Modelling and Simulating Complex Systems

Stéphane P.A. Bordas
University of Luxembourg
stephane.bordas@alum.northwestern.edu

legato-team.eu

Speak up

Speak up

Acknowledgements

The University of Luxembourg

Hussein Rappel, PhD

Post-doctoral fellow, university of Luxembourg

Christian Vincenot, PhD

Biosphere Informatics Laboratory Department of Social Informatics

Susanne Claus, PhD

University of Copenhagen, Denmark Department of Computer Science

Pierre Kerfriden, PhD

Mines Paris-Tech, Paris, France

The legato-team legato-team.eu

What is Truth?

- Sciences are plural, they have validity domains, hence truth has multiple faces;
- Knowledge is never complete and Research never finished;
- Knowledge itself is less important than the method used to acquire it;
- What we discover through research is the BEST we can discover at a given instant in time;
- Investing in Research indicates trust in the scientific method.

Data

- 90% of the data available today was generated in the last two years;
- Developing new scientific methodologies to optimise the acquisition of new understanding from data;
- Develop methodological core based on the language of mathematics and common to various application areas;
- These new methodologies will fuel science and technology by creating multi-disciplinary interactions in two fields: personalised medicine and advanced materials.

Access to TRUTH(S)

Access to Reality(ies)

Trust in Institutions, Methods, Human discourse

Outline

- Scientific method, experiments, analytical methods and models
- What is a complex system?
- What models are available to understand and predict?
- What are agent-based models?
- Equation-based (mathematical) models
- How to choose the "best" model?

The scientific method and the 3 pillars of science

(or should we say 4?)

How do we think about the world?

Aristotle

384-322 BC

Geocentrism

Copernicus

1473-1543

Heliocentrism

Galileo Galilei

1564-1642

innovative combination of experiments and mathematics

Isaac Newton

1643-1727

Universality of gravitation...

Pierre Simon Laplace

1749-1827

Our lack of knowledge is uncertainty

How do we think about the world?

Inductive thinking
Observations -> conclusions
on governing laws

Write mathematical models from observations

Experiments to

- -Formulate hypotheses and laws about the world
- -Identify parameters of mathematical models

Conduct numerical experiments to

- -Formulate hypotheses and laws about the world
- -Identify parameters of mathematical models

- -Formulate hypotheses and laws about the world
- -Identify parameters of mathematical models

The third pillar of scientific discovery

Computational Sciences: the discipline concerned with the use of computational methods and devices to enable scientific discovery and engineering applications of science.

REPORT TO THE PRESIDENT

Computational Science: Ensuring America's Competitiveness

Revolutionizing Engineering Science through Simulation

לעעצ וווגעוונים

National Academy of Sciences
National Academy of Engineering
Institute of Medicine

REPORT TO THE PRESIDENT

Computational Science: Ensuring America's Competitiveness

President's Information Technology Advisory Committee

June 2005

President's Information Technology Advisory Committee

2005

Simulation - Based Engineering Science

Revolutionizing Engineering Science
through Simulation

May 2006

Report of the National Science Foundation

Blue Ribbon Panel on

Simulation-Based Engineering Science

US National Science Foundation (NSF)

2006

Office of Science and Technology Policy 2006

Research and Education in Computational Science and Engineering

September 2016

Report from a workshop sponsored by the Society for Industrial and Applied Mathematics (SIAM) and the European Exascale Software Initiative (EESI-2), August 4-6, 2014, Breckenridge, Colorado

Workshop Organizers:

00

Officers of the SIAM Activity Group on Computational Science and Engineering (SIAG/CSE), 2013-2014:

Ulrich Rüde, Universität Erlangen-Nürnberg, Chair Karen Willcox, Massachusetts Institute of Technology, Vice Chair Lois Curfman McInnes, Argonne National Laboratory, Program Director Hans De Sterck, Monash University, Secretary

Additional Contributors:

George Biros, University of Texas at Austin
Hans Bungartz, Technische Universität München
James Corones, Krell Institute
Evin Cramer, Boeing
James Crowley, SIAM
Omar Ghattas, University of Texas at Austin
Max Gunzburger, Florida State University
Michael Hanke, KTH Stockholm
Robert Harrison, Brookhaven National Laboratory and Stonybrook University
Michael Heroux, Sandia National Laboratories
Jan Hesthaven, École Polytechnique Fédérale de Lausanne
Peter Jimack, University of Leeds
Chris Johnson, University of Utah

Kirk E. Jordan, IBM David E. Keyes, KAUST https://arxiv.org/pdf/1610.02608.pdf

Research and Education in Computational Science and Engineering

September 2016

Report from a workshop sponsored by the Society for Industrial and Applied Mathematics (SIAM) and the European Exascale Software Initiative (EESI-2), August 4-6, 2014, Breckenridge, Colorado

Workshop Organizers:

Officers of the SIAM Activity Group on Computational Science and Engineering (SIAG/CSE), 2013-2014:

Ulrich Rüde, Universität Erlangen-Nürnberg, Chair Karen Willcox, Massachusetts Institute of Technology, Vice Chair Lois Curfman McInnes, Argonne National Laboratory, Program Director Hans De Sterck, Monash University, Secretary

https://arxiv.org/pdf/1610.02608.pdf

Additional Contributous

What computational & data sciences enable that traditional science doesn't

LOOK INTO THE PAST

 Earthquakes, climate, oil discovery, archeology, seismology, law, economics, finance

PROBE THE FUTURE

- Explore the effects of thousands of scenarios
- Drug design, space exploration, climate change, natural disasters, ...

CHOOSE MODELS

Explore consequences of breakdown of models and theory...

OPTIMISE

Optimize procedures, designs, products, systems, etc.

Why is multi-disciplinary research important?

- Most Grand Challenge problems today involve complex phenomena and systems that lie on disciplinary boundaries.
- Interdisciplinary research moves beyond simple collaboration and teaming to integrate data, methodologies, perspectives, and concepts from multiple disciplines in order to advance fundamental understanding and to solve real world problems.
- Interdisciplinary research holds the promise of pushing fields forward and accelerating scientific discovery.
- Interdisciplinary study and training prepares a workforce that undertakes scientific challenges in news and innovative ways.

