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What is Truth?

Sciences are plural, they have validity domains, hence truth
has multiple faces;

Knowledge is never complete and Research never finished,;

Knowledge itself is less important than the method used to
acquire it;

What we discover through research is the BEST we can
discover at a given instant in time;

Investing in Research indicates trust in the scientific method.



Data

90% of the data available today was generated in the last
two years,;

Developing new scientific methodologies to optimise the
acquisition of new understanding from data;

Develop methodological core based on the language of
mathematics and common to various application areas;

These new methodologies will fuel science and technology
by creating multi-disciplinary interactions in two fields:
personalised medicine and advanced materials.



Access to TRUTH(S)

Trust In
Institutions,
Methods,
Human
discourse

Access to
Reality(ies)




MATHEMATICS




Outline

Scientific method, experiments, analytical methods and models
What is a complex system?

What models are available to understand and predict?

What are agent-based models?

Equation-based (mathematical) models

How to choose the “best” model?



The scientific method
and the 3 pillars of
science

(or should we say 47)



How do we think
about the world?




Aristotle

384-322 BC



Copernicus

1473-1543



Galileo Galilel

1564-1642

iInnovative combination of experiments and mathematics



|Isaac Newton

1643-1727

Universality of gravitation...



Pierre Simon Laplace

1749-1827

Our lack of knowledge is uncertainty



How do we think
about the world?




Inductive thinking
Observations -> conclusions
on governing laws



Write mathematical models from observations



Experiments to
-Formulate hypotheses and laws about the world
-ldentify parameters of mathematical models



Conduct numerical experiments to
- Formulate hypotheses and laws about the world
-ldentify parameters of mathematical models



Conduct numerical experiments to
- Formulate hypotheses and laws about the world
-ldentify parameters of mathematical models



The third pillar of scientific discovery TR
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LUXEMBOURG

Mathematics Computational
and Data
Sciences

Science and Compuwf’
Engineering science

Computational Sciences: the discipline concerned with the use of computational

methods and devices to enable scientific discovery and engineering applications of
science.
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What computational & data sciences enable that

traditional science doesn’t il

UNIVERSITE DU
LUXEMBOURG

LOOK INTO THE PAST

= Earthquakes, climate, oil discovery, archeology, seismology, law,
economics, finance

PROBE THE FUTURE

= Explore the effects of thousands of scenarios

= Drug design, space exploration, climate change, natural disasters, ...

CHOOSE MODELS

= Explore consequences of breakdown of models and theory...

OPTIMISE

= Optimize procedures, designs, products, systems, etc.



Why is multi-disciplinary research important?

= Most Grand Challenge problems today involve complex
phenomena and systems that lie on disciplinary boundaries.

= Interdisciplinary research moves beyond simple collaboration
and teaming to integrate data, methodologies, perspectives,
and concepts from multiple disciplines in order to advance
fundamental understanding and to solve real world problems.

= Interdisciplinary research holds the promise of pushing fields
forward and accelerating scientific discovery.

= Interdisciplinary study and training prepares a workforce that
undertakes scientific challenges in news and innovative ways.



Mission for Computational and Data Sciences in
Luxembourg

UNIVERSITE DU

LUXEMBOURG



Outline

Scientific method, experiments, analytical methods and models
What is a complex system?

What models are available to understand and predict?

What are agent-based models?

Equation-based (mathematical) models

How to choose the “best” model?



Complex systems

Large number of interacting components
Evolving over time
Decentralised decisions vs. Centralised control

Local interactions -> emergence of global patterns



Examples

Biological systems (brain, cancer, bacteria...)
Policy and government

Environment (weather, ice sheet, pollution...)
Economy, stock market

Ecosystems (bats, fish...)

Functional/sensing materials (graphene...)



Emergence

 Micro (local) level leads to patterns at the macro level
* Ant/bee colonies
 Housing patterns, traffic jams
 Populations in ecosystems
 Pressure of gases
* Pricing

o Effect of individual behaviours in societies



Two questions about
emergence

e You know the micro, you want to understand the macro

e You observe the macro, you want to deduce the micro
rules

THIS IS HARD



Outline

Scientific method, experiments, analytical methods and models
What is a complex system?

What models are available to understand and predict?

What are agent-based models?

Equation-based (mathematical) models

How to choose the “best” model?



What is a model?

When we were Kids ;-) or grownup kids...



What is a model?

Biologists



What is a model?




What is a model?

e An abstract description of a process, object, system,

event which exaggerates certain aspects compared to
others

e “Essentially, all models are wrong, but some are useful”
George Box, 1987

e The choice of the model depends on the quantities of
interest (Qol)



What is a model?

Projection Model 1
Real Geophysical
World layers
Model 2

If you are into geography or geophysics



at is a model?

Physical model

Mathematical
model

IR

AR '
ARy
2y \'

7

Tissue phantoms/mimics

J.F. Remacle (Dini, Imperial College London)
Quantity of Interest: neuro-transmission Quantity of Interest: stiffness



© Vincenot, 2019

Types of

models

Mental Model

Statistical

Mechanistic/ Mixed
Dynamic (e.g. SSM)

Mathematical

Eulerian-

Lagrangian

Algorithmic

Artificial Neural

Networks

Cellular

Automata

Agent-based

47



What is a “good” dynamic model?

