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Dipolar-coupled moment correlations in clusters of magnetic nanoparticles
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Here, we resolve the nature of the moment coupling between 10-nm dimercaptosuccinic acid–coated magnetic
nanoparticles. The individual iron oxide cores were composed of >95 % maghemite and agglomerated to
clusters. At room temperature the ensemble behaved as a superparamagnet according to Mössbauer and mag-
netization measurements, however, with clear signs of dipolar interactions. Analysis of temperature-dependent
ac susceptibility data in the superparamagnetic regime indicates a tendency for dipolar-coupled anticorrelations
of the core moments within the clusters. To resolve the directional correlations between the particle moments
we performed polarized small-angle neutron scattering and determined the magnetic spin-flip cross section
of the powder in low magnetic field at 300 K. We extract the underlying magnetic correlation function of
the magnetization vector field by an indirect Fourier transform of the cross section. The correlation function
suggests nonstochastic preferential alignment between neighboring moments despite thermal fluctuations, with
anticorrelations clearly dominating for next-nearest moments. These tendencies are confirmed by Monte Carlo
simulations of such core clusters.
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I. INTRODUCTION

Understanding the precise influence of dipolar interactions
on the magnetization behavior of magnetic nanoparticles is of
utmost importance for potential technological or biomedical
applications [1,2]. In particular the magnetic hyperthermia
performance of nanoparticle ensembles can significantly de-
pend on the core arrangement [3–11], mainly due to the
sensitivity of magnetic relaxation on induced dipolar interac-
tion energy [12–20]. Experimentally, interacting nanoparticle
ensembles have been much characterized via temperature-
dependent magnetometry techniques [21–27]. Regarding the
blocking temperature TB, it was found in some studies that
dipolar interactions increase TB [21,28], whereas in other
cases a reduction of TB was observed [29,30]. Corresponding
simulations of randomly arranged three-dimensional (3D)
systems show that, on the nanoscale, this collective behavior
is usually accompanied by a mixture of short-range ferromag-
netic (FM)–like and antiferromagnetic (AFM)–like ordering
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of neighboring core moments for temperatures lower than
TB [31,32].

In low-dimensional (1-2D) systems, electron holography
studies have revealed both nearest neighbor and overall FM-
like ordering [33] in long and narrow ensembles in both close-
packed as well as more disordered nanoparticle ensembles. In
thicker nanoparticle structures, long-range AFM-like interac-
tions become important, as evidenced by superspin domain
formation, with sharp 180◦ walls between nearest-neighbor
cores [34,35]. Experimental evidence for nearest-neighbor
moment correlations within ordered 3D arrays of magnetic
cores was obtained by Faure et al. [36], using dynamic
magnetometry in combination with Monte Carlo simulations.
The authors observed an increased tendency for the transition
of a FM-like to an AFM-like moment order with increasing
film thickness. A special class of 3D ensembles of magnetic
nanoparticles are particle core aggregates or clusters, also re-
ferred to as multicore nanoparticles [37]. Investigation of such
particles has attracted much interest in recent years [38–41],
mainly motivated by their large potential for biomedical ap-
plications [42,43].

It is often assumed that interacting magnetic cores in the
superparamagnetic regime, in which each individual core
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has a thermally fluctuating moment, do not display a self-
sustained ordered state [14,44,45]. Yet, recent numerical cal-
culations of core clusters indicate that directional correlations
may be indeed possible [17].

Experimental evidence for a correlated, thermally activated
motion was obtained by resonant magnetic x-ray scattering
for densely packed Co [46] and iron oxide nanoparticles [47].
Few other techniques, however, are sensitive to moment cor-
relations on the interparticle length scale and even less are
simultaneously capable of taking a snapshot of the internal
moment structure during superparamagnetic relaxation. As a
consequence, experimental observations of dipolar coupling
in the superparamagnetic regime are still severely lacking.

In this work, we exploit polarized small-angle neutron
scattering (SANS) to gain information about directional cor-
relations between the moments within clusters of 10-nm iron
oxide cores in the superparamagnetic regime, here at 300
K. Elastic neutron scattering has a measurement time scale
on the order of a picosecond [48] and is therefore capable
of capturing snapshots of the magnetic ordering within core
clusters, in which relaxations of the entire cluster occurs on
longer time scales (ns regime). Furthermore, SANS provides
information about magnetic correlations on the nanoscale and
offers thus a unique approach to study magnetic nanoparticle
systems, as also done in other studies [49–55]. We, however,
performed a complete longitudinal neutron-spin analysis in
SANS (POLARIS) [56], through which we were able to detect
the purely magnetic scattering cross sections. By using a
model-independent analysis, based on indirect Fourier trans-
formations, we extracted the underlying magnetic correlation
functions in order to obtain information about the nature of the
moment correlations. Additionally, we have performed Monte
Carlo simulations to support our observations.

II. METHODS

Iron oxide cores were prepared by thermal decomposition
of an iron oleate in 1-octadecene and transferred to water in
a subsequent ligand exchange step using dimercaptosuccinic
acid (DMSA) [57]. The DMSA coating around the individual
cores provides an insulating separation and as such should
limit exchange interactions between surface atoms of neigh-
boring cores even in case of agglomeration. To prepare the
powder samples, the colloidal dispersion was freeze-dried in
a LYOQUEST-55 ECO and afterwards slightly compressed.

