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PROP OF RIBBON HYPERGRAPHS AND

STRONGLY HOMOTOPY INVOLUTIVE LIE BIALGEBRAS

SERGEI MERKULOV

Abstract. For any integer d we introduce a propRHrad of d-oriented ribbon hypergraphs (in which “edges”

can connect more than two vertices) and prove that there exists a canonical morphism Holieb⋄d −→ RHrad
from the minimal resolution Holieb⋄d of the (degree shifted) prop of involutive Lie bialgebras into the prop
of ribbon hypergraphs which is non-trivial on each generator of Holieb⋄d. As an application we show that
for any graded vector space W equipped with a family of cyclically (skew)symmetric higher products,

Θn : (⊗nW [d])Zn
−→ K[1 + d], n ≥ 1,

the associated vector space of cyclic words Cyc(W ) = ⊕n≥0(⊗
nW )Zn

has a combinatorial Holieb⋄d-structure.
As an illustration we construct for each natural number N ≥ 1 an explicit combinatorial strongly homotopy
involutive Lie bialgebra structure on the vector space of cyclic words in N graded letters which extends the
well-known Schedler’s necklace Lie bialgebra structure from the formality theory of the Goldman-Turaev
Lie bialgebra in genus zero.

1. Introduction

1.1. Involutive Lie bialgebras. Lie bialgebras were introduced by Drinfeld in [D1] in his studies of Yang-
Baxter equations and the deformation theory of universal enveloping algebras. Nowadays (involutive) Lie
bialgebras are used in many different areas of mathematics — in algebra, geometry, string topology, contact
topology, theory of moduli spaces of algebraic curves, etc. (see, e.g., articles and books [AKKN1, AKKN2,
Ba1, CFL, Ch, CS, D1, D2, DCTT, ES, Ma, MW1, Tu, S] as well as references cited there). The construction
of a minimal resolution of the prop of involutive Lie bialgebras turned out to be a rather non-trivial problem
which was solved rather recently in [CMW]. It is a remarkable fact that the deformation theory of that prop
is controlled by the mysterious Grothendieck-Teichmüller group [MW2] which appears in many different
areas of mathematics and explains, perhaps, the richness of important mathematical problems which involve
involutive Lie bialgebras.

The main result of this paper is an explicit construction of a large family of highly non-trivial strongly
homotopy involutive Lie bialgebras using a new prop of ribbon hypergraphs HGrad, ∀d ∈ Z. The structure
of the paper is as follows: in §2 we remind basic facts about the prop of (degree 1− d shifted) involutive Lie
bialgebras Lieb⋄d and its minimal resolution Holieb⋄d, and their interrelations with HoBVcom

d -algebras (see
[CMW] for more details and proofs). In §3 we describe in detail the prop of ribbon hypergraphs which is a
rather obvious extension of the prop of ribbon graphs introduced in [MW1], and then construct its canonical
representation in the space of cyclic words Cyc(W ) associated with any graded vector spaceW equipped with
a family of cyclically (skew)symmetric higher products (which again is a rather straightforward generalization
of a similar construction in [MW1]). In §4 we explain one of the main (and not that straightforward) results
of this paper — a construction of an explicit morphism of props Holieb⋄d → RHrad which is non-trivial on
every generator of Holieb⋄d. This result gives us a large family of explicit strongly homotopy involutive Lie
bialgebras; in particular, for any natural number N ∈ N≥1 we show in §5 an explicit strongly homotopy
involutive Lie bialgebra structure on the vector space of cyclic words in Z-graded formal letters which extends
the well-known Schedler’s necklace Lie bialgebra structure [S] from the formality theory of the Goldman-
Turaev Lie bialgebra in genus zero.

1.2. More details on main results and motivation. Let us discuss in more detail one particular

geometric example of an involutive Lie bialgebra which motivated much the present work. Let K̂〈π1(Σ0,N+1)〉
stand for the completed group algebra of the fundamental group π1(Σ0,N+1,K) of the genus zero Riemann
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surface Σ0,N+1 with N +1 boundary components, N ≥ 2, and H1(Σ0,N+1) for its first homology group over
K. Let

ĝ[Σ0,N+1] :=
K̂〈π1(Σ0,N+1)〉

[K̂〈π1(Σ0,N+1), K̂〈π1(Σ0,N+1)〉]

be the (completed) vector space spanned over a field K of characteristic zero by free homotopy classes of
loops in Σ0,N+1. Using intersections and self-intersection of loops Goldman and Turaev [G, Tu] made this
vector space into a filtered involutive Lie bialgebra1. Let

grĝ[Σ0,N+1] :=
⊗̂•H1(Σ0,N+1,K)

[⊗̂•H1(Σ0,N+1,K), ⊗̂•H1(Σ0,N+1,K)]
≃ Cyc(WN ) :=

∏

n≥0

(⊗nWN )Zn

be the associated graded involutive Lie bialgebra where

WN = spanK 〈x1, . . . xN 〉

stands for the vector spaces generated by N formal letters x1, . . . , xN (corresponding to the standard gener-
ators of H1(Σ0,N+1,K)). The formality theorem [AKKN1, AN, Ma] establishes a highly non-trivial isomor-
phism of Lie bialgebras

ĝ[Σ0,N+1] −→ grĝ[Σ0,N+1]

which depends on the choice of a Drinfeld associator. Thus the Goldman-Turaev Lie bialgebra structure can
be understood in terms of its much simpler graded associated version which admits a purely combinatorial
description. In fact, it admits two purely combinatorial descriptions. The first one is due to the general
construction by Schedler [S] which associates to any quiver a so called necklace Lie bialgebra; the particular
involutive Lie bialgebra structure on grĝ[Σ0,N+1] ≃ Cyc(WN ) is the necklace one corresponding to the
following quiver

(1) • •

•
•

•

•

•
•

•

//

��❄
❄❄

❄

��
��⑧⑧
⑧⑧

oo

__❄❄❄❄

OO
??⑧⑧⑧⑧

with N legs. Put another way, for any natural number N ≥ 2 Schedler’s construction2 gives us an involutive
Lie bialgebra structure on Cyc(WN ) which admits a nice geometric interpretation.

The second combinatorial description of the necklace Lie bialgebra structure on Cyc(WN ) involves the d = 1
case of a family of props of ribbon graphs RGrad, d ∈ Z, which come equipped with canonical morphisms
[MW1]

ρ : Lieb⋄d −→ RGrad

from the prop of involutive Lie bialgebras; the map ρ is non-trivial on both Lie and coLie generators of
Lieb⋄d (which are assigned homological degree 1 − d so that the case d = 1 corresponds to the ordinary Lie
bialgebras). It was shown in [MW1] that for any Z-graded vector space V equipped with a pairing (which
for d = 1 is nothing but a skew-symmetric scalar product in W )

Θ : ⊙2(W [d]) −→ K[1 + d]

there is an associated representation

ρΘ : RGrad −→ EndCyc(W )

of the prop of ribbon graphs in the vector space

Cyc(W ) :=
∏

n≥0

(⊗nW )Zn

1Strictly speaking this structure was originally defined modulo constant loops, i.e. on the quotient space ĝ[Σ0,N+1]/K, but
a choice of framing on Σ0,N+1 permits us to extend that structure to the whole space. Put another way, the induced Lie
bialgebra structure on ĝ[Σ0,N+1] is canonical only on the quotient space Cyc•(WN )/K11, 11 being the empty cyclic word, and

its extension to the whole space depends on some additional choices.
2It is worth emphasizing that Schedler’s construction depends on the choice of a basis (x1, . . . , xN ) in WN , i.e. it depends

essentially only on the natural number N .
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spanned by cyclic words in elements of W , and hence there is an induced via the composition ρΘ ◦ ρ an
involutive Lie bialgebra structure in Cyc(W ). The vector space WN has no natural pairings so we can not
apply this construction immediately to get the necklace Lie bialgebra structure on WN . However a certain
“doubling” trick explained in §2.5.1 does the job and gives us a canonical representation

(2) ρN : RGra1 −→ EndCyc(WN )

which induces via the composition ρN ◦ρ the required necklace Lie bialgebra structure on Cyc(WN ) (modulo
terms depending on a particular choice of framing on Σ0,N+1, i.e. both structures fully agree on the quotient
space Cyc(WN )/K11, where 11 stands for the empty cyclic word; in fact, the particular map ρN we construct
in §2.5.1 corresponds to the blackboard framing as was explained to the author by Yusuke Kuno [Ku].).