* “All models are wrong. Some of them are
useful.” -- George E.P. Box (1979)

Performance

Understandability Intuitiveness
&
Communicability

Capacity to
Reproduce
System Structure

Natural
Description

Usefulness

Capacity to Reproduce 48
Component Nature

Accuracy

© Vincenot, 2019



Answer the

guestion

© Vincenot, 2019

OK
\ Compare with

How to build dynamic models?
The modelling process

Define a new

? problem

Define the

real patterns/ system

data

10K

Run
simulations
and get
results

Decide on
boundaries
& scale

Express
system in
modelling

terms

Isolate state
variables &
processes

49



COMPUTATIONAL & DATA SCIENCES

Local economy

Industrial/
clinical Identification of Phenomena
Valorisation

Model Evaluation &
Comprehension Model Genesis & Evolution

MODELLING

Data Analysis Model Properties

Model Analysis



Stirling murmuration (Rome)




Flocking of Stirlings

* |s there aleader?

* Are the global patterns
attributable to local rules? Can
we derive global equations
governing their behaviour? Is
the process deterministic?

e What is their acceleration, | ‘ -
maximum velocity, reaction - 7 .-
time, minimum distance with 1T -
other birds, line of sight, .
manoeuvrability? | -




Outline

Scientific method, experiments, analytical methods and models
What is a complex system?

What models are available to understand and predict?

What are agent-based models?

Equation-based (mathematical) models

How to choose the “best” model?



Boids flocking local rules

for global behaviour

£ 3

L=
<Y
A
06 “2
PS

C.W. Reynolds SIGGRAPH, 1987

Separation: steer to
avoid crowding local
flockmates

Alignment: steer
towards the average

heading of local
flockmates

Cohesion: steer to
move toward the
average position of
local flockmates




Applications of ABM/IBM

* A growing, unified community

(b) 2002 clustering

(a) 1995 -
R T (ABM)

fusion/integration
(ongoing)

P

o R AT N o \ Sanchez02 “* /
(920157

(d) 2008

(Vincenot, 2018)
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Applications of ABM/IBM

© ABM
IBM

* Over 12,000
publications

ABM 400 - 7 / IBM

publications per year

0

1990 1995 2000 2005 2010 2015
year

agricultural and biological sciences | |

* Everywhere in
sciencel

environmental science
biochemistry, genetics ...
medicine
immunology and microbiology
earth and planetary sciences

pharmacology, toxicology ...
neuroscience
chemical engineering
physics and astronomy
mathematics
arts and humanities
psychology
multidisciplinary
materials science
energy
economics, econometrics ...
business, management ...
decision sciences

social sciences

engineering

computer science

O _i . | ._'_L_TL_-_L_'_L_t.______iT-__i_.i 1 i 1 I 1 I I v

1000 2000

56

5000 3000 1000 0
no. publications

(Vincenot, 2018)



Mathematical models

density 57 %

| =l

percent burned
1.4

59% is a
threshold
(50/50

probability)

Self-
Organised
Criticality

Fire spreading through a forest for various tree densities by NetLogo



Self-Organised Criticality

The Forest-Fire model belongs to the class of Self-
Organized-Critical (SOC) systems, which are governed by a
slow driving energy input and burst (avalanches) of
dissipative outputs resulting often in fractal structures.
These systems were introduced by P. Bak et al. [2] in 1987
using the example of a sandpile model. These SOC models
can be applied to many different fields, famous applications
are for instance: earthquakes, solar flares, co-evolution,
forest fires, hydraulic fracture and more. In addition they
show scaling laws and are related to critical phenomena.

http://guava.physics.uiuc.edu/~nigel/courses/563/Essays_2010/PDF/Funke.pdf
https://pdfs.semanticscholar.org/ec58/3f6f99f1d15a1d1ae2de1d243b648efd2ba8.pdf
http://www.uvm.edu/pdodds/files/papers/others/1993/grassberger1993.pdf

https://www.sciencedirect.com/science/article/pii/B9780128001301000047



Algorithmic Languages

* ABMs are always coded as algorithms
 Most often, simple deductive behavior:

e.g. “if hungry, search food”
condition action

* Implementations require coding skills, but
simplified languages exist



Netlogo

Most used by ecologists to setup
. . o clear-all
Simplified language create-turtles 10
reset-ticks

Slow, but good for relatively |, 4
simple models

to go
Simple random movement ask turtles |
fd 1 ;; forward 1 step
mOdeI 9 rt random 10 ;; turn right
It random 10 ;; turn left
]
tick
end

60
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* Computer
scientists

* More complex
language

 Powerful, but
difficult

model SI_city

global{

Gama

Definition of the
world geometry

geometry shoape<-envelope(square(500));

nit{

creote people number:1000;

}
}

species people skills:[moving]{
float speed <- 5.0 + rnd(5);
bool is_infected <- flip(©.01);

People agent
creation

variables of the
people agents

reflex move{
do wander;

}

reflex infect when:

reflexes of the
people agents

is_infected{

ask people at_distance 10 {

}
ks

if flip(e.21) {
is_infected <- true;

}

aspect circle{

drow circle(5) color:

}
}

experiment main_experiment type:qui{

output {

displaoy map {

}

is_infected ? rgb("red")

{ :' °s . 3 ﬁ” .o".
’. o ..‘:*'::" o Qo}.::'“ ..t
":o‘o‘.“.’ :.‘ ‘: ® o ot .o. t

Aspect of the
people agents

Definition of an
agent display

species people aspect:circle;

: rgb("green");



) O O schelling ~ /Users/patricktaillandier/Desktop/GAMA_15_releases/macosx.cocoa.x86/eclipse/plugins/msi.gama.models_1.0.0.201207122055/models/schelling/ models/segregation_google_maps.gaml

Gama

W ——Cas&[PHHH.[P=0

/a Parameters 83\ 2 Q_ = Q\
IS ]
- Environment
Width and height of the environment: 50 O) -

Name of image file to load: '\ /images\/hanol.png’

= Model segregation System parameters for experiment "schelling’

Random number gererator  ‘mersenne’ :)
Random seed V/ Define: | 0.0

= User Interface

- - o F L aneses ~Y1 P

G onans B S
oe— s & 2PPL L. W

| asoworsame @ |

R



KISS

+ “Keep it Simple, Stupid” (KISS) principle
* Try to make models as
simple as possible

Medawar
Zone

* Many processes/parameters
does NOT mean better accuracy!!

