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ARTICLE INFO ABSTRACT

Keywords: Background: The diagnosis of Parkinson's disease (PD) often remains a clinical challenge. Molecular neuroi-
Parkinson's disease maging can facilitate the diagnostic process. The diagnostic potential of metabolomic signatures has recently
Metabolomics been recognized.

Neuroimaging Methods: We investigated whether the joint data analysis of blood metabolomics and PET imaging by machine
Machine learning . . . e . . . . o

PET learning provides enhanced diagnostic discrimination and gives further pathophysiological insights. Blood

plasma samples were collected from 60 PD patients and 15 age- and gender-matched healthy controls. We
determined metabolomic profiles by gas chromatography coupled to mass spectrometry (GC-MS). In the same
cohort and at the same time we performed FDOPA PET in 44 patients and 14 controls and FDG PET in 51 patients
and 16 controls. 18 PD patients were available for a follow-up exam after one year. Both data sets were analysed
by two machine learning approaches, applying either linear support vector machines or random forests within a
leave-one-out cross-validation scheme and computing receiver operating characteristic (ROC) curves.

Results: In the metabolomics data, the baseline comparison between cases and controls as well as the follow-up
assessment of patients pointed to metabolite changes associated with oxidative stress and inflammation. For the
FDOPA and FDG PET data, the diagnostic predictive performance (DPP) in the ROC analyses was highest when
combining imaging features with metabolomics data (ROC AUC for best FDOPA + metabolomics model: 0.98;
AUC for best FDG + metabolomics model: 0.91). DPP was lower when using only PET attributes or only me-
tabolomics signatures.

Conclusion: Integrating blood metabolomics data combined with PET data considerably enhances the diagnostic
discrimination power. Metabolomic signatures also indicate interesting disease-inherent changes in cellular
processes, including oxidative stress response and inflammation.

1. Introduction the development of disease-modifying treatments, a more reliable di-

agnosis is regarded as an important intermediate step (Michell et al.,

Parkinson's disease (PD) is a complex neurodegenerative disorder,
influenced by a wide variety of genetic and environmental risk factors,
and characterized by heterogeneous motor and non-motor symptoms
(Kalia and Lang, 2015).

Currently, only symptomatic treatments are available for PD. For
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2004). However, to date, the commonly used clinical diagnostic criteria
for PD (UK Parkinson's Disease Society Brain Bank criteria) only achieve
around 76% specificity (Berg et al., 2013). The more recently refined
MDS Clinical Diagnostic Criteria for PD (Postuma et al., 2015) were
validated for the first time this year with 88.5% specificity, and include
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a number of clinical signs that can only be properly evaluated after
several years of disease duration (Postuma et al., 2018).

Previous efforts to improve the diagnosis for PD via objective mo-
lecular profiling methods (Bogdanov et al., 2008; Molochnikov et al.,
2012; Scherzer et al., 2007; Chikina et al., 2015; Shamir et al., 2017;
Potashkin et al., 2012; Santiago et al., 2013; Abdi et al., 2006; Ishigami
et al.,, 2012) and neuroimaging approaches (Antonini and DeNotaris,
2004; Brooks et al., 2003; Schindlbeck and Eidelberg, 2018) have led to
the identification of new measurable alteration patterns in PD; how-
ever, no sufficiently robust, reproducible, and clinically validated di-
agnostic biomarker signature could be derived from these studies. The
challenges that may have prevented a more successful development of
diagnostic biomarker models include the high heterogeneity of PD in
terms of clinical phenotypes, differences in genetic background, co-
morbidities, lifestyle and diet; the scarce availability of samples for the
early pre-symptomatic stages of PD; and a wide range of pre-analytical
confounding factors including sample storage duration and time delay
between sample collection, among others (Del Campo et al., 2012).
Moreover, previous studies on metabolome changes in PD have mainly
focused on systemic metabolic profiles alone. A combination with other
modalities, such as PET, has not been performed but could provide
important information about the relationship between local and sys-
temic changes, both in terms of diagnostic usefulness and under-
standing of pathophysiology.

