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Abstract 79 

Physical stress, including high temperatures, may damage the central metabolic nicotinamide 80 

nucleotide cofactors (NAD(P)H), generating toxic derivatives (NAD(P)HX). The highly 81 

conserved enzyme NAD(P)HX Dehydratase (NAXD) is essential for intracellular repair of 82 

NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile 83 

illness-induced neurodegeneration or cardiac failure and early death. Whole exome 84 

sequencing or Whole genome sequencing identified recessive NAXD variants in each case. 85 

Variants were predicted to be potentially deleterious through in silico analysis. Reverse-86 

transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly 87 

elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic 88 

NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells 89 

with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired 90 

mitochondrial function, higher sensitivity to metabolic stress in media containing galactose 91 

and azide but not glucose, and decreased mitochondrial ROS production. Recombinant 92 

NAXD protein harbouring two missense variants leading to the amino acid changes 93 

p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and 94 

increase in Km for the ATP-dependent NADHX dehydratase activity. This is the first study 95 

to identify pathogenic variants in NAXD and to link deficient NADHX repair with 96 

mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a 97 

metabolite repair disorder in which accumulation of damaged metabolites likely triggers 98 

devastating effects in tissues such as the brain and the heart, eventually leading to early 99 

childhood death.  100 

 101 

Key words 102 

Metabolite repair 103 

Mitochondria 104 

Febrile illness 105 

Dehydratase 106 

Epimerase  107 
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Main text 155 

Metabolism is traditionally viewed as an efficient and precise system, supported by enzymes 156 

that are highly specific for their substrate and the type of reaction through which they convert 157 

the substrate. This view has been challenged over recent years by the identification of a 158 

growing list of enzymes that function to repair or remove metabolic side products, the latter 159 

of which are generated by side reactions of main metabolic enzymes. Metabolic side products 160 

can also be produced intracellularly by unwanted spontaneous chemical reactions. These non-161 

canonical or ‘damaged’ metabolites can inhibit key metabolic reactions if they are left to 162 

accumulate. It is to precisely prevent the accumulation of potentially toxic small molecules 163 

that all organisms of all domains of life have most likely evolved a panoply of metabolite 164 

repair systems (Linster et al., 2013; Van Schaftingen et al., 2013).  165 

The nicotinamide nucleotides NAD (reduced form NADH, oxidized form NAD+) and NADP 166 

(reduced form NADPH, oxidized form NADP+) have essential roles in many cellular 167 

functions. NAD is involved in a series of catabolic reactions and in mitochondrial energy 168 

production, whereas NADP is a key component of numerous biosynthetic processes as well 169 

as cellular antioxidant protection systems (Ying, 2008; Houtkooper et al., 2010). The 170 

nicotinamide ring within these cofactors is prone to hydration, forming NADHX or 171 

NADPHX, which can be present as R or S epimers and which can further degrade irreversibly 172 

to cyclic NAD(P)HX (Yoshida and Dave, 1975). NADHX can be slowly produced from 173 

NADH by GAPDH (Rafter et al., 1954); NAD(P)HX can also form spontaneously from the 174 

normal reduced cofactors under ‘stress’ conditions such as increased temperature or acidic 175 

pH (Rafter et al., 1954; Yoshida and Dave, 1975). The damaged cofactors cannot act as 176 

electron carriers and have been shown in vitro to inhibit several key dehydrogenase enzymes 177 

(Yoshida and Dave, 1975; Prabhakar et al., 1998). In Saccharomyces cerevisiae, in vitro and 178 

in vivo evidence for an inhibitory effect of NADHX on 3-phosphoglycerate oxidoreductase, 179 

catalyzing the initial step of the serine biosynthesis pathway, has been obtained recently 180 

(Becker-Kettern et al., 2018). Therefore, NAD(P)HX can be expected to be toxic to cells, and 181 

detoxification by a metabolite repair system is critical.  182 

The nicotinamide nucleotide repair system consists of two partner enzymes: NAD(P)HX 183 

epimerase (NAXE, formerly APOA1BP; OMIM: 608862), which converts R-NAD(P)HX to 184 

S-NAD(P)HX, and NAD(P)HX dehydratase (NAXD, formerly CARKD; OMIM: 615910), 185 

which converts S-NAD(P)HX back to NAD(P)H in an ATP-dependent manner (Marbaix et 186 

al., 2011). Both these enzymes are targeted to several subcellular compartments, including 187 
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the mitochondrion (Marbaix et al., 2014). They also have a ubiquitous tissue distribution 188 

(Marbaix et al., 2014) and are conserved across all taxa (Marbaix et al., 2011). The presence 189 

of the NAD(P)HX repair enzymes across all tissues and species, combined with the central 190 

metabolic roles of the cofactors that they function to preserve, suggest that the repair system 191 

is critical to sustain life. More specifically, it can be predicted that the brain, which has a very 192 

high and constant demand for energy supply generated by mitochondria, would be 193 

particularly vulnerable to impaired NAD(P)HX repair and as such, the NAXE and NAXD 194 

enzymes would be critical to support normal brain function. In apparent contradiction with 195 

those predictions, however, knocking out NAD(P)HX repair enzymes in other organisms 196 

such as yeast, bacteria and plants, has so far only revealed subtle growth phenotypes, if any, 197 

at least under standard growth conditions (Breslow et al., 2008; Hillenmeyer et al., 2008; 198 

Nichols et al., 2011; Colinas et al., 2014; Niehaus et al., 2014; Becker-Kettern et al., 2018). 199 

Recently whole exome sequencing (WES) identified pathogenic variants in the epimerase 200 

NAXE that were associated with cases of a lethal neurometabolic disorder of early childhood 201 

(Kremer et al., 2016; Spiegel et al., 2016). In these subjects, it appeared that episodes of 202 

febrile illness aggravated the consequences of an already compromised metabolite repair 203 

system, resulting in rapid neurological deterioration and decomposition of other tissues with 204 

clinical observation of ataxia, muscular hypotonia, respiratory insufficiency and/or 205 

respiratory failure, nystagmus and skin manifestations followed by premature death. This 206 

provided the first cases of subjects with pathogenic variants in a key enzyme of the 207 

nicotinamide nucleotide repair pathway. 208 

In the present study we report six unrelated individuals with homozygous or compound 209 

heterozygous variants in NAXD. The predominant clinical features included repeated 210 

episodes of regression often triggered by episodes of mild fever or infection, an infantile 211 

onset neurodegenerative condition (Figure 1 A - M) and skin lesions (Figure O – P), 212 

ultimately leading to early death in all cases. The clinical features of our NAXD subjects 213 

therefore resembled those of the previously published cases of NAXE deficiency (Table 1), 214 

and detailed clinical reports for all cases are available in Supplementary Materials. The six 215 

subjects with NAXD variants were identified individually by WES or WGS as part of either 216 

independent international gene discovery cohorts, National Health Services diagnostic testing 217 

or through the Genematcher/Matchmaker database (Philippakis et al., 2015; Sobreira et al., 218 

2015).  219 

Sanger sequencing confirmed all variants identified through next generation sequencing 220 

(Supplementary Fig. 1). The human NAXD gene is predicted to generate four coding 221 
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transcripts, leading to the expression of cytosolic, mitochondrial and ER protein isoforms, as 222 

explained in detail in Supplemental Material (see also Supplementary Figs. 2 and 3).  For 223 

initial interpretation we focused on the most abundant transcript RefSeq isoform c 224 

(NM_001242882.1; Supplementary Table 1) whose existence is most strongly supported by 225 

EST analysis and from which mitochondrial and cytosolic NAXD protein forms can be 226 

translated (as described in Supplemental Material). In silico analyses predicted the variants to 227 

be pathogenic to each of the four NAXD transcript isoforms (NCBI RefSeq), and affect the 228 

structure and function of the NAXD protein (Supplementary Table 2, Supplementary Fig. 2 229 

and Supplementary Fig. 3). By HSF3 analysis (Desmet et al., 2009) the splicing variant in 230 

Case 1 was predicted to lead to disruption of the wild-type donor site, which was confirmed 231 

by RT-PCR studies, revealing aberrant splicing and skipping of Exon 9 (Supplementary Fig. 232 

4).  233 

We then used patient fibroblasts to determine the intracellular concentrations of NAD(P), 234 

NAD(P)H, S-NAD(P)HX, R-NAD(P)HX and cyclic-NAD(P)HX using high resolution 235 

accurate mass reversed phase liquid chromatography mass spectrometry (HRAM RP-LC-236 

MS) with comparison against chemically pure standards (Supplementary Fig. 5). We detected 237 

no significant differences in NAD, NADH and NADP levels between control and subject-238 

derived fibroblasts (NADPH levels were below the limit of quantification). Importantly, the 239 

damaged cofactor derivatives S-NADHX, R-NADHX and cyclic-NADHX were only 240 

detected in fibroblasts from Cases 1, 2 and 4, but not in any of our control cell lines (Fig. 2A 241 

and B). Quantification of these metabolites revealed a similar level of accumulation of S-242 

NADHX and R-NADHX in Case 1, Case 2 and Case 4 (Fig. 2C). Interestingly the levels 243 

detected in Case 3 were much lower than for Cases 1, 2 and 4 and only just above the 244 

detection threshold for LC-MS analysis (Figure 2B). Lentiviral transduction with either the 245 

cytosolic (cNAXD) or mitochondrial (mNAXD) wild-type NAXD cDNA completely 246 

prevented the accumulation of any of the NADHX derivatives in fibroblasts from Case 1 and 247 

