on each fold

Average %-gap

# Variables # Constraints Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

100 5 2.42 1.82 1.31 1.33 4.36 2.25

100 10 0.85 0.87 0.36 0.67 1.27 0.80

100 30 0.37 0.35 0.18 0.23 0.61 0.35

250 5 3.14 2.22 1.57 2.51 5.08 2.90

250 30 1.24 1.26 0.74 0.89 1.67 1.16

250 10 0.46 0.60 0.40 0.48 0.94 0.58

500 5 4.30 3.87 2.57 3.63 6.73 4.22

500 10 2.00 1.88 1.34 1.39 2.94 1.91

500 30 1.02 0.99 0.68 0.81 1.78 1.05

average 1.76 1.54 1.02 1.33 2.82 1.69

Table 6.6: H1 performance on each test fold

Average %-gap

# Variable # Constraint Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

100 5 9.37 9.02 6.39 5.13 15.54 9.09

100 10 6.78 4.88 3.41 4.61 9.34 5.80

100 30 4.86 3.87 2.44 3.16 5.81 4.03

250 5 12.31 12.42 6.37 9.15 19.28 11.90

250 30 9.78 7.22 4.30 4.22 10.91 7.29

250 10 5.04 5.11 3.01 3.78 8.25 5.04

500 5 13.82 11.73 6.74 9.08 16.70 11.61

500 10 9.59 7.72 6.34 6.84 11.75 8.45

500 30 5.75 6.17 3.69 4.16 9.80 5.91

average 8.59 7.57 4.74 5.57 11.93 7.68

Table 6.7: H2 performance on each test fold

Average %-gap

# Variable # Constraint Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

100 5 8.03 6.10 4.19 4.20 11.70 6.85

100 10 3.62 3.04 1.85 2.24 3.42 2.83

100 30 1.79 1.51 0.99 1.17 2.31 1.55

250 5 13.63 10.74 8.68 9.52 21.53 12.82

250 30 4.77 5.45 3.76 3.94 9.56 5.49

250 10 3.00 3.00 1.94 2.01 4.05 2.80

500 5 29.14 22.81 17.15 22.17 45.66 27.39

500 10 14.77 13.01 9.51 10.99 20.44 13.74

500 30 8.02 7.38 4.91 6.50 12.10 7.78

average 9.64 8.12 5.89 6.97 14.53 9.03
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the BCPOP instance (100;5) is 3.60 for GA+AGH, 14.32 for GA+HA1, 23.84 for GA+H2, 18.39 for GA+H1H2

and 9.71 for COBRA. According to the p-values obtained after performing Kruskall-Wallis tests (or one-way

ANOVA on ranks)[222], the results are statistically di↵erent for all approaches on each instance. We can observe

that the solutions obtained by GA+AGH o↵er better %-gaps at lower-level for all instances. In addition, one

can also notice that the standard deviations (±std) are significantly lower for the GA+AGH algorithm. This

implies that during bi-level optimization, lower-level instances are solved e�ciently using the trained heuristics.

Thus, the results confirm and validate our expectations in terms of heuristic e�ciency. If we observe COBRA,

we can see that the distance to optimality at lower-level is very large.

COBRA separates both levels, performs some independent improvements for each level and finally employs a

co-evolutionary operator to share information between levels. This strategy presents some risks because the

links between the upper-level and lower-level decision variables are strongly epistatic. In addition, both levels

have negatively correlated objective functions. The exchange of information performed by the co-evolutionary

operator does not guarantee any common improvement for both levels. COBRA could basically alternate good

upper-level solutions then good lower-level solutions without finding a compromise between both. Figure 6.5

depicts such a situation that occurred during the experiments described in this work. COBRA also assumes

that the upper-level solution and lower-level solution are fully compatible which is not necessarily the case. As

illustrated by Figure 6.5, small gap variations at lower-level can generate high variation at upper-level.

Concerning the human-based heuristics used in combination with the GA, we can observe that they provide

better results than COBRA except for the instance (100,10) and (100,3). In general, we observe that none of

the human-based heuristics obtained better results on all instances. Compared to GA+AGH that has been

trained, the variability of the results is much higher for the GA+H1, GA+H2 and GA+H1H2. These results

give us confidence about the abilities of the trained heuristics to solve e�ciently various lower-level instances

which is a key of major importance for bi-level optimization.

Figure 6.5: Example of convergence issues impacting COBRA

Due to the NP-hard lower-level embedded in the BCPOP problem, finding a bi-level feasible solution is NP-

hard as well. As consequence, all solutions presented in this work are by definition not bi-level feasible since

this feasibility is only ensured when lower-level instances are solved to optimality. The average %-gap observed

in Table 6.8 measures the average distance to lower-level optimality of the best solutions obtained by each

algorithm. As a consequence, we can conclude that the solutions obtained by GA+AGH are closer to IR bi-

level feasible search space) that the other alternatives shown in Table 6.8. From a practical point of view, the

lower-level decision maker buys bundles while minimizing its costs. It is highly important for the upper-level
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decision maker to be able to predict the lower-level rational reaction and propose a realistic pricing. Therefore

the upper-level decision maker should be able to solve the parametric lower-level problem and get a solution

as close as possible to the lower-level rational reaction. Indeed approximating the lower-level rational reaction

leads to a solution which over-estimates the expenses of the lower-level.

Table 6.8: %-gap

%-GAP to lower-level optimality

# Var # Cstr
GA
+

AGH

GA
+
H1

GA
+
H2

GA
+

H1H2
COBRA P-value

100 5
3.60
±0.69

14.32
±1.84

23.84
±1.20

8.39
±4.88

9.71
±8.96

 1e�6

100 10
4.30
±0.98

22.26
±3.45

41.54
±4.09

37.92
±4.41

12.33
±11.01

 1e�6

100 30
8.15
±1.39

52.62
±4.36

28.68
±0.96

37.90
±13.4

23.31
±8.18

 1e�6

250 5
1.44
±0.49

6.48
±0.96

14.81
±3.88

6.35
±1.32

25.19
±7.11

 1e�6

250 10
1.97
±0.48

0.49
±1.11

17.09
±2.91

12.02
±2.22

26.08
±5.50

 1e�6

250 30
3.22
±0.45

23.23
±1.82

21.67
±3.87

24.03
±2.41

27.75
±5.30

 1e�6

500 5
0.45
±0.15

3.55
±0.57

18.22
±1.62

13.64
±2.20

30.07
±6.41

 1e�6

500 10
0.94
±0.28

5.85
±0.52

19.75
±2.63

10.18
±3.59

34.68
±4.84

 1e�6

500 30
1.46
±0.34

12.18
±1.42

16.73
±1.94

13.35
±1.49

35.19
±4.47

 1e�6

Average
2.84
±0.58

16.77
±1.78

22.48
±2.57

19.03
±3.99

24.92
±6.86

With regard to the previous observations, we now focus on Table 6.9 that reports the average upper-level

objective values achieved by each algorithm for each class of instances. Again, we can observe that the results

are significantly di↵erent according to Kruskal-Wallis tests (see P-values). We recall that the upper-level

objective function is maximized. The highest results are obtained by COBRA over the 9 instances. In these

circumstances, we could wrongly assume that COBRA obtained the best bi-level results. Nonetheless, let us

consider now both the gap and the upper-level function value for all algorithms. We can clearly observe that

the smallest upper-level objective values are obtained by GA+AGH while having the best lower-level %-gaps.

On the contrary, COBRA has the worst %-gap results but highest upper-level objective values. Therefore, we

could suppose that COBRA over-estimates the upper-level revenues if the lower-level approximations are too

wide. We observe the same trend with GA+(H1,H2,H1H2) except that their values lie between the results of

GA+AGH and COBRA.

In order to prove theoretically and experimentally that COBRA over-estimates the upper-level objective value,

we consider an alternative but equivalent formulation of the general bi-level optimization problem described

in Chapter 2. The max-min nested structure of the BCPOP has some interesting properties that are worth

mentioning. First, let us consider an alternative but equivalent reformulation:

max{F (x, y)| f(x, y)  w(x)} (6.2)

with w(x) = min{f(x, y)|g(x, y)  0} (6.3)
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with x � 0 and y � 0. w(x) is the optimal lower-level solution value for the upper-level decision x.

Now suppose that we have an approximation of the lower-level optimal solution with regard to x: w̄(x) and

a relaxation bound with regard to x: w(x). Since the lower-level is a minimization problem, we have w(x) 
w(x)  w̄(x). At this point, consider the following sets:

Sapprox = {f(x, y)  w̄(x)}

Sopt = {f(x, y)  w(x)}

Srelax = {f(x, y)  w(x)}

(6.4)

We can then a�rm that Srelax ⇢ Sopt ⇢ Sapprox and therefore:

max{F (x, y)|Srelax}  max{F (x, y)|Sopt}  max{F (x, y)|Sapprox} (6.5)

Any resolution approaches that tend to approximate the lower-level problem leads to an upper-level problem

that is less constrained. If the upper-level is then less constrained, it can be considered as relaxed. Therefore,

max{F (x, y)|Sopt}  max{F (x, y)|Sapprox}. On the contrary, any approach that yield a relaxation bound of the

lower-level problem leads to an upper-level that is more constrained. As a consequence, max{F (x, y)|Srelax} 
max{F (x, y)|Sopt}.

In this work, all algorithms presented here solve approximately lower-level instances. Consequently, we are in

this situation: max{F (x, y)|Sopt}  max{F (x, y)|Sapprox}. A bad approximation can lead to a high upper-

level objective value and is not representative of what could really happen. Since all the presented algorithms

are approximations, we claim that the better lower-level gaps obtained by GA+AGH provide more confidence

regarding the results obtained at upper-level. To show the implications of approximating lower-level instances

on the upper-level objective function, we need to bound the optimal lower-level solution. We can achieve it

using max{F (x0, y)|Srelax} and max{F (x0, y)|Sapprox} for a given upper-level solution x0 and measure how far

they are from each other.