Here, instead of proposing a new biomarker signature, we in-
vestigate the added value of integrating two previously explored bio-
marker approaches for predictive model building: Neuroimaging data
from positron emission tomography (PET) measurements using the
tracers 3,4-dihydroxy-6-'®F-fluoro-L-phenyl-alanine (FDOPA) and 2-
[fluorine-18]fluoro-2-deoxy-p-glucose (FDG), and GC-MS metabolome
data derived from blood plasma. PET imaging is used in clinical prac-
tice when differential diagnoses of parkinsonism are considered:
FDOPA detects degeneration of dopaminergic neurons, and FDG can
point towards atypical parkinsonian syndromes (Eshuis et al., 2009;
Tang et al., 2010). While it provides significant pathophysiological in-
sights (Antonini and DeNotaris, 2004), PET imaging is expensive and
time-consuming. Considered alone without other types of measure-
ments, it may still leave room for uncertainty. By contrast, metabo-
lomics profiling of blood biospecimens is a cost-effective measurement
approach requiring limited efforts by the patient. Previous metabo-
lomics studies using blood and cerebrospinal fluid samples have shown
significant metabolite alterations in PD patients compared to unaffected
controls (Bogdanov et al., 2008; Trezzi et al., 2017a), but the data sets
have been insufficient to assess the general predictive value of meta-
bolite profiles for PD diagnosis, and have not been assessed for their
complementary predictive value when combined with PET imaging
data. So it remains unknown to which extent an integrative approach
sheds further light on the pathophysiological cascade in PD.

In order to address these challenges, we present two types of ana-
lyses in this study: (1) A comparison of machine learning classification
results to distinguish PD patients from controls, when using FDOPA and
FDG PET imaging, GC-MS blood metabolomics data, or combination
sets of both; (2) a discussion of the reported blood metabolomics group
differences and changes over time in PD. The findings indicate that
future combinations of PET imaging and metabolomics may enhance
clinical decision algorithms.

2. Methods
2.1. Study cohort

60 PD patients were recruited at the University Hospital Cologne
(UHC) and collaborating community neurologist offices. All patients
were diagnosed by an experienced movement disorder specialist (CE).
Additionally, 15 age- and gender-matched neurologically healthy con-
trols were included. Their number was limited due to ethical
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considerations concerning the use of radioactive tracers in healthy
subjects, with restrictions imposed by the local ethics committee, the
federal office for radiation protection and German federal law. Criteria
for participation in the study were age over 40 years and absence of
dementia or conditions directly impairing brain function. In the PD
group, Hoehn and Yahr (H&Y) stage I-III and tolerability of complete
medical OFF-state (i.e. wash-out of dopaminergic medication, see
below) were required. A subset of 18 subjects from the PD group ad-
ditionally underwent a follow-up examination after one year. Clinical
characteristics at baseline were similar between the whole PD group
and the follow-up subgroup. The study was approved by the local ethics
committee of the Medical Faculty of the University of Cologne (ap-
proval number 12-270). Every subject provided informed consent to
participate in the study, in accordance with the declaration of Helsinki.
Patients and controls were matched by age, gender and body mass
index (BMI). Two patients had type 2 diabetes mellitus, one of them
insulin-dependent, and one patient had myasthenia gravis treated with
pyridostigmine and azathioprine. These patients were not excluded, but
checked for potential outliers across all analyses. No other significant
metabolic diseases were present. Of note, no subject was suffering from
renal insufficiency. Questionnaires about alcohol use and eating beha-
viour revealed similar scores for both groups. For a more detailed co-
hort description and group comparison, see Table 1.

2.2. Biospecimen collection and processing

Blood samples were collected at UHC on the morning of PET scan-
ning (either FDG or FDOPA, as they were performed on separate days).
Venipuncture sets of the “butterfly” type (Venofix A, 0.8 mm or
0,65mm (Braun, Germany) were used with K2-EDTA vacutainers.
Samples were visually checked for hemolysis, which would result in red
colouring of the samples due to increased free haemoglobin con-
centrations, but no hemolyzed sample was detected. For both PET
exams PD patients were in a complete medical OFF-state, defined as a
minimum of 12h without levodopa, amantadine and MAO-inhibitors,
and 72 h discontinuation of dopamine agonists. Any other medication
was taken as usual (except insulin, used by one patient, where dose was
adapted to fasting). Subjects were instructed expressively not to eat
after dinner the previous night, but to keep adequate hydration through
water or tea without sugar. For the FDOPA scans, 100 mg of carbidopa
were administered orally to inhibit peripheral metabolization of the
tracer. Of note, the blood samples were collected prior to this. Venous
blood was drawn from the cubital vein in a 10 mL EDTA vacuum tube.
Immediately after collection, tubes were inverted 8 times and placed on
ice. Processing at UHC was performed by the same person for all sub-
jects. Samples were centrifuged at 2000 xg for 10min at +4°C to

