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Linear tetrahedral elements are limited 
-Stiff 
-Locking  
-…
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Alterna(ve	elements	-	polyhedral	-	virtual	elements,	HHO,	SBFEM,	
smoothed	FEM…



Virtual elements  
(cf. Silvia Bertoluzza) 
The hitchhiker's guide to the virtual element 
method 
Virtual and smoothed finite elements: A connection 
and its application to polygonal/polyhedral finite 
element methods (Natarajan, Ooi, Bordas)

Use	polyhedra Mesh generators…

Bruno Lévy Claudio Lobos

Smoothed polyhedral FEMs
Francis, Natarajan, Lévy, Bordas, 2019

Smoothed FEM 
A theoretical study on the smoothed FEM (S-FEM) models: 
Properties, accuracy and convergence rates (G.R. Liu, 
Nguyen et al) 
On the approximation in the smoothed finite element 
method (SFEM) (Natarajan, Bordas)

Scaled boundary FEM 
The scaled boundary finite-element method–a primer: derivations (Song, Wolf, 2000) 

HHO (cf. F. Chouly and G. Delay)

https://www.worldscientific.com/doi/abs/10.1142/S021820251440003X
https://www.worldscientific.com/doi/abs/10.1142/S021820251440003X
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4965
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4965
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4965
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2941
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2941
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2713
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2713
https://www.sciencedirect.com/science/article/pii/S0045794900000997
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Avoid meshing complex/evolving interfaces through unfitted methods

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.

Corotational	Cut	Finite	Element	Method	for	real-time	surgical	simulation:	application	to	
needle	insertion	simulation,	HP	Bui	et	al,	arXiv:1712.03052[cs.CE]	2018.

Controlling	the	Error	on	Target	Motion	through	Real-time	Mesh	Adaptation:	Applications	to	
Deep	Brain	Stimulation,	HP	Bui	et	al,	Int	J	Numer	Meth	Bio,	2017.	

Implicit boundaries and error control for real time simulations

Deep brain stimulation simulationLiver 
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Handling interfaces numerically

no	mesh 
calculation

stress analysis

mesh

Couple geometry & analysis Decouple geometry from analysis

Isogeometric analysis Implicit interfaces/unfitted



UCL,	London,	2019-01-03/04	
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Immersed collocation 
generalized FD

https://orbilu.uni.lu/handle/10993/37921
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calculation

stress analysis

mesh

Simplify CAD-Analysis  
Isogeometric analysis

https://orbilu.uni.lu/handle/10993/37921
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Isogeometric analysis

Idea: Hughes et al. 2005. Do not 
discard geometric information by 
creating a mesh. Use the CAD 
information to solve the finite element 
problem.

calculation

stress analysis

mesh

no	mesh

https://orbilu.uni.lu/handle/10993/37921
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Isogeometric analysis

Isogeometric analysis: CAD, finite 
elements, NURBS, exact geometry 
and mesh refinement (CMAME05, 
T.J.R Hughes et al)
Isogeometric boundary element 
analysis using unstructured T-splines 
(CMAME13, M.A. Scott et al)

direct	calculation

stress analysis

https://orbilu.uni.lu/handle/10993/37921
https://hal.archives-ouvertes.fr/hal-01513346/document
https://hal.archives-ouvertes.fr/hal-01513346/document
https://hal.archives-ouvertes.fr/hal-01513346/document
https://www.sciencedirect.com/science/article/pii/S0045782512003386
https://www.sciencedirect.com/science/article/pii/S0045782512003386
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Isogeometric analysis

stress analysis

CAD:	described	by	NURBS

Use	NURBS	as	basis	
functionsIsogeometric analysis: CAD, finite 

elements, NURBS, exact geometry 
and mesh refinement (CMAME05, 
T.J.R Hughes et al)
Isogeometric boundary element 
analysis using unstructured T-splines 
(CMAME13, M.A. Scott et al)

https://orbilu.uni.lu/handle/10993/37921
https://hal.archives-ouvertes.fr/hal-01513346/document
https://hal.archives-ouvertes.fr/hal-01513346/document
https://hal.archives-ouvertes.fr/hal-01513346/document
https://www.sciencedirect.com/science/article/pii/S0045782512003386
https://www.sciencedirect.com/science/article/pii/S0045782512003386
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CAD	techniques

NURBS

Universality.
Industrial standard.
Not watertight. 
No local refinement

Subdivision Surfaces

Watertight.
Flexibility.
3D printing.
Low order smoothness.