Table 6.9 already provides us the average max{F (x0, y)|Sapprox} for each instances and algorithms with x0 the

best upper-level solution found during bi-level optimization. Therefore, we only need to compute max{F (x0, y)

|Srelax} using the same upper-level solution x0 . For this purpose, Srelax is obtained after continuous relaxation

of the corresponding lower-level instance that is parametrized by x0. This allows us to measure how far are the

results for all algorithms to a respective lower-bound. We define this measure as the upper-level gap (UL-gap)

for a given upper-level solution and is formally expressed as follows:

UL gap(x0) =
max{F (x0, y)|Sapprox}�max{F (x0, y)|Srelax}

max{F (x0, y)|Srelax} (6.6)

with x0 the considered upper-level solution. A large UL-gap would mean that the algorithm is not accurate

and over-estimates the true objective value at x0 since it is far from the lower-bound obtained by solving

max{F (x, y)|Srelax}. Table 6.10 summarizes all UL-gaps obtained for the di↵erent algorithms. Notice here

that we selected the best upper-level solution from the results obtained in Table 6.9.
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Table 6.9: UL objective values

UL objective value

#Var #Cstr
GA
+

AGH

GA
+
H1

GA
+
H2

GA
+

H1H2
COBRA P-value

100 5
12336.98

±260.13

12952.95
±236.62

13243.43
±173.61

13024.36
±210.72

14710.78
±928.98

 1e�6

100 10
10195.56

±290.37

11166.93
±461.89

12836.03
±214.86

12788.70
±172.13

15226.79
±713.71

 1e�6

100 30
11464.33

±484.66

13998.58
±411.50

13382.70
±779.61

13535.58
±253.20

14762.83
±863.36

 1e�6

250 5
28604.54

±966.96

29046.60
±848.13

27773.38
±1323.17

29387.63
±1246.92

35479.64
±2147.84

 1e�6

250 10
29391.77

±661.76

30889.73
±554.45

30442.85
±1052.13

29963.24
±829.11

38283.71
±1740.42

 1e�6

250 30
28094.64

±454.11

31388.80
±578.49

29186.03
±576.81

30059.45
±570.91

39368.26
±1891.78

 1e�6

500 5
52487.52
±1092.99

53665.68
±1110.01

56653.52
±1902.37

55059.31
±902.05

73529.34
±3887.39

 1e�6

500 10
53800.62
±1467.47

55651.07
±1135.35

54750.17
±1006.22

54683.81
±1462.71

75041.02
±3277.08

 1e�6

500 30
53735.45

±903.92

57604.96
±1047.51

58430.30
±1117.32

56323.13
±781.44

75386.02
±3815.59

 1e�6

Average
31123.49

±731.37

32929.48
±709.32

32966.49
±905.12

32758.36
±714.35

42420.93
±1922.34

Table 6.10: Upper-level gap based on the best solution obtained at upper-level

UL gap * 100

#Var #Cstr
GA
+

AGH

GA
+
H1

GA
+
H2

GA
+

H1H2
COBRA

100 5 9.47 16.79 43.90 26.85 915.40

100 10 12.77 31.53 154.93 110.00 1116.58

100 30 20.36 66.95 83.26 69.96 341.21

250 5 2.32 7.43 23.45 6.45 347.08

250 10 3.63 12.43 33.13 14.57 362.88

250 30 7.29 26.41 51.12 23.59 401.98

500 5 1.62 4.50 36.64 13.36 394.26

500 10 1.52 6.51 38.18 10.72 362.94

500 30 3.35 12.94 33.52 14.63 335.04

Average 4.14 13.15 40.58 18.17 386.29
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As expected, COBRA obtained a very high gap contrary to the other implementations. GA+AGH has tighter

gap except for the instance (100,30). In fact, all algorithms have di�culties for this very specific instance.

Not surprisingly, GA+H1H2 has better results than GA+H2 but worse than GA+H1. The di↵erence between

the results proposed by COBRA and the bounds computed directly through the UL-gap shows how a bad

approximation can have strong implications on the upper-level objective function. One should not forget that

the algorithm maximize the profits. If the profits are too optimistic, the solver will continue to misinterpret

results and will increase the deviations. This justify and validate our first proposition to train heuristics for

unseen lower-level instances with the aim of making them less sensitive and more general (robust) to solve

di↵erent lower-level instances.

6.7 Conclusion and Perspectives

In this work, we use the concept of GP hyper-heuristic to train e�cient heuristics with the aim of tackling a

large-scale and combinatorial bi-level problem, i.e., the Bi-level Cloud Pricing Optimization Problem (BCPOP).

Few approaches are able to deal with such a large-scale and combinatorial bi-level problem, especially when

the lower-level problem is NP-hard. Generally, nested optimization combining heuristics and meta-heuristics

at both levels are employed to obtain approximations. However, an approximation of lower-level instances

leads to solutions that are generally not bi-level feasible, i.e., they do not belong to the Inducible Region (IR).

Therefore, it is highly important to ensure that the generated solutions are located as close as possible to IR
to avoid ”illusory” results at upper-level. Due to the various lower-level instances that could be encountered, it

is di�cult to obtain the same e�ciency on all these instances. For this purpose, we relied on machine learning

concepts to train greedy heuristics in order to be as “close” as possible to IR.

Using a greedy heuristic template, we only trained scoring functions which permits to rank decision variables,

i.e., bundles. Training only the key elements of an heuristic shorten time processing by reducing the search

space. A genetic programming algorithm then evolved the scoring functions which are placed into the template

for evaluation. We classified the instances by size and learn them using cross-validation, i.e., a technique widely

employed in machine learning. Training heuristics for the lower-level problem allows us to obtain more robust

heuristics. Numerical experiments have been performed on BCPOP instances to evaluate the potential of the

new trained heuristics to tackle lower-level instances. We also compared the results with two human-based

heuristics, a selection-based hyper-heuristic and a bi-level metaheuristic, i.e., COBRA.

Results have shown that the trained heuristics can lead to superior results in terms of distance to lower-level

optimality which was the primary goal. Furthermore, we show the impact on the upper-level objective value

and demonstrated that an inaccurate approximation can lead cloud service providers to over-estimate their final

profits. In some cases, this over-estimation can lead to a worst case, i.e., no sold bundles. Future work will

attempt to extend the GP hyper-heuristic approach to other multi-level optimization problems.

As it has been shown in this chapter, bi-level problems can be tackled in two phases. The first one tackles

the parametric lower-level problem by training heuristics for it. Then, the second phase relies on classical

metaheuristics (e.g. evolutionary algorithms) to tackle the original bi-level problem. The next chapter will

attempt to gather these two phases in a single one in order to train heuristics and solve the bi-level problem at

the same time. For this purpose, we will use a modified co-evolutionary approach.
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7.1 Introduction

In Chapter 5, we have raised the question of generating automatically dedicated heuristics for combinatorial

optimization problems. We contributed to the field of Hyper-heuristic by proposing to tackle the MKP instances

with a new set of terminals that allow to learn any instance size. As mentioned in the previous chapters, many

approaches have been proposed in the literature to solve continuous bi-level optimization problems. On the

contrary, very few algorithms have been designed to cope with combinatorial versions even if they are the most

encountered problems in real applications. Metaheuristics have been proposed to cope with bi-level optimization

complexity. Nevertheless most of them are based on a nested optimization scheme which repeatedly solves one

level after the other. This scheme is very time consuming. Chapter 5 laid the foundations of the “Learn to

optimize” paradigm using GP Hyper-heuristics that we implemented for bi-level optimization in chapter 6 to

approximate lower-level instances. Nested optimization for bi-level problem requires sequential optimization of

both levels. Every time, the upper-level decision maker sets its decision, a new lower-level instance is generated

and has to be solved in order to get the optimal lower-level solution. Instead of generating these instances

iteratively, we generated a training set of instances and trained e�cient heuristics to solve them. Then, these
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new heuristics are used as lower-level solver into the evaluation operator of a classical genetic algorithm. Notice

that any other metaheuristics (e.g. simulated annealing, tabu search)could have been considered as well. The

key of this contribution relied on the fact that we extracted a set of potential lower-level instances and then

learned a set of fast and dedicated set of heuristics before solving the bi-level problem.

The approach developed in chapter 6 has demonstrated that the upper-level decision maker should first design

a strategy to estimate accurately the response of the lower-level decision maker. Nonetheless, the proposed

approach has two static phases. Once the heuristics are trained, they do not evolve anymore which can

be problematic if they were not able to capture all the necessary knowledge to solve the various lower-level

instances encountered during bi-level optimization. It could be more interesting to adopt a dynamic strategy

gathering both phases,i.e, the heuristics could be trained during bi-level optimization.

For this purpose, we rely in this chapter on a modified co-evolution approach. Indeed, the main issue with

classical co-evolutionary scheme in bi-level optimization is the strong epistatic links between the upper-level

and lower-level decision variables. The nested structure is a drawback since each upper-level decision leads to

a di↵erent lower-level instance and thus search space. Consequently, some upper-level and lower-level solutions

may not be compatible when they are paired. In order to obtain independence between the two populations, we

can consider another approach which consists in having one population representing the upper-level decisions

and another one representing a set of heuristics which are evolved to solve any kind of lower-level instances.

We not only evolve the upper-level decision but also the abilities of heuristics to solve lower-level instances. We

chose to evolve greedy heuristics since they are fast, easily modifiable and have been proved e�cient in chapter

6. This strategy permits therefore to hybridize the co-evolutionary and the “learning to optimize” paradigm.

We experiment our new approach on the same Bi-level Cloud Pricing instances considered in chapter 6. We

compare our numerical results against a classical bi-level co-evolutionary algorithm, i.e., COBRA.

The remainder of this chapter is organized as follows. We first explain the principle of “co-evolution”. Then, we

discussed “co-evolution” in bi-level optimization in section 3. Section 4 introduces CARBON, i.e., the proposed

competitive and hybrid co-evolutionary algorithm. Experiment setups and results are discussed in section 5.

Finally, we close this chapter by providing our conclusions.

7.2 Co-evolution

Co-evolution occurs when intimate species influence each other’s evolution. In his book “Origin of Species”

[91], Charles Darwin already observed the evolutionary interactions between some species such as plants and

insects. Nonetheless, Ehrlich and Raven [117] were the first to introduce formally the term “co-evolution”.

They also demonstrated its essential role in evolutionary transitions which show that the evolution of a specie

can be dramatically influenced when an external selection pressure is applied by other species. Several co-

evolutionary models have inspired the evolutionary computing field. The predator/prey model (see Figure.