Transmission electron microscopy (TEM) images of the
cores were taken with a 100-keV JEOL-JEM 1010 micro-
scope. The sample was prepared by placing a drop of the
colloidal dispersion onto a carbon coated copper grid and
allowing it to dry at room temperature. The core size distribu-
tion was determined by measuring the diameter of 300 cores
using the public domain IMAGEJ software [58]. The obtained
histogram was fitted with a standard log-normal function.

Small-angle x-ray scattering (SAXS) measurements of the
colloidal dispersion at 300 K were performed using a Kratky
system with slit focus, SAXSess by Anton Paar. The data
were corrected from background scattering and deconvoluted
with the beam profile using the implemented SAXS-QUANT

software.

A dynamic light scattering (DLS) measurement was con-
ducted with a Malvern Zetasizer Nano ZS. The autocorrela-
tion function was recorded in the 173◦ backscatter mode. The
data analysis was performed with the nonlinear-non-negative
least square (NNLS) method.

Neutron diffraction of the powder was conducted at 300 K
using the high-resolution powder diffractometer D2B at the
Institut Laue Langevin [59]. The powder was loaded into a
vanadium can and the diffraction pattern was measured within
the 2� range ∼3–160◦ in steps of 0.05◦ with a wavelength of
1.594 Å, covering the q range ∼2.4–77.4 nm−1. The pattern
was adjusted by a Rietveld analysis using the FULLPROF SUITE

program [60]. To describe the peak profile a Thompson-Cox-
Hastings function was selected, which ensures a good descrip-
tion of the width excess arising from the average crystal size
(d) and microstrain (ε) of the core.

57Fe Mössbauer spectroscopy of the frozen dispersion and
the powder was performed using a conventional constant
acceleration spectrometer with a source of 57Co in rhodium.
Calibration was carried out at room temperature using a 12.5-
μm α-Fe foil. A closed helium refrigerator from APD Cryo-
genics was used to cool the sample. The spectra were folded
and calibrated and the spectra fitted in MATLAB (MathWorks
Inc., USA) using a previously described protocol [61].

Room temperature (RT) Mössbauer measurements
[295(5) K] were obtained using conventional spectrometer
from SeeCo Inc (USA) which operated in the constant
acceleration mode, in transmission geometry, with 57Co in Rh
foil as the source of the 14.4-keV γ rays. Velocity calibration
was performed by recording a reference spectrum from a
10-μm-thick foil of α-Fe at room temperature. Measured
spectra were folded and baseline corrected using cubic spline
parameters derived from fitting the α-Fe calibration spectrum,
following a protocol implemented in the RECOIL analysis
program [62].

Field-dependent dc magnetization [M (H )] and
temperature-dependent ac susceptibility [ACS(T )] curves
of the colloidal dispersion as well as powder were measured
using a Quantum Design MPMS XL superconducting
quantum interference device, equipped with the ultralow-field
option. The diamagnetic background signals of the sample
holder (ceramic cylinder) and water (in case of the colloidal
dispersion) were subtracted and the magnetic moment was
normalized either to the volume of the magnetic material or
the iron mass.

Polarized SANS was conducted at 300 K at the in-
strument D33 [63] at the Institut Laue Langevin [64]. A
mean wavelength of λ = 0.6 nm was used, with a spread
of �λ/λ ≈ 10%. The detector was located a distance of
13.4 and 3 m respectively, yielding a corresponding scat-
tering vector (q) range of 0.07–0.77 nm−1. By employ-
ing longitudinal neutron spin analysis (POLARIS) [56],
we were able to resolve all four neutron spin intensities
I++(q), I−−(q), I+−(q), I−+(q). For further information
see the Appendix. The spin-flip cross section will be denoted
as I sf (q) = I+−(q) = I−+(q) in the text. The spin-leakage
correction was performed by using GRASP [65]. A homoge-
neous horizontal magnetic field H ‖ ez was applied at the
sample position perpendicular to the wave vector k0 ‖ ex

of the incident neutron beam. A minimum field strength of
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FIG. 1. (a) TEM image of the iron oxide cores. (b) Measured
SAXS intensity I (q ) (radial average, T = 300 K) of the dispersion
and fit by IFT. Inset: Correlation function C(r )r2 derived by the IFT
of I (q ) and the expected profile of a homogeneous sphere calculated
with Eq. (1) for D = 10 nm (grey area).

μ0H = 2 mT was necessary to provide a sufficient guide field
to maintain the polarization of the neutrons.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Here, we perform a thorough structural and magnetic char-
acterization of the particles before we present the analysis
of the polarized SANS experiment and the Monte Carlo
simulations. The size and shape of the particles in colloidal
dispersion is determined using TEM, SAXS, and DLS. In-
formation regarding the chemical composition, crystallinity,
and magnetic structure is obtained using neutron diffraction
and Mössbauer spectroscopy. For the former, the particles
were in powder form while for the latter, measurements were
obtained from both the (frozen) colloid as well the powder.
Analysis of the Mössbauer spectra also provides information
about the coupling between the core moments in the colloid
and the powder. The influence of dipolar interactions between
the cores is probed using both dc and ac magnetometry, for
particles in both colloidal and powder form.