2 (Fig. 2D) whilst a control GFP construct had no effect (Fig. 2D).  248 

To address whether mitochondrial function is affected by NAXD deficiency in our subjects, 249 

we examined the expression of representative protein subunits of the mitochondrial 250 

respiratory chain and enzyme activity of Complex I and Complex IV in fibroblasts from Case 251 

1 and 2. There was a marked reduction in the expression of both NDUFB8 (Complex I 252 

membrane subunit) and COXII (Complex IV subunit) in both Case 1 and Case 2 compared to 253 

four pediatric control fibroblast extracts (Fig. 3A and Supplementary Fig. 6). We found a 254 

significant reduction in cytochrome C oxidase activity in Case 1 and Case 2 compared to 255 
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controls (Fig. 3B), whilst Complex I NADH oxidation activity was not affected (data not 256 

shown). Mitochondrial superoxide production revealed a significant decrease in rotenone-257 

inhibited complex I superoxide production in both Case 1 and Case 2 compared to controls 258 

(Fig. 3C). There was a significant decrease in the growth rate of fibroblasts in basal media or 259 

in glucose-free, galactose-azide medium to induce mitochondrial stress from Case 1 and Case 260 

2 compared to control fibroblasts (Fig. 3D). 261 

The NAXD missense variants (p.(Arg308Cys) and p.(Gly63Ser)) were introduced by site-262 

directed mutagenesis into human NAXD cDNA, then expressed and purified as recombinant 263 

proteins. For the p.(Gly63Ser) variant, we found a 3.4-fold decrease in Vmax and a 3.3-fold 264 

increase in Km compared to the wild-type protein. For the p.(Arg308Cys) variant, we 265 

determined a 2.5-fold decrease in Vmax and a 2.2-fold increase in Km compared to wild-type 266 

(Supplementary Table 3). Thermostability analyses of recombinant NAXD revealed that both 267 

the p.(Gly63Ser) and the p.(Arg308Cys) proteins lost enzymatic activity upon pre-incubation 268 

at temperatures higher than 30°C while the wild-type protein activity resisted exposure to 269 

temperatures up to 47°C (Fig. 3E). This thermolability was most pronounced for the 270 

p.(Arg308Cys) variant, with a more than 90% decrease in activity above 45ºC, while for the 271 

p.(Gly63Ser) variant this same treatment resulted in an ~ 40% activity loss (Fig. 3E).  272 

Here we report on the first known pathogenic NAXD variants, which affected six families, 273 

leading to a fever-induced severe multisystem disease and death within the first decade of 274 

life. To explore the consequences of NAXD deficiency, quantification of NAD(P)HX 275 

metabolites revealed a similar level of accumulation of S-NADHX and R-NADHX in Case 1, 276 

Case 2 and Case 4 in the expected 60:40 S to R epimer ratio (Marbaix et al., 2011). This was 277 

completely reversed by lentiviral transduction with either cytosolic (cNAXD) or 278 

mitochondrial (mNAXD) lentiviral constructs. Supposing an intracellular fibroblast volume 279 

of 2 picoliters, the approximate intracellular concentrations of S-NADHX (100 – 300 µM) 280 

and R-NADHX (70 – 210 µM) were quantitatively similar to values induced by a complete 281 

loss of function for NAXD in an experimental cell line (Becker-Kettern et al., 2018). The 282 

levels in Case 3 were only just above the detection threshold which may be due to  the 283 

frameshift mutation in this patient preventing expression of the mitochondrial and ER 284 

targeted NAXD isoforms (early truncation), but allowing for expression of the cytosolic 285 

NAXD protein from the ATG residing in exon 2 (Met3 in Supplementary Fig. 3). The same 286 

reasoning would also apply to Case 5, for which fibroblasts were, however, not available for 287 

measurements. These results provide strong support that the NADHX accumulation is 288 

specifically caused by NAXD mutations. 289 
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NAD(P)H are essential cofactors for many cellular reactions, particularly in the 290 

mitochondria, therfore accumulation of the non-canonical NAD(P)HX derivatives may 291 

impede multiple cellular functions including key mitochondrial dehydrogenases (Yoshida and 292 

Dave, 1975; Prabhakar et al., 1998). Subjects with pathogenic variants in NAXE had 293 

decreased complex I activity (Kremer et al., 2016) indicating impaired mitochondrial 294 

function as a consequence of a deficiency in one of the NAD(P)HX repair enzymes. 295 

Respiratory chain activity was impaired in NAXD patients; fibroblasts had a significant 296 

decrease in the expression of complex I and IV, and activity of complex IV and muscle 297 

enzymology showed reduced respiratory chain activity (Complex II+III, Case 2; Complex I, 298 

Case 4; Complex I and IV, Case 6). We also demonstrated reduced superoxide production in 299 

NAXD subjects, which may be explained by decreased expression of specific Complex I 300 

subunits subsequently affecting holocomplex stability, but partial enzyme activity may still 301 

remain due to preservation of NADH oxidation in the matrix arm of Complex I. 302 

Mitochondrial dysfunction can also be revealed by culturing cells under galactose growth 303 

conditions (Robinson et al., 1992) in the presense of the Complex IV inhibitor sodium azide 304 

(Swalwell et al., 2011), which limits ATP production by glycolysis, forcing cells to rely on 305 

mitochondrial OXPHOS. There was a significant decrease in the growth rate of fibroblasts 306 

from Case 1 and Case 2 compared to control fibroblasts under galactose conditions, further 307 

supporting that mitochondrial function in fibroblasts from NAXD subjects is compromised. 308 

To determine the effect of the NAXD missense variants (p.(Arg308Cys) and p.(Gly63Ser)) on 309 

NADHX dehydratase activity, the missense variants were introduced by site-directed 310 

mutagenesis into the cytosolic NAXD cDNA since similar kinetic properties were previously 311 

obtained for both mitochondrial and cytosolic Carkd (mouse homologue of human NAXD) 312 

(Marbaix et al., 2011) and the cytosolic protein gave greater yield. Analysis of the kinetic 313 

properties for the two missense variants revealed significantly reduced Vmax and increased 314 

Km compared to the wild-type protein. Thermostability analysis revealed loss of enzymatic 315 

activity upon pre-incubation temperatures above 30°C, and the thermolability was more 316 

pronounced for the p.(Arg308Cys) variant. The Gly63 residue is highly conserved from 317 

bacteria to humans (Marbaix et al., 2011); the Arg308 residue is also conserved in the mouse 318 

and yeast homologs of NAXD, but not in the E. coli homolog (Marbaix et al., 2011). This 319 

arginyl residue is relatively close to the C-terminus of the protein, as are the splicing and 320 

frameshift mutations found in Case 1 and Case 2, respectively, suggesting that this may be a 321 

critical domain for NAXD protein stability. In addition, the thermolability of the NAXD 322 

missense variants found in Case 1 and Case 2 may at least in part explain the coincidence of 323 
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deterioration in the subjects sometimes occurring after episodes of fever. Those individuals 324 

who had infections may have had unreported fevers secondary to the viral infection which 325 

likely precipitated rapid decompensation. In summary, our in vitro analyses of recombinant 326 

NAXD demonstrated that the missense variants, while retaining residual enzyme activity, 327 

show a markedly decreased stability especially at higher temperatures. 328 

This report highlights the importance of the NAD(P)HX repair system to preserve cellular 329 

and overall health in humans. We could show high intracellular NADHX accumulation for 330 

three of the four individuals where fibroblast lines were available for analysis, and impaired 331 

mitochondrial function. The missense variants found in Case 1 and Case 2 led to partial loss 332 

of enzyme activity and a significant decrease in thermostability. More particularly, NAXD 333 

deficiency appears to have devastating effects in key tissues such as the brain, which are 334 

critically dependent on efficient energy metabolism and are exquisitely sensitive to abnormal 335 

metabolite accumulation. After 2-hydroxyglutaric aciduria (Van Schaftingen et al., 2009) and 336 

NAXE deficiency (Kremer et al., 2016), NAXD deficiency represents now the third known 337 

disorder of metabolite repair. We also suggest that NAXD deficiency should be included in 338 

the growing list of genetic disorders associated with fever-induced neurological deterioration 339 

(Powers and Scheld, 1996; Longo, 2003). 340 
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Fig. and Table Legends 371 

 372 

Table 1: Clinical findings in individuals with variants in NAXD or NAXE  373 

* abnormal MRI scan; ^ one episode of fever without any deterioration; # sibling had mild 374 

developmental delay, mild anemia, recurrent episodes of fever, and died after an episode of 375 

vomiting and lethargy at 1 year 7 months. 376 

 377 

Fig. 1 – Neuroimaging findings and skin manifestations in children with NAXD 378 

mutations 379 

MRI scans for Case 1 at the age of 3 years and 7 months, three months after normal MRI 380 

scans (A; Axial T2, B; Diffusion (DWI) and C; coronal T2 FLAIR) showed bilateral and 381 

symmetrical T2 high signal and cytotoxic oedema of the basal ganglia and focal areas of 382 

cortical involvement in the temporal lobes. Progress MRI after 3 weeks (D; axial T2, E; DWI 383 

and F; coronal T2 FLAIR) showed bilateral and symmetrical T2 high signal and cytotoxic 384 

oedema of the basal ganglia persist with increasing areas of asymmetrical cortical 385 

involvement in the temporal lobes and frontal lobes. Follow-up MRI 3 years later (G; Axial 386 