Mission for Computational and Data Sciences in Luxembourg

Mission

To provide the infrastructure and intellectual leadership for developing outstanding interdisciplinary research programs in computational and data sciences.

To enable world-leading education in computational and data sciences in Luxembourg.

To promote and facilitate digital literacy and provide the fundamental building blocks necessary to the development of Industry 4.0 in Luxembourg.

Outline

- Scientific method, experiments, analytical methods and models
- What is a complex system?
- What models are available to understand and predict?
- What are agent-based models?
- Equation-based (mathematical) models
- How to choose the "best" model?

Complex systems

- Large number of interacting components
- Evolving over time
- Decentralised decisions vs. Centralised control
- Local interactions -> emergence of global patterns

Examples

- Biological systems (brain, cancer, bacteria...)
- Policy and government
- Environment (weather, ice sheet, pollution...)
- Economy, stock market
- Ecosystems (bats, fish...)
- Functional/sensing materials (graphene...)

Emergence

- Micro (local) level leads to patterns at the macro level
 - Ant/bee colonies
 - Housing patterns, traffic jams
 - Populations in ecosystems
 - Pressure of gases
 - Pricing
 - Effect of individual behaviours in societies

Two questions about emergence

- You know the micro, you want to understand the macro
- You observe the macro, you want to deduce the micro rules

THIS IS HARD

Outline

- Scientific method, experiments, analytical methods and models
- What is a complex system?
- What models are available to understand and predict?
- What are agent-based models?
- Equation-based (mathematical) models
- How to choose the "best" model?

When we were kids;-) or grownup kids...

- An abstract description of a process, object, system, event which exaggerates certain aspects compared to others
- "Essentially, all models are wrong, but some are useful"
 George Box, 1987
- The choice of the model depends on the quantities of interest (QoI)

If you are into geography or geophysics

J.F. Remacle
Quantity of Interest: neuro-transmission

Tissue phantoms/mimics (Dini, Imperial College London) Quantity of Interest: stiffness

Types of models

What is a "good" dynamic model?

 "All models are wrong. Some of them are useful." -- George E.P. Box (1979)

How to build dynamic models? The modelling process

49

COMPUTATIONAL & DATA SCIENCES

Stirling murmuration (Rome)

Flocking of Stirlings

- Is there a leader?
- Are the global patterns attributable to local rules? Can we derive global equations governing their behaviour? Is the process deterministic?
- What is their acceleration, maximum velocity, reaction time, minimum distance with other birds, line of sight, manoeuvrability?

Outline

- Scientific method, experiments, analytical methods and models
- What is a complex system?
- What models are available to understand and predict?
- What are agent-based models?
- Equation-based (mathematical) models
- How to choose the "best" model?

Boids flocking local rules for global behaviour

Applications of ABM/IBM

A growing, unified community

Applications of ABM/IBM

- Over 12,000 publications
- Everywhere in science!

(Vincenot, 2018)

Mathematical models

Fire spreading through a forest for various tree densities by NetLogo

Self-Organised Criticality

The Forest-Fire model belongs to the class of Self-Organized-Critical (SOC) systems, which are governed by a slow driving energy input and burst (avalanches) of dissipative outputs resulting often in fractal structures. These systems were introduced by P. Bak et al. [2] in 1987 using the example of a sandpile model. These SOC models can be applied to many different fields, famous applications are for instance: earthquakes, solar flares, co-evolution, forest fires, hydraulic fracture and more. In addition they show scaling laws and are related to critical phenomena.

http://guava.physics.uiuc.edu/~nigel/courses/563/Essays_2010/PDF/Funke.pdf https://pdfs.semanticscholar.org/ec58/3f6f99f1d15a1d1ae2de1d243b648efd2ba8.pdf http://www.uvm.edu/pdodds/files/papers/others/1993/grassberger1993.pdf https://www.sciencedirect.com/science/article/pii/B9780128001301000047

Algorithmic Languages

- ABMs are always coded as algorithms
- Most often, simple deductive behavior:

```
e.g. "if hungry, search food" condition action
```

 Implementations require coding skills, but simplified languages exist

Netlogo

- Most used by ecologists
- Simplified language
- Slow, but good for relatively simple models
- Simple random movement model →


```
to setup
           clear-all
           create-turtles 10
           reset-ticks
end
to go
           ask turtles [
                      fd 1;; forward 1 step
                      rt random 10 ;; turn right
                      It random 10;; turn left
           tick
end
```

Netlogo

Gama

- Computer scientists
- More complex language
- Powerful, but difficult

```
model SI_city
                                              Definition of the
                                             world geometry
qlobal{
      geometry shape<-envelope(square(500));</pre>
      init{
            create people number:1000;
                                               People agent
                                                 creation
species people skills:[moving]{
                                              variables of the
      float speed <- 5.0 + \text{rnd}(5);
                                               people agents
      bool is_infected <- flip(0.01);</pre>
      reflex move{
            do wander;
                                              reflexes of the
                                               people agents
      reflex infect when: is_infected{
            ask people at_distance 10 {
                  if flip(0.01) {
                        is_infected <- true;</pre>
                                                                   Aspect of the
                                                                   people agents
      aspect circle{
            draw circle(5) color:is_infected ? rqb("red") : rqb("qreen");
}
experiment main_experiment type:qui{
                                              Definition of an
      output {
                                               agent display
            display map {
                  species people aspect:circle;
```

Gama

KISS

- "Keep it Simple, Stupid" (KISS) principle
- Try to make models as simple as possible
- Many processes/parameters does NOT mean better accuracy!!

Pattern-oriented Modelling

 Use patterns instead of numerical fitting to validate model (Grimm et al. 2005)

Pattern-oriented Modelling

ODD: Describing ABM Models

- The ODD Protocol
 - Overview, Design concepts, and Details (ODD)
 - A strict set of guidelines to describe and publish ABMs
 - Guarantees the replicability of models and studies
 - More than 2000 citations
 - 2nd version already; 3rd version in preparation
 - See Grimm et al. (2006 and 2010)
- Please <u>always</u> use when developing ABMs!