A. Structural and magnetic precharacterization

A representative TEM image is shown in Fig. 1(a). As
can be seen, the cores are spherically shaped and nearly
monodisperse. The mean core size 〈DTEM〉 = 9.7 nm and the
polydispersity index is very low with PDI = 0.06 (standard
deviation/mean). Additionally it can be observed that the
cores are separated from each other by around 1 nm. This can
be attributed to the DMSA coating, which prevents a direct
contact between the cores.

From the SAXS data we derived the underlying cor-
relation function C(r )r2 by an indirect Fourier transform
(IFT) [41,66–69] of the radially averaged scattering intensity
I (q ) [Fig. 1(b)]. Here, C(r ) is the autocorrelation function of
the nuclear scattering length density, which provides useful
information about the 3D averaged spatial distribution of the
particles in the colloid. For individually dispersed spherical

FIG. 2. Neutron-diffraction pattern resolved by the Rietveld
method. Residuals are represented by the blue line and the vertical
tick marks indicate the positions of the nuclear (top) and magnetic
(bottom) diffraction peaks. Inset: Ferrimagnetic structure of the iron
oxide cores.

cores with radius R, one would expect

C(r )r2 = 3
( r

R

)2
[

1 − 3r

4R
+ 1

16

( r

R

)3
]
, (1)

which is a nearly bell-shaped profile. Comparison of the deter-
mined correlation function for our sample reveals a significant
deviation from the profile calculated for a 10-nm sphere [inset
of Fig. 1(b)], and instead suggests that the cores were in
fact agglomerated to clusters, probably induced by dipolar
interactions [70], with maximal lengths of around 68 nm.

The presence of large agglomerates is confirmed by DLS,
from which we obtained a z average (i.e., mean intensity
weighted hydrodynamic size) of 79 nm.

The Rietveld refined neutron-diffraction pattern of the
powder is shown in Fig. 2. All reflections can be indexed
by a cubic Fd3̄m space group with a lattice parameter a =
8.3565(3) Å. This suggests that the iron oxide is dominated
by the maghemite phase (γ -Fe2O3, a = 8.34 Å) [62,71], with
minor presence of magnetite (Fe3O4, a = 8.39 Å) [72]. The
structural parameters refined at 300 K of both nuclear and
magnetic contributions are summarized in Table I in the Ap-
pendix. As expected for magnetite-maghemite mixtures, these
measurements reveal ferrimagnetic ordering, with an average
moment of 4.5(2) and 4.2(2)μB per Fe ion at the tetrahedral
and octahedral sites of the inverse spinel, respectively [62,71].
From this, we derive a net magnetic moment of 1.9(4)μB

per formula unit and a volume saturation magnetization value
of 330(60) kA/m, which is close to the one calculated from
the dc magnetization and discussed in the following section.
The average crystal size Dcryst was determined to be 9(1)
nm, and which agrees well with core size according to TEM
and thus confirms that the cores are single crystalline. In
comparison, the magnetic core size Dmag is reduced to 6(2)
nm. This discrepancy between crystal and magnetic core size
indicates a surface layer of around 1.5 nm of uncorrelated
surface spins [27,73–76], as also observed by polarized SANS
studies of similar systems [77,78].

The temperature-dependent Mössbauer spectra for the par-
ticles in both (a) the powder and (b) the colloidal dispersion
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FIG. 3. Mössbauer spectra and associated fits of the powder sample (a) and the frozen dispersion (b) at the indicated temperatures. (c)
Comparison of the mean hyperfine field for the powder (black) and the frozen colloidal dispersion (red) for T < 40 K. Both lines are linear
fits. (d) RT Mössbauer spectrum of the particle powder.

are compared in Fig. 3. The mean isomer shift, determined
using the model independent method described by Fock
et al. [62], allows us to conclude that the cores have a
composition of 95/5 wt % γ -Fe2O3/Fe3O4, which is in excel-
lent agreement with that observed in our neutron-diffraction
measurements. Analysis of the temperature dependency of
the Mössbauer spectra provides additional information about
the nature of the interactions between cores. For tempera-
tures well below the blocking temperature, the magnetization
fluctuations near the anisotropy energy minimum can be
described using Boltzmann statistics [14]. If the anisotropy
energy is expressed using only the first terms of the Taylor
series, the temperature dependence of the hyperfine field is
Bobs = B(T = 0 K)[1 − kBT/(κV )] where κ is a parameter
describing the curvature of the anisotropy near its energy min-
imum [79]. For noninteracting cores with uniaxial anisotropy,
the energy is given as E(θ ) = KV sin2(θ ) and consequently
κV = 2KV . Figure 3(c) shows the mean hyperfine field vs
temperature. Using this method, we find κV to be basically
indistinguishable for the two samples [powder: κV/kB =
2200(100) K, frozen dispersion: 2140(220) K].

If we assume a value of K of 13 kJ/m3 (i.e., the upper
limit reported in literature [80]), then we expect κV/kB

to be around 1000 K for isolated 10-nm cores. The larger
κV/kB values indeed indicate an additional contribution of
the anisotropy for both systems, probably caused by inter-
core interactions. In literature, anisotropy values larger than
13 kJ/m3 have been reported for maghemite particles, either
due to interparticle interactions [14], or due to increased
surface spin disorder for smaller particles [75]. But it can
be noted that the broad asymmetric lines in the Mössbauer
spectra observed at 200 K [Figs. 3(a) and 3(b)] are typical for
magnetic fluctuations governed by an interaction field arising
from interparticle interactions [81]. Additionally we can con-
clude from the observed splitting of the spectra at 200 K that
the cores are still thermally blocked, although it is worth men-
tioning that at 295(5) K they are clearly superparamagnetic on
the Mössbauer time scale of ≈ 1 ns [Fig. 3(d)]. Furthermore,
while we do not measure a discernible difference in κV for the

two methods of sample preparation, at 200 K it is clear that the
spectrum of the particles in the frozen dispersion is slightly
more collapsed than that of the powder. This points towards
slightly weaker interactions between cores within the colloid.