T2, H; axial and I; coronal T2 FLAIR) showed generalised cerebral atrophy, most marked in 387 

the frontal lobes and basal ganglia with exvacuo-dilatation of the lateral ventricles. The high 388 

signal is consistent with gliosis. Case 2 MRI (J – M) showed bilateral hyperintensity of 389 

striatal nuclei which remained unchanged in subsequent scans. Case 4 brain MRI (N) showed 390 

bilateral basal ganglia changes suggestive of a mitochondrial disorder. Extensive skin lesions 391 

in Case 4 (O – P). 392 

 393 

Fig. 2: NADHX accumulation in subject fibroblasts and phenotypic rescue by lentiviral 394 

gene delivery of wild-type NAXD 395 

Representative examples of LC-MS extracted ion chromatograms of A) S- and R-NADHX 396 

metabolites (XIC = 682.12) and B) NADH and cyclic NADHX (XIC = 664.11). The 397 

chromatograms clearly show peaks of S-, R- and cyclic NADHX in Case 1 and Case 2, and 398 

not in a control. C) Quantitative results of the NADHX measurements after cultivation of 399 

fibroblasts from Cases 1, 2, 3 and 4 under standard conditions at 37°C for 96 hours. Note that 400 

these metabolites were not detected in four control fibroblast lines. Data is mean +/- SD, n = 401 

3. C) Quantitative results of the NADHX measurements in lentiviral-rescued cells. There was 402 

a clear accumulation of S-, R- and cyclic NADHX in Case 1 and Case 2, independently of 403 
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transduction with GFP-only vectors. S-, R- and cyclic NADXH were not detected in control 404 

fibroblasts. Lentiviral gene rescue with either the mNAXD or cNAXD construct completely 405 

prevented accumulation of S-, R- and cyclic NADHX in subject cells. Data is mean +/- SD, n 406 

= 3. 407 

 408 

Fig. 3 - Mitochondrial impairment in NAXD subject fibroblasts and thermostability of 409 

recombinant NAXD protein variants 410 

A) Mitochondrial OXPHOS proteins were separated by SDS-PAGE, probed for relative 411 

expression levels of key OXPHOS subunits by immunoblotting, and expression levels 412 

normalized to GAPDH as a loading control. There was a significant decrease in the 413 

expression of Complex I and Complex IV proteins expression in Case 1 and Case 2 compared 414 

to controls. B) Mitochondrial OXPHOS enzyme activity was measured in cell extracts by 415 

immunocapture dipstick assays. There was a significant decrease in Complex IV activity 416 

(mAbs/mg protein) in Case 1 and Case 2 relative to controls. C) Relative rates (relative 417 

fluorescent units/time) of mitochondrial superoxide production in fibroblasts was measured 418 

with the superoxide sensitive probe dihydroethidium in the presence or absence of the 419 

Complex I inhibitor rotenone. D) Growth rate in medium devoid of glucose but containing 420 

5mM galactose and 50µM sodium azide was normalized to growth rate in basal medium to 421 

account for variation in the baseline growth rate of each cell line. The normalized growth rate 422 

in Case 1 and Case 2 was significantly lower than controls. E) Purified recombinant NAXD 423 

protein, without or with missense mutations p.(Gly63Ser) and p.(Arg308Cys), was pre-424 

incubated at the indicated temperature for 30 min prior to addition to a reaction mixture for 425 

the spectrophotometric assay of NADHX dehydratase activity. Data is mean ± SD, n>3 per 426 

measurement from at least two independent experiments. Statistical significance was 427 

determined using one-way ANOVA with Bonferroni correction for multiple comparisons, * 428 

P<0.05; **P<0.01; *** P<0.001.  429 

  430 
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Table 1: Clinical findings in individuals with variants in NAXD or NAXE  

Clinical presentation NAXD cases (present study) NAXE (previously 

published) 

Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

 

Case 

6 

(Spiegel 

et al 

2016) 

(Kremer 

et al 

2016) 

Gender M F F M F F 3F, 2M 2F, 4M 

Episodes of fever/illness 

prior to deterioration 

Y Y δ Y Y Y Y 5/5 4/6 (2 

unclear) 

Neurodegeneration Y Y N Y ? * Y 5/5 4/6 (2 

unclear) 

Skin lesions Y Y N Y N Y Not 

reported 

4/6 

Cardiac presentation N N N N Y N Not 

reported 

2/6 ^ 

Early death Y Y Y # Y Y Y 4/5 6/6 

 

* abnormal MRI scan; # sibling had mild developmental delay, mild anemia, recurrent 

episodes of fever, and died after an episode of vomiting and lethargy at 1 year 7 months. ^ 

two NAXE patients died from cardiovascular failure. δ Fever was associated with some, but 

not all episodes of deterioration. 
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Fig. 1 – Neuroimaging findings and skin manifestations in children with NAXD mutations  
MRI scans for Case 1 at the age of 3 years and 7 months, three months after normal MRI scans (A; Axial T2, 
B; Diffusion (DWI) and C; coronal T2 FLAIR) showed bilateral and symmetrical T2 high signal and cytotoxic 

oedema of the basal ganglia and focal areas of cortical involvement in the temporal lobes. Progress MRI 
after 3 weeks (D; axial T2, E; DWI and F; coronal T2 FLAIR) showed bilateral and symmetrical T2 high 
signal and cytotoxic oedema of the basal ganglia persist with increasing areas of asymmetrical cortical 

involvement in the temporal lobes and frontal lobes. Follow-up MRI 3 years later (G; Axial T2, H; axial and 
I; coronal T2 FLAIR) showed generalised cerebral atrophy, most marked in the frontal lobes and basal 

ganglia with exvacuo-dilatation of the lateral ventricles. The high signal is consistent with gliosis. Case 2 MRI 
(J – M) showed bilateral hyperintensity of striatal nuclei which remained unchanged in subsequent scans. 
Case 4 brain MRI (N) showed bilateral basal ganglia changes suggestive of a mitochondrial disorder. 

Extensive skin lesions in Case 4 (O – P).  
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Caption : Fig. 2: NADHX accumulation in subject fibroblasts and phenotypic rescue by lentiviral gene 
delivery of wild- � �type NAXD Representative examples of LC-MS extracted ion chromatograms of A) S- and 
R-NADHX metabolites (XIC = 682.12) and B) NADH and cyclic NADHX (XIC = 664.11). The chromatograms 

clearly show peaks of S-, R- and cyclic NADHX in Case 1 and Case 2, and not in a control. C) Quantitative 
results of the NADHX measurements after cultivation of fibroblasts from Cases 1, 2, 3 and 4 under standard 
conditions at 37°C for 96 hours. Note that these metabolites were not detected in four control fibroblast 

lines. Data is mean +/- SD, n = 3. C) Quantitative results of the NADHX measurements in lentiviral-rescued 
cells. There was a clear accumulation of S-, R- and cyclic NADHX in Case 1 and Case 2, independently of 
transduction with GFP-only vectors. S-, R- and cyclic NADXH were not detected in control fibroblasts. 

Lentiviral gene rescue with either the mNAXD or cNAXD construct completely prevented accumulation of S-, 
R- and cyclic NADHX in subject cells. Data is mean +/- � �SD, n = 3.   

 
174x154mm (150 x 150 DPI)  
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Fig. 3 - Mitochondrial impairment in NAXD subject fibroblasts and thermostability of recombinant NAXD 
protein variants  

A) Mitochondrial OXPHOS proteins were separated by SDS-PAGE, probed for relative expression levels of key 
OXPHOS subunits by immunoblotting, and expression levels normalized to GAPDH as a loading control. 

There was a significant decrease in the expression of Complex I and Complex IV proteins expression in Case 
1 and Case 2 compared to controls. B) Mitochondrial OXPHOS enzyme activity was measured in cell extracts 

by immunocapture dipstick assays. There was a significant decrease in Complex IV activity (mAbs/mg 
protein) in Case 1 and Case 2 relative to controls. C) Relative rates (relative fluorescent units/time) of 

mitochondrial superoxide production in fibroblasts was measured with the superoxide sensitive probe 
dihydroethidium in the presence or absence of the Complex I inhibitor rotenone. D) Growth rate in medium 
devoid of glucose but containing 5mM galactose and 50µM sodium azide was normalized to growth rate in 
basal medium to account for variation in the baseline growth rate of each cell line. The normalized growth 

rate in Case 1 and Case 2 was significantly lower than controls. E) Purified recombinant NAXD protein, 
without or with missense mutations p.(Gly63Ser) and p.(Arg308Cys), was pre-incubated at the indicated 
temperature for 30 min prior to addition to a reaction mixture for the spectrophotometric assay of NADHX 
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dehydratase activity. Data is mean ± SD, n>3 per measurement from at least two independent 
experiments. Statistical significance was determined using one-way ANOVA with Bonferroni correction for 

multiple comparisons, * P<0.05; **P<0.01; *** P<0.001.  
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Supplementary Table 1: In silico analysis of NAXD variants 

  Variant Inheritance Population 

frequency 

GnomAD 

(mean allele 

frequency) 

NAXD variants Consequence 

chr:position Coding 

region 

cDNA 

(NM_001242882.