Fig. 3: Subdivision surfaces
(source: Geri’s game)Fig. 1: NURBS

 (source: Rhino3D website)

T-splines

Water tight. 
Local refinement.
No trimming operations.
No linear independence.

Fig. 2: T-splines

 All are boundary representations 
Isogeometric analysis: an overview and computer implementation aspects 
VP Nguyen, C Anitescu, SPA Bordas, T Rabczuk 
Mathematics and Computers in Simulation 117, 89-116 

https://orbilu.uni.lu/handle/10993/37921
http://legato-team.eu
javascript:void(0)
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NURBS

https://orbilu.uni.lu/handle/10993/37921
http://legato-team.eu
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Fig. 1: NURBS(source: Rhino3D website)

Fig. 3: NURBS mesh topology

T-splines

  
T-junctions

Control points

 

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28 29

30 31 32 33

34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57

Fig. 2: T-splines(source: Rhino3D website)

Fig. 4: T-spline mesh 

Fewer control points for the same geometry

NURBS

https://orbilu.uni.lu/handle/10993/37921
http://legato-team.eu
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Difficulties 

Given by CAD Needed by IGAFEM

Local	refinement Patch	coupling
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IGABEM vs. IGAFEM
Question: How can we fully benefit from the “IGA” concept? 

Suppress the mesh generation and regeneration completely

Isogeometric FEM
For shell-like domains
For volumes (needs volume 

parameterisation, aka meshing)

Isogeometric BEM 
For shell-like domains
For volumes

Stress analysis and shape optimisation directly from CAD
H. Lian et al. (2017). CMAME: 317: 1-41.
H. Lian et al. (2015). IJNME
H. Lian et al. (2013). EACM:166(2):88-99. 
M. Scott et al. (2013) CMAME 254: 197-221.
R. N. Simpson et al. (2013) CAS 118: 2-12.
R. N. Simpson et al. (2012) CMAME Feb 1;209:87-100.

Fracture mechanics directly from CAD
X. Peng, et al. (2017). IJF, 204(1), 55–78. 
X. Peng, et al. (2017). CMAME, 316, 151–185.

Nitsche's method for two and three 
dimensional NURBS patch 
coupling (CMECH2014, Nguyen) 

Skew-symmetric Nitsche's formulation in 
isogeometric analysis: Dirichlet and 
symmetry conditions, patch coupling and 
frictionless contact (Qu, Chouly, Bordas…) 
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Mesh refinement in NURBS-IGA
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GIFT/sub/super-geometric approach
Question: How can we fully benefit from the “IGA” concept? 

Refine the field approximation independently from the geometry

Geometry Independent Field approximaTion (GIFT)

Super/Sub-geometric

Boundary Element Analysis with trimmed NURBS and a generalized IGA approach 
G Beer, B Marussig, J Zechner, C Dünser, TP Fries (2014) 
arXiv preprint arXiv:1406.3499 

Fast isogeometric boundary element method based on independent field approximation 
B Marussig, J Zechner, G Beer, TP Fries 
Computer Methods in Applied Mechanics and Engineering 284, 458-488 (2015) 

Atroshchenko, E, et al. "Weakening the tight coupling between geometry and simulation in isogeometric 
analysis: From sub‐and super‐geometric analysis to Geometry‐Independent Field approximaTion 
(GIFT)." International Journal for Numerical Methods in Engineering 114.10 (2018): 1131-1159.