Table 1

Cohort characteristics. UPDRS part 3: United Parkinson's Disease Rating Scale,
H&Y: Hoehn & Yahr scale, LEDD: levodopa equivalent daily dose, BMI: Body
mass index, MMSE: Mini mental state exam, DEBQ: Dutch eating behaviour
questionnaire (van Strien et al., 1986), AUDIT: alcohol use disorder identifi-
cation test (Reinert and Allen, 2007). Group differences were compared using a
t-test for independent samples, means and standard deviations, Fisher's exact
test for gender distribution.

PD patients Unaffected controls P-value

N (female/male) 60 (19/41) 15 (8/7) 0.14
Age 65.7 = 9.0years 65.1 *+ 8.4years 0.831
UPDRS part 3 25.1 + 9.7 2.1 + 2.6 0.000
H&Y stage 23 £ 0.4 - -

Disease duration 5.2 + 3.9years - -

LEDD 488.0 + 272.4 - -

BMI 26.8 = 4.7 246 = 4.1 0.101
MMSE 28.3 = 1.9 289 = 1.0 0.288
DEBQ 68.6 = 20.6 729 = 21.1 0.472
AUDIT 3.4 =29 39 + 25 0.501
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separate the plasma, which was then homogenized by pipetting, di-
vided into 10 matrix tubes of 500 pL each and stored at —80 °C. For
transfer to the Integrated Biobank of Luxemburg (IBBL) the matrix
tubes were packed in dry ice.

2.3. Metabolite extraction and GC-MS data acquisition

An internal standard mixture, consisting of U-13C5 Ribitol (c
150 pg/mL; Omicron Biochemicals), Pentanedioic-d6 acid (c = 150 pg/
mL; C/D/N Isotopes Inc.) and Tridecanoic-d25 acid (¢ = 100 pg/mL; C/
D/N Isotopes Inc.), was prepared beforehand and used for extraction
and run evaluation as well as data normalization.

Plasma samples were centrifuged at 15000 xg for 3min at 4°C,
then 100 uL of the supernatant were transferred into a new 1.5 mL
Eppendorf tube and 40 pL of the internal standard mix were added.
First, a protein precipitation was performed, followed by a liquid-liquid
extraction as detailed in the Supplementary Materials. Polar and non-
polar metabolite extracts were measured via gas chromatography
coupled to mass spectrometry (GC-MS). A detailed description of the
metabolite extraction, the run settings and the subsequent GC-MS data
acquisition can be found in the Supplementary Materials.

2.4. GC-MS metabolomics data quality control, filtering and pre-processing

All GC-MS runs were quality controlled by internal standard eva-
luation. In addition, pool samples were generated by mixing equal
amounts of each sample, extracted identically to the samples of interest
and run every 8th sample within the GC-MS sequence. Sensitivity drops
and other measurement deviations are corrected by dividing (for each
sample) each metabolite by the average of the corresponding metabo-
lite in the 2 chronologically closest pools (Trezzi et al., 2017b).

All GC-MS chromatograms were processed using
MetaboliteDetector, v3.020151231 (Hiller et al., 2011). The software
package supports automatic deconvolution of all mass spectra. Com-
pounds were annotated by retention time and mass spectrum using an
in-house mass spectral library. The applied deconvolution settings are
listed in the Suppl. Materials (Table S1). Retention index calibration
was based on an C10-C40 even n-alkane mixture. Finally, the processed
GC-MS metabolomics data was scaled to a mean value zero and a
standard deviation of one.

2.5. PET imaging data acquisition

FDG- and FDOPA-PET scans were acquired in the same week,
1-2 days apart. Both scans were performed after overnight fasting and,
for PD patients, in a medical OFF-state, as described above in the
biospecimen collection section. After collection of the blood samples
and one hour before injection of FDOPA, 100 mg of Carbidopa were
administered orally to inhibit peripheral metabolization of the tracer.
Images were recorded on a Siemens high resolution research tomograph
(ECAT HRRT, Siemens CTI, Knoxville, TN, USA) with 207 transaxial
image planes and a voxel size of 1.219mm in 3D acquisition mode.
Subjects lay comfortably in a supine position in a quiet room with
dimmed light. Following a transmission scan for attenuation correction,
185 MBq of the respective tracer were injected. Recording started 20s
after injection and lasted 60 min for FDG and 90 min for FDOPA. An
average image of minute 20-60 (FDG), respectively 30-90 (FDOPA)
was generated and used for the following analysis.