1) 

Protein 

(NP_001229811) 

Case 

1 
splicing 
site SNV 

AR/ 
compound 
het (mat.) 

0  chr13:111289597 intron 9 c.839+1G>T  p.(?) most likely 
affects 
splicing 

nonsyn. 
SNV 

AR/ 
compound 
het (pat.) 

17 het  
0 hom 

(6.919e-5) 

chr13:111290807 exon 10 c.922C>T p.(Arg308Cys) missense 

Case 

2 
nonsyn. 
SNV 

AR/ 
compound 
het (mat.) 

0 chr13:111274703 exon 2 c.187G>A p.(Gly63Ser) missense 

2-bp 
insertion 

AR/ 
compound 
het (pat.) 

2 het 
0 hom 

(8.173e-6) 

chr13:111290833 exon 10 c.948_949insTT p.(Ala317Leufs*64) frameshift 
and stop loss 

Case 

3 
4-bp 
deletion 

AR/ hom 13 het  
0 hom 

(4.742e-5) 

chr13:111274567 exon 2 c.51_54delAGAA p.(Ala20Phefs*9) frameshift 
and probable 
nonsense-
mediated 
decay 

Case 

4 
nonsyn. 
SNV 

AR/ hom 11 het 
0 hom 

(4.473e-5) 

chr13:111277601 exon 4 c.308C>T p.(Pro103Leu) missense 

Case 

5 

4-bp 
deletion 

AR/ hom 0 chr13:111274570 exon 2 c.54_57delAAGA p.(Ala20Phefs*9) frameshift 
and premature 
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truncation 

Case 

6 

nonsyn. 
SNV 

De novo 0 chr13:111277624 exon 4 c.331C>T p.(Leu111Phe) missense 

nonsyn. 
SNV 

De novo 0 chr13:111289533 exon 9 c.776T>G p.(Leu259Arg) missense 

All genomic coordinates are in UCSC hg19. AA: amino acid. AR: Autosomal Recessive. Het: heterozygote. Hom: homozygote. Mat: maternally 

inherited. Nonsyn: nonsynonymous. Pat: paternally inherited. 
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Supplementary Table 2: In silico analysis of NAXD variants 

 

  Variant 

GnomAD 

population 

frequence 

(MAF) 

Genebank transcript ID NM_001242882.1 NM_001242883.1 NM_001242881.1 NM_018210.3 
Ensembl transcript ID   ENST00000424185   ENST00000309957 
Transcript variant  variant 4 variant 4 variant 2 variant 1 
Size (base pairs) 2599 2313 2602 2738 
Genebank protein ID NP_001229811 NP_001229812 NP_001229810 NP_060680 
Protein isoform isoform c isoform d isoform b isoform a 
Protein length (amino acids) 329 237 347 390 
Genomic start (chr 13) 111267807 111267807 111267931 111267931 
Genomic end (chr 13) 111292342 111292342 111292342 111292342 

Relative expression (based on 

EST) 81% 19% 8% 0% 

Comments 

This variant (3) differs in 
the 5' UTR and 5' coding 
region, uses an alternate 
start codon, and uses an 
alternate splice site that 

causes a frameshift in the 3' 
coding region, compared to 

variant 1. The encoded 
isoform (c) has distinct N- 

and C-termini and is shorter 
than isoform a. 

This variant (4) differs in the 5' 
UTR and 5' coding region, uses 

an alternate start codon, and 
uses an alternate splice site that 

causes a frameshift in the 3' 
coding region, compared to 

variant 1. The encoded isoform 
(d) has distinct N- and C-
termini and is shorter than 

isoform a. 

This variant (2) uses an 
alternate splice site that 

causes a frameshift in the 3' 
coding region, compared to 

variant 1. The encoded 
isoform (b) has a distinct and 
shorter C-terminus, compared 

to isoform a. 

This variant (1) represents the 
longest transcript and encodes the 

longest isoform (a). 

Case 1: 

Compound 

heterozygous  

splicing site SNV 

NC_000013.10:g.111

289597 G>T 

0 

Coding region intron 9 intron 6 intron 9 intron 9 
cDNA position c.839+1G>T c.563+1G>T c.893+1G>T c.893+1G>T 

HSF3 
Alteration of the WT donor 

site Alteration of the WT donor site 
Alteration of the WT donor 

site Alteration of the WT donor site 
Consequence Most likely affects splicing Most likely affects splicing Most likely affects splicing Most likely affects splicing 

missense SNV 

NC_000013.10:g.111

290807 C>T 

17 
heterozygotes 

0 homozygotes 
(6.919e-5)  

Coding region exon 10 exon 7 exon 10  exon 10 
cDNA position c.922C>T c.646C>T c.976C>T c.1112C>T 
AA change p.(Arg308Cys) p.(Arg216Cys) p.(Arg326Cys) p.(Ser371Leu) 
Provean n/a probably deleterious (-7.32) n/a probably neutral (-0.18) 
SIFT n/a damaging (0.000) n/a damaging (0.022) 
PolyPhen2 probably damaging (1.000) probably damaging (1.000) probably damaging (1.000) benign (0.299) 
Consequence missense missense missense missense 

Case 

2:Compound 

heterozygous  

missense SNV 

NC_000013.10:g.111

274703 G>A 

0 

Coding region exon 2 intron 1 exon 2 exon 2 
cDNA position c.187G>A c.57-5083G>A c.241G>A c.241G>A 
AA change p.(Gly63Ser) n/a p.(Gly81Ser) p.(Gly81Ser) 
Provean n/a n/a n/a probably deleterious (-5.73) 
SIFT n/a n/a n/a damaging (0.00) 
PolyPhen2 probably damaging (1.000) n/a probably damaging (1.000) probably damaging (1.000) 
Consequence missense n/a missense missense 

2-bp insertion 

NC_000013.10:g.111

2 heterozygotes 
0 homozygotes 

Coding region exon 10 exon 7 exon 10 exon 10 
cDNA position c.948_949insTT c.672_673insTT c.1002_1003insTT c.1138_1139insTT 
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290833_111290834in

sTT 

(8.173e-6) AA change p.(Ala317Leufs*64) p.(Ile224*) p.(Ile334*) p.(Arg380LeufsTer15) 

Consequence 
frameshift and c-terminal 

truncation 
frameshift and c-terminal 

truncation 
frameshift and c-terminal 

truncation 
stop codon lost, prolonged protein 

Case 3: 

Homozygous  

NC_000013.10:g.111

274567_111274570de

lAGAA 

13 heterozygote  
0 homozygotes 

Coding region Exon 2 Intron 1 Exon 2 Exon 2 
cDNA position c.51_54delAGAA c.57-5219_57-5216delAGAA c.105_108delAGAA c.105_108delAGAA 
AA change p.(Ala20Phefs*9) n/a p.(Ala38Phefs*9) p.(Ala38Phefs*9) 

Consequence 
Frameshift and probable 
nonsense-mediated decay 

n/a 
Frameshift and probable 
nonsense-mediated decay 

Frameshift and probable nonsense-
mediated decay 

Case 4: 

Homozygous  

 

NC_000013.10:g.111

277601C>T 

11 het 
0 hom 

(4.473e-5) 

Coding region Exon 4 Intron 1 Exon 4 Exon 4 
cDNA position c.308C>T c.57-2185C>T c.362C>T c.362C>T 
AA change p.(Pro103Leu) n/a p.(Pro121Leu) p.(Pro121Leu) 
Provean Deleterious (-9.10) n/a Deleterious (-9.25) Deleterious (-9.25) 
SIFT Damaging (0.00) n/a Damaging (0.00) Damaging (0.00) 
PolyPhen2 Probably damaging n/a Probably damaging Probably damaging 
Consequence Missense n/a Missense Missense 

Case 5: 

Homozygous  

4-bp deletion 

NC_000013.10:g.111

274570_111274573de

lAAGA 

0 

Coding region exon 2 intron 1 exon 2 exon 2 
cDNA position c.54_57delAAGA c.57-5216_57-5213delAAGA c.108_111delAAGA c.108_111delAAGA 
AA change p.(Ala20Phefs*9) n/a p.(Ala38Phefs*9) p.(Ala38Phefs*9) 

Consequence 
frameshift and premature 

truncation 
n/a 

frameshift and premature 
truncation 

frameshift and premature truncation 

Case 6: De 

novo 

De novo missense 

NC_000013.10:g.111

277624 C>T 

0 

Coding region Exon 4 Intron 1 Exon 4 Exon 4 
cDNA position c.331C>T c.57-2162C>T c.385C>T c.385C>T 
AA change p.(Leu111Phe) n/a p.(Leu129Phe) p.(Leu129Phe) 
Provean Deleterious n/a Deleterious Deleterious (-3.78) 
SIFT Damaging n/a Damaging Damaging (0.028) 
PolyPhen2 possibly damaging(0.519) n/a possibly damaging(0.519) possibly damaging(0.519) 
Consequence missense n/a missense missense 

De novo missense 

NC_000013.10:g.111

289533 T>G 

0 

Coding region Exon 9 Exon 6 Exon 9 Exon 9 
cDNA position c.776T>G c.500T>G 830T>G c.830T>G 
AA change p.(Leu259Arg) p.(Leu167Arg) p.(Leu277Arg) p.(Leu277Arg) 
Provean Deleterious (-5.62) Deleterious (-5.73) n/a Deleterious (-5.70) 
SIFT Damaging (0.00) Damaging (0.00) n/a Damaging (0.00) 

PolyPhen2 probably damaging (1.00) probably damaging (1.00) probably damaging (1.00) probably damaging (1.00) 
Consequence missense missense missense missense 
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Supplementary Table 3: Kinetic properties of NAXD missense variants 

WT p.(Gly63Ser) p.(Arg308Cys) 

Vmax Km Vmax Km Vmax Km 

(µmol/min/ 

mg protein) (µM) 

(µmol/min/ 

mg protein) (µM) 

(µmol/min/ 

mg protein) (µM) 

Average 0.877 8.62 0.261*** 28.3** 0.350*** 18.8 

SD 0.124 1.50 0.017 6.9 0.098 6.2 

  

Data are means ± SD, n ≥ 3 per measurement from at least three independent experiments. 