7.1) is a famous example. We generally distinguish two classes of co-evolutionary algorithms: competitive

and cooperative. Competitive co-evolution has been first proposed by Hillis in [168] for Sorting Networks.

Then many applications stemmed from his results and notably in Game Theory where players often compete.

Competition focuses on the abilities of species to evolve and develop new skills to outperform another specie

during a so called “armed race”. On the contrary, cooperative co-evolution relies on the skills emerging from

species tending to collectively work when facing a common problem as a team work (see Figure 7.2). The seminal

work of Potter and De Jong [303] showed how cooperative co-evolution can be employed to optimize multi-

dimensional functions. In [202], the authors used cooperative co-evolution as a constraint handling method

by decomposing the constraint set through multiple populations. Finally, loosely coupled genetic algorithms
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designed by Seredynski [325, 326] can be assimilated as a non-cooperative co-evolution and it is a kind of

compromise between the two original models: competitive and cooperative co-evolution.

Prey Predator

Selection pressure

Only the survivors of attacks spread 
their genetic material.

Only those who did not die from starvation
spread their genetic material.

Competition

Figure 7.1: The prey/predator model of competitive co-evolution

Figure 7.2: Cooperation co-evolution as team work source: https://thissolution.com/how-to-make-teamwork-work/

7.3 Discussion on classical co-evolution for bi-level optimization

Co-evolutionary algorithms in bi-level optimization have been discussed in section 2.5.3 of chapter 2. Two

mains algorithms have been identified: BIGA [288] and COBRA[235]. Although BIGA employs an exchange

of information between both levels, the strategy employed by Oduguwa and Roy is closer to a classical nested

optimization scheme. In order to fix this issue, Legillon et al. developed COBRA by adding independent

improvement phases for both levels. The exchange of information in COBRA only occurs when both populations

have evolved separately during a specific number of iterations. The co-evolutionary mechanism is achieved by

population recombination (see Figure 7.3).
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Upper-level improvement Lower-level improvement

x yx yx yx yx yx y

xy xy xy xy xy x’y’
x y x’y’

Figure 7.3: Population recombination as co-evolutionary mechanism

7.3.1 Convergence issues due to the co-evolutionary operator

Co-evolution permits generally to tackle problems in a decentralized manner by decomposing them into sub-

problems while keeping an exchange of information between them. This methodology can be negatively impacted

when both sub-problems have strong epistatic links. The nested structure of bi-level optimization problems

implies strongly epistatic links between the upper-level and lower-level variables. As we have observed in the

previous chapter, the upper-level objective can only be evaluated using the decision obtained at lower-level. In

addition, the lower-level problem remains a parametric problem until the upper-level decision maker sets its

decision first.

To face this issue, the two populations of COBRA work on the entire bi-level solution, i.e., upper-level and

lower-level solutions. While the upper-level population only evolves the upper-level part of the bi-level solution,

the lower-level population evolves only on the lower-level part. In both populations, some parts remains fixed

during optimization and are only modified when the co-evolutionary operator comes into play as described in

Figure 7.4. Since both levels are competitive by nature, this exchange cannot guaranty a real improvement

towards the optimal bi-level solution. It can even destroy any positive progresses at both levels leading to

convergence issues.

For instance, let us consider Figure 7.4a that depicts the independent improvements of a solution S = (2, 2)

where the upper-level objective function is F and the lower-level objective function is f . These improvements

give birth to two new solutions SU = (1.5, 3) and SL = (2, 1). When applying the co-evolutionary operator

implemented in COBRA, the recombination can yield non-valid solutions as depicted in Figure 7.4b. Even valid

solutions can be bad in term of lower-level quality. The solution S was definitely closer to IR than the valid

recombination. In fact, there is no move that can improve both levels at the same time. As a consequence, this

co-evolutionary operator may generate oscillating values that improve one level but degrade the other one.

7.3.2 Lower-level issues

Another interesting issue can be highlighted. As aforementioned, each upper-level decision leads to a specific

lower-level instances with its own optimal solution. According to the bi-level definition (see chapter 2), two

bi-level solutions S1 = (x1, y1) and S2 = (x2, y2) can be compared if and only if both solutions are bi-level

feasible (1) unless they share the same upper-level decision, i.e., x1 = x2 (2) . Since bi-level feasibility implies

optimality at lower-level, (1) is unlikely to happen in the case of a NP-hard lower-level when it is solved by mean

of heuristics or metaheuristics. As a consequence, two solutions such as x1 6= x2 cannot be directly compared

in terms of upper-level fitness. Let us turn our attention to Figure 7.5, the upper-level decisions x1 = 2 and

x2 = 3 provide two di↵erent lower-level optimal solutions, namely ŷ1 = 3 and ŷ2 = 6. In fact, there is an infinite
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(a) Independent improvement phase at each level
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(4, 4)
e
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(b) Application of the co-evolutionary operator after
improvements

Figure 7.4: Example of application of the co-evolutionary operator implemented in COBRA

number of lower-level instances that can be generated in the example of Figure 7.5. Therefore, the lower-level

population in COBRA has to deal not only with a single lower-level instance but with many possible instances

with di↵erent optimal solutions. To be more precise, two solutions in the lower-level population with di↵erent

upper-level decision does not belong to the same lower-level problem instance. Consequently, the lower-level

population can have di�culties to convergence since it optimizes many di↵erent lower-level instances at the

same time. In fact, we should have as many lower-level populations as lower-level instances which is definitely

impracticable.

P = min
x�0

F (x, y) = �x� 2y

s.t. 2x� 3y � �12 (1)

x + y  14 (2)

min
y�0

f(y) = �y

s.t.� 3x + y  �3 (3)

3x + y  30 (4)

�2. 2. 4. 6. 8. 10. 12.

�2.

2.

4.

6.

8.

10.

12.

0 x

y

(1) (2)(3) (4)

Figure 7.5: Bi-level problems can have an infinite number of lower-level instances with di↵erent optimal
solution and value

7.3.3 Classical feasibility issues

Finally, breaking the nested structure by optimizing independently both levels can raise feasibility issues.

Indeed, it may be possible that pairing the two level decisions x and y provides a non-feasible solution. This

can be easily seen on the example presented in Figure 7.6a and has also been discussed in chapter 2. Let us
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suppose that a co-evolutionary algorithm optimize both levels in two separated populations as it has been done

in the literature. Suppose that both levels provide x = 6 and y = 10 to be evaluated. Since the lower-level

problem is indi↵erent to the upper-level constraints, the lower-level variables y = 10 is legal. Nonetheless such

a lower-level decision make the global bi-level solution not feasible. As a consequence, two feasible solutions

x and y for each separate level does not necessary provide a valid bi-level solution (x, y). To cope with such

issue, some people proposed to push the upper-level constraints into the lower-level constraint set. Using such

a strategy definitely changes the meaning of the original problem and would change the location of the bi-level

optimal solution. Figure 7.6a depicts the original problem with upper-level constraints. The inducible region

IR is a discontinuous piecewise function with an optimal bi-level solution located at (x = 8; y = 6). On

the contrary, Figure 7.6b represents the problem with no upper-level constraints constraints. They have been

pushed to the lower-level. Notice now that the inducible region IR is no longer discontinuous and the bi-level

optimal solution moved to (x = 6; y = 8). As a consequence, reassigning constraints is a bad strategy that

cannot be applied to control bi-level feasibility.

P = min
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F (x, y) = �x� 2y

s.t. 2x� 3y � �12 (1)
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(a) Example of bi-level problem with upper-level con-
straints
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(b) Upper-level constraints moved the lower-level con-
straint set

Figure 7.6: Example of problems where classical co-evolution can raise issues

In the next section, we propose a new methodology based on chapters 5 and 6 that will fixed such an issue and

reveal the interest of co-evolution for bi-level optimization.

7.4 CARBON: a hybrid bi-level co-evolutionary algorithm

In the previous section, we introduced co-evolution and its application to bi-level problems. As we discussed it,

co-evolution relies on the notion of independence while bi-level optimization models entangled choices between

two decision makers. In this context, classical co-evolution as done in [235] could experience some troubles. In

this chapter, we propose an alternative approach that permits to obtain two independent populations for each

levels.

In chapters 5 and 6, we focused on the automatic generation of heuristics. Instead of working in the space of

solutions, we went one layer of abstraction higher and consider heuristics as solutions. Such a strategy has been

successfully employed to cope with the nested structure of large-scale and combinatorial bi-level problems such

as the Bi-level Cloud Pricing Optimization Problem (BCPOP). We first train heuristics to tackle e�ciently any

lower-level instances and then embedded them into a genetic algorithm that tackle the upper-level. Heuristics

are evolved only one single time before solving the upper-level. Therefore this approach can be considered as

static and may reach some limitations when the numbers of upper-level decision variables in the parametric

lower-level problem is large. Indeed this implies that the number of lower-level instances would be very large,
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i.e., exponential. Learning only a static subset of instances would not be su�cient to train e�cient heuristics

for any lower-level instances. A solution for this issue would be to evolve the upper-level decision variables

and the lower-level heuristics at the same time. For this purpose, co-evolution would be the most appropriate

solution since upper-level variables and lower-level heuristics are not link together.

Hereafter, we introduce CARBON: a competitive hybrid co-evolutionary algorithm. In this co-evolutionary

algorithm, two populations obey to the predator-prey model except that the second population will not directly

evolve lower-level solutions but the mean to get to them. With this approach, we obtain a second population

independent from any upper-level decision. The prey will be the upper-level decision variables and the predators

will be the lower-level heuristics evolved to provide lower-level rational reactions with low gap. According to

Figure 7.7, upper-level decision variables are evolved using evolutionary operators that can be found typically

in Genetic Algorithm (GA) while heuristics are evolved using Genetic Programming (GP) operators. The goal

of this second population is basically to train dynamically a set of accurate heuristics as it has been done in

chapter 6.

11

GP Evolutionary
operators

Selection

GA Evolutionary
operators

Evaluation

Selection

max min

LL
Heuristics

UL 
decision 
variables

Figure 7.7: CARBON workflow

CARBON attempts to find the optimal upper-level solutions while finding the best strategies (heuristics) to

determine the lower-level rational reactions. We need to adopt the upper-level decision maker point of view.