Permalink: http://hdl.handle.net/10993/31469 

https://arxiv.org/pdf/1706.06371
javascript:void(0)
javascript:void(0)
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5778
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5778
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5778
http://hdl.handle.net/10993/31469
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Isogeometric analysis

Atroshchenko, E, et al. International Journal for Numerical Methods in Engineering 114.10 (2018): 1131-1159.
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Isogeometric analysis - PHT

Atroshchenko, E, et al. International Journal for Numerical Methods in Engineering 114.10 (2018): 1131-1159.
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Geo-independent field approximaTion

Atroshchenko, E, et al. International Journal for Numerical Methods in Engineering 114.10 (2018): 1131-1159.
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IGA

GIFT

Atroshchenko, E, et al. International Journal for Numerical Methods in Engineering 114.10 (2018): 1131-1159.
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IGA

GIFT

Atroshchenko, E, et al. International Journal for Numerical Methods in Engineering 114.10 (2018): 1131-1159.
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GIFT - key features

The same basis functions, which are used in CAD to represent 
the geometry, are used in the IGA as shape functions to 
approximation the unknown solution

Geometry is exact at any stage of the solution refinement process

Better accuracy per DOF in comparison with Lagrange Iso-
parametric FEM but higher computational cost (bandwidth…)
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Numerical observations - no proof…
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Adaptive GIFT for Helmholtz 

!34

Adaptive/enriched GIFT - FEM/BEM
Crack growth

Space-time adaptivity Shape optimisation 
elasticity & acoustics

No meshing/remeshing

Control variables = control points
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• Residual-based and recovery based error indicators perform 
similarly 

• Optimal convergence rates  

• Adaptivity is effective only for “fine meshes” 

• Failure in the “pre-asymptotic range” where effectivity per 
dof deteriorates

!35

Adaptive GIFT-Helmholtz

kh

p
< 1

h− and p− adaptivity driven by recovery and residual-based error 
estimators for PHT-splines applied to time-harmonic acoustics Videla,  
Anitescu, Khajah, Bordas, Atroshchenko, 2019

Plane-wave enriched Partition of Unity GIFT for Helmholtz equation with
PHT-Splines Videla, Tomar, Bordas, Atroshchenko, 2019
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Employ the same basis functions in CAD to 
discretize Boundary Integral Equations (BIE) :

1. Seamlessly compatible with CAD due to
     boundary representation. 
2. CAD in and CAD out. (Fig. 2)
3. Infinite domain: acoustics, electro-magnetics. 

 

Fig. 1: Structural optimisation

�36

Topology optmization

Shape optimization

Fig. 2: IGABEM structural optimisation

Structural	opRmisaRon	with	IGABEM

Cij(s)uj(s) +

Z

S
Tij(s,x)uj(x)dS(x) =

Z

S
Uij(s,x)tj(x)dS(x)

H. Lian et al. (2017). CMAME: 317: 1-41. — H. Lian et al. (2015). IJNME — H. Lian et al. (2013). EACM:166(2):88-99. 
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	ElasRc	shape	opRmisaRon	using	IGABEM	with	T-splines	

Fig. 1: T-spline model of a hammer (left: initial geometry; right: optimised geometry)

CAD  in & CAD out!

Fig. 2: T-spline model of a chair (left: initial geometry; right: optimised geometry)

Structural analysis 
Sensitivity analysis

Structural analysis 
Sensitivity analysis

optimiser

optimiser

H. Lian et al. (2017). CMAME: 317: 1-41. — H. Lian et al. (2015). IJNME — H. Lian et al. (2013). EACM:166(2):88-99. 
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AcousRc	shape	opRmisaRon	using	IGABEM	with	NURBS

Fig. 1: Vase model with NURBS

Fig. 2: Optimised model (f=100Hz) Fig. 3: Optimised model (f=300Hz) 

Exterior	infinite	domain	problems!