2.6. PET imaging data pre-processing

Pre-processing of PET data was performed using SPM12 in Matlab
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Each subject's
averaged FDG and FDOPA images were co-registered, centred on the
anterior commissure, and aligned horizontally. Spatial normalization to
MNI space was performed using tracer-specific templates available on
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the SPM website. Normalized image dimensions were 91,/109/91
voxels (x/y/z) sized 2x2x2 mm. A 6 mm Gaussian smoothing filter was
applied to improve the signal-to-noise ratio. To test different levels of
denoising, all analyses were also tested with a further successive
Gaussian smoothing of 10 mm (resulting in a rounded combined
smoothing filter of 12 mm). The pre-processed data in Nifti-format was
loaded into the R statistical programming software using the R-package
‘Rniftilib’. For both FDOPA and FDG PET data, a global mean normal-
ization was applied to the pre-processed signal intensities. Due to a
large number of voxels with low variance across the measured signal
intensities for different subjects in the FDOPA PET dataset, only the top
1000 voxels with the highest variances were retained from this dataset
for machine learning analyses. For the FDG PET data, the variances
across signal intensities were more evenly spread across different
voxels, and therefore only voxels with a variance of zero were filtered
out.

2.7. Statistical analyses, machine learning and cross-validation

The empirical Bayes moderated t-statistic (Smyth, 2004) was ap-
plied to the pre-processed FDOPA and FDG PET imaging data in order
to identify and visualize the most significantly affected brain regions in
PD patients compared to controls in both datasets. A whole-brain voxel-
based approach was chosen for both methods, rather than the ratio of
specific vs. non-specific uptake ratio for FDOPA, thereby including
extrastriatal regions. Similarly, for the GC-MS metabolomics data,
dedicated statistical tests were applied for supervised feature selection,
including the Welch's t-test to compare baseline PD vs. control samples,
and the paired t-test to compare the second clinical visit for PD patients
vs. the baseline visit measurements. These tests were chosen to exploit
the approximate normal distribution of the data. For all statistical tests
applied, the resulting p-values were adjusted for multiple hypothesis
testing using the method by Benjamini and Hochberg (Benjamini and
Hochberg, 1995).

Machine learning models for supervised sample classification were
trained and tested on the PET imaging and metabolomics datasets using
both a 50% random training/test set split and a leave-one-out cross-
validation. Two different model building algorithms were tested and
compared: A linear support vector machine (SVM) (Vapnik, 1995) to
assess the separability between PD patients and controls via a linear
model, and a random forest algorithm (Breiman, 1999) (RF, with 250
decision trees) to investigate whether a hyper-rectangular partitioning
of the input feature space reflects the complexity of the data more
adequately than a linear approach. The predictive performance was
evaluated using Receiver Operating Characteristic (ROC) curves for the
50% training/test set split, and averaged accuracies for the cross-vali-
dation runs. The whole evaluation procedure was applied both to the
individual datasets and to combinations of their standardized attri-
butes, with two different Gaussian smoothing filters applied to PET
imaging data (see PET imaging data pre-processing).

3. Results and Discussion
3.1. Baseline metabolomics differential abundance analysis (PD vs. control)

The metabolomics profiles of 71 detected metabolites in blood were
compared at study baseline between 60 PD patients and 15 unaffected
controls by Welch's test, and statistics for the top-ranked metabolites
are reported in Table 2. Specifically, abundance levels of the unknown
metabolite R11446 showed a significant increase (FDR < 0.05). Sug-
gestive increases (here defined as nominal p-value < .05 and FDR <
0.5) were observed for urea, hexadecanoic acid and dodecanoic acid,
and the unknown metabolite RI1050 (see box plots in Fig. 1 and
Table 2). To rule out an impact of type two subjects with diabetes
mellitus on the observed group differences, we repeated the statistical
analysis without the two co-morbid diabetic PD patients, obtaining the
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Table 2

Fold-changes (FC), p-values and false-discovery rates (FDR) for the metabolites
with the most significant changes between PD and controls at baseline
(threshold p-value < .05).