When we face a competitive problem where the decision of the opponent has direct consequences on our payo↵,

we always wish to determine the impact of our decision first. Therefore, we look for strategies that can be

adopted by this opponent. This concept is embedded in CARBON.

As for chapter 6, the original data from the lower-level problem formed the “Terminal set”. The goal of the

GP is to encode a population of scoring functions as a population of syntax trees where each terminal node is

picked in the “Terminal set” and each intermediate node is picked in the “Operator set”. According to Fig. 7.7,

the upper-level population will evolve upper-level solutions and the lower-level population will evolve scoring

functions. These functions, once embedded in the same template of greedy heuristic utilized in chapter 6, will

constitute valid heuristics to solve the lower-level instances parametrized with the upper-level decisions. Table

7.1 describes the terminal and operator sets considered to solve the lower-level covering problem embedded in the
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BCPOP constraint set. Notice that we consider the dual values and relaxed optimal solution after continuous

relaxation. Indeed, continuous relaxation will be in any case computed since we require it to compute the

lower-level gap which is the objective value of the second population (see Fig. 7.7).

Contrary to chapter 6 where heuristics have been trained in order to minimize the lower-level objective function,

we decided to employ the gap as new objective function. We recall that the gap is computed as follows:

%-gap(x) = 100 ⇤ A(x)� LB(x)

LB(x)
(7.1)

where A(x) is the lower-level solution value obtained after applying an algorithm A on the upper-level decision

x. LB(x) is a lower-bound according to the upper-level decision x.

This choice is justified since each upper-level decision x generates a new lower-level instance, the lower-level

optimal value should be taken relatively to x in order to obtain a good measure of bi-level feasibility.

Using the gap we can compare two solutions even if they did not stem from the same upper-level decision.

The solution with the lowest gap indicates that the upper-level decision maker has a better estimation of the

lower-level rational reaction.

Table 7.1: Functions and terminal sets implemented in this work

Name Description

Operators

+ Add two inputs

- Substract two inputs

* Multiply two inputs

% Divide two inputs with protection

mod Modulo b.t.w. two inputs with protection

Terminal sets/ Arguments

cj Cost of the current item j

qkj Distribution of service k in bundle j

bk Required number of service k

dk Dual value for service k after LP relaxation

x̄j Solution value for bundle j after LP relaxation

In the next section, a comparison is provided between CARBON and COBRA (described in chapter 6). First,

we introduce all parameters and the considered instances to perform the experiments. Then, we discuss the

results and explain the main di↵erences between these two bi-level co-evolutionary algorithms.

7.5 Experimental results

7.5.1 Setups and parameters

The set of BCPOP instances considered for these experiments are exactly the same that the ones defined in

chapter 6. We recall that they are divided into 9 di↵erent types of instances with N 2 {100, 250, 500} decision

variables and M 2 {5, 10, 30} constraints. As in chapter 6, 25% of the bundles belongs to the upper-level

decision maker, i.e, the CSP. The remaining bundles belong to competitive providers on the market.

Concerning the algorithms, Table 7.2 describes all parameters used during the experiments. In order to fairly

compare them, we adopted the same number of upper-level and lower-level fitness evaluations. COBRA imple-

ments archives at both levels to keep track of the best results. We also adopted this strategy in CARBON. The
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only di↵erence between these two algorithms occurs at lower-level since we employ GP operators and not GA

operators for CARBON. Therefore, you can observe a reproduction operator which is very typical in GP.

Table 7.2: Parameters used for both Bi-level evolutionary approaches

CARBON COBRA

Independent runs 30 30

UL encoding continuous values continuous values

UL Population size 100 100

UL Archive size 100 100

UL Fitness evaluations 50000 50000

UL Selection Binary Tournament Binary Tournament

UL Crossover operator Simulated binary Simulated binary

UL Crossover probability 0.85 0.85

UL Mutation operator Polynomial Polynomial

UL Mutation probability 0.01 0.01

LL encoding syntax trees binary values

LL fitness evaluations 50000 50000

LL Archive size 100 100

LL Selection Tournament Binary Tournament

LL Crossover operator (GP) One-point (GA) Two-points

LL Crossover probability 0.85 0.85

LL Mutation operator (GP) uniform (GA) swap

LL Mutation probability 0.1 1
#variables

LL Reproduction probability 0.05 –

Finally, experiments for both algorithms were carried out using the HPC facility of the University of Lux-

embourg [357]. The python library DEAP [108] has been considered for the implementation CARBON and

COBRA.

7.5.2 Numerical results

After 30 runs for each algorithms on the 9 di↵erent instances, we recorded the best results in terms of %-gap

(see Table 7.3) and upper-level fitness values (see Table 7.4). In both cases, we performed Kruskal-Wallis tests

to determine if the di↵erence between results are statistically significant. P-values can be observed in the last

column of each table. Our first discussion will be devoted to results illustrated in Table 7.3. It can be easily

observed that CARBON provides better lower-level solutions than COBRA. The %-gap which measures the

distance from lower-level solutions to their continuous lower bound is much smaller for CARBON. These results

indicates that upper-level decision maker can forecast more accurately the lower-level rational reaction of the

lower-level decision maker. We recall that CARBON directly minimize the gap while COBRA minimize the

lower-level objective value. In Bi-level Optimization, each upper-level decision x leads to a di↵erent lower-level

instances with distinct lower-level optimal solution. The disadvantages of COBRA is a work-flow which does

not take into account that many di↵erent lower-level instances stem from distinct upper-level decisions. On the

contrary, CARBON does not rely on any lower-level solution value but on a relative measure of optimality,i.e.,

the gap. Therefore, whatever upper-level decisions you are considering, CARBON can evaluate how accurate

are the resulting lower-level solutions and compare them in terms of distance to their respective lower-level

optimality.
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We also reported the results obtained by GA+AGH, i.e, the hybrid genetic algorithm designed in chapter 6.

Interestingly, CARBON obtained better lower-level gap than AG+AGH. We recall that GA+AGH learn first

a static set of lower-level heuristics and then apply a GA to the bi-level problem while CARBON dynami-

cally generates lower-level heuristics through co-evolutionary competition. The advantage of CARBON over

GA+AGH is that learning and optimization are performed at the same time.

Table 7.3: %-gap

%-GAP to LL optimality

# Variables # Constraints CARBON COBRA GA+AGH p-value

100 5
1.02
±0.26

9.71
±8.96

3.60
±0.69

 1e�6

100 10
1.91
±0.33

12.33
±11.01

4.30
±0.98

 1e�6

100 30
3.32
±0.60

23.31
±8.18

8.15
±1.39

 1e�6

250 5
0.34
±0.08

25.19
±7.11

1.44
±0.49

 1e�6

250 10
0.76
±0.08

26.08
±5.50

1.97
±0.48

 1e�6

250 30
1.44
±0.15

27.75
±5.30

3.22
±0.45

 1e�6

500 5
0.14
±0.02

30.07
±6.41

0.45
±0.15

 1e�6

500 10
0.34
±0.04

34.68
±4.84

0.94
±0.28

 1e�6

500 30
0.97
±1.17

35.19
±4.47

1.46
±0.34

 1e�6

Average
1.14
±0.30

24.92
±6.86

2.84
±0.58

Let us focus now on the upper-level fitness values reported in Table 7.4. A first observation let us believe that

the upper-level objective value is much better for COBRA than CARBON. Indeed, the upper-level fitness value

is higher for each instance. In the context of the BCPOP, it means that the pricing obtained with COBRA

lead to a better payo↵ than for CARBON. In fact, this is not true. We cannot observe the upper-level fitness

value without the gap values. COBRA led to larger gaps than CARBON. This means that COBRA has less

accurate lower-level solutions than CARBON.

As we proved it in chapter 6 when we compared COBRA against GA+AGH, an inaccurate approximation of

the lower-level conducts to a relaxation of the upper-level problem. In the context of the BCPOP, this means

that a cloud service provider overestimates the number of bundles sold to the cloud service customers. As a

consequence, this same provider over-estimates its final payo↵. Only lower-level solutions that are close to the

Inducible Region IR minimize the risk of overestimation error that can be disastrous for a provider.

We reported the results of GA+AGH in Table 7.4 and one can observed that CARBON has lower upper-level

fitness value that GA+AGH which confirm our thought. Indeed since CARBON has better lower-level gap, its

estimation of the number of bundles sold to customers is more accurate than the one of GA+AGH. In order to

prove it, we rely on the UL-gap described in chapter 6 and defined as follows:

UL gap(x0) =
max{F (x0, y)|Sapprox}�max{F (x0, y)|Srelax}

max{F (x0, y)|Srelax} (7.2)
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The UL-gap measures the e↵ect of having an lower-level solution on the upper-level fitness. It permits to

determine if the results obtained by each algorithm are illusory or close to what should be expected. UL-gaps

are reported in Table 7.5 and illustrate the accuracy of CARBON to produce prices that are not illusory. We

can notice that UL-gaps are the lowest for CARBON results.

Table 7.4: UL objective values

UL objective value

# Variables # Constraints CARBON COBRA GA+AGH p-value

100 5
10898.81

±567.39

14710.78
±928.98

12336.98
±260.13

 1e�6

100 10
8679.70
±624.10

15226.79
±713.71

10195.56
±290.37

 1e�6

100 30
8104.59
±1678.16

14762.83
±863.36

11464.33
±484.66

 1e�6

250 5
25988.73
±1399.70

35479.64
±2147.84

28604.54
±966.96

 1e�6

250 10
26916.55

±998.66

38283.71
±1740.42

29391.77
±661.76

 1e�6

250 30
24254.18
±1929.44

39368.26
±1891.78

28094.64
±454.11

 1e�6

500 5
49810.29
±1186.12

73529.34
±3887.39

52487.52
±1092.99

 1e�6

500 10
50152.13
±1843.40

75041.02
±3277.08

53800.62
±1467.47

 1e�6

500 30
46670.80
±5808.65

75386.02
±3815.59

53735.45
±903.92

 1e�6

Average
27941.76
±1781.74

42420.93
±1922.34

31123.49
±731.37

In conclusion, the approximation done at lower-level lead to an upper-level relaxation since the upper-level is

less constrained. Here, the results obtained in Table 7.4 implies that CARBON provides tighter upper-bounds

than COBRA and GA+AGH since the upper-level problem is a maximization problem.