H. Lian et al. (2017). CMAME: 317: 1-41. — H. Lian et al. (2015). IJNME — H. Lian et al. (2013). EACM:166(2):88-99. 
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Interface problems appear naturally 
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Fig. 3: Sound absorbing material distribution during Iteration

AcousRc	topology	opRmisaRon	using	IGABEM	with	subdivision	surfaces

Fig. 1: Submarine model Fig. 2: Model with subdivision surfaces 

(a) Step 1 (b) Step 5 (c) Step 10 (a) Step 44

Exterior	infinite	domain	problems!

H. Lian et al. (2017). CMAME: 317: 1-41. — H. Lian et al. (2015). IJNME — H. Lian et al. (2013). EACM:166(2):88-99. 
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Fig. 2: The sound pressure distribution during Iteration

Fig. 1: The optimised sound adsorbing material distribution 
(black: adhesion to sound absorbing materials; white: no adhesion)

(a) Step 1 (d) Step 44(c) Step 10(b) Step 5

AcousRc	topology	opRmisaRon	using	IGABEM	with	subdivision	surfaces

H. Lian et al. (2017). CMAME: 317: 1-41. — H. Lian et al. (2015). IJNME — H. Lian et al. (2013). EACM:166(2):88-99. 
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GIFT - key features

 Retain advantages of IGA, but decouple the geometry and field 
approximation

Standard patch tests may not always pass, yet the convergence rates 
are optimal as long as the geometry is exactly represented by the 
geometry basis

With geometry exactly represented by NURBS, using same degree B-
splines or NURBS for the approximation of the solution field yields almost 
identical results

With geometry exactly represented by NURBS, using PHT splines for 
the approximation of the solution gives additional advantage of local 
adaptive refinement

Any other approximation field can be used for the field variables
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Bauhaus Universität 

https://github.com/
canitesc/IGAPack 

!42

Open source software
University of Luxembourg 

http://www.legato-team.eu

FEniCS

mu = Constant(0.3) 
… 
S = (t**3/12)*(2.0*mu*K + \ 
    (2.0*mu*lmbda)/(2.0*mu + lmbda)*tr(K)*Identity(2))

https://github.com/canitesc/IGAPack
https://github.com/canitesc/IGAPack
http://www
http://legato-team.eu
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In coupling geometry and field variables
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Real-time simulations with XFEM

H.P.	Bui

Bilger	et	al,	MICCAI,	2011

Hamzé	et	al,	Comput.	Med.	Imag.	Grap.	2015

Courtecuisse	et	al,	Med.	Image	Anal.,	2014

Talbot	et	al,	SIGGRAPH,	2015

SKIP
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Cut FE method/XFEM

❑ Fictitious	Boundary	Method	

❑ Implicit	(unfitted)	Interface:	interface	problems,		
moving	boundary	problems	

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Limit cases

Alternative	stabilization	approaches:		
❑ Agathos,	Chatzi,	Bordas,	2017,	2018,	2019	
❑ Ghost	penalty,	Burman	et	al,	2015	
❑ Stable	XFEM,	Gupta,	Banerjee,	Babuška,	Duarte,	2013	
❑ Neighboring	gradient,	Haslinger	et	al,	2009	
❑ Menk,	Bordas,	2009,	Béchet,	Moës,	2008

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Implicit boundaries for liver

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Models: Needle insertion simulation

Needle	insertion	problem

(penetrate)

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Needle Insertion with Implicit Interface

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Needle Insertion with Implicit Boundary

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Needle insertion into liver

Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Brain shift and electrode implantation
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Real-time	Error	Control	for	Surgical	Simulation,	HP	Bui	et	al,	IEEE	Trans.	Biomed.	Eng.,	2016.
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Brain shift and electrode implantation

Controlling	the	Error	on	Target	Motion	through	Real-time	Mesh	Adaptation:	Applications	to	
Deep	Brain	Stimulation,	HP	Bui	et	al,	Int	J	Numer	Meth	Bio,	2017.	
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Error	estimation	and	adaptivity