Metabolite FC P FDR

RI 1446 1.270 0.001 0.039
Urea 1.262 0.005 0.140
RI 1050 1.324 0.006 0.140
Hexadecanoic acid 1.256 0.030 0.371
Dodecanoic acid 1.403 0.033 0.371

same qualitative results (Supplementary Table S2 and Supplementary
Fig. S3).

Interestingly, urea levels and accumulation of urea cycle related
metabolites have previously been linked to oxidative stress (Zhang
et al., 1999; Parmeggiani and Vargas, 2018). Specifically, urea treat-
ment of murine renal medullary collecting duct cells in culture was
associated with oxidative stress, as assessed by intracellular reduced
glutathione content, and led to increased levels of the oxidative stress-
responsive transcription factor Gadd153/CHOP (Zhang et al., 1999).
(Zhang et al., 1999). Dehydration causing urea increases can be ex-
cluded in our study as the recruited subjects maintained normal hy-
dration regimes. The increases of the fatty acids hexadecanoic acid and
octadecanoic acid in PD patients could result from an increased fat
breakdown into glycerol and fatty acids that could be either diet- or
pathology-related. In the latter case, fatty acid accumulation may be
associated with alterations in fatty acid oxidation, which have pre-
viously been proposed to play a key role in the pathophysiology of PD
(Ruipérez et al., 2010). Specifically, the increase in fatty acid oxidation
is thought to counteract progressive neuronal cell death by upregu-
lating neuroprotective agents, such as the brain-derived neurotrophic
factor (BDNF) (Burté et al., 2017). The unknown metabolites (RI11446,
RI1050) cannot be identified with the currently available mass spectral
libraries, and will require further elucidation. RI1050 shows only a low
Pearson correlation with the levodopa equivalent dose (r = 0.17,
p = .15); however, the correlation between RI1446 and the levodopa
equivalent dose is statistically significant (r = 0.28, p = .016). This
could reflect an association with disease severity, since RI1446 is also
correlated significantly with the UPDRS part 3 motor score (r = 0.26,
p = .02), but at this point we cannot exclude that RI1446 may be a by-
product of dopaminergic treatment.

3.2. Longitudinal metabolomics differential abundance analysis (PD second
clinical visit vs. PD at baseline)

In 18 PD patients, metabolomics profiles could be collected one year
after the baseline exam. They were compared with the baseline profiles
via the paired t-test. Out of 71 metabolites, 9 displayed suggestive

RI 1446

<
o

1.5

Normalized Signal
1.0

0.5

0.0

Ctrl IPD
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Table 3

Fold-changes (FC), p-values and false-discovery rates (FDR, adjusted according
to Benjamini and Hochberg (Benjamini and Hochberg, 1995)) for the top-
ranked metabolites comparing baseline to the second clinical visit. Only sug-
gestive changes with p < .05 and FDR < 0.5 were identified.

Metabolite FC P FDR

Threonic acid 1.353 0.001 0.059
Glycolic acid 1.258 0.002 0.059
Iminodiacetic acid 1.154 0.007 0.140
Glycerol 0.642 0.008 0.140
Succinic acid 1.161 0.029 0.317
Mannose 1.148 0.030 0.317
Glyceric acid 1.229 0.031 0.317
Citric acid 1.144 0.046 0.375
RI 1708 0.876 0.048 0.375

changes (here defined asp < .05, FDR < 0.5) at the follow-up exam.
The most significant changes were seen for threonic acid (p = .0009),
glycolic acid (p = .0017) and iminodiacetic acid (p = .0074 [Table 3
and Fig. 2]).

Interestingly, recent studies in a subclinical PD cohort have in-
dicated that patients with an ascorbic acid deficiency later on devel-
oped PD more frequently (Senarath Yapa, 1992).

Apart from this, minor changes were observed in mannose (p = .03,
FC = 1.15, FDR = 0.32), which could result from decreased levels of
mannose binding lectin (MBL) in response to inflammation in PD as
discussed previously (Trezzi et al., 2017a). MBL plays a key role in
innate immune system recognition of pathogenic agents. Thus, the in-
creased free mannose found in this study might reflect perturbed im-
mune signals in PD. This hypothesis is in line with previous studies
proposing a mechanistic link between reduced MBL levels and the most
common neurodegenerative disorder, Alzheimer's disease (Sjolander
et al., 2013).