In this paper we introduce, for each integer d ∈ Z, a prop of ribbon hypergraphs HGrad and show that there
is a morphism of dg props

ρ⋄ : Holieb⋄d −→ HGrad

which is non-trivial on every generator of Holieb⋄d, the minimal resolution of the prop Lieb⋄d. There is a
natural commutative diagram

Holieb⋄d

p

��

ρ⋄

// HGrad

q

��
Lieb⋄d

ρ // RGrad

where the left vertical arrow p is a natural quasi-isomorphism and the right arrow q is a “forgetful” map
sending to zero all ribbon hypergraphs with at least one non-bivalent hyperedge.

Given any graded vector space W equipped with cyclically (skew)invariant maps

(3) Θn : ⊙n(W [d])Zn
−→ K[1 + d], n ∈ N≥1,

there is a canonical representation

ρΘ• : HGrad −→ EndCyc(W )

of the prop of ribbon hypergraphs, and hence a canonical strongly homotopy involutive Lie bialgebra structure

ρΘ• ◦ ρ
⋄ : Holieb⋄d −→ EndCyc(W )

on Cyc(W ). If all Θn vanish except for n = 2 we recover the previous result from [MW1]. Using multi-tuple
generalization of the “doubling” trick used in the construction of representation (2) we construct an explicit
highly non-trivial strongly homotopy involutive Lie bialgebra structure,

ρ̂N : Holieb⋄1 −→ End
Cyc(ŴN )

in the vector space generated by cyclic words in Z-graded letters {x1[−p], . . . , xN [−p]}p∈N, where xi[−p]
stands for the formal letter xi to which we assigned homological degree p. When all letters are concentrated
in degree zero, one recovers Schedler’s necklace Lie bialgebra associated to the quiver (1). We conjecture
that this family of Holieb⋄1-algebras is related to the equivariant string topology in manifolds of dimensions
D ≥ 3.

Some notation. The set {1, 2, . . . , n} is abbreviated to [n]; its group of automorphisms is denoted by Sn.
The trivial (resp., sign) one-dimensional representation of Sn is denoted by 11n (resp., sgnn). The cardinality
of a finite set A is denoted by #A. If V = ⊕i∈ZV

i is a graded vector space, then V [n] stands for the graded
vector space with V [n]i := V i+n; for v ∈ V i we set |v| := i.

For a prop(erad) P we denote by P{n} a prop(erad) which is uniquely defined by the following property:
for any graded vector space W a representation of P{n} in W is identical to a representation of P in W [n].

For a module V over a group G we denote by VG the vector space of coinvariants: V/{g(v)−v | v ∈ V, g ∈ G}
and by V G the subspace of invariants: {∀g ∈ G : g(v) = v, v ∈ V }. We always work over a field K of
characteristic zero so that if G is finite, then these spaces are canonically isomorphic, VG

∼= V G.
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2. Strongly homotopy involutive Lie bialgebras as
commutative BV algebras and vice versa

2.1. Reminder on the prop of strongly homotopy (involutive) Lie bialgebras [CMW]. Let

Liebd := Free〈E〉/〈R〉,

be the quotient of the free prop(erad) generated by an S-bimodule E = {E(m,n)}m,n≥1 with

E(m,n) :=





111 ⊗ sgn⊗d
2 [d− 1] = span

〈
⑧⑧❄❄

◦
21

= (−1)d ⑧⑧❄❄
◦

12
〉

if m = 2, n = 1

sgn⊗d
2 ⊗ 111[d− 1] = span

〈
❄❄⑧⑧◦
21

= (−1)d ❄❄⑧⑧◦
12

〉
if m = 1, n = 2

0 otherwise

by the ideal 〈R〉 generated by the following relations

(4) R :





◦⑧⑧
❄❄◦
☎☎

❁❁
3

21

+ ◦⑧⑧
❄❄◦
☎☎

❁❁
2

13

+ ◦⑧⑧
❄❄◦
☎☎

❁❁
1

32

,
◦❄❄⑧⑧◦❂❂✁✁ 3
21

+
◦❄❄⑧⑧◦❂❂✁✁ 2
13

+
◦❄❄⑧⑧◦❂❂✁✁ 1
32

⑧⑧❄❄
◦
◦
✝✝ ✽
✽

21

1 2

− ✞✞
✼✼
◦
◦✷✷

1
2

2

1

− (−1)d ✞✞
✼✼
◦
◦✷✷

2
1

2

1

− ✞✞
✼✼
◦
◦✷✷

2
1

1

2

− (−1)d ✞✞
✼✼
◦
◦✷✷

1
2

1

2

It is called the prop of (degree shifted) Lie bialgebras.

The prop of involutive Lie d-bialgebras is defined similarly,

Lieb⋄d := Free〈E〉/〈R⋄〉

but with a larger set of relations,

R⋄ := R
⊔

◦

◦
⑧⑧

❄❄
❄❄⑧⑧

A representation ρ : Liebd → EndV (resp., ρ : Lieb⋄d → EndV ) in a graded vector space V provides the latter
with two operations

[ , ] := ρ
(

❄❄⑧⑧◦
)
: ⊙2(V [d]) → V [1 + d], △:=

(
⑧⑧❄❄

◦
)
: V [d] −→ ⊙2(V [d])[1 − 2d]

which satisfy the compatibility conditions controlled by the relations R (resp. R⋄). If d = 1, it is precisely
the prop of ordinary involutive Lie bialgebras and is often denoted by Lieb⋄.

The properads behind the props Liebd and Lieb⋄d are Koszul so that their minimal resolutions, Holiebd and
respectively Holieb⋄d, are relatively “small” (see [CMW, MaVo, V] and references cited there). The dg prop
Holiebd is generated by the (skew)symmetric corollas of homological degree 1− d(m+ n− 2)

◦

❑❑❑❑❑
❃❃❃❃
. . .✁✁✁✁

sssss

σ(1) σ(2) σ(m)

ss
ss
s

✁✁
✁✁
. . .❃
❃❃

❃
❑❑

❑❑
❑

τ(1) τ(2) τ(n)

= (−1)d(σ+τ) ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

∀σ ∈ Sm, ∀τ ∈ Sn

The differential is given on the generators by

(5) δ ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

=
∑

[1,...,m]=I1⊔I2
|I1|≥0,|I2|≥1

∑

[1,...,n]=J1⊔J2
|J1|≥1,|J2|≥1

± ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

❦❦❦❦❦❦❦❦

︷ ︸︸ ︷I1

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

︸ ︷︷ ︸
J1

◦

▲▲▲▲▲▲
❃❃❃❃
. . . ✟✟✟✟

✈✈✈✈✈

︷ ︸︸ ︷I2

⑦⑦
⑦⑦
. . . ✺

✺✺
✺

●●
●●

●

︸ ︷︷ ︸
J2
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where the signs on the r.h.s are uniquely fixed by the fact that they all equal to +1 for d odd. On the other
hand, the dg prop Holieb⋄d is generated by the (skew)symmetric corollas of degree 1− d(m+ n+ 2a− 2),

a '!&"%#$
tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

1 2 n

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .1 2 m

= (−1)(d+1)(σ+τ) a '!&"%#$
tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

τ(1) τ(2) τ(n)

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .σ(1) σ(2) σ(m)

∀σ ∈ Sm, ∀τ ∈ Sn,

where m+ n+ a ≥ 3, m ≥ 1, n ≥ 1, a ≥ 0; the differential is given by

(6) δ a '!&"%#$
tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

1 2 n

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .1 2 m

=
∑

l≥1

∑

a=b+c+l−1

∑

[m]=I1⊔I2
[n]=J1⊔J2

±
b '!&"%#$

c '!&"%#$

...