Controlling	the	Error	on	Target	Motion	through	Real-time	Mesh	Adaptation:	Applications	to	
Deep	Brain	Stimulation,	HP	Bui	et	al,	Int	J	Numer	Meth	Bio,	2017.	
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Superconvergence recovery

Controlling	the	Error	on	Target	Motion	through	Real-time	Mesh	Adaptation:	Applications	to	
Deep	Brain	Stimulation,	HP	Bui	et	al,	Int	J	Numer	Meth	Bio,	2017.	
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Real-time Error Control for Surgical Simulation, HP Bui et	al, 
IEEE	Trans.	Biomed.	Eng., 2016.


Controlling the Error on Target Motion through Real-time 
Mesh Adaptation: Applications to Deep Brain Stimulation, HP 
Bui et	al, Int	J	Numer	Meth	Bio,	2017.	

Corotational Cut Finite Element Method for real-time surgical 
simulation: application to needle insertion simulation,	HP Bui	
et	al,	arXiv:1712.03052[cs.CE]	

H.P.	Bui
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Methods
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Collocation Methods

• Collocation methods belong to the family of meshless 
methods 

• Nodes are arbitrarily distributed over the domain Ω, and 
the boundaries       and Γu Γt



Strong form of PDE

• Typical PDE for a field    : 

• A  is the PDE differential operator 
The known field values    are applied to  
B  is a differential operator applied to  

• The PDE is solved only at collocation points 
• The collocation points are typically the nodes of the domain

f

f Γu
Γt



Advantages and Drawbacks of 
Collocation Methods
• Advantages: 
✓Fewer constrains than element based methods with regards to 

point placement 
✓Easy adaptation of the approximation to reduce the error 
✓Low observed error for many problems 

• Drawbacks: 
✗ Slower to solve than the Finite Element Method as the system 

matrix is non-symmetric, and denser due to larger support



Various Types of Collocation Methods

• Based on an approximation of the unknown field 
➢ Moving Least Square Approximation (MLS) 
➢ Isogeometric Analysis (IGA) 
➢ Radial Basis Functions (RBF) 
➢ … 

• Based on an approximation of the differential operator 
➢ Finite Difference (FD) 
➢ Generalized Finite Difference (GFD) 
➢ Radial Basis Function Finite Difference (RBF-FD) 
➢ Discretization-Corrected Particle Strength Exchange (DCPSE) 



Methods of Particular Interest

• Two methods: 
➢ The Generalized Finite Difference 
➢ The Discretization-Corrected Particle Strength Exchange 

• These methods are based on a Taylor’s series 
expansion to approximate the differential operator 

• As compared to other collocation methods: 
➢ They lead to relatively low error 
➢ Fast to compute the solution



The GFD Method: Step by Step

• Step 1: Discretization & Support Node Selection 
• Step 2: Taylor’s Series Approximation 
• Step 3: Derivatives’ Approximation 
• Step 4: Assembly of the Linear System 
• Step 5: Solution of the Linear System



The GFD Method: Step by Step

• Consider the domain      in 1D: 

• The PDE to be solved:

Ω



Discretization/Support Node Selection

• Nodes are distributed over the domain  
• To each collocation node     , a radius      is associated 

which defines a sub-domain      as the support of   
• The nodes      in      are called the support nodes of    
• The size of      depends on the order of the differential 

operator 

Ω
Xc Rc

Ωc Xc
Xpi Ωc Xc
Ωc



Taylor’s Series Approximation

• Based on a Taylor’s Series Expansion, the nodes        are 
used to approximate the derivatives in  

• Since        is located in the vicinity of      we can write:

Xpi
Xc

XcXpi

f(Xpi) = f(Xc) +
∞

∑
i=1

(Xpi − Xc)i

i!
∂if(Xc)

∂xi



Taylor’s Series Approximation

• Considering a second order PDE, the second order 
approximation of the Taylor’s series expansion is:



Derivatives’ Approximation
• Taylor’s series expansion can be written for all nodes      (3 

for the considered example) in 

• 2 unknowns          and           , 3 equations in this example 

Xpi
Ωc

∂f
∂x

(Xc)
∂2f
∂x2

(Xc)



Derivatives’ Approximation
• What are the values of derivatives      and       that allow to best  
 
reproduce the field values                        ? 