Payoff

Difficulty



Pattern-oriented Modelling

* Use patterns instead of numerical fitting to
validate model (Grimm et al. 2005)

Real complex system Observed patterns Model structure

65



Pattern-oriented Modelling

B .’-
>,
9 - >

nwZzxm-—-—-H>P> O

Define a new
problem

Compare with
real patterns/
data

Define the
system

Run
simulations
and get
results

Decide on
boundaries
& scale

Express
system in
modelling

terms

Isolate state
variables &
processes

66



ODD: Describing ABM Models

* The ODD Protocol
— Overview, Design concepts, and Details (ODD)
— A strict set of guidelines to describe and publish ABMs
— Guarantees the replicability of models and studies
— More than 2000 citations
— 2nd version already; 3rd version in preparation
— See Grimm et al. (2006 and 2010)

* Please always use when developing ABMs!




Useful Reads

Agent-based Modelling

* Grimm V. and Railsback S.F. 2011. Individual-based Modeling and Ecology.
Princeton University Press.

* Janssen M. 2017. Introduction to Agent-based Modeling. [Online book]
https://cbie.gitbook.io/introduction-to-agent-based-modeling/

Vegetation model

 Vincenot C.E., Carteni F.,, Bonanomi G., Mazzoleni S., Giannino F. 2017.

Plant-soil negative feedback explains vegetation dynamics and patterns at
multiple scales. Oikos, 126:1319-1328.

* Vincenot C.E., Carteni F.,, Mazzoleni S., Rietkerk M., Giannino F. 2016. Spatial
Self-Organization of Vegetation Subject to Climatic Stress—Insights from a

System Dynamics—Individual-Based Hybrid Model. Frontiers in Plant
Science fpls.2016.00636.
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What models are available to understand and predict?

What are agent-based models?

Equation-based (mathematical) models

How to choose the “best” model?



Mathematical models

density 57 %

| =l

percent burned
1.4

59% is a
threshold
(50/50

probability)

Self-
Organised
Criticality

Fire spreading through a forest for various tree densities by NetLogo



Physics-based or
mathematical models



Physics-based moadel

T (K) is the temperature of the fire layer,

S € |0,1] is the fuel supply mass fraction (the relative amount of fuel
remaining),

k (m?*s~ 1) is the thermal diffusivity,

A (Ks™1) is the temperature rise per second at the maximum burning rate
with full initial tuel load and no cooling present,

B (K) is the proportionality coefficient in the modified Arrhenius law,

C (K1) is the scaled coefficient of the heat transfer to the environment,

Cs (s71) is the fuel relative disappearance rate,

T, (K) is the ambient temperature, and

v (ms™!) is the wind speed given by atmospheric data or model.

The model is derived from the conservation of energy, balance of fuel supply,
and the fuel reaction rate:

T .
Cil_t =V (kVT) -V - VT + A(Se PR — (T -T,)), (1)
957 _gSe-Bl@=t) (ps T, (2)

dt https://arxiv.org/pdf/0709.0086



https://arxiv.org/pdf/0709.0086

dT’

— =V (kVT) =V - VT + A(Se P/T"T) (T -T,)), (1)
db s e .

dS eat diffusion Advection _

= —CgSe B/T-Ta) T > T, (2)

with the initial values

S (tinit) = 1 and T (tinig) = Tinis- (3)

The diffusion term V - (kV1') models short-range heat transfer by radiation
in a semi-permeable medium, v - V7 models heat advected by the wind,
Se~B/(T=T0) ig the rate fuel is consumed due to burning, and AC (17" — T,)
models the convective heat lost to the atmosphere. The reaction rate
e~ B/(T-Ta) ig obtained by modifying the reaction rate e /T from the Arrhenius
law by an ofiset to force zero reaction at ambient temperature, with the
resulting reaction rate smoothly dependent on temperature.

Questions: |dentification of parameters?

https://arxiv.org/pdf/0709.0086


https://arxiv.org/pdf/0709.0086
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Equation-based (mathematical) models

How to choose the “best” model?



When use agent-based
models

Not too few, nor too many - medium numbers of entities
Heterogeneous systems
Local interactions

Rich environments



Not too many, not too few

e Casti, 1996

e Joo few agents, the system is too simple: game theory
and ethnography are sufficient

e Joo many agents, averages work well, statistical
descriptions



Richness of the
environments

e Social networks
e Geographical systems

e The environment can itself be an agent



Compare agent-based models (ABM),
mathematical models (MM), statistical
models (SM)

MM are often continuous: Nano-wolf problem (Wilson 1998),
but If you can write equations, do it

ABM and MM approaches need parameters which are
difficult to measure (agents need local parameters and rules)

SM need large data sets of high quality

ABM can be coupled to MM

Both ABM and MM can learn from SM and Machine
Learning and become adaptive



Some future prospects

Lab experiments are costly, they are sometimes impossible,
dangeours... they can help generate theories

ABM or MM can be created from lab experiments
Models can help scale up from experiments

Experiments are done within a laboratory setting, far removed from
real-life, where the models would be used

Digital twins can avoid such issues, but are still illusory in practice

Models can help provide insights into sensitivities and uncertainties



Use of models

Describe systems
Explain behaviour
Experiment and test systems

Measure sensitivities

Create analogies ‘4 , (
Educate ’M"q
Predict ’

Mathematical models



Thank you to
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Outline

A focus on egquation-based models

How can we control the quality of simulations,
verification and validation?