...
︸ ︷︷ ︸

J1

︷︸︸︷I1

...

...︸ ︷︷ ︸
J2

︷ ︸︸ ︷I2

...❏❏❏❏❏❏
❉❉❉❉❉

✯✯✯

✡✡
✡✡
✔✔
✔ ✹✹
✹✹

✹✹✹✹
✯✯✯ ✡✡✡✡
✬✬ ❏❏❏
❏

❖❖❖
❖❖

where the summation parameter l counts the number of internal edges connecting the two vertices on the
r.h.s., and the signs are fixed by the fact that they all equal to +1 for d even. If d = 1, it is called the prop
of strongly homotopy involutive Lie bialgebras and is denoted by Holieb⋄.

There is a canonical injection of propsHoliebd → Holieb⋄d sending a generatorHoliebd into the corresponding
generator of Holieb⋄d with a = 0.

Sometimes it is more suitable to work with the degree shifted version Holieb⋄d{d} of the prop Holieb⋄d which
is defined uniquely by the following property: a representation of Holieb⋄d{d} in a vector space V is identical
to the representation of Holieb⋄d in V [d]. The prop Holieb⋄d{d} is generated by the symmetric corollas of
degree 1− 2d(n+ a− 1),

a '!&"%#$
tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

1 2 n

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .1 2 m

= a '!&"%#$
tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

τ(1) τ(2) τ(n)

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .σ(1) σ(2) σ(m)

∀σ ∈ Sm, ∀τ ∈ Sn,

The differential is given by the above formula with the slightly ambiguous symbol ± replaced by +1 (i.e.
omitted); hence the sign rules become especially simple in this case.

2.2. Holieb⋄d-algebras as Maurer-Cartan elements [CMW]. According to the general theory [MV], the
set of Holieb⋄d{d}-algebra structures in a dg vector space (V, δ) can be identified with the set of Maurer-
Cartan elements of a graded Lie algebra,

(7) g
⋄
V := Hom(V, V )[1] ⊕ Def

(
Holieb⋄d{d}

0
→ EndV

)
,

controlling deformations of the trivial morphism which sends all the generators of Holieb⋄d{d} to zero in
EndV . The summand Hom(V, V )[1] takes care about deformations of the given differential δ in V . Using the
explicit description of the dg prop Holieb⋄d{d} given at the end of the previous subsection, one can identify
g
⋄
V as a Z-graded vector space with

g
⋄
V =

∏

a≥0,m,n≥1

HomSm×Sn

(
Idm ⊗ Idn[2d(n+ a− 1)− 1],Hom

(
V ⊗n, V ⊗m

))
[−1]

=
∏

a≥0,m,n≥1

Hom
(
(V [2d])⊙n, V ⊙m

)
[−2da+ 2d]

Assume V has a countable basis (x1, x2, . . .), and let (p1, p2, ...) stand for the associated set of dual generators
of Hom(V [2d],K) (with |pi|+ |xi| = 2d), then the degree shifted vector space g⋄V [−2d] can be identified with
the subspace of a graded commutative ring

g
⋄
V [−2d] ⊂ K[[xi, pi, ~]]

spanned by those formal power series f(x, p, ~) which satisfy the conditions

f(x, p, ~)|xi=0 = 0, f(x, p, ~)|pi=0 = 0
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i.e. which belong to the maximal ideal generated by the products xip
j . Here ~ is a formal parameter3 of

degree 2d. The algebra K[[xi, pi, ~]] has a classical associative star product given explicitly (up to standard
Koszul signs) as follows

f ∗~ g :=

∞∑

k=0

~k

k!

∑

i1,...,ik

±
∂kf

∂pi1 · · · ∂pik
∂kg

∂xi1 · · ·∂xik

The Lie brackets in the degree shifted deformation complex g
⋄
V [−2d] are then given by [DCTT]

[f, g] =
f ∗~ g − (−1)|f ||g|g ∗~ f

~

Hence Holieb⋄d{d}-algebra structures in a graded vector space V (with a countable basis) are in 1-1 corre-
spondence with homogeneous formal power series Γ ∈ g

⋄
V [−2d] of degree 1 + 2d satisfying the equation

(8) Γ ∗~ Γ =
∞∑

k=1

~k−1

k!

∑

i1,...,ik

±
∂kΓ

∂pi1 · · · pik
∂kΓ

∂xi1 · · · ∂xik

= 0,

This compact description of all higher homotopy involutive Lie bialgebra operations in V is quite useful in
making an explicit link between Holieb⋄d algebras and commutative BV -algebras which is outlined next.

2.3. Commutative Batalin-Vilkovisky d-algebras. A commutative Batalin-Vilkovisky d-algebra or,
shortly, a HoBVcom

d -algebra is, by definition [Kr], a differential graded commutative algebra (V, δ) equipped
with a countable collections of homogeneous linear maps, {∆a : V → V, |∆a| = 1− 2da}a≥1, such that each
operator ∆a is of order ≤ a+ 1 (with respect to the given multiplication) and the equations,

(9)

n∑

a=0

∆a ◦∆n−a = 0, with ∆0 := −δ

hold for any n ∈ N. These equations are equivalent to one equation,

∆2
~ = 0

for the formal power series of operators

∆~ :=
∞∑

a=0

~a∆a,

where the formal power variable ~ is assigned degree 2d. Let us denote by HoBVcom
d the dg operad governing

commutative BV d-algebras. This operad is the quotient of the free operad generated by one binary operation

of degree zero ❄❄⑧⑧◦
21

= ❄❄⑧⑧◦
12

(standing for graded commutative multiplication) and a countable family of

unary operations
{

a '!&"%#$a '!&"%#$

}
a≥1

of homological degree 1 − 2da modulo the ideal I generated by the standard

associativity relation for ❄❄⑧⑧◦ and the compatibility relations involving the latter and the unary operations

which assure that each unary operation a '!&"%#$a '!&"%#$ is of order ≤ a + 1 with respect to the multiplication. The

differential δ in BVcom
∞ is given by

(10) δ ❄❄⑧⑧◦
21

= 0, δ a '!&"%#$a '!&"%#$ :=
∑

a=b+c

b,c≥1

c '!&"%#$c '!&"%#$

b '!&"%#$

Let J be the differential closure of an ideal in HoBVcom
d generated by operations a '!&"%#$a '!&"%#$ with a ≥ 2. The

quotient HoBVcom
d /J is precisely of the operad of (degree shifted) Batalin-Vilkovisky algebras BVd. It was

proven in [CMW] that the canonical projection HoBVcom
d −→ BVd is quasi-isomorphism of operads.