• Minimization problem described by the functional B: 

•      is a weight function centred in    
•      balances the contribution of each support node as a 

function of its distance to   

∂f
∂x

∂2f
∂x2

f(Xpi), i = 1,2,3

Xc

Xc

w

B(Xc) =
3

∑
i=1

w(Xpi − Xc)[f(Xc) − f(Xpi) + (xpi − xc)
∂f(Xc)

∂x
+

(xpi − xc)2

2!
∂2f(Xc)

∂x2 ]
2

w



Derivatives’ Approximation

• What are the derivatives      and       that allow to best  
 
reproduce the field values                       ?  
 
 
 
 
 
 
where 

∂f
∂x

∂2f
∂x2

f(Xpi), i = 1,2,3



Derivatives’ Approximation

• Derivatives of           w.r.t.       and        at       are 

• Equating these terms to zero, this can be written in a 
matrix form as:

∂f
∂x

∂2f
∂x2

B(X) Xc
3

∑
i=1

w(Xpi − Xc)(xpi − xc)[f(Xc) − f(Xpi) + (xpi − xc)
∂f(Xc)

∂x
+

(xpi − xc)2

2!
∂2f(Xc)

∂x2 ]
3

∑
i=1

w(Xpi − Xc)
(xpi − xc)2

2! [f(Xc) − f(Xpi) + (xpi − xc)
∂f(Xc)

∂x
+

(xpi − xc)2

2!
∂2f(Xc)

∂x2 ]



Derivatives’ Approximation

• The coefficients of this system are:



Derivatives’ Approximation

• The derivatives        and        can then be approximated  
 
as a function of the field values  

•  

∂f
∂x

∂2f
∂x2

F(Xc)



Derivatives’ Approximation

• Different types of weight functions: 
➢ 3rd Order Splines 

➢ 4th Order Splines



Assembly of Linear System

Equation for Collocation Node  “i”

1

n

i



The DCPSE Method: Step by Step

• Step 1: Discretization & Support Node Selection 
• Step 2: Taylor’s Series Approximation 
• Step 3: Derivatives Approximation 
• Step 4: Assembly of the Linear System 
• Step 5: Resolution of the Linear System 

➔  The operations performed during the steps 1, 2, 4 
 and 5 are the same as for the GFD method



DCPSE: Derivatives’ Approximation
• The Taylor’s series expansion is convoluted by a function 

    over the domain  

• Compare with the GFD terms

Ωcη
∫Ωc

fh(Xp) η(Xp − Xc) dXp = ∫Ωc

f(Xc) η(Xp − Xc) dXp

+∫Ωc

∂f(Xc)
∂x

(xp − xc) η(Xp − Xc) dXp

+∫Ωc

∂2f(Xc)
∂x2

(xp − xc)2

2!
η(Xp − Xc) dXp



DCPSE: Derivatives’ Approximation

• The coefficient vector      of the correction function is 
selected in order to satisfy the moment condition 

• For instance, for a second order derivative 
approximation :

a



DCPSE: Derivatives’ Approximation

• This problem can be put in a matrix form: 

• The coefficients are

Ai, j(Xc) =
3

∑
i=1

Qi(Xc, Xpi) Pj(Xpi − Xc) w(Xpi − Xc)

Q(Xc, Xp) = [1,(xp − xc),
(xp − xc)2

2! ]
T



DCPSE: Derivatives’ Approximation

• The vector      can be calculated for the derivative 
  

• The derivative can then be approximated as:

Dnx( f(Xc))
a



DCPSE vs. GFD

• Means	of	approximating	the	derivatives	
• Derivatives	approximated	by	GFD	reproduce	the	field	
values	at	the	support	nodes	using	Taylor’s	series	
expansion	

• DCPSE	also	uses	Taylor’s	series	expansion	to	
approximate	the	derivatives	but	it	uses	a	convolution	
function	to	cancel	selected	terms



Sensitivity to various parameters

• Based on a sensitivity study, the following parameters 
are chosen for the case of 2D and 3D linear elastic 
problems 

•

Parameter GFD DC PSE

Weight Function Type 4th Order 
Spline Exponential

Correction Function N/A Polynomial

Size of Inner Nodes Support (2D/3D) 11/37 13/37

Size of Boundary Nodes Support (2D/3D) 19/75 17/75



Model problem

• Only a quarter of the cylinder modelled due to the 
symmetries in the cartesian coordinate system

Plane Stress Cylinder 
under Internal Pressure



Nodes arrangements, structured vs. 
Delaunay triangulation

Structured	Node	Arrangement Delaunay	Triangulation	Node	Arrangement	(Free)

No significant impact on accuracy/convergence



Voronoi Based Weights: GFD

• No improvement or worse results for the structured 
node arrangement 

• Small improvement for the node arrangement based on 
a Delaunay Triangulation



Node Selection Around Singularities
• The visibility criterion: 

Only the nodes visible from the collocation nodes are 
selected in the support of the collocation node



Node Selection Around Singularities
• The diffraction criterion: 

The “hidden” nodes are included in the support of the 
collocation node only if the “diffracted” length is smaller 
than the support radius



Node Selection Around Singularities: 
Model Problem

L-Shape in Mode I Loading



Visibility superior to diffraction

• A lower error is only observed for the visibility criterion, 

GFD

DCPSE



Timings Analysis – L-Shaped Problem
• Similar analysis durations and time split are observed 

for the GFD and the DCPSE methods (right axes for 
total time) 

• For problems of large dimension, the largest fraction of 
the analysis is spent in the solution step



3D Results – ISO Flange: 
Model and Boundary Conditions

Surface(s) Pressure Loading Displacement Loading

XZ, YZ and XY Sym. 
Planes Resp. constrained in the Y, X and Z directions

External Surface Stress free

Top Face Constrained in Z Applied displacement in Z

Internal Surface Constant pressure Stress free



3D Results – ISO Flange: 
Difference (GFD - FEA)

Pressure Loading Displacement Loading



3D Results – Simplified Blade: 
Model and Boundary Conditions

Surface(s) Pressure Loading

XZ, YZ and XY Sym. Planes Resp. constrained in the Y, X and Z directions

External Surface Stress free

Pressurized Surface Constant pressure



3D Results – Simplified Blade: 
Difference (GFD - FEA)



Analysis of 3D Results

• Large number of nodes 
➢ 548,648 nodes for the ISO flange 
➢ 484,238 nodes for the blade 

• The results obtained with GFD and FEA are very close 

• The observed stress concentrations are larger with the 
collocation method



Sensitivity to various parameters

• Both the GFD and the DCPSE methods are sensitive to 
the parameters on which they depend 

• Some of the parameters are: 
➢ The weight function considered (e.g. spline, exponential…) 
➢ The correction function for DCPSE (e.g. polynomial, 

  exponential) 
➢ The number of nodes considered in the inner nodes support 
➢ The number of nodes considered in the boundary nodes 

  support



Programs used 

• CGAL: Node neighbour search and geometry of the 
  boundary 

• Voro++: Voronoi diagram for 2D and 3D problems 
• Eigen: Matrix and vector classes for the assembly  

  step 
• OpenMP: Multithreading 
• MPICH: Parallel multi-node computing 
• PETSc: Matrix preconditioners (algebraic multigrid), 

  parallel iterative solver (GMRES), 
• MUMPS: MUltifrontal Massively Parallel Sparse direct 

  solver