Useful Reads

Agent-based Modelling

- Grimm V. and Railsback S.F. 2011. *Individual-based Modeling and Ecology*. **Princeton University Press**.
- Janssen M. 2017. Introduction to Agent-based Modeling. [Online book] https://cbie.gitbook.io/introduction-to-agent-based-modeling/

Vegetation model

- Vincenot C.E., Carteni F., Bonanomi G., Mazzoleni S., Giannino F. 2017. Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales. **Oikos**, 126:1319-1328.
- Vincenot C.E., Carteni F., Mazzoleni S., Rietkerk M., Giannino F. 2016. Spatial Self-Organization of Vegetation Subject to Climatic Stress—Insights from a System Dynamics—Individual-Based Hybrid Model. Frontiers in Plant Science fpls.2016.00636.

Outline

- Scientific method, experiments, analytical methods and models
- What is a complex system?
- What models are available to understand and predict?
- What are agent-based models?
- Equation-based (mathematical) models
- How to choose the "best" model?

Mathematical models

Fire spreading through a forest for various tree densities by NetLogo

Physics-based or mathematical models

Physics-based model

- T(K) is the temperature of the fire layer,
- $S \in [0,1]$ is the fuel supply mass fraction (the relative amount of fuel remaining),
- $k \ (m^2 s^{-1})$ is the thermal diffusivity,
- $A(Ks^{-1})$ is the temperature rise per second at the maximum burning rate with full initial fuel load and no cooling present,
- B(K) is the proportionality coefficient in the modified Arrhenius law,
- $C(K^{-1})$ is the scaled coefficient of the heat transfer to the environment,
- C_S (s^{-1}) is the fuel relative disappearance rate,
- T_a (K) is the ambient temperature, and
- \overrightarrow{v} (ms^{-1}) is the wind speed given by atmospheric data or model.

The model is derived from the conservation of energy, balance of fuel supply, and the fuel reaction rate:

$$\frac{dT}{dt} = \nabla \cdot (k\nabla T) - \overrightarrow{v} \cdot \nabla T + A\left(Se^{-B/(T-T_a)} - C(T-T_a)\right), \qquad (1)$$

$$\frac{dS}{dt} = -C_S Se^{-B/(T-T_a)}, \qquad T > T_a, \qquad \text{https://arxiv.org/pdf/0709.0086}$$

$$\frac{dT}{dt} = \nabla \cdot (k \nabla T) - \overrightarrow{v} \cdot \nabla T + A \left(Se^{-B/(T-T_a)} - C \left(T - T_a \right) \right),$$
Heat diffusion Advection Fuel consumption
$$= -C_S Se^{-B/(T-T_a)}, \quad T > T_a,$$
(1)

with the initial values

$$S(t_{\text{init}}) = 1 \text{ and } T(t_{\text{init}}) = T_{\text{init}}.$$
 (3)

The diffusion term $\nabla \cdot (k \nabla T)$ models short-range heat transfer by radiation in a semi-permeable medium, $\overrightarrow{v} \cdot \nabla T$ models heat advected by the wind, $Se^{-B/(T-T_0)}$ is the rate fuel is consumed due to burning, and $AC(T-T_a)$ models the convective heat lost to the atmosphere. The reaction rate $e^{-B/(T-T_a)}$ is obtained by modifying the reaction rate $e^{-B/T}$ from the Arrhenius law by an offset to force zero reaction at ambient temperature, with the resulting reaction rate smoothly dependent on temperature.

Questions: Identification of parameters?

Outline

- Scientific method, experiments, analytical methods and models
- What is a complex system?
- What models are available to understand and predict?
- What are agent-based models?
- Equation-based (mathematical) models
- How to choose the "best" model?

When use agent-based models

- Not too few, nor too many medium numbers of entities
- Heterogeneous systems
- Local interactions
- Rich environments

Not too many, not too few

- Casti ,1996
 - Too few agents, the system is too simple: game theory and ethnography are sufficient
 - Too many agents, averages work well, statistical descriptions

Richness of the environments

- Social networks
- Geographical systems
- The environment can itself be an agent

Compare agent-based models (ABM), mathematical models (MM), statistical models (SM)

- MM are often continuous: Nano-wolf problem (Wilson 1998), but if you can write equations, do it
- ABM and MM approaches need parameters which are difficult to measure (agents need local parameters and rules)
- SM need large data sets of high quality
- ABM can be coupled to MM
- Both ABM and MM can learn from SM and Machine Learning and become adaptive

Some future prospects

- Lab experiments are costly, they are sometimes impossible, dangeours... they can help generate theories
- ABM or MM can be created from lab experiments
- Models can help scale up from experiments
- Experiments are done within a laboratory setting, far removed from real-life, where the models would be used
- Digital twins can avoid such issues, but are still illusory in practice
- Models can help provide insights into sensitivities and uncertainties

Use of models

- Describe systems
- Explain behaviour
- Experiment and test systems
- Measure sensitivities
- Create analogies
- Educate
- Predict

Thank you to

Outline

A focus on equation-based models

- How can we control the quality of simulations, verification and validation?
- Why are set-in-stone-models limited?
- How can we leverage statistical models to improve our models?

Porous media models

Microscale (pore scale)

Interfaces identifiable

Macroscale (Darcy scale)

At each point more phases coexist

From Ms. Stanton - Science (http://www.oconee.k12.sc.us/)

Microscale

Conservation EQS

TCAT

Thermodynamically Constrained
Averaging Theory
(Gray & Miller, 2005)

Macroscale

Conservation EQS

Can also help model tumours

MANY PROBLEMS SHARE THE SAME FORMALISM

Option Pricing

Black, Fischer, and Myron Scholes. "The pricing of options and corporate liabilities." The journal of political economy (1973): 637-654.

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

MANY PROBLEMS HAVE THE SAME FORMALISM

Option Pricing

Black, Fischer, and Myron Scholes. "The pricing of options and corporate liabilities." The journal of political economy (1973): 637-654.