In a previous independent metabolomics-based study involving
members of our research group, we had also identified increased
threonic acid levels, but in cerebrospinal fluid (CSF) from early-stage
PD patients compared to healthy control subjects from the DeNoPa
cohort (Trezzi et al., 2017a). Higher levels of threonic acid, an ascorbic
acid catabolite, may reflect an increased oxidative stress response in PD
associated with lower dehydroascorbic acid levels. Moreover, in the
previous analysis of CSF samples we also observed increased levels of
mannose, as a marker of an induced inflammatory response. Although
the metabolomics study presented here differs from the prior in-
vestigations on the DeNoPa cohort both in terms of the studied body
fluid (blood plasma vs. CSF) and the disease stage (mid-stage PD vs.
early-stage PD), the observed trends in the changes for threonic acid
and mannose across the two studies may suggest that these metabolites
already have increased levels in early stages of PD, which progressively
increase during the course of the disease. Further longitudinal
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Fig. 1. Box plot visualizations of the normalized signal intensities for top-ranked differentially abundant metabolites in PD vs. unaffected controls.
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Fig. 2. Box plot visualizations for the top-ranked
metabolites with differential abundance in PD pa-
tients comparing the second clinical visit to the
baseline examination (left: threonic acid, right: gly-
colic acid). For threonic acid, one potential outlier
sample was observed (top left), corresponding to a
patient taking a larger than average number of

5 medications for conditions other than PD. For the
3 two patients who displayed decreasing threonic acid
‘ ° levels from baseline to visit 2, no special clinical

characteristics were observed. For glycolic acid, two
observed potential outlier samples (top right) did not
display any specific clinical characteristics and may
result from a larger than average biological variation
for this metabolite.

Baseline Visit2 Baseline

measurements on independent cohorts and at shorter time intervals will
be required to confirm these alteration trends.

3.3. Differential feature analysis of FDOPA and FDG PET imaging data

A voxel-wise group comparison was first performed between PD
patients' and controls' PET signals. We used the empirical Bayes mod-
erated t-statistic across all voxels with non-zero variance. For FDOPA,
two voxel clusters located bilaterally in the posterior part of the pu-
tamen displayed significant differences after multiple hypothesis testing
adjustments (FDR < 0.05, see red areas highlighted in Fig. 3). This
finding is a well-known feature of PD as it reflects the loss of dopami-
nergic terminals projecting from the substantia nigra (SN), pars com-
pacta (SNc) to the posterior putamen subregion of the striatum
(Gallagher et al., 2011; Jokinen et al., 2009; O'Brien et al., 2004).

By application of the same method to the FDG-PET dataset, we
identified two clusters in the cerebral peduncles of the lower midbrain,
where the SNc is located (see green areas highlighted in Fig. 3). As
degeneration of the cell bodies in SNc leads to the onset of motor
symptoms (Gallagher et al., 2011), it seems intuitive to find hypome-
tabolism in this region at a middle disease stage of our patients (Eggers
et al., 2009).

3.4. Machine learning analyses

In order to investigate the predictive power of the collected data for
separating PD patients from unaffected controls, machine learning

Il FDOPA
[ FDG

Visit2

models were built and evaluated. The two considered modelling ap-
proaches, support vector machines (SVM) and random forests (RF),
were applied separately to the metabolomics data and the FDOPA and
FDG PET imaging data, with and without applying the successive
10 mm Gaussian smoothing, as well as to the combined imaging and
metabolomics data after standardization.

The average classification accuracies achieved by different models
within a leave-one-out cross-validation (LOOCV) are shown in Table 4,
and ROC curve visualizations of the performances for different SVM
models in a 50% training/test set split of data are provided in Fig. 4.

Importantly, both for the FDOPA and FDG PET data, the predictive
performance given by the area under the ROC curve (AUC) was highest
when combining standardized imaging features with those from the
metabolomics data (SVM AUC for FDOPA + metabolomics: 0.98; SVM
AUC for FDG + metabolomics: 0.91). By contrast, the performance was
lower when using only the respective PET attributes (AUC for FDOPA:
0.94, AUC for FDG: 0.8) or only the metabolomics data (AUC: 0.66).
Similar results were obtained when using LOOCV runs to determine
average accuracies for different modelling approaches: In most cases
the highest accuracies were obtained for combinations of neuroimaging
and metabolomics features as input data (FDOPA PET + metabolomics
- avg. accuracy using random forest: 91.4%, FDG PET + metabolomics
— avg. accuracy: 77.3%), with the exception of a random forest model
for the metabolomics data, providing a slightly higher avg. accuracy
(80%, see Table 1) than the combination of metabolomics with the FDG
PET data, which may be explained by a larger variation of the perfor-
mance measures on this dataset. The improvement of discrimination