3For a vector space W we denote by W [[~]] the vector space of formal power series in ~ with coefficients in W . For later use
we denote by ~mW [[~]] the subspace of W [[~]] spanned by series of the form ~mf for some f ∈ W [[~]].
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2.4. From Holieb⋄d-algebras to HoBVcom
d -algebras and back. Recall that a Holieb⋄d{d}-algebra struc-

ture in a graded vector space V (i.e. a Holieb⋄d structure in V [d]) can be identified with a degree 1 + 2d
element Γ in g

⋄
V [−2d] ⊂ K[[pi, xi, ~]] satisfying equation (8). Out of this datum one creates a HoBVcom

d -

algebra structure on ⊙̂•V (the completed symmetric tensor algebra on V ), i.e. a representation

ρ : HoBVcom
d −→ End⊙̂•(V ),

which is given explicitly as follows [CMW],




ρ
(

❄❄⑧⑧◦
)
:= the standard multiplication in ⊙̂•(V )

∆a := ρ

(
a '!&"%#$a '!&"%#$

)
:=

∑

a+1=k+l

1

k!l!

∑

i1,...,il

∂a+1Γ

∂k~∂pi1 · · ·∂pil
|~=pi=0

∂l

∂xi1 · · · ∂xil

This explicit correspondence can be equivalently understood as a morphism of dg operads

F : HoBVcom
d −→ O(Holieb⋄d{d})

given explicitly on generators as follows,

F

(
❄❄⑧⑧◦
21

)
:=

'&%$ !"#

1'&%$ !"# 2'&%$ !"#

(11) F

(
a '!&"%#$a '!&"%#$

)
=
∑

m≥1

∑

a+1=p+q

m

l

...

...

��������

k'&%$ !"#

��������

where
O : Category of props −→ Category of operads

P −→ O(P)

is the polydifferential functor introduced in [MW1] (we refer to §5.1 of [MW1] or §2.2 of [MW2] for full
details explaining, in particular, the symbols on the r.h.s. of the above formula; these sections can be read
independently of the rest of both papers). Its main defining property is that, given any representation
ρ : P → EndV of a prop P in a graded vector space X , there is an associated representation O(ρ) : O(P) →

End⊙̂•X
of the operad O(P) in the completed free graded commutative algebra ⊙̂•X such that elements of P

acts on ⊙̂•(X) as polydifferential operators. The symbol on the r.h.s. of (11) is precisely the polydifferential

operator corresponding to the generator k '!&"%#$
tttttt

k '!&"%#$
☎☎☎☎

k '!&"%#$❏❏❏❏❏❏
k '!&"%#$✿✿✿✿. . .

1 2 l

k '!&"%#$
❏❏❏

❏❏❏

k '!&"%#$
✿✿

✿✿

k '!&"%#$tt
ttt

t

k '!&"%#$☎
☎☎
☎. . .1 2 m

of Holieb⋄d{d}. Reversely, given a representation

ρ : HoBVcom
d −→ End⊙̂•(V ),

such that

ρ
(

❄❄⑧⑧◦
)
:= the standard multiplication in ⊙̂•(V )

it was proven in [DCTT] that it factors through the composition

ρ : HoBVcom
d

F
−→ O(Holieb⋄d{d})

O(ρ′)
−→ O(EndV ) = End⊙̂•V

for some representation ρ′ : Holieb⋄{d} → EndV . Put another way, one can read all the higher homotopy

involutive Lie bialgebra operations ρ′

(
k '!&"%#$

tttttt

k '!&"%#$
☎☎☎☎

k '!&"%#$❏❏❏❏❏❏
k '!&"%#$✿✿✿✿. . .

1 2 l

k '!&"%#$
❏❏❏

❏❏❏

k '!&"%#$
✿✿

✿✿

k '!&"%#$tt
ttt

t

k '!&"%#$☎
☎☎
☎. . .1 2 m

)
in V from the explicit representation of

ρ

(
a '!&"%#$a '!&"%#$

)
=
∑

m≥1

1

m!

∑

a+1=k+l

∑

i•,j•

C
(k) j1...jm

i1...il
xj1 . . . xjm

∂l

∂xi1 · · · ∂xil
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of the generator a '!&"%#$a '!&"%#$ as a differential operator of order ≤ a+ 1 on ⊙̂•V ≃ K[[xi]]: the linear map

µ
(k)m
l := ρ′

(
k '!&"%#$

tttttt

k '!&"%#$
☎☎☎☎

k '!&"%#$❏❏❏❏❏❏
k '!&"%#$✿✿✿✿. . .

1 2 l

k '!&"%#$
❏❏❏

❏❏❏

k '!&"%#$
✿✿

✿✿

k '!&"%#$tt
ttt

t

k '!&"%#$☎
☎☎
☎. . .1 2 m

)
: ⊗mV → ⊗nV

is given in the basis {xi} by (modulo the standard Koszul signs) by

µ
(k)m

l (xi1 ⊗ . . .⊗ xil) =
∑

j•

C
(k) j1...jm

i1...il
xj1 ⊗ . . .⊗ xjm

We shall use this one-to-one correspondence heavily in the proof of the Main Theorem 4.3 below.

2.5. A basic example of an involutive Lie bialgebra. Let W be a graded vector space equipped with
a linear map Θ : ⊙2(W [d]) → K[1 + d] for some d ∈ Z. This map is the same as a degree 1 − d pairing
Θ : W ⊗W → K[1− d] satisfying the (skew) symmetry condition,

Θ(w1, w2) = (−1)d+|w1||w2|Θ(w2, w1), ∀ w1, w2 ∈ W.

A symplectic structure on W corresponds to the case d = 1 and Θ non-degenerate.

The associated vector space of “cyclic words in W”,

Cyc•(W ) :=
∑

n≥0

(W⊗n)Zn ,

admits a Lieb⋄d-structure given by the following well-known formulae for the Lie bracket and cobracket,

[(w1 ⊗ ...⊗ wn)Zn
, (w′

1 ⊗ ...⊗ w′
m)Zn ] :=

n∑

i=1

m∑

j=1

±Θ(wi, w
′
j)(w1 ⊗ ...⊗wi−1 ⊗w′

j+1 ⊗ ...⊗w′
m ⊗w′

1 ⊗ ...⊗w′
j−1 ⊗wi+1 ⊗ . . .⊗wn)

Zn+m−2

△ (w1 ⊗ . . .⊗ wn)Zn
:=
∑

i6=j

±Θ(wi, wj)(wi+1 ⊗ ...⊗ wj−1)
Zj−i−1

⊗
(wj+1 ⊗ ...⊗ wi−1)

Zn−j+i−1

where ± stands for the standard Koszul sign. A very short (and pictorial) proof of this claim can be found
in [MW1]. Note that the vector space Cyc•(W ) is naturally weight -graded

Cyc•(W ) =
⊕

n≥0

Cycn(W ), Cycn(W ) := (⊗nW )Zn

by the length of cyclic words, and both operations ∆ and [ , ] have weight-degree −2 with respect to this
weight-grading (which should not be confused with the homological grading).

2.5.1. A special case: Schedler’s necklace Lie bialgebra. A special case of the above construction for
d = 1 gives us Schedler’s necklace Lie bialgebra structure [S] associated with the quiver (1). Consider a set
of N formal letters

{x1, . . . , xn}

and denote by WN their linear span over a field K. We shall make Cyc(W ) into a weight-degree −1 (not −2
as in the above example!) involutive Lie bialgebra using the following “doubling” trick.

Consider two copies W
(1)
N ,W

(2)
N of WN and equip their direct sum

ŴN := W
(1)
N ⊕W

(2)
N

with the unique symplectic structure θ : ∧2Ŵ → K making the basis {x
(1)
α , x

(2)
β }1≤α,β≤N a Darboux one,

Θ(x(1)
α , x

(2)
β ) = −Θ(x

(2)
β , x(1)

α ) = δαβ , Θ(x(1)
α , x

(1)
β ) = 0, Θ(x(2)

α , x
(2)
β ) = 0.