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

Transport in Porous Media

Barenblatt, Grigory Isaakovich. Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Vol. 14. Cambridge University Press, 1978.

Continuous Problem

Continuous Problem

Bijar, Rohan, Perrier & Payan 2015

$$\min_{\mathbf{u} \in \mathbf{V}} \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}, \boldsymbol{\beta}) : \boldsymbol{\varepsilon}(\mathbf{u}) \, d\mathbf{x} - \int_{\Omega} \mathbf{g} \cdot \mathbf{u} \, d\mathbf{x}$$

with
$$\sigma(\mathbf{u}, \beta) = \underbrace{\sigma_P(\mathbf{u})}_{\text{passive material}} + \underbrace{\sigma_A(\beta)}_{\text{muscular activation}} \begin{cases} \sigma_A(\beta) = \beta T e_A \otimes e_A \\ e_A : \text{ fiber direction} \\ T : \text{ tension} \\ \beta : \text{ activation} \end{cases}$$

Continuous Problem

Mathematical Model

Continuous Problem

Mathematical Model

Discrete Problem

Finite element mesh of a tongue with F. Chouly et al.

Hexahedral mesh of a brain with Bruno Lévy, Inria

Meshless brain discretization with Bruno Lévy, Inria

Bijar, Rohan, Perrier & Payan 2015

$$\min_{\mathbf{u} \in \mathbf{V}} \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}, \beta) : \boldsymbol{\varepsilon}(\mathbf{u}) \, d\mathbf{x} - \int_{\Omega} \mathbf{g} \cdot \mathbf{u} \, d\mathbf{x}$$

Continuous Problem Mathematical Model Discrete Problem Numerical

Solution

Model Error

Bijar, Rohan, Perrier & Payan 2015

$$\min_{\mathbf{u} \in \mathbf{V}} \ \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}, \boldsymbol{\beta}) : \boldsymbol{\varepsilon}(\mathbf{u}) \, d\mathbf{x} - \int_{\Omega} \mathbf{g} \cdot \mathbf{u} \, d\mathbf{x}$$

Physical Problem Constitutive Model Material Parameters

Mathematical Modelling 32 bit? Continuous Problem 64 bit? Model Error 0.435 0.290 0.145 Mathematical Model Discretization Error Discrete Problem 1020B **Numerical Error** Numerical Solution

Continuous Problem

Mathematical

Model

Model Error

Discretization Error

Numerical Error

Total Error

VS.

Simulation

Cannula insertion

Numerical Solution

Discrete Problem

Outline

A focus on equation-based models

- How can we control the quality of simulations, verification and validation?
- Why are set-in-stone-models limited?
- How can we leverage statistical models to improve our models?

Outline

- Data-driven modelling: Beyond setting models in stone
 - Data assimilation
 - How can we learn from observations "on-the-fly".
 - The power of digital twins.
- Future challenges

Introduction to data assimilation

- Bayesian inference
- Kalman filtering

Model and parameter identification through Bayesian inference in solid mechanics

Hussein Rappel

h.rappel@gmail.com

September 07, 2018

Bayesian inference

Primer

$$\pi(x,y) = \pi(y|x)\pi(x)$$

$$\pi(x,y) = \pi(y|x)\pi(x)$$

Bayes' theorem

$$posterior = \frac{prior \times likelihood}{evidence}$$

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

prior
$$\pi(x)$$

likelihood $\pi(y|x)$

posterior

$$\propto \pi(x|y)$$

Parameter identification: Bayesian approach

Bayes' theorem

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

 $\pi(.)$: probability distribution function

 $\pi(.|.)$: conditional probability distribution function

x: material parameter

y: observations

Parameter identification: Bayesian approach

Bayes' theorem

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

Descriptive formula

$$Posterior = \frac{Prior \times Likelihood}{Evidence}$$

8/31/2015 125

A discrete example of Bayes' theorem

This is our prior information for the probability of each face: 1/6

Assume that after throwing the dice, you see the above evidence

Goal: determine the probability of this evidence for each face of the dice

One would never see a dot at the star positions for this face

The probability of the evidence is zero

Two possibilities (a,c) and (b,d)

Also two possibilities (a,c) and (b,d)

Four possibilities

Four possibilities

Four possibilities

d

C

0

$$\pi(y) = \frac{0+2+2+4+4+4}{6\times 4} = \frac{16}{24}$$

$$\pi(x|y) = \frac{\text{Prior} \times \text{Likelihood}}{\text{Evidence}} = \frac{\frac{1}{6} \times \frac{1}{2}}{\frac{16}{24}} = 0.125$$

Probability that s was the face of the dice knowing

Stress-strain data

157

Identify the parameters

8/21/201

Construct the likelihood function

Model

 $Y=f(X,\Omega)$ observations=f(parameters, error)

 $\Omega : \mathrm{Error}$

X: Material parameter

Noise model

Additive noise model

$$Y = f(X) + \Omega$$

Likelihood function

Likelihood function for additive model

Constitutive law: linear elasticity

Constitutive model

$$\sigma = E\epsilon \text{ or } \sigma = x\epsilon$$

Observed data

$$Y = X\epsilon + \Omega$$

Prior information on Young's modulus

Error model (noise)

Likelihood function

Likelihood function

$$\pi(y|x) = N(y - x\epsilon, 0.0001)$$

$$\pi(y|x) = \pi(\omega) = \pi(y - f(x))$$

$$posterior = \frac{prior \times likelihood}{evidence}$$

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

$$posterior = \frac{prior \times likelihood}{evidence}$$

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

prior $\pi(x)$

$$posterior = \frac{prior \times likelihood}{evidence}$$

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

prior $\pi(x)$

likelihood $\pi(y|x)$

$$\pi(y|x) = N(y - x\epsilon, 0.0001)$$

$$\pi(y|x) = \pi(\omega) = \pi(y - f(x))$$

$$posterior = \frac{prior \times likelihood}{evidence}$$

$$\pi(x|y) = \frac{\pi(x)\pi(y|x)}{\int \pi(x)\pi(y|x)dx}$$

prior $\pi(x)$

posterior

$$\propto \pi(x|y)$$

likelihood $\pi(y|x)$

$$\pi(y|x) = N(y - x\epsilon, 0.0001)$$

$$\pi(y|x) = \pi(\omega) = \pi(y - f(x))$$

Posterior probability

$$\pi_{prior}(x) = N(210, 900)$$

$$\pi_{posterior} = N(215.1533, 19.6168)$$
 $N_{sample} = 10$

Outline

A focus on equation-based models

- How can we control the quality of simulations, verification and validation?
- Why are set-in-stone-models limited?
- How can we leverage statistical models to improve our models?