Figure 4(a) shows the normalized M (H )/MS curves of the
dispersion and powder measured at 300 K. The saturation
magnetization MS was measured at μ0H = 5 T, which for
the powder was 67 A m2/kg (normalized to the total sam-
ple mass). Using the density ρ = 4869 kg/m3 from neutron
diffraction (Table I), which is close to the density of pure
maghemite (ρ = 4860 kg/m3) [82], this yields a volume
saturation magnetization of 327 kA/m, which is in good
agreement with our observation using neutron diffraction.
The complete magnetization curves for both the colloidal
dispersion and powder were anhysteretic, which indicates a
superparamagnetic behavior on the measurement time scale ≈
100 s for the two samples due to thermal moment fluctuations.
Notably, the magnetic susceptibility of the powder is smaller
at low and intermediate fields (<1 T) compared to that of the
dispersion, which we attribute to a larger dipolar interaction
field within the powder.

Clear signatures of dipolar interactions in the powder are
also observed when comparing the in-phase (χ ′) and out-
of-phase components (χ ′′) of the ACS(T ) susceptibilities of
the two systems [Fig. 4(b)]. χ ′ and χ ′′ of the powder are
suppressed, broadened, and shifted towards higher tempera-
tures relative to the dispersion. In both samples, χ ′′ = 0 for
T > 250 K, and which is indicative of superparamagnetic be-
havior on the studied time scales (characteristic measurement
times in the range 10−3–1 s). We have deduced the frequency
dependence of the blocking temperature TB(f ), whereby TB

was defined as the temperature for which χ ′′ has reached
50% of its maximum value. Rather interestingly, if we use
the Néel-Arrhenius equation τ = τ0exp(−KV/kBT ) to fit our
data then we obtain grossly unphysical values of τ0, of the
order of 10−40 s, for both the frozen dispersion as well as
the powder. This in and of itself is a clear indication of the
presence of significant intercore interactions. At this point, it
might be tempting to define the critical slowing down process,
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FIG. 4. (a) Normalized isothermal magnetization curves M (H )/MS of the core clusters in powder form and colloidal dispersion measured
at T = 300 K. (b) In-phase (χ ′) and out-of-phase (χ ′′) components of the ACS(T ) measurements of the dispersion and the powder for
frequencies f = 0.17–170 Hz (from top to bottom). Inset: Fit of the frequency dependency of the blocking temperatures TB(f ) to determine the
characteristic attempt times τ0. (c) High-field (μ0H = 1 T) magnetization vs temperature of the powder. The line corresponds to a modified
Bloch-law in the temperature range 40–300 K. The slight upturn at low T (excluded from the fit) corresponds primarily to paramagnetic
impurities in the sample cup and straw. (d) Inverse susceptibility (1/χ ) vs temperature of the freeze dried powder, and the frozen dispersion
(here using f = 0.17 Hz). The solid lines corresponds to fits to a (Curie-Weiss) mean-field model [Eq. (2)]. The colloid thawed at around
260 K, as indicated by the kink in χ ′ in panel (b), and thus the analysis was restricted to temperatures T < 260 K.

which may be taking place here, and eventually disclose the
intimate nature of the spin dynamics relaxation. It is very
likely that the behavior could be related to a superspin glass
state at low temperature [83]. However, for this study we
focus in the following on the analysis of the ACS(T ) data in
the superparamagnetic regime. We surmise that the observed
interactions arise from the dense agglomeration of the cores to
clusters, which we revealed by SAXS. To further investigate
the local dipolar interaction field in both systems, we fitted χ ′
in the superparamagnetic regime (where χ ′′ = 0) to a mean-
field model:

χ−1 = T − αC(0)(1 − BT β )2

C(0)(1 − BT β )2
, (2)

with C(0) = μ0VpM
2
S (0)/(3kB). Here, the dipolar field Hd =

αM is given by the mean-field constant α and the field-
induced magnetization, where α > 0 is indicative of a (on
average) FM-like coupling, α < 0 of an AFM-like coupling,
and α = 0 for a noninteracting system [36]. The fitting proce-
dure of the inverse susceptibility (1/χ ) using the Curie-Weiss
mean-field model was then as follows. First, we determined
the temperature dependency of the magnetization, by fitting
the M (T ) curve measured in a field of μ0H = 1 T to a
modified Bloch-law: MS(T ) = MS(0)(1 − BT β ) [Fig. 4(c)].
Omitting the slight upturn in the low-temperature interval
(5–40 K), this yields β = 2.18 and a corresponding value
of B = 4.25 × 10−7K−2.18. In the second step, we corrected
the data for a small deviation between the MS (at 5 T) of
the dispersion and the powder, using the absolute magneti-
zation value of the powder as the reference (66.5 A m2/kg
at 300 K and 5 T). Last, the inverse of the equilibrium
(frequency independent) part of the in-phase component of the
magnetic susceptibility (1/χ ′) was fitted to the Curie-Weiss