Why are set-in-stone-models limited?

How can we leverage statistical models to improve our
models?



Porous media models

Microscale (pore scale) Macroscale (Darcy scale)

Interfaces identifiable At each point more phases coexist

Solid phase

Liquid water

Gaseous phase

(mostly air) _ ‘
RV E From Ms. Stanton — Science (http://www.oconee.k12.sc.us/)
Microscale TCAT Macroscale
. Thermodynamically Constrained .
Conservation EQS Averaging Theory Conservation EQS .
(Gray & Miller, 2005)



http://www.oconee.k12.sc.us/
http://www.oconee.k12.sc.us/

Can also help model tumours

| -
©
>
O
©
>

Avascular




MANY PROBLEMS
SHARE THE SAME FORMALISM

Black, Fischer, and Myron Scholes. "The pricing of options and
corporate liabilities." The journal of political economy (1973): 637-654.
vV 1 4, ,0°V dV

o —g° 57— - "S——1rV =10
ot 7277 352 TP a5

85



MANY PROBLEMS
HAVE THE SAME FORMALISM

Option Pricing

A=t R

A
....
o
.

Black, Fischer, and Myron Scholes. "The pricing of options and
corporate liabilities." The journal of political economy (1973): 637-654.

WV 1 ,,0°V AV
ot T37 % 352 T %3

50’ (‘)SQ —rV =10

g -

tuifer

Barenblatt, Grigory Isaakovich. Scaling, self-similarity, and intermediate asymptotics:
dimensional analysis and intermediate asymptotics. Vol. 14. Cambridge University Press, 1978.

86
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Mathematical Modelling

Continuous

Problem

88 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg and Cardift’ University RealTCut



Mathematical Modelling

Continuous
Problem

Bijar, Rohan, Perrier &
Payan 2015

89 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg and Cardiff University efc RealTCut



Mathematical Modelling

Continuous
Problem

Mathematical
Model

90 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg and Cardift’ University erc RealTCut



Mathematical Modelling

Continuous
Problem

min l/ga(u,ﬂ):s(u)dx—/g-udx

ucv 2 Q
Mathematical _

Mode wih  o(uf) = gpw) + oa(p) [ 740 =pleasea
NS — ea : fiber direction
passive muscular T : tension
material activation [ : activation

rc RealTCut

91 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg and Cardift’ University



Mathematical Modelling

Continuous :
Problem b Necrotic
' - core
Mathematical
Model . .
Fibrosis

Real contours

Region
of interest

92 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg and Cardift’ University RealTCut



Mathematical Modelling

Continuous
Problem

Mathematical
Model

Discrete Problem

93 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg and Cardift’ University



Mathematical Modelling

Continuous
Problem

Finite element mesh
Mathematical of a tongue with F. Chouly et al.

\Y[eYo =)

/XD
>
'l“r‘i,v

Discrete Problem

Hexahedral mesh of a brain Meshless brain discretization
with Bruno Lévy, Inria with Bruno Lévy, Inria
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Mathematical Modelling
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Mathematical Modelling

Continuous
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Mathematical
Model

Discrete Problem

Numerical
Solution
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Mathematical Modelling

Continuous
Problem

Mathematical

\Vj[eJo [ . .
Bijar, Rohan, Perrier &
Payan 2015
Discrete Problem min 1 o(u,f) e(u)dx — [ g-udx
ucV 2 0 Q

g

Numerical
Solution
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Mathematical Modelling

Continuous
Problem

Model Error

Mathematical

\Vj[eJo [ . .
Bijar, Rohan, Perrier &
Payan 2015
Discrete Problem min 1 o(u,f) e(u)dx — [ g-udx
ucV 2 0 Q

Physical Problem
Constitutive Model
Material Parameters

Numerical
Solution
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Mathematical Modelling

Continuous
Problem

Model Error

Mathematical
Model

Discrete Problem

Geometry
Boundary conditions

Region
of interest

Fixed

Numerical
Solution
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Mathematical Modelling
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Model Error
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Model
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Discrete Problem

Numerical
Solution
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Model Error
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Numerical
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Mathematical Modelling
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Model Error
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Model

Discrete Problem

e W X
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Numerical
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Simulation
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Numerical Error

Numerical
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Mathematical Modelling

Continuous
Problem

Model Error

Mathematical
Model

Discretization Error

Discrete Problem

Numerical Error

m
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Numerical known
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Outline

A focus on egquation-based models

How can we control the quality of simulations,
verification and validation?

Why are set-in-stone-models limited?

How can we leverage statistical models to improve our
models?



Outline

 Data-driven modelling: Beyond setting models in
stone

e Data assimilation
e How can we learn from observations “on-the-fly”.
e The power of digital twins.