Table 7.5: Upper-level gap based on the best solution obtained at upper-level

UL gap * 100

# Variables # Constraints CARBON
GA
+

AGH
COBRA

100 5 2.32 9.47 915.40

100 10 5.19 12.77 1116.58

100 30 8.90 20.36 341.21

250 5 0.79 2.32 347.08

250 10 1.05 3.63 362.88

250 30 3.87 7.29 401.98

500 5 0.51 1.62 394.26

500 10 0.73 1.52 362.94

500 30 3.28 3.35 335.04

Average 2.96 4.14 386.29

Finally to conclude this section, we choose to discuss two average convergence curves for the instance with

n = 500 variables and m = 30 constraints. Additionnal convergence curves can be found in Annexe E. The
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first one depicted in Figure 7.8 represents the average convergence over the 30 runs obtained with CARBON.

Figure 7.9 illustrates the ones obtained with COBRA. We can easily observe that the convergence curves are

smoother for CARBON with a steady increase for the upper-level fitness and a steady decrease for the gap.

On the contrary, we can note that both convergence curves have a see-saw shape which indicates us that each

improvements phase deteriorates the other level. This observation confirms our belief discussed in section 7.3.1.

In conclusion, COBRA still seems very close to a nested metaheuristics despite the use of a co-evolutionary

operator. The fact that it relies on independent improvement phases that do not facilitate its parameterization.

Indeed, how should be set the number of improvement generation for each level ? Should it be unbalanced ?

Unlike COBRA, we see that CARBON is able to break the nested structure. The convergence curves clearly

show that both populations have steady improvements contrary to COBRA.

Figure 7.8: Example of convergence curve obtained for both CARBON populations

Figure 7.9: Example of convergence curve for both COBRA populations

7.6 Conclusions and perspectives

In this chapter, we introduced CARBON, a novel competitive co-evolutionary algorithm to solve bi-level opti-

mization problems. We discussed the main di�culty to create a co-evolutionary algorithm when dealing which

two nested optimization problems. Instead of considering, two strongly dependent populations, we made use of
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GP hyper-heuristic to generate and learn automatically e�cient heuristics to solve the parametric lower-level

problem. Indeed, each upper-level decision induces a new lower-level instance that needs to be solved. Heuris-

tics are fast but less accurate than standard metaheuristics. Therefore, using the evolutionary paradigm, it is

possible to evolve those heuristics to make them more accurate. The proposed hybrid bi-level co-evolutionary

algorithm, i.e., CARBON, pairs the bests upper-level decision with the best heuristics to provide a very good

approximation of the lower-level rational reactions and thus a realistic payo↵ for the upper-level decision maker.

Numerical experiments on the Bi-level Cloud Pricing Optimization Problem have shown that CARBON can

better handle the nested structure than COBRA, a reference in terms of bi-level co-evolutionary algorithm.

Future works could be devoted to multiple-level problems with deeper nested structure in order to analyze the

limitations of CARBON in terms of co-evolution.
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8.1 Thesis summary

Before proposing any new resolution approaches or bi-level models, bi-level theoretical aspects and complexity

have been investigated in chapter 2 in order to grasp all the implications of having two nested optimization

levels. During this very important phase (objective O2), relationships with other classes of problems have been

demonstrated before surveying classical resolution and metaheuristics approaches.

Before diving directly into novel resolution approaches, chapter 3 introduced the “Bi-level Clustering Optimiza-

tion problem”, i.e., a novel bi-level mathematical clustering formulation. Despite the fact that it is NP-hard, its

particular structure allows us to employ e�ciently the classical nested optimization strategy through a hybrid

and parallel genetic algorithm. Indeed, the lower-level problem features a totally unimodular coe�cient matrix

allowing us to solve it exactly and e�ciently with a linear solver. In order to examine the added value brought

by the proposed bi-level clustering (objective O3), numerical experiments have been performed in cooperation

with the Luxembourg Centre for Systems Biomedicine (LCSB) on real datasets such as disease maps (e.g.

Parkinson, Alzheimer).

Unfortunately, many bi-level optimization problems does not have such interesting properties. Most often,

the lower-level problem is a NP-hard problem and the nested optimization strategy becomes unsuitable even

using metaheuristics approaches. In order to deal with this pitfall, chapter 4 studied an alternative approach

relying on hybridizations with machine learning approaches in order to avoid time consuming nested resolutions

(objective O3). In this chapter, upper-level solution values in the Inducible Region are approximated using a

surrogate-based optimization approach, i.e., Bayesian Optimization. This hybrid approach is compared against

the bi-level evolutionary algorithm based on quadratic approximations (BLEAQ)which is a reference in the

bi-level evolutionary field. Contrary to BLEAQ which approximates the lower-level decision variables, our

approach approximate directly the fitness solution value. Numerical results have shown that we can drastically

reduce the cost of lower-level optimization while obtaining very accurate results.
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Despite their very interesting potential, approximation algorithms can only handle small and continuous bi-

level optimization problems whereas many bi-level optimization problems are large-scale and have combinatorial

properties. In short, surrogate functions cannot be employed in the discrete case to approximate the objective

function value but it does not mean that a machine learning strategy cannot be applied. The lower-level problem

is technically a parametric optimization problem which strongly depends on the upper-level decision variables.

Consequently, the di↵erent lower-level instances can be considered as family of instances with a common and

a parametrized part. Instead of approximating the objective function, we could automatically train dedicated

heuristics to tackle this family of instances. For this purpose, GP Hyper-heuristics have been investigated in

chapter 5 on a case study, i.e., the multidimensional knapsack problem. Although this problem is a single-level

one, it allowed us to validate the concept of “learning to optimize”.

Chapter 6 is the direct implementation of the knowledge gained through chapter 5. Instead of solving directly

a bi-level problem, a set of heuristics have been trained to tackle solely the parametric lower-level problem by

generating a family of instances as learning set (objective O3). To prove the validity of the newly designed

approach, chapter 6 solve the “Bi-level Cloud Pricing Problem”, i.e., a large scale and mixed-integer bi-level

optimization problem (objective O2). This problem is a second modeling contribution relying on bi-level pricing

models introduced in chapter 2.

Apart from the approximation of the lower-level by mean of machine learning techniques , we investigated a

decentralized approach, i.e., co-evolution, to break the nested structure. Some seminal works have attempted

to deal with it but with more or less success because of the strong epistatic links between the upper-level and

lower-level decision variables. In chapter 7, we designed a competitive co-evolutionary algorithm (objective

O4) that permits to solve the upper-level while training heuristics to cope with lower-level instances. Such an

approach allows us to work with two independent populations: one evolving the upper-level solutions while the

second one evolves strategies (heuristics). Figure 8.1 recalls the di↵erent paths followed in this thesis work.

State of the 
Art

Contributions 
to Bi-level 

optimization

Contribution to 
Hyper-heuristic 

domain
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Co-evolutionary 

domain

New 
mathematical 
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New resolution 
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Bi-level Cloud 
Pricing

Parallel nested 
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Surrogate-
based approach Hyper-heuristic

CARBON

Chap 2 .

Chap 6. Chap 3 . Chap 3 . Chap 4 . Chap 5 . and 6.

Chap 7 . 

Figure 8.1: Thesis workflow



Conclusions and perspectives 139

8.2 Contributions

This thesis work has shown the pertinence of considering bi-level models to tackle complex problems with

inherent hierarchical structure. Through chapters 3 and 6, we precisely tackled objective O2 by developing new

mathematical models for clustering and pricing in the Cloud.

Clustering is a sensitive task that generally depends on several distance metrics. In the case of disease maps,

they have been developed by researchers in Bioinformatics in order to categorize proteins and genes responsible

for a specific disease. Despite their strong importance, they only provide partial information and many works

attempt to combine them in order to utilize them with a classical clustering approach (e.g. Hierarchical

clustering). Needless to say, it is not trivial at all to find the right combinations. The bi-level clustering model

leveraged the utilization of di↵erent distance metrics which are key of major importance for distance-based

clusterings (e.g. K-means, K-medoids). The proposed bi-level model enables the choice of centroids with a

specific distance metric that can be di↵erent from the one used to assign data to clusters. Such an approach

clearly permits to prioritize these metrics and have been studied successfully in this work. Furthermore, we

proposed a parallel and hybrid evolutionary approach to solve this novel two-level model.

The second bi-level model introduced in this work is a particular and very interesting model for pricing set of

services in the Cloud. Many growing businesses now face complex pricing problems due to high competition

on the market. Therefore, a pricing model has been proposed to take into account competitors as well as the

rational reaction of Cloud Service Customers (CSC) to the proposed prices. With such a model, a CSP can

determine what are the optimal prices that guaranty him a maximum revenue knowing the current state of the

market. Closely inspired by the famous toll-setting problem [53], the novel bi-level problem is a large scale and

combinatorial problem that challenge the few but existing resolution approaches for discrete bi-level problems.

Chapters 6 and 7 defined two new resolution approaches that can e�ciently deal with it.

O3 has been addressed by chapters 4, 5 and 6 where the approximation of the lower-level problem has been

investigated in the continuous and then in the discrete/combinatorial case. In the continuous case, Bayesian

Optimization has been employed to approximate the upper-level objective value in the inducible region (IR).

Such strategies based on approximation have already been considered in the scientific literature but none were

able to reduce dramatically the number of lower-level optimization calls. Furthermore, they attempted to

approximate the lower-level decision variable instead of the objective function which is not suitable for large

scale problems. Even though Bayesian Optimization has shown impressive properties to deal with continuous

problems, it is unfortunately powerless in the discrete case. The main innovation of this thesis is certainly the

automatic design of fast but e�cient dedicated heuristics. Instead of optimizing a surrogate model of the lower-

level objective function, heuristics have been trained to solve lower-level instances while providing good and

resilient lower-level solutions. Investigations on GP Hyper-Heuristics have shown the potential of the“learning

to optimize” paradigm.