law [Eq. (2)], using α and C(0) as fit parameters. These fits
are shown in Fig. 4(d). The differences between the C(0)
parameter derived for the powder [2800(10) K] and the frozen
dispersion [2750(20) K] are small. Using the determined
saturation magnetization for T = 0 K [MS (0) = 362 kA/m,
Fig. 4(c)] yields a core diameter of 11 nm, which is in good
agreement with the effective core diameters determined by
TEM. Examination of the coupling parameter α, indicates
a value of α = −0.0137(6) for the frozen dispersion and
α = −0.0737(5) for the powder. This difference indicates
increased dipolar interactions for the powder compared to
the frozen dispersion, as also observed by Mössbauer spec-
troscopy. Nonetheless, the negative α values allow us to con-
clude that both systems have preferential AFM-like coupling
between neighboring core moments in the clusters, which is
irrespective of the sample preparation.

Summarizing this section, our precharacterization revealed
the existence of a major maghemite core contribution with
a ferrimagnetic spin arrangement. The core sizes lie around
10 nm but they are agglomerated to clusters of about 70
nm. Magnetometry reveals a superparamagnetic behavior at
300 K, but which is accompanied by interparticle dipolar
interactions, and which seem to result in preferentially an
AFM-like moment coupling.

B. Analysis of the POLARIS experiment

Figure 5 shows the purely nuclear SANS cross section
I nuc(q ), derived from the POLARIS experiment, as described
in the Appendix. Similar to the SAXS data of the colloid, the
nuclear SANS data of the powder exhibits an increasing in-
tensity for decreasing q, which can be attributed to the fractal
structure of the core clusters. In contrast to SAXS, however,
I nuc(q ) contains a well-pronounced peak in the medium q
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FIG. 5. SAXS intensity from Fig. 1 (colloidal dispersion) and the
nuclear SANS intensity I nuc(q ) (powder; rescaled), derived from the
non-spin-flip intensities of the POLARIS experiment. Additionally
we show here the radial average of the spin-flip intensities I sf (q )
measured at 2 mT and 1 T [same as in inset of Fig. 6(c); in arbitrary
units].

range. The position in reciprocal space q = 0.58 nm−1 cor-
responds to a real-space size of around 2π/q = 11 nm. This
correlates well to the expected core-to-core distance between
neighboring particles within the clusters and thus the peak can
be attributed to the interparticle correlations (i.e., structure
factor). The fact that this correlation peak is well visible in
SANS but not in SAXS indicates on average a closer packing
of the aggregates in powder. This can be simply explained by
the evaporation of the water due to the freeze-drying process,
which results in a collapse of the polymer shell compared to
the swollen state in colloidal dispersion.

The purely magnetic scattering is presented in Fig. 6. The
inset of Fig. 6(a) displays the 2D scattering pattern I sf (q)
detected for the detector distance 13.4 m at 300 K and a field
strength μ0H of 2 mT. At the same field strength, isother-
mal magnetization measurements reveal that the normalized
magnetization is a very small value of 0.026 [Fig. 4(a)], and
which suggests that, on average, the moments within the
ensemble were basically randomly distributed. We confirm
this by the angular dependency of I sf (q) integrated over
|q| = 0.07–0.21 nm−1. It is clear that I sf (q) obeys a (1 +
cos4� + sin2�cos2�) behavior [Fig. 6(a)], and which we
expect for magnetization equal in the x, y, and z directions
with an isotropic distribution of moments around the y and
z axis [M̃yM̃

∗
z + M̃zM̃

∗
y = 0; Eq. (A2)]. Note that for the

case of magnetically noninteracting cores in zero field, the
scattering cross section is proportional to the single-particle
form factor [84].

The azimuthal averages of I sf (q) in 10◦ sectors around
� = 0◦, 45◦, and 90◦ are plotted in Fig. 6(b), and which
depend on the superposition of the individual cross sections
|M̃x |2, |M̃y |2, and |M̃z|2 [Eq. (A2)]. The absolute values of
the intensity decrease from 0◦ to 45◦ to 90◦, but the func-

tional form is basically identical. This further strengthens our
hypothesis that a small applied field is not enough to result
in significant alignment of the moments in the direction of
the field, otherwise the shape of |M̃z|2 would strongly deviate
from that of |M̃x,y |2. Due to the observed isotropy of the
magnetization, we can focus our analysis on the radial average
I sf (q ) = ∫ 2π

0 I sf (q)d� ≈ 3/2|M̃|2 [Fig. 6(b)].
A characteristic feature of I sf (q ) is its maximum at

0.12 nm−1 and decrease with decreasing q [Fig. 6(b)]. This
peak becomes in particular visible in linear scale as shown
in the inset of Fig. 6(b). The decrease is in contrast to the
form factor F (q ) of a single sphere [Eq. (A3)], which mono-
tonically increases in the Guinier regime [q < 0.26 nm−1

for 10-nm spheres; black line in Fig. 6(b)]. Similar peaks
have been also observed in other studies [50–53]. One would
expect to observe this form factor if the cores were indeed not
magnetically interacting; the fact that we do not observe this
shows that there are magnetic interactions present.