 Future challenges



Introduction to data
assimilation

e Bayesian inference

e Kalman filtering
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Bayesian inference

Primer
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Likelihood

Posterior



m(x,y) =
N — a(y|z)m(x



prior X likelihood

evidence

) — 7 (y|x)m(x



prior X likelihood _ m(@)n(yle)

posterior = :
evidence

prior () likelihood 7 (y|x)

posterior

o T(z|y)



Parameter identification: Bayesian approach

Bayes’ theorem

m(z)7(y|z)
w(x)m(y|x)dx

m(zly) = T
7(.) : probability distribution function

w(.[.) : conditional probability distribution function
x : material parameter

y : observations



Parameter identification: Bayesian approach

Bayes’ theorem

m(z)m(ylz)

m(zly) = [ (x)m(y|z)dz

Descriptive formula

Prior x Likelihood
Evidence

Posterior =



A discrete example of Bayes’ theorem







This is our prior information for the probability of each face: 1/6
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Assume that after throwing the dice, you see the above evidence




Goal: determine the probability of this evidence for each face of the dice


















X,




One would never see a dot at the star positions for this face

The probability of the evidence is zero







Two possibilities (a,c) and (b,d)






Also two possibilities (a,c) and (b,d)
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Stress-strain dW

)

o
A

\\ O » €
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Identify the parameters

o)
A

»C




Construct the likelihood function

Y = f(X,Q) observations=f(parameters, error)
(): Error

X : Material parameter



Noise model

Additive noise model

Y =f(X)+Q

Q

X N f @




Likelihood function

Likelihood function for additive model

m(ylz) = m(w) =7y — f(z))

T

Y = f(X)+ O



Constitutive law: linear elasticity

Constitutive model

o= Fe or o = xe¢

Observed data

Y = Xe+ ()

—
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Prior information on‘Young’s modulus

)
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Prior probability
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Young's modulus

Wprior(x> — N(2107 900)
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Error model (naise

)

40 I I l I T I I T
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Error probability amplitude
= N
wm o
| |
| |

10 - n
5F _
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7(€)error = N(0,0.0001)
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Likelihood function

Likelihood function

m(y|lx) = N(y — z€,0.0001)
m(ylr) = m(w) = m(y — f(z))

—
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Bayes’ theorem: calculate the posterior

prior X likelihood

posterior = :
evidence




Bayes’ theorem: calculate the posterior

prior X likelihood

posterior = :
evidence

prior 7T (ZIZ‘)




prior X likelihood r(zly) = m(z)m(y|z)
[ 7(z)m(y|x)dx

posterior = :
evidence

likelihood 7 (y|x)

m(ylx) = N(y — x¢,0.0001)
m(ylz) = m(w) = 7(y — f(x))

prior 7T (:c)

rrrrrrrrrr



Bayes’ theorem: calculate the posterior

prior x likelihood m(2)m(y|x)

. _ T —
pOSterlOr evidence 7T( |y) f 7T(£B)7T(y|$)d33

prior




Posterior probabilit
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Outline

A focus on egquation-based models

How can we control the quality of simulations,
verification and validation?

Why are set-in-stone-models limited?

How can we leverage statistical models to improve our
models?



Outline

 Data-driven modelling: Beyond setting models in
stone

e Data assimilation
e How can we learn from observations “on-the-fly”.
e The power of digital twins.

 Future challenges



Data-driven Modelling

. o .

fix—oy

The structure of fis known There is no a priori knowledge
but its parameters are not. about the function favailable.

model calibration model identification

Embrace the conceptual shift from "model through data abstraction"to "data is the model".
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Data-driven Modelling

model
fix—oy
The structure of fis There is no a
known priori knowledge
but its parameters are - about the function
not. f available.

Hypothesis-based Data-Driven
Models Models
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Data-driven Modelling

model
fix—oy
The structure of fis There is no a
known priori knowledge
but its parameters are - about the function
not. f available.

Hypothesis-based Data-Driven
Models Models

Small data
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Data-driven Modelling

model
fix—oy
The structure of fis There is no a
known priori knowledge
but its parameters are - about the function
not. f available.

Hypothesis-based Data-Driven
Models Models

Small data
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Data-driven Modelling

model
fix—oy
The structure of fis There is no a
known priori knowledge
but its parameters are - about the function
not. f available.

Hypothesis-based Data-Driven
Models Models

Small data
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Data-driven Modelling

The structure of fis
Known
but its parameters are
not.

Hypothesis-based
Models

model

fix—oy

There is no a
priori knowledge
about the function

f available.

Data-Driven
Models

|

Small data
178

Big data



Model Discovery

The structure of fis There is no a

known priori knowledge
but its parameters are model about the function
not. f available.
fix—>y

Hypothesis-based
Models

Small Data T Sliding cursor Big Data

: Data-Driven
Adaptive Models

less data <—— . —— Mmore data
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Model Discovery

The structure of fis There is no a

known priori knowledge
but its parameters are model about the function
not. favailable.
fix—>oy

Hypothesis-based : Data-Driven
Adaptive Models
Models P Models
less data <+—— . — more data >
Small Data T Sliding cursor Big Data
Computational :
Engineering Cor;a;?ggnal Mathematics

Sciences

180



GEOMETRY & BCs DISCRETISATION

MODELS &

Elasticity/Plasticity, Crack
growth law, Fracture energy,
Maximum tensile strength,
Multi-scale, Debonding, Fibre
pull-out, Fibre breakage,
interface fracture, grains,
dislocations, MD, quantum...

NUMERICAL SOLUTION

Parameter

Validation identification
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IMAGE/MODEL/BCs DISCRETISATION

MODELS

Phenomenological
Neo-Hookean, Ogden, ...
Multi-scale
cutting, fracture,

277

Patient specific ???