Studies on co-evolutionary aspects have been also performed. The advantage of co-evolution lies in the de-

composition that can be obtained to solve a problem more e�ciently. Very few co-evolutionary approaches

have been designed to handle bi-level optimization problems due to the strong epistatic links existing between

both levels. Indeed, each upper-level decision conducts to a di↵erent lower-level instance with specific optimal

solution. It is very hard to separate both problems. To cope with this issue, a hybrid co-evolutionary bi-level

algorithm has been implemented to tackle large scale combinatorial problems such as the Bi-level Cloud Pricing

Problem. This algorithm gathered all the knowledge and results obtained during this PhD thesis. Based on the

competitive co-evolutionary paradigm, this new algorithm allows to break the nested structure and therefore

the strong links between the two levels. This algorithm is presented in chapter 7.
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All the publications related to this thesis work are listed below:

• Emmanuel Kie↵er, Matthias Rudolf Brust, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. Tackling

large-scale and combinatorial bi-level problems with genetic programming hyper-heuristic. IEEE Trans-

actions on Evolutionary Computation, (in review), 2018

• Marek Ostaszewski, Emmanuel Kie↵er, Grégoire Danoy, Reinhard Schneider, and Pascal Bouvry. Cluster-

ing approaches for visual knowledge exploration in molecular interaction networks. BMC Bioinformatics,

19, aug 2018

• Emmanuel Kie↵er, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. A competitive approach for bi-level

co-evolution. In 2018 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), May 2018

• Emmanuel Kie↵er, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. Bayesian optimization approach

of general bi-level problems. In Proceedings of the Genetic and Evolutionary Computation Conference

Companion, pages 1614–1621. ACM, 2017

• Emmanuel Kie↵er, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. A new modeling approach for the

biobjective exact optimization of satellite payload configuration. International Transactions in Operational

Research, 2017

• Emmanuel Kie↵er, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. A new co-evolutionary algorithm

based on constraint decomposition. In 2017 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), pages 492–500, May 2017

• Emmanuel Kie↵er, Grégoire Danoy, and Pascal Bouvry. On bi-level approach for scheduling problems. In

New Challenges in Scheduling Theory, 2016

• Emmanuel Kie↵er, Mateusz Guzek, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. A novel co-

evolutionary approach for constrained genetic algorithms. In Proceedings of the 2016 on Genetic and

Evolutionary Computation Conference Companion, GECCO ’16 Companion, pages 47–48. ACM, 2016

• Emmanuel Kie↵er, Grégoire Danoy, and Pascal Bouvry. On bi-level approach for scheduling problems. In

New Challenges in Scheduling Theory, 2016

A PhD thesis is a long-lasting work that enable collaborations and exchanges with other researchers. Some of

ours contributions are indirectly related to the main topic and followed fruitful discussions. In some cases, they

had indirect impacts on our thesis methodology or on future investigations. Despite the fact that we are not

developing them in detail in this manuscript, it is still worthwhile to highlight them briefly. They have been

conducted in the context of Unmanned Aerial Vehicle Mobility Models and co-evolutionary optimization which

are areas of expertise of the Parallel Computing & Optimisation Group (http://pcog.uni.lu/) headed by Prof.

Dr. Bouvry. Below are listed additional publications having an indirect link to the main topic. More details

are provided in Annexe A.

• Emmanuel Kie↵er, Martin Rosalie, Grégoire Danoy, and Pascal Bouvry. Bayesian optimization to enhance

coverage performance of a swarm of uav with chaotic dynamics. May 2018

• Emmanuel Kie↵er, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. Hybrid mobility model with

pheromones for uav detection task. In 2016 IEEE Symposium Series on Computational Intelligence

(SSCI), pages 1–8, Dec 2016
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• Emmanuel Kie↵er, Grégoire Danoy, Pascal Bouvry, and Anass Nagih. A new co-evolutionary algorithm

based on constraint decomposition. In 2017 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), pages 492–500, May 2017

8.3 Perspectives

Investigations on GP Hyper-Heuristics have shown the potential of generate ad-hoc heuristics with can surpass

human-based ones. We plan to propose a project that is an extension of the successful results undertaken in

this PhD work and notably on GP Hyper-Heuristics. Its goal is to go beyond the traditional gradient-based

learning techniques and heuristics that can be found in the literature. We claim that the maturity reached

by machine learning could allow to learn more complex structures such as metaheuristics. Indeed, since the

beginning of the 21st century, developments in the Artificial Intelligence field have steadily grown. Machine

learning has certainly been the most prolific area and has made a large technological leap forward. Methods

like Deep Learning (DL) pushed the frontiers of the possible with applications like “Alpha GO” which are now

overtaking human decisions. This was made feasible by the development of new paradigms such as “learning to

learn”. Machines are not learning directly anymore, but develop themselves their own learning strategies. This

project will propose to investigate the potential of a new paradigm: “Learning to optimize”. Alpha GO was

able to excel but only on one specific game where the combinatorial aspects are strongly represented. We could

propose to automatically generate algorithms to e�ciently tackle some very di�cult optimization problems.

Contrary to most of the contributions found in the literature, this project would not just seek for yet other

hybrid algorithms but for a new paradigm where “machine learning” would serve “optimization”.
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Contributions to other research topics

Bayesian optimization to enhance coverage performance of a swarm

of UAV with chaotic dynamics [208]

Abstract:

A mobility model of swarm of UAVs has been recently proposed which purpose is to cover an unknown area:

CACOC (Chaotic Ant Colony Optimization to Coverage). This algorithm is based on Ant Colony Optimization

where chaotic dynamics are used to enhance the exploration part of the algorithm. CACOC mobility model uses

repulsive pheromones to guide the UAVs over the area they have to cover. The UAVs share a map of virtual

pheromones that indicates recently visited areas when high pheromone concentrations are present. The UAVs

then have a higher probability to move to the least recently visited areas. When there is no pheromone to guide

the UAVs, the introduction of chaotic dynamics permits to obtain an e�cient exploration of the unknown area.

Since the chaotic dynamics are obtained from a three di↵erential equations system with parameters, we can

tune one parameter to obtain another chaotic dynamic. The aim of this work consists in discovering a chaotic

dynamic leading to the best coverage which can be only computed after a CACOC simulation. For this purpose,

Bayesian Optimization has been considered which has been originally designed for time-consuming black-box

optimization. Indeed in order to evaluate the chaotic dynamic for a specific parameter, a full simulation should

be realized. Global optimization techniques (e.g. population-based heuristics) could be very time-consuming

contrary to a surrogate-based approach that minimize the number of simulations to perform and determine the

best parameters of the chaotic system.

Link to the main topic:

Although this application is far from Bi-level Optimization, they still have one common characteristic: the

evaluation of a solution is time-consuming. Indeed, for each instanced parameter, a simulation has to be run

in order to determine its impact. Likewise, Bi-level Optimization requires to determine the optimal solution of

the lower-level in order to compute the upper-level fitness value for a given upper-level solution.
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Hybrid mobility model with pheromones for UAV detection task

[199]

Abstract:

Over the last years, the activities related to unmanned aerial vehicle have seen an exponential growth in several

application domains. In that context, a great interest has been devoted to search and tracking scenarios, which

require the development of novel UAV mobility management solutions. Recent works on mobility models have

shown that bio-inspired algorithms such as ant colonies, have a real potential to tackle complex scenarios.

Nevertheless, most of these algorithms are either modified path planning algorithms or dynamical algorithms

with no a priori knowledge. We developed a hybrid model based on Markov chains and pheromones to take

advantage of both static and dynamic methods. Markov chains are evolved to generate a global behavior

guiding UAVs to promising areas while pheromones allow local and dynamical mobility management thanks to

information sharing between UAVs via stigmergy. Experimental results have demonstrated the ability of the

proposed approach to rapidly detect and keep watch on targets compared to random and classical pheromone

based models.

Link to the main topic:

This work was a first attempt to model static cooperation between two levels of UAVs. The future step will be

devoted to propose a bi-level (stackelberg game) version of this hybrid Markov mobility model where clusters

(zones) may change based on a dynamic cooperation between quad-copters and high-altitude UAVs. In fact,

the problem could be model as a Principal-agent model where high-altitude uavs delegates detection tasks to

low-altitudes ones. Both uavs do not have the same properties and their priorities may be conflicting. In this

case, a bi-level modeling would be very appropriated.

A new Co-evolutionary Algorithm Based on Constraint Decomposi-

tion [203]

Abstract:

Handling constraints is not a trivial task in evolutionary computing. Even if di↵erent techniques have been

proposed in the literature, very few have considered co-evolution which tends to decompose problems into easier

sub-problems. Existing co-evolutionary approaches have been mainly used to separate the decision vector. In

this article we propose a di↵erent co-evolutionary approach, referred to as co-evolutionary constraint decomposi-

tion algorithm (CCDA), that relies on a decomposition of the constraints. Indeed, it is generally the conjunction

of some specific constraints that hardens problems. The proposed CCDA generates one sub-population for each

constraint and optimizes its own local fitness. A sub-population will first try to satisfy its assigned constraint,

then the remaining constraints from other sub-populations using a cooperative mechanism, and finally the

original objective function. Thanks to this approach, sub-populations will have di↵erent behaviors and solu-

tions will approach the feasible domain from di↵erent sides. An exchange of information is performed using

crossover between individuals from di↵erent sub-populations while mutation is applied locally. Promising mu-

tated features are then transmitted through mating. The proposed CCDA has been validated on 8 well-known

benchmarks from the literature. Experimental results show the relevance of constraint decomposition in the

context of co-evolution compared to state-of-the-art algorithms.
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Link to the main topic:

This work has been performed during our first investigations on co-evolutionary algorithms for bi-level opti-

mization. Since bi-level problems can be considered as strongly constrained problems, we focused our attention

to the literature on constraint handling techniques and surveyed it. We then proposed a novel decomposition

scheme that relies on constraint separation. The co-evolutionary model applied in this work belongs to the

class of cooperative co-evolution.