This can be further verified by the underlying magnetic
correlation function [Fig. 6(c)], which we derived from I sf (q )
by an IFT [41], as outlined in the Appendix. The maximal
size Dmax according to the correlation function [i.e., where the
C(r ) reaches zero] is 69 nm. The derived correlation function
fits the experimental data well within the accessible q range
[inset of Fig. 6(c)], and thus we can assume that C(r ) correctly
represents the moment correlations, at least in the low-r range
(i.e., between nearest and next-nearest neighbors). As can be
seen, C(r )r2 is positive for r < 15 nm, but takes on negative
values for 15 nm < r < 69 nm.

The primary peak of C(r )r2 is well described by the
calculated profile of a homogeneous sphere with a diameter of
10 nm [Eq. (1)]. As a reminder, the Fourier transform of the
correlation function Eq. (1) is just the single-particle form fac-
tor plotted in Fig. 6(b) [black line; see also Eq. (A3)]. Hence,
this profile corresponds to the expected magnetic correlation
function of the (isolated) homogeneously magnetized cores
and confirms their single-domain state. The C(r ) function for
r > 10 nm, then, describes the intercore moment correlations.
The fact that C(r ) crosses zero at r = 15 nm suggests for
neighboring particle moments on average a competition be-
tween positive (i.e., FM-like alignment) and negative moment
correlations (i.e., AFM-like alignment). The negative values
of the correlation function for r > 15 nm, however, verify that
on average the core moments of next-nearest neighbors tend
to align antiparallel to each other.

In the inset of Fig. 6(c) we have additionally plotted the
radial average of the spin-flip SANS intensity detected at 1
T. Here the scattering intensity monotonically increases with
decreasing q, similar to the purely nuclear scattering intensity
I nuc(q ) (Fig. 5). This suggests strictly positive correlations
between neighboring core moments at this field strength,
which can be simply explained by a parallel alignment of the
core moments along the applied magnetic field (z axis).

C. Monte Carlo simulations

By SAXS we saw that the 10-nm cores were agglomerated
to clusters with sizes of around 68 nm. Analysis of the
ac susceptibility measurements of the frozen dispersion in
the superparamagnetic regime then indicated a preferential
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FIG. 6. Results of the polarized SANS experiments of the powder at 300 K. (a) Spin flip intensity I sf (q) (μ0H = 2 mT) integrated over
|q| = 0.07–0.21 nm−1 as a function of �. Inset: Corresponding 2D scattering pattern I sf (q) (detector distance 13.4 m). NB indicates area of
the primary neutron beam. (b) Azimuthal averages of I sf (q) (μ0H = 2 mT) in 10◦ sectors around � = 0◦, 45◦, 90◦ and the radial average, as
well as the form factor F (q ) of a sphere [Eq. (A3)]. (c) The correlation function C(r )r2 determined by an IFT of the radial average of I sf (q)
measured at 2 mT, and the profile of a homogeneous sphere calculated with Eq. (1) for D = 10 nm (grey area). Inset: Comparison of the radial
average I sf (q ) measured at 2 mT and 1 T, and fit of the measurement at 2 mT by IFT.

AFM-like coupling between the core moments within the
clusters. Furthermore, we could show that, by compacting the
core clusters to a powder, the coupling strength was increased,
and polarized SANS verified on average an AFM-like cou-
pling between next-nearest-neighbor moments. Thus to con-
firm the possibility for anticorrelations between fluctuating
core moments, we have simulated the magnetic properties
of such core clusters. In the literature, a number of different
approaches are used to theoretically reveal the influence of
dipolar interactions on the magnetization behavior of mag-
netic core clusters [6,8–10,17,39,85–88]. In the current work,
we have used Monte Carlo simulations and focused on the
determination of the directional correlations between the core
moments.

For the Monte Carlo simulations, we used a constant
pressure approach to generate an ensemble of 320 clusters
with each cluster containing 32 individual cores [89]. Each
core was modeled as a point dipole with a spherical exclusion
volume that was proportional to the magnetic moment and had
an anisotropy energy density of 13 kJ/m3. We also ensured
that the corresponding size distribution closely resembled the
one observed by TEM. To minimize the interaction energy
of the cores, both the orientation and position were sampled
within the simulation. Figure 7(a) displays the average radial
distribution function [i.e., pair correlation function g(r )] of
the clusters, and the inset of Fig. 7(a) shows the realization of
such a cluster. It is immediately clear that the distribution of
the clusters shows four distinct correlation peaks that indicate
well ordered structures.

By using kinetic Monte Carlo simulations [6], we have
been able to access information into the magnetization dy-
namics of the core clusters at 293 K and at an applied field
μ0H of 2 mT. For each of the 320 clusters we determined for
all 496 unique core pairs the magnetic pair-correlation func-
tion gij (t ) = mi (t ) · mj (t ) = mimj cosϕ(t ) at 1000 different

time points. The 496 × 320 × 1000 unique gij functions were
binned in 601 × 601 pairs of {r, ϕ}, with r = |rij | being the
distance between the core centers. Figure 7(b) shows the
resulting 3D polar plot [r, ϕ, P (r, ϕ)], with P (r, ϕ) being
the sum of all moment products mimj for each bin (here we
normalized P to the global maximum). This means that the
P (r, ϕ) can be regarded as proportional to the probability that
the angle between two moments displaced by r amounts to ϕ.