NADHX dehydratase activity was assayed spectrophotometrically by monitoring the 

consumption of S-NADHX. Statistical significance was determined using one-way ANOVA 

with Bonferroni correction for multiple comparisons, significance is vs wild-type, **P<0.01; 

*** P<0.001. 
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Supplementary Table 4: Primer sequences 

Primer pair Primer pair used for 
Forward primer 
(5’ to 3’) 

Reverse primer (5’ to 
3’) 

Case 1: 
splicing 
variant 

gDNA confirmation of 
NC_000013.10:g.11128959
7 G>T 

CTGCGTGTCTT
GGTTTCC 

AGAGGGTTCGTCT
GTGCC 

Case 1: 
missense 
variant 

gDNA confirmation of 
NC_000013.10:g.11129080
7 C>T 

AGGGCTAAGC
AGCTTGTG 

GTGCCTGTTTACTT
CTGGTCT 

Case 2: 
missense 
variant 

gDNA confirmation of 
NC_000013.10:g.11127470
3 G>A 

TGTAAAACGA
CGGCCAGTAG
AGGGTTTTGGT
TAATGGGCT 

AGCGTGAATGACA
GTCAGGT 

Case 2: 2bp 
insertion 

gDNA confirmation of  
NC_000013.10:g.11129083
3_111290834insTT 

TGTAAAACGA
CGGCCAGTCTG
CTTTCTCCTCA
GGGGC 

GGGTCCGGATTTT
CCCATCA 

Case 3: 4bp 
deletion 

gDNA confirmation of 
NC_000013.10:g.11127456
7_111274570delAGAA  

AGAGGGTTTTG
GTTAATGGG 

CAGCTACTTACTC
CTGACAG 

Case 4: 
missense 
variant 

gDNA confirmation of  
NC_000013.10:g.11127760
1C>T 

CAGTGGCGGC
AAAAGTCTTTC 

CGCCGTCTCTGTC
TTATTCTGA 

Case 5: 4bp 
deletion 

gDNA confirmation of  
NC_000013.10:g.11127457
0_111274573delAAGA  

TGTAAAACGA
CGGCCAGTAG
AGGGTTTTGGT
TAATGGGCT 

AGCGTGAATGACA
GTCAGGT 

Case 6: 
missense 
variant #1 

gDNA confirmation of  
NC_000013.10:g.11127762
4 C>T 

CCTGTGCAGTG
CTTGTGTG 

TTTCTGTGGTCCA
GCAAGG 

Case 6: 
missense 
variant #2 

gDNA confirmation of  
NC_000013.10:g.11128953
3 T>G 

TCACATTCACA
CACATGGC 

GCTACTTATTCAA
CGCATGAGCTAC 

Case 1 RT-
PCR 
analysis 

RT-PCR for splicing 
analysis of g.13:111289597 
G > T 

AGACTGTATG
ACGCTGTGCTC 

GAAGGCTTGGTGG
TTGCACT 

Case 1 
missense 
variant 

Site-directed mutagenesis  

 CTTCCAGAAG
CACGGTTGCTC
CACCACCACCT
CCG 

 CGGAGGTGGTGG
TGGAGCAACCGTG
CTTCTGGAAG 

Case 2 
missense 
variant 

Site-directed mutagenesis  

 GAATAGGCGT
AGTTGGAAGC
TGTCAGGAGT
ACACTG 

 CAGTGTACTCCTG
ACAGCTTCCAACT
ACGCCTATTC 
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NAXD-mito 

Amplification of NAXD 
cDNA (mitochondrial 
isoform) for creation of 
Gateway Entry clone 

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
CATGGCCCTGG
GTCCTCGCTG 

GGGGACCACTTTG
TACAAGAAAGCTG
GGTCTCAGGTTTC
AAAGAGCTTGCTG
AAGG 

NAXD-cyto 

Amplification of NAXD 
cDNA (cytosolic isoform) 
for creation of Gateway 
Entry clone  

GGGGACAAGT
TTGTACAAAA
AAGCAGGCTT
CATGGAAAAT
ACTTTGCAGCT
GGTGAG 

GGGGACCACTTTG
TACAAGAAAGCTG
GGTCTCAGGTTTC
AAAGAGCTTGCTG
AAGG 

NAXD-
pcDNA3.1 

DNA sequence 
confirmation 

TAATACGACTC
ACTATAGGG 

TAGAAGGCACAGT
CGAGG 

pDONR221-
NAXD 

DNA sequence 
confirmation of Gateway 
Entry clones 

TGTAAAACGA
CGGCCAGT 

CAGGAAACAGCTA
TGACC 

pDEST-
NAXD 

DNA sequence 
confirmation of Gateway 
bacterial expression 
constructs 

TAATACGACTC
ACTATAGGG 

CTGGCTTGCACGT
GTATA 
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Supplementary Table 5: Scan range, extracted ions and retention time. 

 

ID Mass [m/z] Scan range Formula [M] Start [min] End [min] 

NAD 662.10184 661.6 – 

662.6 

C21H27N7O14P2 19.50 23.00 

NADH/cyc 

NADHX 

664.11749 663.6 – 

664.6 

C21H29N7O14P2 22.50 40.00 

NADHX 682.12806 681.6 – 

682.6 

C21H31N7O15P2 19.00 24.50 

NADP 742.06817 741.5 – 

742.5 

C21H28N7O17P3 2.00 5.00 

NADPH/cyc 

NADPHX 

371.53827 371.0 – 

372.0 

C21H30N7O17P3 16.50 24.00 

NADPHX 380.54356 380.0 – 

381.0 

C21H32N7O18P3 0 14.00 
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Supplementary Table 6: Isotopomer distribution in patient samples and standards.  

A comparison of the isotopomer distribution found in patient samples and standards, and 

calculated based on the molecular formula of the target metabolites (Patiny and Borel, 2013). 

Most abundant massed 

(Da/eV) 

Patient pooled 

sample 

Chemically pure 

standard Mass prediction 

S/R-NADHX 

 

682.12683 

683.13062 

684.13220 

682.12683 

683.13062 

684.13196 

682.12751 

683.13087 

684.13176 

Cyc NADHX 

SD 

664.11658 

665.12012 

666.12366 

664.11652 

665.12000 

666.12183 

664.11655 

665.12030 

666.12365 
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Supplementary Fig. 1- Sanger confirmation and sequence analysis  

Sanger confirmation sequencing for Cases 1, 2, 3, 4 and 5, and IGV screenshots for variants 

in Case 6. 
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Supplemental Fig.2 – Genetic findings in six NAXD-deficient families 

A) Genomic organization of NAXD with known subject variants indicated. Predicted 

transcripts and resulting proteins with predicted protein domains are indicated. The different 

predicted transcription/translation start sites are also shown (Met1-3). Predicted protein 

domains (from Uniprot Q8IW45) include; mitochondrial propeptide in blue, signal peptide in 

orange, YjeF c-terminal domain in green, NAD(P)HX domain in pink, ATP binding site in 

purple and unassigned domain in grey. mNAXD, mitochondrially targeted NAXD isoform; 

cNAXD, cytosolic NAXD isoform; spNAXD, ER targeted NAXD isoform. Supplementary 

Fig. 3 contains a full protein alignment including subject variant analysis.  B) Reverse 

transcription-PCR analysis demonstrated a splicing defect in Case 1 that was not present in 

Case 2 or four controls. Confirmatory Sanger for RT-PCR fragments can be found in 

Supplementary Fig. 4.  
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Supplementary Fig. 3 – Protein sequence alignment of predicted human NAXD 

isoforms 

Start sites (Met1-3) are indicated for the different isoforms using the nomenclature described 

in the supplementary text. The exon structure corresponding to the spNAXD and mNAXD 
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isoforms is also shown. Isoforms are indicated as 'putative' in case of weak support from EST 

data. This is the case for the shortest predicted isoform (NP_001229812; 237 aa; putative 

cNAXD) and even more for the longest predicted isoform (NP_060680; 390 aa; putative 

spNAXD). Accordingly, several subject mutations identified in this study occur in sequence 

locations that are not conserved in the putative cNAXD or putative spNAXD isoforms. c, 

cytosolic; m, mitochondrial; sp, signal peptide. 