Outline

- Data-driven modelling: Beyond setting models in stone
 - Data assimilation
 - How can we learn from observations "on-the-fly".
 - The power of digital twins.
- Future challenges

The structure of *f* is known but its parameters are not.

model calibration

There is no a priori knowledge about the function *f* available.

model identification

Embrace the conceptual shift from "model through data abstraction" to "data is the model".

Model Discovery

Model Discovery

GEOMETRY & BCs

DISCRETISATION

MODELS

VERIFICATION QUALITY CONTROL

Elasticity/Plasticity, Crack growth law, Fracture energy, Maximum tensile strength, Multi-scale, Debonding, Fibre pull-out, Fibre breakage, interface fracture, grains, dislocations, MD, quantum...

Validation

Parameter identification

EXPERIMENTS

IMAGE/MODEL/BCs

DISCRETISATION

VERIFICATION
QUALITY CONTROL

MODELS

Phenomenological

Neo-Hookean, Ogden, ... **Multi-scale**cutting, fracture,

???

Patient specific ???

Validation

DRIVEN

Parameter identification

Worst load combination

Scales of interest

Crack growth rate

Inspection interval

QUALITY CONTROL
REAL-TIME
INFORMATION

Mission?

REAL SYSTEM

DIGITAL TWIN

GEOMETRY/BCs

LEARN MATERIAL MODELS

which scales?
what models?
what parameters?
what scale transition?
what data is missing?

DISCRETISATION

QUALITY CONTROL

NUMERICAL SOLUTION

Environment Conditions

Structural Health

Cracks

Treatment simulation

Scales of interest

Disease evolution

QUALITY CONTROL REAL-TIME INFORMATION

"Inspection"int erval

DRIVEN

Fitness

DIGITAL TWIN OF THE PATIENT

Alex Garland, Ex Machina, 2015

REAL PATIENT

DATA

Environment Conditions

Organ state

Disease

Health

VISION

Digital Twins...

UNIVERSITÉ DU LUXEMBOURG

(Big) Data

Hypothesis

Domain
expert

Computational Science

HPC

Conclusions

(Big) Data

Domain expert

Hypothesis

(Big) Data

Hypothesis

Domain expert

Conclusions

1. Prior

Prior knowledge

Material parameters inc. distribution from general population

Noise

- Model (e.g. additive)
- Distribution (Gauss)
- Characterisation

Constitutive model

$$\psi^{\text{eq}}\left(\mathbf{F}\right) = \frac{\mu}{2} \left(\frac{\left(\text{tr}\,\mathbf{B}\right)}{J^{2/3}} - 3\right) + \frac{1}{2}K\left(J - 1\right)^{2}$$

1. Prior

Prior knowledge

Material parameters inc. distribution from general population

Noise

- ▶ Model (e.g. additive)
- Distribution (Gauss)
- Characterisation

Constitutive model

$$\psi^{\text{eq}}(\mathbf{F}) = \frac{\mu}{2} \left(\frac{(\text{tr } \mathbf{B})}{J^{2/3}} - 3 \right) + \frac{1}{2} K (J - 1)^2$$

Data assimilatorBayesian inference

$$\Pr(M|D) = \frac{\Pr(D|M)\Pr(M)}{\Pr(D)}$$

1. Prior

Prior knowledge

Material parameters inc. distribution from general population

Noise

- Model (e.g. additive)
- Distribution (Gauss)
- ▶ Characterisation

Constitutive model

$$\psi^{\text{eq}}(\mathbf{F}) = \frac{\mu}{2} \left(\frac{(\text{tr } \mathbf{B})}{J^{2/3}} - 3 \right) + \frac{1}{2} K (J - 1)^2$$

Data assimilatorBayesian inference

$$\Pr(M|D) = \frac{\Pr(D|M)\Pr(M)}{\Pr(D)}$$

MRI

Stereo-cameras

2. Posterior data

1. Prior

Prior knowledge

Material parameters inc. distribution from general population

Noise

- ▶ Model (e.g. additive)
- Distribution (Gauss)
- Characterisation

Constitutive model

$$\psi^{\text{eq}}(\mathbf{F}) = \frac{\mu}{2} \left(\frac{(\text{tr } \mathbf{B})}{J^{2/3}} - 3 \right) + \frac{1}{2} K (J - 1)^2$$

Data assimilator Bayesian inference

MRI

Stereo-cameras

2. Posterior data

1. Prior

Prior knowledge

Material parameters inc. distribution from general population

Noise

- ▶ Model (e.g. additive)
- Distribution (Gauss)
- Characterisation

Constitutive model

$$\psi^{\text{eq}}(\mathbf{F}) = \frac{\mu}{2} \left(\frac{(\text{tr } \mathbf{B})}{J^{2/3}} - 3 \right) + \frac{1}{2} K (J - 1)^2$$

2. Posterior data

Data assimilatorBayesian inference

$$\Pr(M|D) = \frac{\Pr(D|M)\Pr(M)}{\Pr(D)}$$

MRI

Stereo-cameras

4.

Feedback

Simulator 3. Model selector P>P1>P2 Selected Model Model 1 Model 2 Models

Mechanical solver

1. Prior

Prior knowledge

Material parameters inc. distribution from general population

Noise

- ▶ Model (e.g. additive)
- Distribution (Gauss)
- Characterisation

Constitutive model

$$\psi^{\text{eq}}(\mathbf{F}) = \frac{\mu}{2} \left(\frac{(\text{tr } \mathbf{B})}{J^{2/3}} - 3 \right) + \frac{1}{2} K (J - 1)^2$$

2. Posterior data

Data assimilatorBayesian inference

$$\Pr(M|D) = \frac{\Pr(D|M)\Pr(M)}{\Pr(D)}$$

MRI

Stereo-cameras

5.