Parameter

Validation identification
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Scales of
interest
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growth QUALITY.CONTROL
rate REAL-TIME
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Inspection
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REAL SYSTEM

/ DIGITAL TWIN \

GEOMETRY/BCs DISCRETISATION

2 QUALITY CONTROL

LEARN MATERIAL NUMERICAL
MODELS SOLUTION

which scales?
what models?
what parameters?
what scale transition?

what data is missing?

DATA Structural
= / Environment Health
Conditions
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Cracks
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Treatment
simulation
Scales of
interest
Disease
evolution QUALITY'CONTROL
REAL-TIME
INFORMATION
“Inspection”int
erval
Fithess

REAL PATIENT

DRIVEN

/ DIGITAL TWIN OF THE PATIENT \

\ Alex Garland, Ex Machina, 2015 /

DATA

Environment
Conditions

Organ

state Disease At
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Multiscale models are ) Quantitative predictions

unreliable ?
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Patient-specific material models

s

1. Prior

/" Prior knowledge
Material parameters inc.
distribution from general
population

< Noise

» Model (e.g. additive)
» Distribution (Gauss)
» Characterisation

4 Constitutive model

2 J2/3

weq(F)zﬁ((trB)—3J+%K(J—1)2

iNCERT - Computer-assisted surgery with confidence - Stéphane BORDAS, University of Luxembourg

195



Patient-specific material models

s

1. Prior

/" Prior knowledge
Material parameters inc.
distribution from general
population

< Noise

» Model (e.g. additive)

» Distribution (Gauss)
» Characterisation

4 Constitutive model

weq(F)zﬁ((trB)—3J+%K(J—1)2

2 J2/3

Data assimilator
Bayesian inference

k}u

ﬂ \7."
 Pr(D|M)Pr(M
pr(M|D) = DI Pr(M)

Pr(D)
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Patient-specific material models

s

1. Prior

/" Prior knowledge
Material parameters inc.
distribution from general
population

< Noise

» Model (e.g. additive)
» Distribution (Gauss)
» Characterisation

Data assimilator
Bayesian inference

 Pr(D|M)Pr(M)
Pr(M|D) = — 55—

4 Constitutive model
((“B) —3J+%K(J—1)2

l//eq (F) — H

> Stereo-cameras

J2/3

(Z. Posterior data

ltrasound
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Patient-specific material models

1. Prior Data assimilator ( Simulator .
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Some applications

Focus on the finite element method
Applications in materials science
Applications in fluid dynamics
Applications in manufacturing
Applications in biomechanics

Applications in real-time simulation for surgical training
and surgical guidance



Cut Finite Element Methods for
Contact Problems

Susanne Claus

Department of Computer Science, University of Copenhagen, Denmark.

Al Seminar Series, Copenhagen, Jan 2019
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Geometry Discretisation in Finite Element Methods

Classical FEM

T

1 VAVAV AV

AV SAVAV N
A e

Geometry is embedded in
fixed background grid and
described by a function (e.qg.
level set function)

Geometry is meshed



Finite Element Methods

Consider the following diffusion partial T
differential equation (PDE)

—Au="Fin

u=0onT

Find u € V such that

/Vu-Vfuda::/fvdx VveV
Q Q




Convergence with mesh refinement

The error decreases with mesh refinement. However, how fast the error decreases with
mesh refinement (convergence order) depends on multiple factors.
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Convergence strongly depends on

Accuracy / ' Stability

- Instabilities frequently occur in
simulations as numerical errors |
can grow in the solution process. |
Numerical error growth needs to |

| « Numerical error: error from
. piecewise polynomial approximation
of the solution and of the geometry.

| « Mesh Quality: The quality and size of | be controlled and stabilised
the mesh has a significantimpacton | |  carefully. Too much stabilisation
\ the accuracy of the solution leads to inaccuracies.

Good Element Bad Element

Convergence = Accuracy + Stability




Difficulty of maintaining a high quality mesh

~ Advantages of Mesh Independent Geometry Descriptions |

' 1 reduces the computational cost for preprocessing or transformation of acquired

. geometry descriptions

1 2. efficient and robust for problems involving evolving geometries undergoing large
. deformations



Important aspects of implicit geometry/cut finite element methods

Geometry Algorithms
Discretisation of the geometry based on implicit interface description

/1
¢ >0
//
e
/
A
¢ =0
4

Accuracy and Stablllsatlon
Constructlon of stable and accurate finite element methods independent of
| how the interface intersects the mesh.

AN LA
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* Open Source Finite Element Library for the Automated Solution of PDEs

»» [0 high level mathematical input language

10 generates efficient C++ code from these mathematical inputs

'0 supports a wide range of different finite element types

1O supports simulations in 2D and 3D

1O fully parallelised

|0 active world wide developer community, e. g. Simula Research Laboratory, |

;' University of Cambridge, University of Chicago, University of Texas at Austin, KTH
Royal Institute of Technology, Chalmers University of Technology. ‘

’ L
i e b &

http://fenicsproject.org



http://fenicsproject.org

FEniCS Example: Poisson Equation

Consider the elliptic problem

—Au
U

fin Q,
Oonl.