y Fig. 3. Glass brain visualization highlighting the
brain regions with the most significant changes (false
discovery rate (FDR) < 0.05) in signal intensities in
FDOPA PET (red regions) and FDG PET (green re-
gions) measurements for PD patients compared to
unaffected controls using the empirical Bayes mod-
erated t-statistic. (For interpretation of the references
to colour in this figure legend, the reader is referred
to the web version of this article.)
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Table 4
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Predictive performance for PD vs. control classification using FDOPA PET, FDG PET and metabolomics data, or combinations of multiple of these input datasets (see
first column). Metabolomics data was available from 60 patients and 15 controls, FDOPA PET data from a subset of 44 patients and 14 controls and FDG PET data
from 51 patients and 16 controls (for one control subject no biomaterial was available for metabolomics). Linear Support Vector Machines (SVM) and Random Forest
classifiers with 250 trees were used for classification, with or without a successive 10 mm Gaussian smoothing of the PET datasets (see column 2, the additional
Gaussian smoothing is highlighted by the abbreviation “GS”). The obtained average classification accuracy using leave-one-out cross-validation is shown in the last

column.
Data Prediction method (GS = with successive 10 mm Gaussian smoothing) Average accuracy SENS SPEC TP TN FP FN
Metabolomics SVM 69.3% 78.3% 33.3% 47 5 10 13
Metabolomics Random Forest 80.0% 98.3% 6.6% 59 1 14 1
FDG SVM 52.2% 64.7% 12.5% 33 2 14 18
FDG SVM (GS) 70.1% 78.4% 43.7% 40 7 9 11
FDG Random Forest 73.1% 94.1% 6.3% 48 1 15 3
FDG Random Forest (GS) 74.6% 94.1% 12.5% 48 2 14 3
FDG + Metabolomics SVM 60.6% 70.6% 26.7% 36 4 11 15
FDG + Metabolomics SVM (GS) 71.2% 80.3% 40.0% 41 6 9 10
FDG + Metabolomics Random Forest 77.3% 98.0% 6.7% 50 1 14 1
FDG + Metabolomics Random Forest (GS) 74.2% 94.1% 6.7% 48 1 14 3
FDOPA SVM 79.3% 88.6% 50% 39 7 7 5
FDOPA SVM (GS) 81.0% 93.2% 64.3% 41 9 5 3
FDOPA Random Forest 84.5% 88.6% 71.4% 39 10 4 5
FDOPA Random Forest (GS) 81.0% 88.6% 57.1% 39 8 6 5
FDOPA + Metabolomics SVM 84.5% 88.6% 71.4% 39 10 4 5
FDOPA + Metabolomics SVM (GS) 84.5% 88.6% 71.4% 39 10 4 5
FDOPA + Metabolomics Random Forest 91.4% 93.1% 85.7% 41 12 2 3
FDOPA + Metabolomics Random Forest (GS) 91.4% 93.1% 85.7% 41 12 2 3

between healthy controls and IPD patients when using combined FDOPA
PET imaging and metabolomics in contrast to FDOPA PET alone is
limited. This may be due in part to a ceiling effect, since FDOPA PET by
itself already reaches an AUC close to the maximum of 1 (AUC: 0.94).
However, the improvement obtained by combining FDOPA and meta-
bolomics (AUC: 0.98) shows that metabolomic profiles include in-
dependent predictive information. On average 4 misclassifications out
of 100 subjects would be avoided with the improved model, which is
relevant in clinical practice.

From a methodological perspective, applying the successive 10 mm
Gaussian smoothing to the imaging data provided superior results
compared to using only the default 6 mm smoothing in most but not all
cases. Moreover, using a random forest approach for model building
provided better or similar prediction results in comparison to the linear
support vector machine in all cases where the same input data was
used. Thus, our analyses suggest that the application of a larger
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Gaussian smoothing filter to neuroimaging data in combination with a
random forest classification approach is the method of choice for this
type of data.