Then the above formulae for [ , ] and ∆ make the space Cyc(ŴN ) into an involutive Lie bialgebra. It is
easy to see that the subspace

Cyc(ŴN )(12) ⊂ Cyc(ŴN )
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spanned by cyclic words of the form
(
x(1)
α1

⊗ x(2)
α1

⊗ x(1)
α2

⊗ x(2)
α2

⊗ . . .⊗ x(1)
αn

⊗ x(2)
αn

)Z2n

is closed with respect to the above Lie bracket and co-bracket. The canonical isomorphism

Cyc(WN ) −→ Cyc(ŴN )(12)

(xα1 ⊗ xα2 ⊗ . . .⊗ xαn
)
Zn −→

(
x
(1)
α1 ⊗ x

(2)
α1 ⊗ x

(1)
α2 ⊗ x

(2)
α2 ⊗ . . .⊗ x

(1)
αn ⊗ x

(2)
αn

)Z2n

makes Cyc(WN ) into an involutive Lie bialgebra with the Lie bracket identical to the one introduced earlier
by Schedler in [S], [ , ] = [ , ]S , but with the Lie cobracket slightly different,

∆ (eα1 ⊗ . . .⊗ xαn
)
Zn = ∆S (xα1 ⊗ . . .⊗ xαn

)
Zn +

n∑

i=1

1 ∧
(
xα1 ⊗ ...⊗ xαi−1 ⊗ xαi+1 ⊗ . . .⊗ xαn

)Zn−1
.

This purely combinatorial Lie bialgebra structure on Cyc(WN ) has a beautiful geometric interpretation — it
is isomorphic [AKKN1, AN, Ma] to the Goldman-Turaev Lie bialgebra structure on the space of free loops
in Σ0,N+1, the two dimensional sphere with n+ 1 non-intersecting open disks removed.

3. A prop of ribbon hypergraphs

3.1. Ribbon hypergraphs. A ribbon hypergraph Γ is, by definition, a triple (E(Γ), σ1, σ0) consisting of a
finite set E(Γ) of edges and two arbitrary bijections (“permutations”) σ0, σ1 : E(Γ) → E(Γ). The orbits

V (Γ) := E(Γ)/σ0

or, equivalently, the cycles of the permutation σ0 are called the vertices of Γ while the orbits

H(Γ) := E(Γ)/σ1

of the permutation σ1 are called hyperedges of Γ (cf. [LZ]). Let p◦ : E(Γ) → V (Γ) and p∗ : E(Γ) → H(Γ) be
canonical projections. For any vertex v ∈ V (Γ) and any hyperedge h ∈ H(Γ) the associated sets of edges

p−1
◦ (v) = {ei1 , . . . , eik}, p−1

∗ (h) = {ej1 , . . . , ejl}, k, l ∈ N

come equipped with induced cyclic orderings and hence can be represented pictorially as planar corollas,

v ⇔ ei1

ei2...

◦ ❄❄⑧⑧

❄❄ ⑧⑧ , h ⇔ ej1

ej2...

∗ ❄❄⑧⑧

❄❄ ⑧⑧

Each edge e ∈ E(Γ) belongs to precisely one vertex, e ∈ p−1
0 (v) for some v ∈ V (Γ), and precisely one

hyperedge, e ∈ p−1
∗ (h) for some h ∈ H(Γ). Hence we can glue the vertex v to the corresponding hyperedge

h along the the common edge(s) to get a pictorial (CW complex like) representation of a ribbon hypergraph
Γ as an ordinary ribbon graph whose vertices are bicoloured, e.g.

Γ1 = ∗ ◦
◦

◦

✼✼

✞✞
, Γ2 = ◦ ⋆ , Γ3 = ◦ ∗∗

The vertices of Γ get represented pictorially as white vertices while hyperedges as asterisk vertices; sometimes
we call a hyperedge an asterisk vertex when commenting some pictures. Note that each edge e ∈ E(Γ)
connects precisely one white vertex to precisely one asterisk vertex; such bicoloured ribbon graphs are called
hypermaps in [LZ].

The orbits of the permutation σ∞ := σ−1
0 ◦ σ1 are called boundaries of the ribbon hypergraph Γ; the set

of boundaries is denoted by B(Γ). For example, in the case of the above ribbon hypergraphs we have
#V (Γ1) = 3, #H(Γ1) = 1, #B(Γ1) = 1, #E(Γ1) = 3, #V (Γ2) = 1, #H(Γ2) = 1, #B(Γ2) = 3, #E(Γ2) = 3
and #V (Γ3) = 1, #H(Γ3) = 2, #B(Γ3) = 2, #E(Γ3) = 3. For a vertex v ∈ V (Γ) (resp, a hyperedge
h ∈ H(Γ)) we denote its valency by |v| := #p−1

◦ (v) (resp., |h| := #p−1
∗ (h)).



10

A ribbon hypergraph with each hyperedge having valency 2 is called a ribbon graph. Ribbon graphs are
depicted pictorially with asterisk vertices omitted as they contain no extra information,

◦◦
⇔ ◦ ∗ , ◦ ◦ ⇔ ∗ ◦◦ , etc.

3.2. On geometric interpretation of ribbon hypergraphs. Every connected ribbon graph Γ can be
interpreted geometrically as a topological 2-dimensional surface with #B(Γ) boundary circles and #V (Γ)
punctures which is obtained from its CW -complex realization by thickening its every vertex into a closed
disk punctured in the center and then thickening its every edge e ∈ E(Γ) into a 2-dimensional strip. For
example (cf. [MW1]),

◦◦
⇔ , ◦ ◦ ⇔

with punctures represented as bottom “in-circles”, and boundaries as top “out-circles”.

A ribbon hypergraph Γ is often used [LZ] to encode combinatorially a Belyi map, that is, a ramified covering
f : X → CP1 of the sphere whose ramification locus is contained in the set {0, 1,∞}. A famous Belyi
theorem says that every smooth projective algebraic curve X defined over the algebraic closure Q (in C) of
rational numbers can be realized as such a ramified covering of CP1. Moreover, the universal Galois group
Gal(Q : Q) acts faithfully on (equivalence classes of) Belyi maps. Given a Belyi map f : X → CP1, the
associated ribbon hypergraph (dessin d’enfants) Γ is embedded into the Riemann surface X as the pre-image

f−1(• ◦)

of the unit interval [0, 1] ⊂ CP1 with the point 0 presented as the white vertex vertex and the point 1 as the
asterisk. For example, the hypergraph

◦ ∗∗
∗ ∗

∗ ∗...

✸✸ ☛☛
✆✆ ✾✾

︸ ︷︷ ︸
n edges

corresponds to the Belyi map f : CP1 → CP1 given by f(z) = zn, while the hypergraph

∗ ◦◦
◦ ◦

◦ ◦...

✸✸ ☛☛
✆✆ ✾✾

︸ ︷︷ ︸
n edges

corresponds to the Belyi map f(z) = (1 − z)n. However, ribbon hypergraphs used in this paper are Z-
graded and oriented (see the next subsection) and it is not clear how this extra structure may fit this
particular geometric interpretation of hypergraphs. Oriented ribbon graphs have a useful interpretation
as combinatorial objects parameterizing cells of a certain cell decomposition of the moduli spaces Mg,n of
algebraic curves of genus g with n punctures; they also play an important role in the deformation theory of
the Goldman-Turaev Lie bialgebra. We show in this paper that oriented ribbon hypergraphs have much to
do with strongly homotopy involutive Lie bialgebras and hence might be useful in the string topology.

3.3. Orientation and Z grading. Let d be an arbitrary integer. To a ribbon hypergraph Γ we assign its
homological degree

|Γ| = (d+ 1)#H(Γ)− d#E(Γ),

i.e. each hyperedge has degree d+ 1 and every edge has degree −d.