 

  

Page 39 of 161

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

 

 

Supplementary Fig. 4- Splice analysis for Case 1 

RT-PCR analysis for Case 1 (c.839+1G>T) splice site variant. A) RT-PCR analysis identified 

an additional band in Case 1 that was not present in controls. B) Sanger sequencing and C) 
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sequence alignment confirmed skipping of Exon 9. CXH; cycloheximide, RT; reverse-

transcription.  
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Supplementary Fig. 5 – NADHX identification in patient fibroblast extracts 

Isotope distribution of A) S-NADHX, B) R-NADHX and C) cyclic NADHX found in pooled 

subject samples (case 1 and case 2, above) compared to the pattern in a chemically pure 

standard, below. The numbers shown correspond to the measured accurate masses. Spectra 

were taken at retention time of 19.37 (S-NADHX), 21.33 (R-NADHX), and 26.85 (cyclic 

NADHX) min, respectively, at a resolution of 140 000. A comparison of the isotopomer 

distribution found in patient samples and standards, and calculated based on the molecular 

formula of the target metabolites is given in Supplementary Table 5 and 6. 
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Supplementary Fig. 6 – OXPHOS protein subunit expression in Case 1 and Case 2 

fibroblasts.  

A representative western blot used for analysis of mitochondrial OXPHOS subunit 

expression in fibroblasts from four paediatric control subjects compared to Case 1 and Case 

2. Quantification results are presented in Fig. 3A. 
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Materials and Methods 

Subjects  

All procedures followed were in accordance with the ethical standards and approved by 

human research ethics committees (institutional and national) and with the Helsinki 

Declaration of 1975, as revised in 2000. Written informed consent was obtained from all 

participants or their legal guardians of all individuals investigated in this study.  

Subjects were recruited independently from each institute. Case 1 was recruited as part of a 

gene discovery program in children with undiagnosed neurological disease. Whole exome 

sequencing was used to identify candidate genes. Potential genes were submitted to 

Matchmaker Exchange, an international database to match subjects of similar phenotype and 

potential pathogenic variants (Philippakis et al., 2015). Through Matchmaker Exchange a 

further two subjects were identified with potential pathogenic variants in NAXD. Three 

additional cases were identified through collaborations. 

 

Variant annotation and filtering for Case 1 

Genomic DNA from whole blood cells was collected in the subjects and their family 

members using the QIAamp DNA mini kit (Qiagen, Hilden, Germany), following the 

manufacturer’s instructions.  

For Case 1, the proband was sequenced using Whole Exome Sequencing (WES) and primary 

bioinformatics processed including short sequence read alignment and variant calling on all 

sequenced samples. Variants were annotated with Annovar (Wang et al., 2010) and filtered 

based on frequencies from ExAC (Lek et al., 2016), GnomAD (Lek et al., 2016), 1,000 

Genomes Project (Genomes Project et al., 2015) and internal WES datasets at the Children’s 

Hospital of Philadelphia. Variants were selected based on the following criteria; amino acid 

changing (non-synonymous/stop-gain SNVs, indels, and splicing site variants within 10-bp of 

exon-intron boundaries), ExAC allele frequency below 1x 10-5, predicted to be deleterious in 

SIFT, damaging in PolyPhen2, and conserved in PhyloP, and with balanced alleles for 

heterozygous calls (depth ratio below 3:1). In silico analysis by SIFT (Kumar et al., 2009) 

and PolyPhen-2 (Adzhubei et al., 2010) determined the likely pathogenicity of variants. The 

evolutionary conservation of genomic regions around the variants was analysed using PhyloP 

(Cooper et al., 2005). For single sample analysis, homozygous as well as compound 

heterozygous variants, both indicative of a recessive inheritance, were discarded if the 

alternative allele’s population frequency in either of the ExAC, 1000 Genomes or internal 
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datasets was greater than 0.5%; and heterozygous variants, in this case dominant de novo 

candidates, were discarded if the alternative allele frequency was greater than 0.1%. 

Confirmatory Sanger sequencing was completed in genomic DNA samples from all available 

family members using the primers listed in Supplementary Table 1. 

 

Variant annotation and filtering for Case 2 and Case 5 

We undertook trio WES of the affected child and unaffected, unrelated parents. Genomic 

DNA samples were quantified according to manufacturer’s instructions on the Qubit 

fluorimeter (Thermo Fisher Scientific, Massachusetts, USA) to determine that the minimum 

quantity of DNA required, 3000ng, was available. The samples were fragmented using the 

Bioruptor (Diagenode, Liège, Belgium), and indexed adaptors ligated before hybridization 

with the Agilent SureSelect All Exon capture kit (v4, v5 or v6) or Agilent SureSelect Focused 

exome kit (Santa Clara, CA, USA). Paired-end 100-bp reads were sequenced on a HiSeq 

2500 (Illumina, San Diego, CA, USA). The Illumina HiSeq fastq sequencing reads were de-

multiplexed and aligned to the reference (GRCh37/Hg19) using BWA-MEM (v0.7.12), 

converted to BAM format file, and subjected to duplicate removal using Picard (v1.129). 

GATK (v3.4-46) was used for indel re-alignment, variant calling and quality filtering. 

Variants were annotated using Alamut-Batch (v1.4.4), a Variant Call Format (VCF) file was 

submitted and all SNVs and indels were annotated using a range of different variant and 

genomic databases, including HGMD Professional (Stenson et al., 2009). An in-house 

bioinformatics pipeline was used to identify de novo, compound heterozygous or 

homozygous rare variants with a MAF <0.0001 (<0.01%) in ExAC or the Exome variant 

server (EVS http://evs.gs.washington.edu/EVS/). Variants were restricted to non-synonymous 

variants, those affecting the conserved splice sites or those within−50/+10 base pairs of 

flanking exons predicted by Alamut-Batch to affect splicing (five tools were used: 

SpliceSiteFinder-like, MaxEntScan, NNSplice (Fruitfly), GeneSplicer and Human Splicing 

Finder). Variants annotated as pathogenic in HGMD Pro were retained regardless of other 

filtering criteria. Copy number variants were identified using read depth analysis with a 

modified version of R software package ExomeDepth (v1.1.8) (Plagnol et al., 2012) and 

comparing the test sample against reference samples.  

 

Variant annotation and filtering for Case 3 
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For Case 3 WES was performed from the DNA of proband and parents with Illumina’s 

Nextera Rapid Capture Exome Kit and the samples were processed on the Illumina NextSeq 

Platform (Illumina, San Diego, California, USA). The average coverage depth was 130x, 

with ~95% of the bases covered at >20x, and a sensitivity of >90% (Girisha et al., 2016). 

Data were stored and analyzed using a previously-published automated pipeline, SeqMule 

v1.2.5 (Guo et al., 2015). The variant call format (.vcf) file was annotated by ANNOVAR 

v.2016Feb01 (Danecek et al., 2011). Variants were filtered to 1% minor allele frequency in 

population databases including ExAC, 1,000 genome database, and an internal WES database 

of 405 individuals of Indian origin. Exonic and splice site variants were then prioritized by 

OMIM (Online Mendelian Inheritance in Man) identity, phenotypic assessment, and the 

American College of Medical Genetics (ACMG) criteria of pathogenicity (Richards et al., 

2015). Validation was done using Sanger sequencing for proband and the parents for the 

candidate variant. 

 

Variant annotation and filtering for Case 4 

WES was performed as follows; coding regions were enriched with Nextera Rapid Exome 

Capture (Illumina) and sequenced with 100 bp paired-end reads on an Illumina NextSeq500 

sequencer and aligned to the human reference genome (UCSC hg38). Variants were restricted 

to a minor allele frequency of less than or equal to 0.01 (1%) from in-house controls and 

external variant databases included ExAC, EVS and 1,000 Genomes Project. Autosomal 

recessive (homozygous or compound heterozygous) variants in nuclear genes encoding 

mitochondrial-targeted proteins were prioritised. PolyPhen-2, SIFT and CADD were used to 

assess the pathogenicity of candidate variants.  

 

Variant annotation and filtering for Case 6 

Genomic DNA was isolated from whole blood cells of the subject and her parents using the 

chemagic DNA Blood Kit special (PerkinElmer, Waltham, USA) according to the 

manufacturer’s protocol.  Exonic regions were enriched using the SureSelect Human All 

Exon kit (AG_60Mb_v6) from Agilent followed by sequencing as 100 bp paired-end runs on 

an Illumina HiSeq2500. Reads were aligned to the human reference genome (UCSC Genome 

Browser build hg19) using Burrows-Wheeler Aligner (v.0.7.5a). Detection of single-

nucleotide variants and small insertions and deletions (indels) was performed with SAMtools 

(version 0.1.19). For analysis of rare bi-allelic variants, only variants with a minor allele 
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frequency (MAF) of less than 1% in the Munich in-house database consisting of 14,000 

exomes were considered. For investigations on de novo variants, filtering for variants which 

were present solely in the subject but not in the parents was performed.   