Models derived from FDOPA PET data generally reached higher
average cross-validated accuracies (see Table 4) and AUC values (see
Fig. 4) than FDG PET derived models. Moreover, when testing a random
forest model using the combined FDOPA and FDG PET features, an
average accuracy of 78.9% was obtained, in between the accuracies
obtained for the models trained on the separated data sources, sug-
gesting that the predictive features from the FDOPA PET can only partly
compensate for the lower predictive information content of the FDG
PET data. Since FDOPA accumulates in presynaptic vesicles of dopa-
minergic axon terminals almost exclusively in the striatum, a clearly
weakened signal is seen in the majority of mid-stage PD cases (Eshuis
et al., 2009). By contrast, FDG reflects neuronal activity in general, and
while there are distinct FDG changes in PD, they occur as a more
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Fig. 4. ROC curve visualizations of the predictive performances for SVM models created using only PET imaging data (green, left: FDOPA PET, right: FDG PET) only
metabolomics data (red), and metabolomics data combined with PET imaging data (blue, left: FDOPA PET + metabolomics, right: FDG PET + metabolomics). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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complex covariance pattern rather than absolute local changes (Brooks
et al., 2003).

In order to explore the usefulness of the collected data for esti-
mating a quantitative disease outcome, we evaluated to which extent
the UPDRS part 3 (motor score), assessed in the off-medication state,
could be predicted from the data (Goetz et al., 2008). As the Random
Forest algorithm with 250 trees had provided the best prediction results
in the previous analyses, regression models were trained to estimate the
motor score sum from the FDOPA and FDG PET data. The predicted
scores were compared to the real motor scores by Pearson correlation
(see Suppl. Fig. S2 and S3). Significant correlations of r = 0.43
(p = .0009) for FDOPA PET and r = 0.60 (p = 7.3E-06) for FDG PET
were obtained, showing that the imaging data contains significant in-
formative value for estimating a PD patient's overall motoric perfor-
mance. While the correlations were significant for both types of PET
data, the relative difference between these two correlations was not
significant. Moreover, applying the same regression approach to the
metabolomics dataset did not result in a significant Pearson correlation
with the real motor scores (p = .49). Independent analyses on distinct
cohorts will be necessary to confirm these indicative trends.

4. Conclusions

The complex, multifactorial nature of Parkinson's disease (PD) is
reflected by a wide range of measurable alteration patterns in human
tissues and body fluids, as illustrated by the data presented here and in
other independent studies. Most of the previous work on metabolic
biomarker models for PD has focused on a single biospecimen or type of
measurement. While our new analysis is based on a limited set of
measurements and will require further validation on other cohorts, its
integration of two very diverse data types, blood metabolomics and
brain PET imaging data, is unique. The results suggest that capturing
different types of PD-associated changes via highly diverse readouts can
increase the predictive performance of such models and also sheds
further light on the ongoing pathophysiological cascades. Specifically,
the observed metabolite alterations provide pointers to the injury-re-
sponse processes involved in the disease, as we found metabolite
changes associated with oxidative stress and inflammation. Although to
date predictors derived from metabolomics datasets are less performant
than those derived from neuroimaging data, metabolomic profiling
could give diagnostic clues when PET is not available or would not be
practical. The scope of this study was however limited to investigating
the relative difference in cross-validated predictive performance be-
tween using PET data in isolation and combining it with metabolomics.
While the available sample sizes provided sufficient statistical power to
identify significant differences between patients and controls in both
neuroimaging and metabolomics analyses, further measurements are
warranted in order to identify PD-associated alterations with smaller
effect size and to substantiate the generalizability of the predictive
models. Thus, in order to develop and validate a new biomarker ma-
chine learning model as an improved diagnostic test, the most stable
and generalizable predictive features will still need to be identified in
independent cohorts. Future extensions of this work should also include
samples from subjects with clinical diagnoses similar to PD, e.g. from
cohorts focusing on atypical forms of parkinsonism and essential
tremor. Furthermore, the added predictive value of metabolomics data
should be assessed in integrative analyses with other relevant types of
neuroimaging data, e.g. dopamine transporter SPECT imaging, which is
more commonly applied in practice than FDOPA PET. Combined with
known PD-associated risk factors or prodromal symptoms, such as REM
sleep behaviour disorder, hyposmia and constipation (Noyce et al.,
2014), refined metabolomics profiling could ultimately be helpful in
selecting subjects for disease modifying studies. Thus, while significant
progress is still warranted for increasing the accuracy and robustness of
predictive machine learning models for PD, our study demonstrates that
metabolic signatures can help distinguish PD patients from controls.
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