Action

4.

Feedback

Simulator 3. Model selector P>P1>P2 Selected Model Model 1 Model 2 Models

Mechanical solver

Some applications

- Focus on the finite element method
- Applications in materials science
- Applications in fluid dynamics
- Applications in manufacturing
- Applications in biomechanics
- Applications in real-time simulation for surgical training and surgical guidance

Cut Finite Element Methods for Contact Problems

Susanne Claus

Department of Computer Science, University of Copenhagen, Denmark.

Al Seminar Series, Copenhagen, Jan 2019

Geometry Discretisation in Finite Element Methods

Classical FEM

CutFEM

Geometry is meshed

Geometry is embedded in fixed background grid and described by a function (e.g. level set function)

Finite Element Methods

Consider the following diffusion partial differential equation (PDE)

$$-\Delta u = f$$
 in Ω
 $u = 0$ on Γ

Find $u \in V$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx \quad \forall v \in V$$

Convergence with mesh refinement

The error decreases with mesh refinement. However, how fast the error decreases with mesh refinement (convergence order) depends on multiple factors.

Convergence strongly depends on

Accuracy

- Numerical error: error from piecewise polynomial approximation of the solution and of the geometry.
- Mesh Quality: The quality and size of the mesh has a significant impact on the accuracy of the solution

Stability

 Instabilities frequently occur in simulations as numerical errors can grow in the solution process. Numerical error growth needs to be controlled and stabilised carefully. Too much stabilisation leads to inaccuracies.

Convergence = Accuracy + Stability

Difficulty of maintaining a high quality mesh

Advantages of Mesh Independent Geometry Descriptions

- 1.reduces the computational cost for preprocessing or transformation of acquired geometry descriptions
- 2. efficient and robust for problems involving evolving geometries undergoing large deformations

Important aspects of implicit geometry/cut finite element methods

Geometry Algorithms

Discretisation of the geometry based on implicit interface description

Accuracy and Stabilisation

Construction of stable and accurate finite element methods independent of how the interface intersects the mesh.

FEniCS

Open Source Finite Element Library for the Automated Solution of PDEs

- high level mathematical input language
- generates efficient C++ code from these mathematical inputs
- supports a wide range of different finite element types
- supports simulations in 2D and 3D
- fully parallelised
- active world wide developer community, e.g. Simula Research Laboratory,
 University of Cambridge, University of Chicago, University of Texas at Austin, KTH
 Royal Institute of Technology, Chalmers University of Technology.

http://fenicsproject.org

FEniCS Example: Poisson Equation

Consider the elliptic problem

$$-\Delta u = f \text{ in } \Omega,$$

 $u = 0 \text{ on } \Gamma.$

Find $u \in V$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx \quad \forall v \in V$$


```
from dolfin import *
# Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)
# Define boundary condition
bc = DirichletBC(V, 0.0, DomainBoundary())
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("x[0]*x[1]")
a = inner(grad(u), grad(v))*dx
L = f*v*dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
```

FEniCS: Under The Hood

Input: File in Python and Unified From Language

Unified Form Language (UFL)
Interprets expressions close to
mathematical notation

a=inner(grad(u), grad(v))*dx

$$a(u,v) = \int \nabla u \nabla v \, dx$$

FEniCS: Under The Hood

Input: File in Python and Unified From Language

Unified Form Language (UFL)

Interprets expressions close to mathematical notation

Form a

Cell integral

inner

grad grad

a=inner(grad(u), grad(v))*dx

$$a(u,v) = \int \nabla u \nabla v \, dx$$

FEniCS Form Compiler (FFC)

Generates Header file with information about Elemental matrices (form) Degrees of Freedom Map (element)

Poisson.h

DOLFIN (Mesh, Communicator and Assembler)

LibCutFEM

/// Evaluate basis function i at given
point x in cell

_evaluate_basis(std::size_t i, double*
values, const double* x, const double*
coordinate_dofs)

/// Tabulate the tensor for the
contribution from a local cell
virtual void tabulate_tensor(double* A,
const double * const * w, const double*
coordinate_dofs)

Geometry Algorithm

Level Set Function

Finite Element Approximation

Mesh/Levelset intersection for integration

Signed Distance Function

Level Set Geometry Description

Describe geometry using Level-Set Function

Normal

$$\mathbf{n}_{\Gamma} = \frac{\nabla \phi}{||\nabla \phi||_0}$$

Curvature

$$\kappa = \nabla \cdot \mathbf{n}$$

Sense of Vicinity

$$|\phi(x)| < \delta$$

Fictitious Domain Poisson Problem

 Ω

Find $u_h \in V_h$ such that for all $v_h \in V_h$

$$A(u_h, v_h) = a(u_h, v_h) + j(u_h, v_h) = L(v_h)$$

$$a(u_h, v_h) = \int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx + \int_{\Gamma} \left(-\underbrace{\nabla u_h \cdot nv_h}_{consistency} - \underbrace{\nabla v_h \cdot nu_h}_{symmetry} + \underbrace{\frac{\gamma}{h} u_h v_h}_{coercivity} \right) \, ds$$

$$L(v_h) = \int_{\Omega} f v_h \, dx + \int_{\Gamma} (-g \nabla v_h \cdot n + \frac{\gamma}{h} g v_h) \, ds$$

$$j(u_h, v_h) = \gamma_1 \sum_{F \in \mathcal{F}_{\Gamma^*}} h_F(\llbracket \partial_n u_h \rrbracket, \llbracket \partial_n v_h \rrbracket)_F$$

Poisson with contrast in diffusivities

$$\begin{array}{rcl}
-\nabla \cdot (\alpha \nabla u) & = & f & \text{in} & \Omega_1 \cup \Omega_2, \\
u & = & 0 & \text{on} & \partial \Omega, \\
\llbracket u \rrbracket & = & 0 & \text{on} & \Gamma, \\
\llbracket -\alpha_i \nabla u_i \cdot \mathbf{n} \rrbracket & = & 0 & \text{on} & \Gamma.
\end{array}$$