Find u € V' such that

/ Vu-Vouvdr = | fvde VveV
Q Q

F
=
s

B g
= 2777 o,
2777

from dolfin import

# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)

# Define boundary condition
bc = DirichletBC(V, 0.0, DomainBoundary())

# Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

f = Expression(“x[@]xx[1]")

a = inner(grad(u), grad(v))s*dx
L = f*vxdx

# Compute solution

u = Function(V)

solve(a == L, u, bc)




FENnICS: Under The Hood

=

Input: File in Python
and Unified From
Language

Unified Form Language (UFL)

Interprets expressions close to

mathematical notation :
Cell integral

a=inner(grad(u), grad(v))*dx

! !
! !

a(u,v) = /VUVU dx




FENnICS: Under The Hood

Input: File in Python Unified Form Language (UFL)
and Unified From Interprets expressions close to

Language mathematical notation

a=inner(grad(u), grad(v))*dx

a(u,v) = /Vqu dx FENICS Form Compiler (FFC)

Generates Header file with information about
Elemental matrices (form)
Degrees of Freedom Map (element)

/// Evaluate basis function i at given

Poisson.h point x in cell
_evaluate_basis(std::size_t i, doublex

DOLFIN values, const doublex x, const doublex
(Mesh, Communicator and Assembler) coordinate_dofs)

/// Tabulate the tensor for the
contribution from a local cell

virtual void tabulate_tensor(doublex A,
const double *x const x w, const doublex
coordinate_dofs)

LibCutFEM



Geometry Algorithm

Mesh/Levelset
intersection for integration

/]
¢ >0
<0 |
»=0
L/
| R P 6

Level Set Function Finite Element Approximation

Signed Distance Function

Vo
B & =X, ' (xi)
P V3 Va




Level Set Geometry Description

r
S

Describe geometry using Level-Set Function

Normal
qb/|> 0 :[]_1-1 — v¢
— | Vol
/ Curvature
b < 0
. / kK=V-n
// Sense of Vicinity
b =0
: o(x)| <0




Fictitious Domain Poisson Problem

Find up € V3, such that for all v, € Vi,
A(up,vp) = a(up, vy) + j(un, vy) = L(vp)

a(up,vp) = / Vuy, - Vo, dz + /(—yuh -y, — Vup, - nup, + %uhvh ) ds
Q T ~- ~- |

consistency symmetry g

7 coercivity
{ L(vn) = /vah dr + /r(_g Vup -1+ %gvh) ds




Poisson with contrast in diffusivities

q
~V-(aVu) = f in QUQy, &
u = 0 on 09, / 7
[u] 0 on T, ) ;
[-a;Vui-n] = 0 on T. Z
e N\
Choose a1 = 1,ap =10, = = 1. . o o
Without Enrichment With Enrichment

S
i

SN
vay OO




6> 0 Circle Sphere Torus

B) =X+ —1  g(x) = yP 421 (%) = (R-/x2 + 2 4221

£ | ‘ .
=0
¢|/ “

Union: Intersection:

d(x) = min(¢1(x), ¢a(x)) ¢(x) = max(¢1(x), g2(x))




Limitations with single level set function

Partitions the domain into one inside and one outside domain (max. 2 different
materials)

oS o€
® >0 /Q|2 T Q!
// 4022_7/ F1,2 | 1—11,3

/ (o /
J/ W

2,1

Zero level set surface contour is a closed surface, i.e it is not possible to describe
geometries with open boundaries such as cracks




Use multiple level set functions for complex geometries
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Enrichment for jump and kink representation

Claus, S., and P. Kerfriden. "A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems." IINME 113.6 (2018): 938-966.
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Contact Problem in linear Elasticity

Bulk Problem

For all Q;, find the displacement fields u’ : ; — R, such that

—V.-o')=f in €;
o(u') = X tr(e(u')) ] + 2 uie(u’) in €;
u' =g on dQp, o(u;)-n=Fy on 0Qy
Here, €(u) = 2 (Vu+ Vu') is the strain tensor, f is the body force, Fy is the

surface load, g the Dirichlet boundary condition, A’ and 4’ are the two Lamé
coefficients (E' is the Young's modulus, v = 0.3 is the Poisson’s ratio)

E' : E'v

/ /

K T 21+v) T T A+ (1 -2v)




Unilateral contact for isotropic linear elasticity

Contact Conditions

For any displacement field u;, we decompose the surface traction
F' = o(u;) - n'’ on the interface ['/ into its normal and tangential components

u = (Ov _1) , . .
0l F=F, +F,.
L2 i3
Then, the conditions of contact with Coulomb friction reads
(W —u)-n¥ >0,
F'.n'/ < 0,
(W —u')-n'Y) - (F -n'Y) =0,
w0 |F|| < cF'-n® f gl = 0
F = —cF .n'd 5t if (182 >0
HgtH2

Here, n'~ is the normal pointing from Q; to €, c is the Coulomb friction
coefficient, and g} := (I — n'Y @ n’/) - (¥ — ') is the relative tangential velocity



LaTln Algorithm

Linear Elasticity Contact Linear Elasticity
Local Stage Linear Stage
[ [d

j
Law ()

/\/\/ Contact
NN/

F'— kW' = F — kTw’ wl = wi on I

where F* and w* satisfy contact Fit kb~ w! = FY + b~ w*




LaTin Algorithm: Stability
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P1/P1 Stabilised Projection

[%J
Q Q)
5 Wealf | Weak | A
continuity continuity %
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LaTin Algorithm: Stability

u= () P1/PO scheme polluted
0.1 it=5 0.1 0.5 =210

0.0 0.0

o o 5 i 01 _
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. . Z 04 z s =
ol oIl ~05 —06}
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Proposed Solution: P1/P1 scheme with stabilisation
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Two Inclusions Frictionless Contact

o, /-2 1.04

4.8666-03 =
E < 1 -1 N
=0.13458 | 0.96

- =

E 5

=.0.27402 =

E %0 73

g —~ —— 1 |
£ 041346

E )
E 10—2L » » w*

-5.529e-01 0.03 0.1 0.32




Applications In Engineering
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Braided Composite
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Local Stage
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Pulsed Thermal Ablation
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Applications In Blomechanics




Cut Finite Element Hip Modelling Motivation

Treatment options for hip malformations: (left) untreated hip deformity of a 4-year-old child,
(middle) well-formed hip 8 years post guided growth surgery?, i.e. insertion of one screw
through the growth plate of the femur bones, (right) well-formed hip after an invasive femur
and hip osteotomy, i.e. cutting through the bones and insertion of screws and plates.