An orientation on a ribbon hypergraph Γ is, by definition, a

• choice of the total ordering (up to an even permutation) on the set of hyperedges H(Γ) for d even,
• choice of the total ordering (up to an even permutation) on the set of edges E(Γ) for d odd.
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As E(Γ) = ⊔h∈H(Γ)p
−1
∗ (h) and each set p−1

∗ (h) is cyclically ordered, a choice of the total ordering in E(Γ)
for d odd is equivalent to a choice of a total ordering of Hodd(Γ) := {h ∈ H(Γ)| |h| ∈ 2Z+1} (up to an even
permutation), and a choice of a total ordering of each set p−1

∗ (h), h ∈ Heven(Γ) := {h ∈ H(Γ)| |h| ∈ 2Z}
which is compatible with the given cyclic ordering (again up to an even permutation).
Note that every ribbon hypergraph has precisely two possible orientations. If Γ is an oriented ribbon
hypergraph, then the same hypergraph equipped with an opposite orientation is denoted by Γopp.

Also note that if Γ has all hyperedges bivalent, then the above definition agrees with the notion of orientation
in the prop of ribbon graphs RGrad introduced in [MW].

3.4. Boundaries and corners of a hypergraph. Let us represent pictorially a ribbon hypergraph Γ with
vertices and hyperedges blown up into dashed and, respectively, double solid circles, for example

◦ ∗ ⇔ , ∗ ◦◦ ⇔

Edges attached to dashed (resp. double solid) circles divide the latters into the disjoint union of chords
which can be called vertex (resp. hyperedge) corners; thus with any vertex v ∈ V (Γ) we associate a cyclically
ordered set C(v) of its corners (which is, of course, isomorphic to its set p−1

◦ (v) of attached edges but has a
different geometric incarnation). The motivation for this terminology is that any boundary of a hypergraph
can be understood as a polytope glued from edges at that corners. For example, the unique boundary b of
the right graph just above is given the following polytope

b = 	

⑧⑧⑧⑧⑧
⑧

⑧⑧⑧⑧⑧⑧

where small dashed (resp. double solid) intervals stand for the vertex (resp. hyperedge) corners. Thus with
any boundary b of a hypergraph one can associate a cyclically ordered set C(b) of its vertex corners. We
shall use these cyclically ordered sets C(v) and C(b) in the definition of the prop composition of hypergraphs
below, and in the construction of canonical representations of that prop in spaces of cyclic words.

3.5. Prop of ribbon hypergraphs. Let RHk,l
m,n be the set of (isomorphism classes of) oriented ribbon

hypergraphs Γ with n vertices labelled by elements of [n], k edges, l unlabelled hyperedges and m boundaries
labelled by elements of [m]. Consider a collection of quotient S-bimodules,

RHrad :=



RHrad(m,n) :=

⊕

k,l≥1

K〈RHk,l
m,n〉

{Γ = −Γopp,Γ ∈ Hk,l
m,n}

[dk − (d+ 1)l]





m,n≥1

Thus elements of RHra are isomorphisms classes of Z-graded oriented ribbon hypergraphs Γ whose ver-
tices and boundaries are enumerated. Ribbon hypergraphs admitting automorphisms which reverse their
orientations are equal to zero in RHrad. The S-module RHrad contains a submodule RGrad generated by
hypergraphs with all hyperedges bivalent. This submodule has a prop structure [MW1] which can be easily
extended to RHrad. Indeed, the horizontal composition

◦ : RHrad(m1, n1)⊗K RHrad(m2, n2) −→ RHrad(m1 +m2, n1 + n2)
Γ2 ⊗ Γ1 −→ Γ2 ⊔ Γ1

is defined as the disjoint union of ribbon hypergraphs, and the vertical composition,

◦ : RHrad(p,m)⊗K RHrad(m,n) −→ RHrad(p, n)
Γ2 ⊗ Γ1 −→ Γ2 ◦ Γ1
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is defined by gluing, for every i ∈ [m], the i-th oriented boundary b of Γ1,

b ∼
	

⑧⑧⑧⑧⑧
⑧

⑧⑧⑧⑧⑧⑧

with the i-th vertex v of Γ2,

v ∼

⑧⑧⑧⑧⑧⑧⑧

❄❄
❄❄

❄❄
❄

❄❄❄❄❄❄❄ oo

⑧⑧
⑧⑧
⑧⑧
⑧

by erasing the vertex v from Γ2 and taking the sum over all possible ways of attaching “hanging in the air”
(half)edges from the set p−1

◦ (v) to the set of dashed corners from C(b) while respecting the cyclic structures
of both sets; put another way we take a sum over all morphisms p−1

◦ (v) → C(b) of cyclically ordered sets.
Every ribbon graph in this linear combination comes equipped naturally with an induced orientation, and
belongs to RHrad(p, n). The graph ◦ consisting of a single white vertex acts as the unit in RHrad. The
subspace of RHrad spanned by connected ribbon graphs forms a properad which we denote by the same
symbol RHrad.

3.5.1. Proposition. Let W be an arbitrary graded vector space and Cyc(W ) = ⊕n≥0(W
⊗n)Zn the associ-

ated space of cyclic words. Then any collection

Θn : (W [d])⊗n
Zn

−→ K[1 + d], n ≥ 1,

of cyclically (skew)invariant maps gives canonically rise to a representation

ρΘ• : RHrad −→ EndCyc(W ).

of the prop of hypergraphs in Cyc(W ).

Proof. If only Θ2 is non-zero, the associated representation

ρΘ2 : RGrad −→ EndCyc(W )

was constructed in Theorem 4.2.2 of [MW1]. The general case is a straightforward hypergraph extension of
that construction. Let us sketch this extension for d even (the case d odd is completely analogous). Consider
a hypergraph Γ ∈ RHrad(m,n) with n vertices (v1, . . . , vi, . . . , vn) and m boundaries (b1, . . . , bj , . . . , bm).
Using Θ• we will construct a linear map

ρΓΘ•
: ⊗nCyc(W ) −→ ⊗mCyc(W )

W1 ⊗ . . .⊗Wn −→ ρΓΘ•
(W1, . . . ,Wn)

where

(12)
{
Wi := (wi1 ⊗ . . .⊗ wpi

)Zpi

}
1≤i≤n, pi∈N

is an arbitrary collection of n cyclic words from Cyc(W ). If #p−1
◦ (vi) > pi for at least one i ∈ [n], i.e.

if number of edges attached to vi greater than the length of the word Wi, we set ρΓΘ•
(W1, . . . ,Wn) = 0.

Otherwise it makes sense to consider a state s which is by definition a collection of fixed injective morphisms
of cyclically ordered sets

si : p
−1
◦ (vi) −→ {wi1 , . . . , wpi

}, ∀i ∈ [n],

that is, an assignment of some letter wi• from the wordWi to each edge ei• ∈ p−1
◦ (vi) of each vertex vi in a way

which respects cyclic orderings of both sets. Note that for each state the complement, (wi1 , . . . , wilp
) \ Im si,

splits into a disjoint (cyclically ordered) union of totally ordered subsets,
∐

c∈C(v) Ic, parameterized by the

set of corners of the vertex v. Note also that to each boundary bj ∈ B(Γ) we can associate a cyclic word

W ′
j :=


 ⊗

c∈C(bj)

Ic




Z∑
c∈C(bj ) #Ic
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where the tensor product is taken along the given cyclic ordering in the set C(bj),

Recall that the set of hyperedges H(Γ) is defined as the set of orbits E(Γ)/σ1 of the permutation σ1. To
any hyperedge h ∈ H(Γ) of valency |h| ∈ N there corresponds therefore a cyclically ordered set of |h| edges
p−1
∗ (h) ⊂ E(Γ). Let us choose for a moment a compatible total order on this set, i.e. write it as

p−1
∗ (h) = {eh1 , e

h
2 = σ1(e

h
1 ), . . . , . . . e

h
|h| = σ

|h|−1
1 (eh1 )}

for some chosen edge eh1 ∈ p−1
∗ (h). As the set of edges decomposes into the disjoint union

E(Γ) =
∐

h∈H(Γ)

p−1
∗ (h),

we can use the given maps Θk : (⊗kW )Zk
→ K[1 + d− dk] to define the weight of any given state s on Γ as

the following number,

λs :=
∏

h∈H(Γ)

Θ|h|

(
s(eh1 ), . . . s(e

h
|h|)
)
.