Choose
$$\alpha_1 = 1, \alpha_2 = 10, f_1 = f_2 = 1.$$

Without Enrichment

With Enrichment

Circle

$$\phi(\mathbf{x}) = x^2 + y^2 - 1$$

Sphere

$$\phi(\mathbf{x}) = x^2 + y^2 + z^2 - 1$$

$$\phi(\mathbf{x}) = x^2 + y^2 - 1$$
 $\phi(\mathbf{x}) = x^2 + y^2 + z^2 - 1$ $\phi(\mathbf{x}) = (R - \sqrt{x^2 + y^2})^2 + z^2 - r^2$

Union:

$$\phi(\mathbf{x}) = \min(\phi_1(\mathbf{x}), \phi_2(\mathbf{x}))$$

$$\phi(\mathbf{x}) = \max(\phi_1(\mathbf{x}), \phi_2(\mathbf{x}))$$

Limitations with single level set function

Partitions the domain into one inside and one outside domain (max. 2 different materials)

Zero level set surface contour is a closed surface, i.e it is not possible to describe geometries with open boundaries such as cracks

Use multiple level set functions for complex geometries

N-1 level set functions can described N different subdomains

Level Set Mesh Intersection

Enrichment for jump and kink representation

Claus, S., and P. Kerfriden. "A stable and optimally convergent LaTIn-CutFEM algorithm for multiple unilateral contact problems." IJNME 113.6 (2018): 938-966.

Triple Poisson Problem

Contact Problems

Contact Problem in linear Elasticity

Bulk Problem

For all Ω_i , find the displacement fields $\mathbf{u}^i:\Omega_i\to\mathbb{R}$, such that

$$\begin{aligned}
-\nabla \cdot \boldsymbol{\sigma}(\mathbf{u}^i) &= \mathbf{f} & \text{in } \Omega_i \\
\boldsymbol{\sigma}(\mathbf{u}^i) &= \lambda^i \operatorname{tr}(\boldsymbol{\epsilon}(\mathbf{u}^i)) \, \boldsymbol{I} + 2 \, \mu_i \, \boldsymbol{\epsilon}(\mathbf{u}^i) \\
\mathbf{u}^i &= \mathbf{g} \text{ on } \partial \Omega_D \,, \, \boldsymbol{\sigma}(\mathbf{u}_i) \cdot \mathbf{n} = \mathbf{F_N} \text{ on } \partial \Omega_N
\end{aligned}$$

Here, $\epsilon(\mathbf{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$ is the strain tensor, \mathbf{f} is the body force, $\mathbf{F_N}$ is the surface load, \mathbf{g} the Dirichlet boundary condition, λ^i and μ^i are the two Lamé coefficients (E^i is the Young's modulus, $\nu = 0.3$ is the Poisson's ratio)

$$\mu^{i} = \frac{E^{i}}{2(1+\nu)}, \ \lambda^{i} = \frac{E^{i}\nu}{(1+\nu)(1-2\nu)}.$$

Unilateral contact for isotropic linear elasticity

$$\mathbf{u} = (0, -1)$$

Contact Conditions

For any displacement field \mathbf{u}_i , we decompose the surface traction $\mathbf{F}^i = \boldsymbol{\sigma}(\mathbf{u}_i) \cdot \mathbf{n}^{i,j}$ on the interface $\Gamma^{i,j}$ into its normal and tangential components

$$\mathbf{F}^{i} = \mathbf{F_{n}}^{i} + \mathbf{F_{t}}^{i}.$$

Then, the conditions of contact with Coulomb friction reads

$$\begin{split} \left(\mathbf{u}^{j}-\mathbf{u}^{i}\right)\cdot\mathbf{n}^{i,j} &\geq 0\,,\\ \mathbf{F}^{i}\cdot\mathbf{n}^{i,j} &\leq 0\,,\\ \left(\left(\mathbf{u}^{j}-\mathbf{u}^{i}\right)\cdot\mathbf{n}^{i,j}\right)\cdot\left(\mathbf{F}^{i}\cdot\mathbf{n}^{i,j}\right) &= 0\,,\\ \|\mathbf{F_{t}}^{i}\| &\leq c\,\mathbf{F}^{i}\cdot\mathbf{n}^{i,j} & \text{if } \|\hat{\mathbf{g}}_{t}^{i}\|_{2} &= 0\\ \mathbf{F_{t}}^{i} &= -c\,\mathbf{F}^{i}\cdot\mathbf{n}^{i,j} \frac{\hat{\mathbf{g}}_{t}^{i}}{\|\hat{\mathbf{g}}_{t}^{i}\|_{2}} & \text{if } \|\hat{\mathbf{g}}_{t}^{i}\|_{2} > 0 \end{split}$$

Here, $\mathbf{n}^{i,j}$ is the normal pointing from Ω_i to Ω_j , c is the Coulomb friction coefficient, and $\mathbf{\hat{g}}_t^i := (\mathbf{I} - \mathbf{n}^{i,j} \otimes \mathbf{n}^{i,j}) \cdot (\dot{\mathbf{u}}^j - \dot{\mathbf{u}}^i)$ is the relative tangential velocity

LaTIn Algorithm

Local Stage

Contact Law

$\hat{\mathbf{F}}^i - k^+ \hat{\mathbf{w}}^i = \mathbf{F}^i - k^+ \mathbf{w}^i$

where $\hat{\mathbf{F}}^i$ and $\hat{\mathbf{w}}^i$ satisfy contact

Linear Stage

$$\boldsymbol{\sigma}(\mathbf{u}^i) \cdot \mathbf{n} = \mathbf{F}^i \text{ on } \Gamma^{i,j}$$

$$\mathbf{u}^i = \mathbf{w}^i \text{ on } \Gamma^{i,j}$$

$$\mathbf{F}^i + k^- \mathbf{w}^i = \hat{\mathbf{F}}^i + k^- \hat{\mathbf{w}}^i$$