Study stress in hip joint using FE Modelling to enhance understanding of bone growth and
bone shape changes

[1] Lee, W-C et al. "Guided growth of the proximal femur for hip displacement in children with cerebral palsy." Journal of Pediatric
Orthopaedics 36.5, 511-515, (2016).




Pre-processing

CutFEM Simulator

Gait Analysis

Finite Deformation Contact
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Validation

Growth Data
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Surface Triangulation to CutFEM pipeline

Segmentation with 3D Slicer (Faezeh Moshfeghitfar) of CT-
image from the cancer imaging archive (TCIA)

) S: -590.036mm

o-1-$-

) A: -33.601Tmm

> R: -73.984mm = G

B: 4 CC 1.25mm . B: 4 CC 1.25mm
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Femur bone surface
triangulation embedded in
regular background mesh

Hip bone surface
triangulation embedded in
regular background mesh



Determine inside, outside and intersected cells
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Compute signed distance function for each bone




Geometrical Error (Linear Approximation) =
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Patient-Specific Data

Expert Knowledge

https://rainbow.ku.dk

N - “*“,: > :£
- Guidance
Design of Implants & Prosthetics

Diagnosis Sqrgical Training
Prognosis
Medical Devices

Planning Monitoring
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Error estimation and adaptivity

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain
Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.
270 Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg - stephane.bordas@uni.lu
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Superconvergence recovery

Controlling the Error on Target Motion through
Real-time Mesh Adaptation:
Application to Deep Brain Stimulation

H. P. Bui, S. Tomar, H. Courtecuisse, M. Audette, S. Cotin and S. P. A. Bordas

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain
Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.
Stéphane Pierre Alain BORDAS, Department of Computational Engineering & Sciences University of Luxembourg - stephane.bordas@uni.lu

erc

o

¥ °

B Y ) L
00l 00 '
cllee e 00 )
Sloeleeteet

I200000

UUUUUUUUUUUU
UUUUUUUUUU

RealTCut


mailto:stephane.bordas@uni.lu

272

UUUUUUUUUUUU

Goal-oriented error estimate @ =

Y

[Q(u) — Q(up)| < e "D
Figure 1: |If we are interested in

some quantity of interest defined on
a subdomain w, what is the optimal

mesh?

Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.
=2eIC
i e RealTCut

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain
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Goal-oriented error estimate

Primal problem: a(u,v) =1I(v) YwveV

Solve by FEM: a(up,vp) = I(vy) Vv, €V
— U

Weak residual: r(v) = I(v) — a(up,v) v eV

If we define a dual problem:

Find z € V such that a(v,z) = Q(v) YveV

We observe:

Q(u) — Q(up) = a(u,z) — a(up, z) = I(z) — a(up, z) = r(z)

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion
simulation, HP Bui et al, arXiv:1712.03052[cs.CE]
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Hyperelasticity o

Equilibrium equations in initial configuration:

—diviI =B in QY
0
0 onlp,

T onTlY

u
IT-N

o IT = II(u) is the first Piola-Kirchhoff stress tensor
e B is a given body force per unit volume
e u is the displacement

e T is a given boundary traction

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion

simulation, HP Bui et al, arXiv:1712.03052][cs.CE]
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Cantilever bpeam = =

Parameters
Saint Venant-Kirchhoff material: E = 1000, »r = 0.4

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion
simulation, HP Bui et al, arXiv:1712.03052[cs.CE]
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Cantilever beam (2)

10~3 —— —

10°°

Error norms
[—
T
N |

1078

—— nK; adaptive
u) — Q(uy, )|, uniform
—8— |Q(u) — Q(uy

. adaptive
10—9 1 1 1 |
10° 10
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Cantilever beam (3)

uMagnitude
5.437e-02

0.040781

0027187

0.0135%4

mrntlnlrm

0,000e+00
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Adaptivity using quadrilaterals

1
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|
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Displacement Magnitude

11111
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5.386e-01
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Human artery

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion
simulation, HP Bui et al, arXiv:1712.03052[cs.CE]
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Human artery

Error norms

10— - —

, uniform
: adaptlve

107° |
0
1077 F
- —&— ) 1, uniform
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uMagnitude
1.168e-04

B

—8,7614e-5

9,840%e-5

—2,9205e-5

0,000e+00
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Conclusions

Cut FEM/XFEM for surgical simulations with complex
geometries

Making the discretization as independent as possible
from geometric description

Verification of convergences with optimal rates

Cut FEM is suitable for real-time and patient specific
simulations

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion
simulation, HP Bui et al, arXiv:1712.03052[cs.CE]
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Perspectives o

Higher order cut elements

Alexei Lozinski and Franz Chouly: avoid
integration on cut elements

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion
simulation, HP Bui et al, arXiv:1712.03052[cs.CE]
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Real-time needle steering

Brain shift occurs
prior to cannula insertion
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