Thus to each state s = {si}i∈[n] we associate an element

ρsΘ•
(W1, . . . ,Wn) := (−1)σλsW

′
b1

⊗ . . .⊗W ′
bm

∈ ⊗mCyc(W )

where (−1)σ is the standard Koszul sign of the regrouping permutation,

σ : W1 ⊗ . . .⊗Wn −→
∏

h∈(Γ)

(
s(eh1 ), . . . s(e

h
|h|)
)
⊗W ′

b1
⊗ . . .⊗W ′

bm
.

Note that ρsΘ•
(W1, . . . ,Wn) does not depend on the choices of compatible total orderings in the sets p−1

∗ (h)
made above.

Finally we define a linear map,

ρΘ• : RGrad(m,n) −→ Hom(⊗nCyc(W ),⊗mCyc(W ))
Γ −→ ρΓΘ•

by setting the value of ρΓΘ•
on cyclic words (12) to be equal to

ρΓΘ•
(W1, . . . ,Wn) :=





0 if #p−1
◦ (vi) > pi for some i ∈ [n]∑

all possiblle
states s

ρsΘ•
(W1, . . . ,Wn) otherwise

It is now straightforward to check that the map ρΘ• respects prop compositions in RHrad and EndCyc(W )

because the prop structure in former has been just read off from the compositions of operators ρΓΘ•
in the

latter. �

4. Strongly homotopy involuyive Lie bialgebras and ribbon hypergraphs

4.1. Reminder from [MW1]. There is a morphism of props,

ρ : Lieb⋄d −→ RHrad

given on generators as follows,

ρ
(

⑧⑧❄❄
◦
)
= ◦ ∗ , ρ

(
❄❄⑧⑧◦
)
= ∗ ◦◦

The main new result of this note is an observation that this maps lifts to a morphism of dg props Holieb⋄d →
RHrad which is non-trivial on all generators (see below).
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4.2. Proposition. There is a morphism of dg props,

ρ : Holiebd −→ RHrad

given on generators as follows,

◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

ρ
−→

∑

...

∗

◦ ◦ ◦✠✠
✠✠
✠✠

✜✜
✜✜
✜

❁❁
❁❁

❁❁
❁

︸ ︷︷ ︸
n+m−1 edges
m boundaries

where the sum on the right hand side is over all possible ways of attaching n+m− 1 edges beginning at the
asterisk vertex to n white vertices (whose numerical labels are (skew)symmetrized) in such a way that every
white vertex is hit and the total number of boundaries of the resulting hypergraph equals precisely m (and
their numerical labels are also (skew)symmetrized).

Proof. As the prop RHrad has vanishing differential, the Propsoition holds true if and only of

ρ

(
δ ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

)
= ρ




∑

[1,...,m]=I1⊔I2
|I1|≥0,|I2|≥1

∑

[1,...,n]=J1⊔J2
|J1|≥1,|J2|≥1

± ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

❦❦❦❦❦❦❦❦

︷ ︸︸ ︷I1

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

︸ ︷︷ ︸
J1

◦

▲▲▲▲▲▲
❃❃❃❃
. . . ✟✟✟✟

✈✈✈✈✈

︷ ︸︸ ︷I2

⑦⑦
⑦⑦
. . . ✺

✺✺
✺

●●
●●

●

︸ ︷︷ ︸
J2


 = 0.

This is almsot obvious as the r.h.s. is given by the sum

∑

[1,...,m]=I1⊔I2
|I1|≥0,|I2|≥1

∑

[1,...,n]=J1⊔J2
|J1|≥1,|J2|≥1

∑
±

...

∗

◦ ◦ ◦ ...

∗

◦ ◦ ◦✠✠
✠✠
✠✠

✜✜
✜✜
✜

❁❁
❁❁

❁❁
❁

✜✜
✜✜
✜

✾✾
✾✾

✾✾
✾

︸ ︷︷ ︸
|J1|+|I1| + |J2|+|I2|edges

|I1| + |I2|boundaries

which vanishes in RHrad for symmetry reasons (it is most easy to check this claim in the case d is even
when the asterisk vertices are odd, and the symbol ± becomes +). �

There is a canonical morphism of props Holiebd → Holieb⋄d. The above morphism factors through the

composition Holiebd → Holieb⋄d
ρ⋄

−→ RHrad.

4.3. Theorem. There is a morphism of dg props,

ρ⋄ : Holieb⋄d −→ RHrad

given on generators as follows,

(13) a '!&"%#$
tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

1 2 n

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .1 2 m

ρ⋄

−→
∑

...

∗

◦ ◦ ◦✜✜
✜✜
✜

❁❁
❁❁

❁❁
❁

︸ ︷︷ ︸
n+m+2a−1 edges

m boundaries

where the sum on the right hand side is over all possible ways to attach n +m + 2a − 1 edges beginning at
the asterisk vertex to n white vertices (whose numerical labels are (skew)symmetrized) in such a way that
every white vertex is hit and the total number of boundaries of the resulting hypergraph equals precisely m
(and their numerical labels are (skew)symmetrized).

The orientations of the hypergraphs shown in the above formula are determined uniquely by a simple
HoBVcom

d operator which is constructed in the proof.

Proof. The composition of the above map ρ⋄ with the canonical representation ρΘ• from Proposition 3.5.1
implies that for any collection of cyclically (skew)symmetric maps 3 on a graded vector spaceW the associated
vector space Cyc(W ) is canonically a Holieb⋄d algebra. In fact one can read the Theorem from this conclusion
provided the latter is independent of choices of W and the higher products Θ•.
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Assume d even. To make the construction of the representation ρΘ• ◦ρ
⋄ as simple and transparent as possible

we shall employ, following Barannikov [Ba2], the invariant theory and identify the space Cyc(W ) with the
space of GL(KN)-invariants,

Cyc(W ) = lim
N→∞

⊕n≥0 (⊗
n(W ⊗ End(Kn))GL(KN) ,

that is, we interpret a cyclic word, W = (wa1 ⊗ . . . ⊗ wan
)Zn , {wi}i∈I a basis in W , with the trace of the

product of N ×N matrices,

W = tr (Aa1Aa2 · · ·Aan
) =

∑

α•

Aα0
a1 α1

Aα1
a2 α2

· · ·Aαn
an α0

, Aia :=
(
Aα

ia β

)
∈ End(KN ), a ∈ [n], α, β ∈ [N ],

for sufficiently large N ∈ N. The graded cyclically symmetric maps

Θn : ⊗nW −→ K[1 + d− nd]
wa1 ⊗ ...⊗ wan

−→ Θa1...an

define a degree 1 operator

∆ =
∑

n≥1

~n−1Θa1...an

∂n

∂A α0
a1 α1∂A

α1
a2 α2 · · ·∂A

αn
an α0

on⊙•(Cyc(W )[−d])[[~]] whose square is obviously zero; here the formal parameter ~ has degree 2d. The latter
defines a HoBVcom

d -structure in ⊙•(Cyc(W )[−d])[~]] and, as explained in §2.4, an associated Holieb⋄d{d}
algebra structure in Cyc(W )[−d] which in turn defines a Holieb⋄d-structure in Cyc(W ).