 

NAXD gene, transcript analysis and predicted protein structure 

The human NAXD gene contains 10 exons, is located on chromosome 13 and is predicted to 

generate four coding transcripts and two non-coding transcripts (Fig. 2B). The gene has two 

alternative splice sites at the 3’ end of exon 1, resulting in transcripts containing either the 

first half (Fig. 2B; exon 1a in NM_001242882 and exon 1a’ in NM_001242883) or the 

second half of this exon (exon 1b in Fig. 2B; NM_001242881 and NM_018210). One 

transcript does not retain exons 2 – 4 (NM_001242883) and one transcript includes a 5’ 

extension on exon 10 (exon 10’ in Fig. 2B; NM_018210). Exon 1 has three putative ATG 

start codons: Met1a in exon 1a (used in NM_001242882), Met1a’ in exon1a’ (used in 

NM_001242883), and Met2 in exon 1b (used in NM_001242881 and NM_018210). The 

second exon also contains a highly conserved ATG codon, Met3 (Marbaix et al., 2014), 

which is present in three of the four transcripts (except NM_001242883). Transcription 

initiation at these different sites and differential splicing are thus predicted to lead to 

expression of the four mRNA transcripts encoding a 329 aa protein with a predicted 

mitochondrial propeptide (mNAXD; NM_001242882; NP_001229811), a 347 aa protein 

identical to mNAXD except for the N-terminus predicted to correspond to a signal peptide 

(spNAXD; NM_001242881; NP_001229810), a putative NAXD 237 aa protein 

(NM_001242883; NP_001229812), with a shorter and different N-terminus than mNAXD 

and spNAXD, and a putative NAXD 390 aa protein (NM_018210; NP_060680) identical to 

spNAXD in N-terminus, but with a different and extended C-terminus (Fig. 2B and 

Supplementary Fig. 1). Finally, leaky mRNA scanning of the three longest transcripts is 

expected, in addition to synthesis of the mitochondrial or endoplasmic reticulum-targeted 

proteins, to lead to formation of a shorter cytosolic form (cNAXD; 298 aa protein from 

mNAXD and spNAXD mRNAs) when translation is initiated from the downstream Met3 

codon instead of Met1a or Met2 (Fig. 2B and Supplementary Fig. 1), as previously suggested 

(Marbaix et al., 2014). Western blotting using two different commercial human NAXD 

antibodies and a mouse Carkd antibody against a conserved region failed to detect specific 

endogenous protein in subject fibroblast extracts, similarly to what was previously reported 

for the mouse homologue Carkd using tissue extracts(Marbaix et al., 2014). This technique 
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could therefore not be used to explore which of the predicted isoforms is actually expressed 

in human fibroblasts. Expressed sequence tag (EST) analysis (UCSC Genome Browser on the 

Human (GRCh38/hg38) Assembly accessed on February 12, 2018) predicted the most 

abundant transcript to correspond to mNAXD (NM_001242882.1) with ~ 81% of the 448 

total ESTs considered (Supplementary Table 1). This mNAXD transcript encodes a long (329 

aa) mitochondrial protein form (translation start at Met1a) and a shorter (298 aa) cytosolic 

protein (translation start at Met3), as described above; the mitochondrial protein form shares 

82% identity with the mouse Carkd isoform 2 (NP_001177286.1) containing also a 

mitochondrial propeptide and previously characterized in more detail (Marbaix et al., 2011; 

Marbaix et al., 2014). Both the short (237 aa) cytosolic isoform (NM_001242883) and the 

(347 aa) spNAXD isoform (NM_001242881) were represented each by ~ 8% of all 

transcripts. No clear evidence was found within the EST database in support of the transcript 

variant carrying both a signal peptide sequence and a 5’ extension of exon 10 (NM_018210 

encoding the putative 390 aa protein). 

 

NAXD transcript isoform analysis  

Four coding and two non-coding transcript variants are predicted for the NAXD gene (NCBI 

Reference Sequences). Alternative splicing and the use of different ATG start codons within 

the first exon is predicted to lead to the expression of one transcript with an N-terminal 

mitochondrial targeting signal (NM_001242882), one transcript without an N-terminal 

targeting sequence (NM_001242883), and two transcripts with an N-terminal signal peptide 

(NM_001242881 and NM_018210). NM_018210 additionally carries a 5’ extension of the 

last exon (exon 10), leading to a different and longer C terminus. To estimate the relative 

abundance of the different transcript variants, the more than 600 expressed sequence tags 

(ESTs) for the NAXD gene contained in the UCSC Genome Browser (Human Dec. 2013 

(GRCh38/hg38) Assembly; database accessed for analysis on February 12, 2018) were 

compared to the predicted coding RefSeq transcripts. ESTs are single-read sequences of 

reverse transcribed RNA that were cloned into plasmids and sequenced. Incomplete reverse 

transcription and limitation in the read length impedes exact determination of transcript 

abundance. Therefore, only ESTs spanning NAXD exons 1 to 5 were taken into account for 

our analysis here (including the ones missing exons 2-4, potentially corresponding to 

transcript NM_001242883). Out of these ~ 450 ESTs, 365, 34, and 38 could be annotated to 

the NM_001242882, NM_001242881, and NM_001242883 transcripts, respectively. 
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Interestingly, no EST containing both a signal peptide and the 5’ extension of exon 10 were 

found within this subdataset. Additionally, the number of ESTs containing the 5’ extension of 

exon 10 within the complete dataset (independent of the length of the ESTs) was very limited 

(7 out of > 600), suggesting that this transcript variant is only expressed at very low levels in 

humans, if at all. 

 

Cell Culture 

Primary cultures of fibroblasts were established from skin biopsies and were cultured in basal 

medium (high-glucose DMEM (Gibco) with 10% fetal bovine serum (Gibco), 100 units/mL 

penicillin, and 100 µg/mL streptomycin) at 37°C with 5% CO2. 

  

RT-PCR analysis 

Fibroblasts were cultured in the presence or absence of cycloheximide (100 ng/µL) for 24 

hours to prevent nonsense mediated decay in basal media prior to harvesting RNA using a 

commercially available kit (Qiagen RNeasy kit). cDNA was synthesized using Invitrogen 

Superscript III first strand mastermix and random hexamers from 200ng RNA per sample. 

Reverse-transcription PCR (RT-PCR) reactions were performed using custom primers 

(Supplementary Table 1) and PCR products were extracted from agarose gels followed by 

Sanger sequencing. 

 

LC-MS analysis of NAD(H), NADP(H), and damaged derivatives 

Fibroblasts were seeded in basal media at a density of 5.0 x 105 cells in 150 mm dishes or for 

lentiviral-rescued cells, at 2 x 105 cells (untransfected) or 4 x 105 cells (transfected) in a 92 

mm dish and cultivated for 96 hours, by which time cells were approximately 90% confluent. 

Parallel dishes were cultured and cells harvested with trypsin and used for cell concentration 

determination by adding an equal volume of trypan blue in an automated cell counter 

(Countess, Thermofisher). To extract intracellular metabolites, culture media were aspirated 

and cells washed once with warm saline solution (0.9% NaCl), then immediately placed on a 

cooling plate at -20°C. Appropriate volumes (0.5 – 1mL) of ice-cold extraction solution (1:1 

methanol:TE (10 mM Tris, 1 mM EDTA, pH 7.0)) were added, cells were collected via 

scraping and transferred to a 2 ml tube at -20°C. An equal volume of ice-cold chloroform was 

added and the mixture incubated with shaking at -20°C for 30 minutes, then centrifuged at 

10,000 x g and -9°C for 10 minutes. The upper polar phase was filtered through a 0.22 µm 
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regenerated cellulose membrane (Phoenix). A defined volume of 700 µl was frozen at -80°C 

prior to lyophilisation (Labconco) at -105°C for 3 hours.  

Lyophylised samples were dissolved in 60 µl of 10mM Tris-HCl buffer, pH 8.0. Intracellular 

metabolite concentrations were measured with an HRAM-RP-LC-MS (high resolution 

accurate mass reversed phase liquid chromatography mass spectrometry) method using a 

Dionex UltiMate 3000 (Thermo Fisher Scientific, Waltham, MA, USA) LC coupled to a 

Qexactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) 

equipped with a heated electrospray ionization source. Nitrogen was supplied by an NMG33 

generator (CMC). Absolute concentrations were calculated based on external calibration 

curves prepared in 10 mM Tris-HCl buffer, pH 8.0. Analyte separation was achieved by 

reversed phase chromatography using a Polaris C18-A column (3 µm, 180 Å, 3.0 X 150 mm; 

Agilent) equipped with a SecurityGuard™ ULTRA C18 precolumn (for 3.0 mm ID columns; 

Phenomenex) at a temperature of 20°C. Target metabolites (NAD, NADH, NADP, NADPH, 

S-NADHX, R-NADHX, cyclic NADHX, S-NADPHX, R-NADPHX, cyclic NADPHX) were 

eluted at a constant flow rate of 0.2 ml/min in gradient mode, where solvent A was 50 mM 

ammonium acetate at pH 7 (adjusted by acetic acid addition) and solvent B was acetonitrile, 

according to the following profile: 0 – 5 min, 0 % B; 5 – 22 min, 0 - 5 % B; 22 – 27 min, 5 - 

100 % B; 27 – 28 min, 100 - 0 % B; 28 – 40 min, 0 % B. Dependent on the available cell 

number in each experiment, either  20 or 40 µl of samples and standards were injected and 

the autosampler was kept cooled at 10 °C. Mass spectral data were obtained using a 

scheduled single ion monitoring method in negative mode, at a resolution of 70 000, and 

AGC target size of 105, and a maximum injection time of 500 ms. Target metabolites were 

identified by accurate mass as well as comparison of retention time and natural isotope 

distribution against chemically pure standards. Details on scan range, extracted ions and 

retention time are given in Supplementary Table 3. 