For the simulated clusters without dipolar interactions we
observe that at a given r value the probability P (ϕ) displays a
sinϕ-like dependence [Fig. 7(b)], which is the expected time
average for an isotropic ensemble of moments, whose dynam-
ics is only governed by the randomly distributed anisotropy
axes of the individual cores.

However, when we include dipolar interactions of the form

Edip,i = −μ0

4π

∑
j 
=i

[3(mi · r̂ij )(mj · r̂ij ) − (mi · mj)]

r3
ij

, (3)

the distribution of magnetic pair correlations gets distorted
(Fig. 7). At r ∼ 10 nm (i.e., nearest-neighbor regime) the
maximum of P (ϕ) is shifted to ϕ < 90◦, which clearly in-
dicates a tendency to rotate neighboring moments parallel to
each other. For larger r values, however, the maximums of
P (ϕ) shift to ϕ > 90◦, which means that the dipolar interac-
tions induce for next-nearest-neighbor moments an inclination
towards an AFM-like alignment, thus confirming our previous
experimental findings.

IV. CONCLUSIONS

In this study we have investigated the moment coupling
between iron oxide cores, which were agglomerated to clus-
ters, and found strong evidence for directional correlations
between neighboring core moments also in the superparam-
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FIG. 7. Monte Carlo simulations: (a) Averaged radial distribution function g(r ) (160 bins) of the ensemble of 320 clusters with 32 cores
each. Inset: Snapshot of one simulated cluster. The volume of the spheres is directly proportional to the magnetic moment, and red-blue caps
indicate the direction of the anisotropy axis. (b) Normalized polar plot of the magnetic pair correlations within the clusters without dipolar
interactions and (c) with dipolar interactions.

agnetic regime. According to TEM and neutron diffraction
the cores have a mean diameter of around 10 nm. The
ensemble properties were then analyzed both in (frozen) col-
loidal dispersion and in powder form. Analysis of the SAXS
intensity of the colloid revealed that the as-prepared cores
were agglomerated to clusters with sizes of around 68 nm,
which agrees well with DLS. A combination of temperature-
dependent Mössbauer spectra and the Rietveld refinement
of a neutron-diffraction pattern shows that the cores were
composed of >95% maghemite, <5% magnetite. Addition-
ally, the analysis of the Mössbauer spectra indicated strong
dipolar interactions between the core moments within the core
clusters in both the liquid dispersion and in the powder. The
magnetization measurements of the dispersion and powder
showed that at 300 K the particles behaved macroscopically
superparamagnetic despite clear signs of dipolar interactions.
Analysis of temperature-dependent ac susceptibility data im-
plied dipolar-coupled anticorrelations between the thermally
fluctuating core moments in both systems. To further reveal
the nature of the coupling we performed a polarized SANS
experiment on the powder: by applying POLARIS we de-
tected the purely magnetic cross sections at 300 K and at
an applied field μ0H of 2 mT, from which we extracted
the underlying magnetic correlation function by an indirect
Fourier transform. For nearest neighbors the extracted distri-
bution indicated a competition between an FM-like and an
AFM-like coupling. This tendency was also found by kinetic
Monte Carlo simulations of such core clusters. For moments
located further away, however, the simulations exhibited an
inclination towards an AFM-like alignment. This is in good
agreement with our polarized SANS experiment, where the
derived distribution function clearly verified a preference for
anticorrelations between next-nearest core moments.
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APPENDIX

The table with the neutron diffraction results (Table I).

TABLE I. Results from the Rietveld refinement of the neutron-
diffraction pattern for the cubic Fd3̄m inverse spinel space group at
300 K [Fe tetrahedral site at (1/8, 1/8, 1/8); Fe Octahedral site at
(1/2, 1/2, 1/2); O at (1/4 + u, 1/4 + u, 1/4 + u)]. Lattice param-
eter a, O coordinate u, isotropic thermal parameter Biso, density ρ,
occupancy of the Fe octahedral site Occ, magnetic moment μ at tetra-
hedral and octahedral sites, average crystal/magnetic size Dcryst/mag,
crystal/magnetic microstrain εcryst/mag, as well as agreement factors
Rp, Rwp, RB, Rmag and the goodness of fit χ 2.

Parameters Results

a (Å) 8.3565(3)
u 0.0059(2)
Biso (Å2) Fe-tet 0.86(8)
Fe-oct 1.0(1)
O 0.09(6)
ρ (kg/m3) 4869(1)
Occa 0.84167
μ/μB Fe-tet 4.5(2)
Fe-oct 4.2(2)
Dcryst (nm) 9(1)
εcryst (‰o) 29(6)
Dmag (nm) 6(2)
εmag (‰o)b 29(6)
Rp (%) 2.52
Rwp (%) 3.16
RB (%) 5.77
Rmag (%) 9.75
χ 2 1.39

aOccupancy was fixed for the refinement and estimated from the
result of Mössbauer spectroscopy (95/5 wt % γ -Fe2O3/Fe3O4). Ex-
pected values for pure maghemite and magnetite are 1 and 5/6,
respectively.
bMagnetic strain was assumed to be the same as crystal strain.
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Analysis of the polarized SANS data

To separate magnetic from nuclear scattering contribu-
tions, we performed SANS with POLARIS option [56,90].
The purely nuclear SANS cross section can be ex-
tracted from the non-spin-flip cross sections I++(q), I−−(q)
(for H ⊥ k):