Appendix B

Bi-level clustering quality and terms

enrichment (chapter 3)

Map AlzPathway AlzPathway Reorg PD map
Enrichment with DO GO DO GO DO GO

clusters/terms clusters/terms clusters/terms clusters/terms clusters/terms clusters/terms

Eu >GO BP 3/5 3/19 3/1 3/1 52/363 52/1860
Eu >GO CC 5/37 5/38 3/1 3/9 4/76 4/686
Eu >GO MF 2/1 2/1 None None 2/1 2/156

Eu >Net 68/101 68/238 98/17 98/18 88/372 88/1929
Eu*GO BP 61/86 97/179 13/6 90/14 89/334 97/1669
Eu*GO CC 47/73 89/225 74/22 93/9 88/345 98/1696
Eu*GO MF 51/82 95/194 27/28 92/23 88/334 99/1682

Eu*Net 58/75 90/201 99/8 99/1 93/339 98/1641
GO BP >Eu 51/76 51/196 32/76 32/720 61/353 61/2203
GO BP >Net 48/72 48/196 35/13 35/409 59/368 59/2211
GO CC >Eu 53/44 53/205 37/1 37/100 33/316 33/1590
GO CC >Net 57/37 57/182 45/16 45/13 50/305 50/1550
GO MF >Eu 47/2 47/321 50/8 50/265 50/246 50/1235
GO MF >Net 59/1 59/220 73/5 73/264 74/218 74/1282

Net >Eu 71/85 71/343 65/1 65/23 67/158 67/1463
Net >GO BP 6/1 6/36 4/1 4/1 40/171 40/1373
Net >GO CC 8/20 8/1 2/1 2/1 9/48 9/479
Net >GO MF 4/1 4/1 None None 10/52 10/558
Net*GO BP 49/47 55/182 2/1 97/136 81/289 86/1563
Net*GO CC 95/48 95/186 99/1 42/27 56/250 79/1398
Net*GO MF 49/53 99/169 34/3 99/1 83/162 91/1306
Expert-based 20/1 20/43 20/1 20/70 36/275 36/1449

Table B.1: Maximum numbers of enriched terms with their associated number of clusters for all tested
clustering solutions

145



Appendices 146

Map AlzPathway AlzPathway Reorg PD map
Clustering method Bilevel HCW Bilevel HCW Bilevel HCW

clusters/Fmeasure clusters/Fmeasure clusters/Fmeasure clusters/Fmeasure clusters/Fmeasure clusters/Fmeasure

Eu None 7/0.6389 None 7/0.7157 None 3/0.7045
Eu >GO BP 3/0.5748 None 3/0.5110 None 4/0.7136 None
Eu >GO CC 4/0.6118 None 3/0.5830 None 2/0.6278 None
Eu >GO MF 2/0.4523 None None None 1/0.5350 None

Eu >Net 6/0.6349 None 8/0.7134 None 3/0.6757 None
Eu*GO BP None 12/0.6562 None 12/0.7844 None 4/0.7259
Eu*GO CC None 12/0.6695 None 12/0.6981 None 8/0.7650
Eu*GO MF None 13/0.6496 None 5/0.6355 None 3/0.6985

Eu*Net None 47/0.5164 None 17/0.6034 None 3/0.6796
GO BP None 2/0.3288 None 2/0.3400 None 2/0.5284

GO BP >Eu 2/0.4123 None 1/0.4111 None 1/0.5350 None
GO BP >Net 1/0.4121 None None None 1/0.5350 None

GO CC None 2/0.3289 None 2/0.3392 None 2/0.4890
GO CC >Eu 2/0.4123 None None None 2/0.5373 None
GO CC >Net 6/0.4132 None None None 1/0.5350 None

GO MF None 2/0.3318 None 2/0.3372 None 2/0.4842
GO MF >Eu 1/0.4121 None None None 1/0.5350 None
GO MF >Net 3/0.4130 None None None 1/0.5350 None

Net None 39/0.4466 None 14/0.4842 None 4/0.5076
Net >Eu 11/0.4370 None 33/0.4309 None 3/0.5766 None

Net >GO BP 6/0.4165 None None None 3/0.5762 None
Net >GO CC 7/0.4150 None None None 6/0.5837 None
Net >GO MF 1/0.4121 None None None 4/0.5731 None
Net*GO BP None 44/0.4396 None 10/0.4772 None 3/0.5151
Net*GO CC None 45/0.4392 None 11/0.4844 None 3/0.5151
Net*GO MF None 46/0.4359 None 11/0.4875 None 3/0.5151

Table B.2: Maximum F-measure values with their associated number of clusters for all tested clustering
solutions
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Heat maps, acquisition function and

convergence TP benchmarks (chapter

4)
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Appendix D

Automatic heuristic gap for all MKP

instances (chapter 5)

Table D.1: Application of the learned heuristics on instances with n=100

Heuristics

Instances n = 100

m = 5 m = 10 m = 30

r = 0.25 r = 0.5 r = 0.75 r = 0.25 r = 0.5 r = 0.75 r = 0.25 r = 0.5 r = 0.75

n = 100

m = 5

r = 0.25 1.40 1.39 1.90 2.26 1.76 2.72 2.92 1.79 5.52

r = 0.5 1.55 0.99 2.04 2.25 1.60 2.76 3.40 2.08 5.26

r = 0.75 1.53 1.42 1.90 2.26 1.63 2.72 3.06 1.71 5.36

m = 10

r = 0.25 1.63 1.26 2.19 2.13 1.76 2.91 2.98 1.86 5.32

r = 0.5 1.62 1.17 2.32 2.25 1.44 3.07 3.30 1.90 4.93

r = 0.75 1.51 1.17 2.08 2.23 1.45 2.62 4.22 2.42 4.89

m = 30

r = 0.25 1.52 1.17 2.01 2.39 1.57 2.89 2.75 1.73 5.14

r = 0.5 2.21 1.91 2.40 2.33 2.03 2.83 3.10 1.73 5.25

r = 0.75 1.81 1.29 2.89 2.43 1.89 3.31 3.42 2.07 4.73

n = 250

m = 5

r = 0.25 1.47 1.16 2.19 2.27 1.63 2.63 2.98 1.81 5.21

r = 0.5 1.61 1.12 2.04 2.35 1.56 3.03 3.04 1.82 5.50

r = 0.75 1.45 1.23 1.83 2.27 1.70 2.60 3.02 2.01 5.07

m = 10

r = 0.25 1.80 1.13 2.63 2.29 1.76 3.08 3.12 1.77 5.31

r = 0.5 1.42 0.98 2.00 2.41 1.72 3.13 2.84 1.71 5.25

r = 0.75 1.88 1.55 3.12 2.25 1.57 2.85 4.44 2.38 5.50

m = 30

r = 0.25 1.49 1.08 2.04 2.35 1.56 2.82 3.12 1.82 5.07

r = 0.5 2.01 1.70 2.72 2.36 1.55 2.89 2.98 1.90 5.27

r = 0.75 1.50 1.26 2.42 2.59 1.83 3.07 3.05 2.02 4.85

n = 500

m = 5

r = 0.25 1.65 1.05 2.04 2.35 1.56 3.15 3.03 1.82 5.47

r = 0.5 1.64 1.14 2.00 2.25 1.56 2.85 3.12 1.71 5.27

r = 0.75 1.66 1.09 2.70 3.05 1.99 4.35 5.35 3.49 8.04

m = 10

r = 0.25 1.99 1.44 3.49 2.38 1.58 2.89 2.75 1.73 5.14

r = 0.5 1.65 1.14 2.15 2.25 1.56 3.02 3.12 1.71 5.23

r = 0.75 1.48 1.20 1.93 2.28 1.61 2.72 2.98 1.81 5.02

m = 30

r = 0.25 1.52 1.11 1.95 2.39 1.57 2.88 2.96 1.67 5.10

r = 0.5 4.42 3.80 6.42 2.70 2.19 3.79 3.38 2.03 4.99

r = 0.75 1.72 1.39 2.54 2.35 1.49 3.07 3.05 1.88 5.58

average 1.75 1.35 2.44 2.36 1.67 2.99 3.24 1.94 5.31

best 1.40 0.98 1.83 2.13 1.44 2.60 2.75 1.67 4.73

std 0.57 0.53 0.89 0.18 0.18 0.37 0.57 0.36 0.59
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Table D.2: Application of the learned heuristics on instances with n=250

Heuristics

Instances n = 250

m = 5 m = 10 m = 30

r = 0.25 r = 0.5 r = 0.75 r = 0.25 r = 0.5 r = 0.75 r = 0.25 r = 0.5 r = 0.75

n = 100

m = 5

r = 0.25 0.60 0.36 0.75 0.89 0.57 1.13 1.37 1.00 2.24

r = 0.5 0.64 0.65 0.71 0.95 1.18 1.20 2.32 1.75 2.39

r = 0.75 0.78 0.42 0.76 0.94 0.65 1.09 1.33 1.04 2.23

m = 10

0.25 0.66 0.50 0.84 1.02 0.69 1.14 1.35 0.98 2.20

r = 0.5 0.63 0.42 0.75 0.79 0.58 1.15 1.47 0.87 1.99

r = 0.75 0.64 0.40 0.73 0.92 0.69 1.08 2.22 1.23 2.62

m = 30

0.25 0.59 0.38 0.69 0.93 0.54 1.08 1.38 0.94 1.90

r = 0.5 0.97 0.63 1.44 0.95 0.85 1.38 1.43 0.99 2.16

r = 0.75 0.63 0.46 0.86 1.00 0.68 1.04 1.38 1.09 1.97

n = 250

= 5

r = 0.25 0.54 0.37 0.65 0.87 0.57 1.14 1.43 1.02 2.01

r = 0.5 0.62 0.35 0.72 0.88 0.60 1.04 1.25 0.98 2.06

r = 0.75 0.56 0.39 0.61 0.88 0.57 1.16 1.42 1.02 2.05

m = 10

r = 0.25 0.82 0.54 1.08 0.85 0.74 1.56 1.43 0.89 2.02

r = 0.5 0.70 0.35 0.75 0.86 0.52 1.15 1.30 0.94 2.18

r = 0.75 1.04 0.75 1.59 0.83 0.56 0.91 2.55 1.44 2.85

m = 30

r = 0.25 0.67 0.35 0.72 0.88 0.57 1.04 1.33 0.93 2.06

r = 0.5 1.23 0.63 1.31 1.06 0.57 1.16 1.36 0.87 2.14

r = 0.75 0.60 0.43 0.83 0.91 0.52 1.13 1.42 1.11 1.81

n = 500

m = 5

r = 0.25 0.66 0.36 0.70 0.87 0.57 1.02 1.38 0.92 2.06

r = 0.5 0.73 0.35 0.67 0.89 0.61 1.04 1.36 0.89 1.87

r = 0.75 0.53 0.41 0.73 1.13 0.66 1.34 2.58 1.58 3.82

m = 10

r = 0.25 0.96 0.59 1.93 0.89 0.52 1.11 1.42 0.93 1.90

r = 0.5 0.57 0.41 0.74 0.84 0.59 1.00 1.37 0.88 1.87

r = 0.75 0.56 0.40 0.71 0.91 0.54 1.13 1.43 1.02 2.01

m = 30

r = 0.25 0.61 0.38 0.69 0.88 0.56 1.08 1.44 0.90 1.95

r = 0.5 4.53 3.54 6.58 1.40 0.91 1.76 1.40 0.91 1.82

r = 0.75 0.84 0.48 0.97 0.94 0.61 1.10 1.40 0.97 2.06

average 0.85 0.57 1.09 0.93 0.64 1.15 1.54 1.04 2.16

best 0.53 0.35 0.61 0.79 0.52 0.91 1.25 0.87 1.81

std 0.76 0.60 1.14 0.12 0.14 0.18 0.38 0.22 0.41
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Table D.3: Application of the learned heuristics on instances with n=500