LaTIn Algorithm: Stability

P1/P0 scheme polluted ${f F}^i$

P1/P1 Stabilised Projection

LaTIn Algorithm: Stability

Proposed Solution: P1/P1 scheme with stabilisation

Two Inclusions Frictionless Contact

$$\mathbf{u} = (0, -1)$$

Applications in Engineering

Damage in Concrete: Parallelisation

Damage in Concrete

Pulsed Thermal Ablation

 $\partial\Omega_N$

v(x,t)

Pulsed Thermal Ablation

Pulsed Thermal Ablation

3D Machining Path

Applications in Biomechanics

Cut Finite Element Hip Modelling Motivation

Treatment options for hip malformations: (left) untreated hip deformity of a 4-year-old child, (middle) well-formed hip 8 years post guided growth surgery¹, i.e. insertion of one screw through the growth plate of the femur bones, (right) well-formed hip after an invasive femur and hip osteotomy, i.e. cutting through the bones and insertion of screws and plates.

Study stress in hip joint using FE Modelling to enhance understanding of bone growth and bone shape changes

[1] Lee, W-C et al. "Guided growth of the proximal femur for hip displacement in children with cerebral palsy." *Journal of Pediatric Orthopaedics* 36.5, 511-515, (2016).

Surface Triangulation to CutFEM pipeline

Segmentation with 3D Slicer (Faezeh Moshfeghifar) of CTimage from the cancer imaging archive (TCIA)

Surface triangulation

Create Regular Background mesh

Hip bone surface triangulation embedded in regular background mesh

Femur bone surface triangulation embedded in regular background mesh

Determine inside, outside and intersected cells

Compute signed distance function for each bone

Geometrical Error (Linear Approximation)

Refine elements that are intersected by surface triangulation

Extract elements and set boundary conditions

Stress Profile σ_{yy}

Stress Profile σ_{yy}

Patient-Specific Data

https://rainbow.ku.dk

Guidance

Design of Implants & Prosthetics

Diagnosis

Surgical Training

Prognosis

Medical Devices

Planning

Monitoring

https://rainbow.ku.dk

Brain shift and electrode implantation

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.

269

Error estimation and adaptivity

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.

Superconvergence recovery

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Application to Deep Brain Stimulation

H. P. Bui, S. Tomar, H. Courtecuisse, M. Audette, S. Cotin and S. P. A. Bordas

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.

Goal-oriented error estimate

$$Q(\mathbf{u}) = \frac{1}{|\omega|} \int_{\omega} \nabla \mathbf{u} d\omega$$

$$Q(\mathbf{u}) - Q(\mathbf{u}_h)$$

$$|Q(\mathbf{u}) - Q(\mathbf{u}_h)| \le \epsilon$$

Figure 1: If we are interested in some quantity of interest defined on a subdomain ω , what is the optimal mesh?

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation, HP Bui et al, Int J Numer Meth Bio, 2017.

Goal-oriented error estimate

Primal problem: $a(\mathbf{u},\mathbf{v})=I(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}$

Solve by FEM: $a(\mathbf{u}_h, \mathbf{v}_h) = I(\mathbf{v}_h) \quad \forall \mathbf{v}_h \in \mathbf{V}_h$

Weak residual:
$$r(\mathbf{v}) = I(\mathbf{v}) - a(\mathbf{u}_h, \mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}$$

If we define a dual problem:

Find
$$z \in V$$
 such that $a(v, z) = Q(v) \quad \forall v \in V$

We observe:

$$Q(\mathbf{u}) - Q(\mathbf{u}_h) = a(\mathbf{u}, \mathbf{z}) - a(\mathbf{u}_h, \mathbf{z}) = l(\mathbf{z}) - a(\mathbf{u}_h, \mathbf{z}) = r(\mathbf{z})$$

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Hyperelasticity

Equilibrium equations in initial configuration:

$$-\mathrm{div} \mathbf{\Pi} = \mathbf{B} \quad \text{in } \Omega^0$$
 $\mathbf{u} = \mathbf{0} \quad \text{on } \Gamma_D^0$ $\mathbf{\Pi} \cdot \mathbf{N} = \mathbf{T} \quad \text{on } \Gamma_N^0$

- ullet $\Pi = \Pi(oldsymbol{u})$ is the first Piola-Kirchhoff stress tensor
- B is a given body force per unit volume
- u is the displacement
- T is a given boundary traction

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Cantilever beam

Parameters

Saint Venant-Kirchhoff material: E=1000, $\nu=0.4$

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

275

Cantilever beam (2)

Stephane Pierre Alain BUKDAS, Department of Computational Engineering & Sciences University of Luxembourg - stephane.bordas@uni.lu

Cantilever beam (3)

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Adaptivity using quadrilaterals

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

278

Human artery

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Human artery

Human heel

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Conclusions

Cut FEM/XFEM for surgical simulations with complex geometries

Making the discretization as independent as possible from geometric description

Verification of convergences with optimal rates

Cut FEM is suitable for real-time and patient specific simulations

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Perspectives

Higher order cut elements

Alexei Lozinski and Franz Chouly: avoid integration on cut elements

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

283

Real-time Error Control for Surgical Simulation, HP Bui et al, IEEE Trans. Biomed. Eng., 2016.

Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation, HP Bui *et al*, *Int J Numer Meth Bio, 2017.*

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui *et al, arXiv:1712.03052[cs.CE]*

284

Acknowledgements

University of Strasbourg USIAS (BPC 14/Arc 10138)

ERC-StG RealTCut (grant N° 279578)

European project RASimAs (FP7 ICT-2013.5.2 No610425)

Luxembourg National Research Fund (INTER/MOBILITY/14/8813215/CBM/Bordas and INTER/FWO/15/10318764)

Legato team (Luxembourg) and MIMESIS team (Strasbourg)

SOFA community

AMIES

LmB, University of Franche-Comté, CNRS

Real-time needle steering

Brain shift occurs prior to cannula insertion

Corotational Cut Finite Element Method for real-time surgical simulation: application to needle insertion simulation, HP Bui et al, arXiv:1712.03052[cs.CE]

Skip