If d is odd, one can again use a trick from [Ba2] which replaces the ordinary trace of the standard matrix
superalgebra with the odd trace of the Bernstein-Leites matrix sub-superalgebra. In fact the construction
in [Ba2] explains the construction of the HoBVcom

d operator in the case when only Θ2 is non-zero, and its
extension to the general case (3) is completely analogous to the d even case discussed above. �

4.4. Corollary. Given any graded vector space V equipped with a collection of linear maps (3). There is
an associated explicit Holieb⋄d-structure in Cyc(W ) given by the formulae (13).

4.5. Rescaling freedom. Note that each map Θk from the family (3) can be independently rescaled,
Θk → λkΘk, ∀λn ∈ K, so that the morphism ρ⋄ in (13) can also be rescaled by infinitely many independent
parameters — just rescale in that formula each hyperedge h of valency k by

h = ∗ ❄❄⑧⑧

❄❄ ⑧⑧ −→ λk · ∗ ❄❄⑧⑧

❄❄ ⑧⑧ , ∀λk ∈ K,

and get a new morphism ρ⋄λ•
from Holieb⋄d to RHrad. Such a phenomenon occurs in the string topology

— see Theorem 6.2 and Corollary 6.3 in [CS] — and its main technical origin in our case is that the prop
RHrad has vanishing differential. We shall discuss a differential version of RHrad elsewhere.

5. An algebraic application: a new family of combinatorial Holieb⋄-algebras

Given any collection of formal letters e1, . . . , eN , i.e. given any natural number N ≥ 1, there is an associated
involutive Lie bialgebra structure on the vector space Cyc(WN ) of cyclic words,

WN := spanK〈e1, e2, . . . , eN〉

which belongs to the family of combinatorial Lieb⋄-algebras constructed by Schedler in [S] out of any quiver.
This particular Lieb⋄-algebra has an important geometric meaning (discussed in §1) and corresponds to the
quiver (1).

In this section we use Theorem 4.3 and Corollary 4.4 in the case d = 1 to extend that particular Schedler’s
construction to a highly non-trivial (i.e. with all higher homotopy operations non-zero) Holieb⋄-algebra

structure on the vector space Cyc(ŴN ) of cyclic words generated by Z-graded formal letters,

ŴN := spanK〈e1[−p], . . . , eN [−p]〉p∈N =
⊕

p≥0

WN [−p]
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where eα[−p], α ∈ [N ], stands for the copy of the formal letter eα to which we assign the homological degree

p. Note that ŴN has no natural higher products (3) so we can not apply Corollary 4.4 immediately. The
idea of our construction is to inject first

u : ŴN −→ ŴN

ŴN into a larger space ŴN which does have a natural family of cyclically (skew)symmetric higher products
{
Θk+2 :

(
⊗k+2(ŴN [1])

)
Zk+2

−→ K[2]

}

k≥0

so that the associated vector space of cyclic words Cyc(ŴN) comes equipped with a canonical Holieb⋄-
algebra structure by Corollary 4.4. The second step will be to check that the image of u is closed with
respect to all strongly homotopy involutive Lie bialgebra operations. To realize this programme, consider,
for any integer p ≥ 0, a set of p+ 2 copies of the vector space WN

W
0p
N := WN [−p] , W

1p
N := WN , . . . , W

p+1p
N := WN ,

one of them (say, labelled by zero) assigned a shifted homological degree, and define

ŴN :=
⊕

p≥0

WN,p, WN,p := W
0p
N ⊕W

1p
N ⊕ . . .⊕ . . .W

p+1p
N

The vector space ŴN is countably dimensional, and is equipped by construction with a distinguished basis
{
elpα
}
p≥0,0≤l≤p+1,1≤α≤N

where {e
lp
α }α∈[N ] stands for the standard basis of the copy W

lp
N . Note that for any α ∈ N the basis vector

e
lp
α has homological degree 0 if l ≥ 1, and −p of l = 0. Note also that summands W

lp′

N and W
lp′′

N in ŴN are
viewed as different copies of WN for p′ 6= p′′ (as they belong to different vector spaces WN,p′ and WN,p′′).

Let us introduce next an infinite family of cyclically (skew)symmetric higher products (the case d = 1 in the
notation (3))

Θk+2 : ⊗k+2ŴN −→ K[−k], ∀ k ≥ 0,

by setting

Θk+2

(
e
l1p1
α1 ⊗ . . .⊗ e

lk+2
pk+2

αk+2

)
:= 0

unless
(i) α1 = α2 = . . . = αk+1;
(ii) p1 = p2 = . . . = pk+2 = k;
(iii) (l1, . . . , lk+2) = (j, j − 1, . . . , 2, 1, 0, k + 1, k, . . . , j + 1) for some j ∈ {0, 1, 2, . . . , k + 1}, i.e. we have

an isomorphism of cyclically ordered sets

•

••

•

• •

••
• •

• •

l1

lp+2

l2

lp+1

l3

∼up to some rotation
•

••

•

• •

••
• •

• •

0

1

k+1

2

k

If all the above conditions are satisfied, we set

Θk+2

(
ejkα ⊗ ej−1k

α ⊗ . . . e1kα ⊗ e0pα ⊗ ek+1k
α ⊗ ekk

α ⊗ . . .⊗ ej+1k
α

)
:= (−1)j(k+1)

By Corollary 4.4, the graded vector space Cyc•(ŴN ) is a Holieb⋄-algebra equipped with quite explicit
strongly homotopy operations. There is a canonical (homogeneous of homological degree zero) injection

u : Cyc•(WN ) −→ Cyc•(ŴN )

(eα1 [−p1]⊗ . . .⊗ eαn
[−pn])

Zn −→ u (eα1 [−p1]⊗ . . .⊗ eαn
[−pn])

Zn
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identifying each letter eα[−p] in a cyclic word from Cyc(WN ) with a (totally ordered) word in p+ 2 letters

eα[−p] −→ e(0p)α ⊗ e(1p)α ⊗ . . .⊗ e
(p+1p)
α

i.e.

u (eα1 [−p1]⊗ ...⊗ eαn
[−pn])

Zn :=
(
e
(0)p1
α1 ⊗ e

(1)p1
α1 ⊗ ...⊗ e

(p1+1)p1
α1 ⊗ . . .⊗ e

(0)pn
αn ⊗ e

(1)pn
αn ⊗ ...⊗ e

(pn+1)
pn

αn

)Zm

where

m = n(p1 + . . .+ pn + 2n)

A remarkable an almost obvious fact is that the linear subspace

u(Cyc(ŴN )) ⊂ Cyc(ŴN )

is closed with respect to all strong homotopy involutive Lie bialgebra operations and hence is itself a Holieb⋄-
algebra. In this way we induce a Holieb⋄-algebra structure

ρ


 a '!&"%#$

tttttt

a '!&"%#$
☎☎☎☎

a '!&"%#$❏❏❏❏❏❏
a '!&"%#$✿✿✿✿. . .

1 2 n

a '!&"%#$
❏❏❏

❏❏❏

a '!&"%#$
✿✿

✿✿

a '!&"%#$tt
ttt

t

a '!&"%#$☎
☎☎
☎. . .1 2 m 

 : ⊗n(Cyc(ŴN )) −→ ⊗n(Cyc(ŴN ))[3− (m+ n+ 2a)]

on Cyc(ŴN ). It is immediate to see that all these operations have degree −1 with respect to the weight-
grading by the lengths of cyclic words. On the linear subspace

Cyc(WN ) ⊂ Cyc(ŴN )

this Holieb⋄-algebra structure reduces precisely to Schedler’s necklace Lie bialgebra structure corresponding
to the quiver (1).
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