Heuristics

Instances n = 500

5 10 30

r = 0.25 r = 0.5 r = 0.75 r = 0.25 r = 0.5 r = 0.75 r = 0.25 r = 0.5 r = 0.75

n = 100

m = 5

r = 0.25 0.25 0.23 0.38 0.42 0.32 0.56 0.80 0.51 1.03

r = 0.5 0.80 1.74 0.74 1.42 1.49 0.91 2.37 1.91 1.93

r = 0.75 0.28 0.23 0.39 0.39 0.33 0.59 0.82 0.49 0.95

m = 10

r = 0.25 0.36 0.25 0.47 0.41 0.43 0.64 1.04 0.58 1.19

r = 0.5 0.32 0.15 0.40 0.48 0.25 0.62 0.72 0.45 0.97

r = 0.75 0.33 0.18 0.39 0.42 0.31 0.54 1.07 0.63 1.46

m = 30

r = 0.25 0.26 0.18 0.39 0.38 0.29 0.56 0.80 0.48 0.93

r = 0.5 0.59 0.53 0.92 0.60 0.49 0.80 0.76 0.51 0.92

r = 0.75 0.31 0.28 0.38 0.47 0.42 0.61 0.92 0.51 1.15

n = 250

m = 5

r = 0.25 0.23 0.19 0.36 0.43 0.30 0.49 0.81 0.49 1.00

r = 0.5 0.28 0.17 0.43 0.40 0.29 0.59 0.76 0.49 0.93

r = 0.75 0.23 0.21 0.37 0.43 0.29 0.49 0.81 0.49 1.01

m = 10

r = 0.25 0.37 0.21 0.43 0.49 0.30 0.64 0.76 0.46 1.18

r = 0.5 0.27 0.18 0.38 0.51 0.32 0.58 0.78 0.50 0.96

r = 0.75 0.91 0.59 1.61 0.35 0.23 0.54 1.28 0.97 1.95

m = 30

r = 0.25 0.32 0.18 0.39 0.40 0.29 0.56 0.76 0.49 0.95

r = 0.5 0.56 0.65 0.96 0.36 0.31 0.62 0.75 0.53 0.97

r = 0.75 0.26 0.29 0.34 0.46 0.35 0.54 0.90 0.48 1.13

n = 500

m = 5

r = 0.25 0.24 0.17 0.37 0.35 0.28 0.55 0.75 0.48 0.90

r = 0.5 0.27 0.15 0.39 0.35 0.25 0.55 0.75 0.47 0.99

r = 0.75 0.26 0.16 0.27 0.50 0.36 0.64 1.35 0.95 1.86

m = 10

r = 0.25 0.68 0.27 1.03 0.35 0.30 0.58 0.80 0.48 0.93

r = 0.5 0.33 0.18 0.37 0.38 0.22 0.56 0.74 0.47 1.00

r = 0.75 0.25 0.19 0.38 0.44 0.30 0.50 0.83 0.51 0.99

m = 30

r = 0.25 0.26 0.20 0.39 0.37 0.34 0.57 0.66 0.54 0.93

r = 0.5 4.19 3.30 6.09 1.05 0.51 0.93 0.71 0.42 1.04

r = 0.75 0.38 0.24 0.61 0.45 0.27 0.59 0.75 0.51 0.89

average 0.51 0.42 0.73 0.48 0.37 0.61 0.90 0.59 1.12

best 0.23 0.15 0.27 0.35 0.22 0.49 0.66 0.42 0.89

std 0.76 0.66 1.11 0.23 0.24 0.11 0.34 0.29 0.31



Appendix E

Convergence curves for CARBON and

COBRA (chapter 7)

(a) CARBON (b) COBRA

s

lack Convergence curve for both sub-populations on the instance class (100;5)

(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (100;10)
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(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (100;30)

(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (250;5)

(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (250;10)
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(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (250;30)

(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (500;5)

(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (500;10)
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(a) CARBON (b) COBRA

Convergence curve for both sub-populations on the instance class (500;30)
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Heidelberg, 2015.

3 citations in pages 27, 28, and 29.



Bibliography 180

[196] Amirsaman Kheirkhah, HamidReza Navidi, and Masume Messi Bidgoli. A bi-level network interdiction

model for solving the hazmat routing problem. International Journal of Production Research, 54(2):459–

471, sep 2015.

2 citations in pages 13 and 17.
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[208] Emmanuel Kie↵er, Martin Rosalie, Grégoire Danoy, and Pascal Bouvry. Bayesian optimization to enhance

coverage performance of a swarm of uav with chaotic dynamics. May 2018.

One citation in page 142.

[209] A. D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based clustering. Bioinfor-

matics, 20(17):3013–3020, jun 2004.

One citation in page 52.

[210] Polyxeni-M. Kleniati and Claire S. Adjiman. Branch-and-sandwich: a deterministic global optimization

algorithm for optimistic bilevel programming problems. part II: Convergence analysis and numerical

results. Journal of Global Optimization, 60(3):459–481, jan 2014.

2 citations in pages 33 and 38.

[211] Polyxeni-M. Kleniati and Claire S. Adjiman. A generalization of the branch-and-sandwich algorithm:

From continuous to mixed-integer nonlinear bilevel problems. Computers & Chemical Engineering, 72:373–

386, jan 2015.

2 citations in pages 33 and 38.

[212] Polyxeni-Margarita Kleniati and Claire S. Adjiman. Branch-and-sandwich: a deterministic global opti-

mization algorithm for optimistic bilevel programming problems. part i: Theoretical development. Journal

of Global Optimization, 60(3):425–458, jan 2014.

2 citations in pages 33 and 38.

[213] Gary A. Kochenberger, Bruce A. McCarl, and F. Paul Wyman. A HEURISTIC FOR GENERAL INTE-

GER PROGRAMMING. Decision Sciences, 5(1):36–44, jan 1974.

One citation in page 97.
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[215] Michal Kočvara and Jǐŕı V. Outrata. On the solution of optimum design problems with variational

inequalities. In Recent Advances in Nonsmooth Optimization, pages 172–192. WORLD SCIENTIFIC, sep

1995.

2 citations in pages 14 and 17.

[216] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In

Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95,

pages 1137–1143, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

One citation in page 114.

[217] Bhawna Kohli. Optimality conditions for optimistic bilevel programming problem using convexifactors.

Journal of Optimization Theory and Applications, 152(3):632–651, oct 2011.

One citation in page 21.

[218] C. D. Kolstad and L. S. Lasdon. Derivative evaluation and computational experience with large bilevel

mathematical programs. Journal of Optimization Theory and Applications, 65(3):485–499, jun 1990.

2 citations in pages 32 and 38.

[219] Xiangyu Kong, GuoLin Yu, and Wei Liu. Optimality for set-valued optimization in the sense of vector

and set criteria. Journal of Inequalities and Applications, 2017(1), feb 2017.

2 citations in pages 28 and 29.



Bibliography 182

[220] Mina Moradi Kordmahalleh, Mohammad Gorji Sefidmazgi, and Abdollah Homaifar. A bilevel parameter

tuning strategy of partially connected ANNs. In 2015 IEEE 14th International Conference on Machine

Learning and Applications (ICMLA). IEEE, dec 2015.

2 citations in pages 15 and 17.

[221] JohnR. Koza. Genetic programming as a means for programming computers by natural selection. Statistics

and Computing, 4(2), jun 1994.

One citation in page 94.

[222] William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion variance analysis. Journal of the

American Statistical Association, 47(260):583–621, 1952.

2 citations in pages 117 and 119.

[223] G. Kunapuli, K.P. Bennett, Jing Hu, and Jong-Shi Pang. Classification model selection via bilevel

programming. Optimization Methods and Software, 23(4):475–489, aug 2008.

2 citations in pages 15 and 17.

[224] Ludmila I Kuncheva and James C Bezdek. Selection of cluster prototypes from data by a genetic algorithm.

In Proc. 5th European congress on Intelligent techniques and soft computing, pages 1683–1688, 1997.

2 citations in pages 51 and 52.

[225] R.J. Kuo and C.C. Huang. Application of particle swarm optimization algorithm for solving bi-level linear

programming problem. Computers & Mathematics with Applications, 58(4):678–685, aug 2009.

2 citations in pages 40 and 46.

[226] I Kuperstein, E Bonnet, H-A Nguyen, D Cohen, E Viara, L Grieco, S Fourquet, L Calzone, C Russo,

M Kondratova, M Dutreix, E Barillot, and A Zinovyev. Atlas of cancer signalling network: a systems

biology resource for integrative analysis of cancer data with google maps. Oncogenesis, 4(7):e160–e160,

jul 2015.

2 citations in pages 49 and 50.

[227] Martina Kutmon, Anders Riutta, Nuno Nunes, Kristina Hanspers, Egon L. Willighagen, Anwesha Bohler,
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