I±±(q) ∝ |Ñ |2 + b2
h|M̃z|2sin4�

+ b2
h|M̃y |2sin2�cos2�

− b2
h(M̃yM̃

∗
z + M̃zM̃

∗
y )sin3�cos�

∓ bh(ÑM̃∗
z + Ñ∗M̃z)sin2�

± bh(ÑM̃∗
y + Ñ∗M̃y )sin�cos�. (A1)

Here � is the angle between the scattering vector q =
(0, qy, qz) and the magnetic field H and bh = 2.7 ×
10−15 m/μB, where μB is the Bohr magneton. Moreover,
Ñ (�q ) and M̃ = [M̃x (q), M̃y (q), M̃z(q)] denote the Fourier
transforms of the nuclear scattering length density and of the
magnetization in the x, y, and z directions, respectively, and
the index ∗ is the complex conjugate. Hence, the purely nu-
clear cross section I nuc(q ) ∝ |Ñ |2 (here assuming isotropy),
on the one hand, can be determined from the sector parallel
to H of the non-spin-flip intensities. The spin-flip intensities,
on the other hand, are of purely magnetic origin. For our
sample we assume that chiral scattering terms can, at first
approximation, be neglected [90], and thus we can write
I sf (q) = I+−(q) = I−+(q), with [56]

I sf (q) ∝ |M̃x |2 + |M̃y |2cos4� + |M̃z|2sin2�cos2�

− (M̃yM̃
∗
z + M̃zM̃

∗
y )sin�cos3� (A2)

for H ⊥ k. For homogeneously magnetized and noninter-
acting nanoparticles (i.e., single domain, single core), the
functional forms of [M̃x (q), M̃y (q), M̃z(q)] are considered to
be proportional to the single-particle form factor, F (q). For a
spherical particle with radius R

F (q ) =
[

3

qR

(
sin(qR)

(qR)2
− cos(qR)

qR

)]2

= 1

R

∫ 2R

0
C(r )r2 sin(qr )

qr
dr, (A3)

with C(r ) being the correlation function from Eq. (1) [91].
It is possible to obtain the real-space correlation function

C(r ) by a Fourier transform of the reciprocal scattering data,
which is a model-free description of the underlying struc-
ture giving rise to small-angle scattering [67,92]. In Michels
et al. [93] for example a direct Fourier transform was applied
to derive C(r ) from magnetic SANS and, by analyzing the
extracted functions, enabled the authors to determine char-
acteristic magnetic correlation lengths within crystalline soft
nanomagnets. In the case of nuclear scattering, the usual
approach is to apply an indirect Fourier transform (IFT) of

the scattering intensities to extract the autocorrelation function
C(r ) [or C(r )r2 to emphasize long-range correlations] of the
nuclear scattering length density, as also performed on the
SAXS data in this paper [Fig. 1(b)]. We then applied the
same approach to derive the underlying magnetic correlation
function C(r )r2 from the purely magnetic spin-flip SANS
data of the particulated system of macrospins.

For the IFT we used the procedure described in Bender
et al. [41] where the maximal size Dmax [i.e., the distance r

for which C(r > Dmax) = 0] of the correlation function is a
free fit parameter. This parameter can be usually estimated
from the low q scattering behavior in the Guinier regime. In
our case, however, the Guinier regime is not reached [I sf (q )
is expected to approach a constant value > 0 for q → 0],
and thus we could not derive the complete correlation func-
tion, but only an estimation in the nearest-neighbor range.
Our approach was then as follows: we varied Dmax in 1-nm
steps from 10 to 100 nm (q = 0.07 nm−1 corresponds to a
real-space size of r = 2π/q ≈ 90 nm), performed for each
Dmax value the IFT to determine the corresponding correlation
function with 100 bins, and calculated subsequently the evi-
dence by a Bayesian analysis [68]. In Fig. 6(c) we plotted the
function C(r )r2 for which the largest evidence was calculated.

Regarding the interpretation of C(r ) it has to be considered
that the extracted correlation function

C(r ) ∝
∫

I sf (q)exp(iqr)dq (A4)

from magnetic SANS data [which are folded with the magne-
todipolar interaction of the neutron, entering via the trigono-
metric functions of � in Eq. (A2)] are not necessarily the
autocorrelation function of the magnetization vector field,

CA(r ) ∝
∫

M(x)M(x + r)dx

∝
∫

[|M̃x |2 + |M̃y |2 + |M̃x |2]exp(iqr)dq, (A5)

as discussed in Mettus and Michels [94] and Erokhin
et al. [95]. Yet in the case of isotropy and equality of the
Cartesian magnetization components (which is at first ap-
proximation the case for low fields in our case) Eqs. (A4)
and (A5) are qualitatively identical. For homogeneously mag-
netized spheres it can be thus assumed that without particle
interactions the derived C(r ) equals Eq. (1). An ad hoc
interpretation of the extracted correlation functions is then
possible insofar that positive values for r > D (with D being
the core diameter) indicate on average a FM-like alignment,
and negative values an AFM-like alignment (anticorrelations),
of the particle moments. Anticorrelations due to dipolar stray
fields were for example observed by Erokhin et al. [95] in
the case of inhomogeneous bulk ferromagnets, which man-
ifested itself in negative values of the extracted correlation
functions C(r ).
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