Likely due to a sensitivity limitation of the methodology used, NADPHX derivatives could 

not be detected in any of the cell extracts tested. 

 

NAXD variant cloning 

The human full-length NAXD cDNA clone was obtained from GenScript (pcDNA3.1 

containing the NM_001242882.1 sequence; GenScript Clone ID OHu08429). The two 

missense mutations (Case 1, NM_ 001242882.1, c.922C>T, p.(Arg308Cys) and Case 2, NM_ 

001242882.1, c.187G>A, p.(Gly63Ser)) were introduced using the QuikChange Lightning 
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Site-Directed Mutagenesis Kit (Agilent) according to the manufacturer’s instructions. Wild-

type and mutated sequences including the mitochondrial targeting sequence (mNAXD 

starting at Met1a) or not (cNAXD starting at Met3) were then amplified from the 

corresponding NAXD-pcDNA3.1 plasmid using primers containing attB1 and attB2 sites. 

The PCR products were inserted into the Gateway pDONR221 vector (Thermo Fischer 

Scientific) through a BP clonase reaction (Thermo Fisher Scientific) to generate the desired 

Entry clones. Bacterial expression plasmids containing either wild-type or mutated cNAXD 

cDNA were obtained by an LR clonase reaction (Thermo Fisher Scientific) between the 

empty pDest-527 plasmid (pDest527 was a gift from Dominic Esposito; Addgene plasmid # 

11518) and the appropriate Entry clones according to the manufacturer’s instructions.  DNA 

sequences of all intermediate and final steps were verified by Sanger sequencing. All primers 

used for cloning and sequence verification are listed in Supplementary Table 2. 

 

Bacterial expression and purification of wild-type and mutant NAXD proteins 

Wild-type and mutant forms of the cytosolic NAXD isoform (cNAXD) were then produced, 

using a bacterial overexpression system, as N-terminally His-tagged proteins, and purified 

and assayed on the day of extraction from the bacterial cells to prevent enzyme degradation. 

The S-NADHX substrate was synthesized and purified as previously described (Becker-

Kettern et al., 2018) and NAXD enzyme kinetic properties determined using a 

spectrophotometric assay (Marbaix et al., 2011). Given the instability of the mutant proteins, 

extraction, purification and enzymatic assay of the recombinant proteins were done on the 

same day to obtain reproducible results. 

Gateway expression plasmids were transformed into One Shot® BL21 Star™ (DE3) 

Chemically Competent E. coli cells (Thermo Fisher Scientific) for production of N-terminally 

His-tagged NAXD (wild-type or missense variants; cytosolic isoform). Overnight pre-

cultures (in LB medium containing 100 µg/ml ampicillin) inoculated from single clones were 

diluted 50-fold in 500 ml main cultures in the same medium and grown to an optical density 

of 1.6-3.7 at 37 °C with continuous shaking. Cultures were then put on ice for 30 min and 

protein expression induced by addition of IPTG at a final concentration of 0.1 mM. Induced 

cultures were left for 24 hours at 18 °C with shaking and cells were harvested by a 15-min 

centrifugation at 4500 x g and 4 °C. The cell pellets were resuspended in a lysis buffer 

containing 25 mM Tris-HCl, pH 8.0, 25 mM NaCl, 0.5 mM PMSF, 1 mM DTT, and 1 x 

EDTA-free Complete Ultra protease inhibitor cocktail (Roche). Cells were either lysed by 
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sonication (0.5-sec pulses separated by 2.5-sec breaks for 2 min; 25—30% amplitude) or by 

three freeze/thaw cycles in the presence of 1 mg/ml lysozyme (Sigma Aldrich) followed by a 

40-min DNase treatment on ice (100 µg/ml DNase I, 10 mM MgSO4). Lysates were 

centrifuged for 35 min at 17,000 x g and 4 °C and supernatants filtered on cellulose acetate 

membranes (0.45 µm pore size; Minisart). 

The filtered protein extracts were loaded onto nickel-containing Protino Ni-TED 150 gravity 

flow columns (Machery-Nagel) and purified according to the manufacturer’s instructions. 

Elution fractions of interest were desalted on Zeba spin columns (7K MWCO, 0.5 ml, 

Thermo Fisher Scientific) according to the supplier’s protocol using a buffer containing 25 

mM Tris, pH 7.4 and 25 mM NaCl. All the above purification steps were performed at 4°C. 

Protein purity and identity was assessed by SDS-PAGE and Western blotting, and protein 

concentration was determined using a standard Bradford assay (Biorad) and bovine serum 

albumin for calibration.  

 

NADHX dehydratase activity assays and thermostability testing 

The NADHX dehydratase activity of purified recombinant wild-type and point-mutated 

cNAXD was assayed spectrophotometrically by monitoring S-NADHX consumption at 290 

nm in a TECAN M200 Pro plate reader at 37°C. A reaction mixture (total assay volume of 

200 µl) containing 25 mM HEPES, pH 7.1, 2 mM MgCl2, 1 mM ATP, and various 

concentrations of S-NADHX was pre-incubated in UV-Star flat-bottom 96-well plates 

(Greiner Bio-One) in the plate reader until the signal was stable and the reaction was started 

by enzyme addition at a final concentration of 0.5 - 7.1 µg/ml. S-NADHX was synthesized 

and purified according to a protocol as described previously (Becker-Kettern et al., 2018) and 

resuspended in 10 mM Tris, pH 8.0 prior to addition to the assay.  

Kinetic constants of the NADHX dehydratase activity were determined in the presence of S-

NADHX concentrations varying from 0 - 50 µM. The no substrate assays ([S-NADHX] = 0 

µM) were used for background correction. For thermostability testing of the NAXD proteins, 

purified protein preparations (0.010—0.190 mg/ml depending on the preparation) were 

incubated at different temperatures (30—47°C) for 30 min prior to addition to the reaction 

mixture containing 10 µM S-NADHX and NADHX dehydratase activity assay at 37°C as 

described above. 

Enzymatic activities were calculated using an extinction coefficient of 13,500 M-1cm-1 for S-

NADHX as previously determined (Chaykin et al., 1956) and a light path-length of 0.56 cm 
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(determined as recommended by the plate reader manufacturer). All measurements were done 

in at least three independent replicates and kinetic constants were obtained by fitting the 

values to a Michaelis-Menten regression using the GraphPad Prism Software (V7.02). 

 

Metabolic stress assays 

Fibroblast cells were seeded in basal media at 1 x 104 cells/ well into a 96-well dish and 

allowed to attach overnight. The following day media was replaced with either 100µL of 

DMEM (high-glucose, phenol-red free) supplemented with 10% fetal bovine serum (FBS), 

2.05 mM L-glutamine, 100 units/mL penicillin, and 100 µg/mL streptomycin (basal medium) 

or 100µL of DMEM (glucose-free, phenol-red free) supplemented with 5mM galactose, 10% 

dialyzed FBS, 2.05 mM L-glutamine, 100 units/mL penicillin, and 100 µg/mL streptomycin 

(metabolic stress medium)  and 50 µM sodium azide. Cell growth was monitored on a daily 

basis using the cell-permeable fluorescent dye Resazurin. At each time point, Resazurin 

(20µL/well of 0.15mg/ml solution) was added to each well and incubated at 37°C with 5% 

CO2 for 4 hours prior to measuring relative fluorescent units (RFU; Ex=530-570 nm, 

Em=590-620 nm). Media-only values were subtracted from each reading on each day. RFU 

data at each time point was expressed relative to untreated cells on day 0. Growth rate was 

normalized its growth rate in basal medium to correct for intrinsic differences in absolute 

rates (Giordano et al., 2014). 

 

Immunoblotting 

Cell proteins were extracted in RIPA buffer with gentle sonication (10 mM Tris-Cl (pH 8.0), 

1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 

mM NaCl, 1mM PMSF and protease inhibitor cocktail (Roche)) and protein concentration 

determined with BCA assay (Pierce). SDS-PAGE was performed by loading equal amounts 

of protein (between 15- 25 µg of cell lysate per sample depending on the antibody used) 

using standard techniques on tris-glycine-SDS acrylamide gels (Biorad). Primary antibodies 

used were specific to NAXD (human CARKD Cat #ab82820, Abcam, human CARKD Cat 

#PA5-43038, Thermofisher and an antibody directed against a conserved region between 

human NAXD and mouse, CARKD, Cat #sc-514529 Santa Cruz Biotechnology) or 

mitochondrial respiratory chain subunits (mitochondrial OXPHOS antibody cocktail 

containing cytochrome c oxidase subunit 2 [COX2], cytochrome b-c1 complex subunit 2 

[UQCRC2], succinate dehydrogenase [ubiquinone] flavoprotein subunit B [SDHB], NADH 
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dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8 [NDUFB8] and ATP synthase 

subunit alpha [ATP5A]; Cat. #ab110411, Abcam). Porin detection (antibody Cat. #529534, 

Calbiochem) was used to normalize for mitochondrial density, and GAPDH detection 

(antibody Cat. #G9545) was used to normalize for total cellular protein. Primary antibodies 

were detected with anti-mouse or anti-rabbit horseradish peroxidase conjugated antibodies 

(GE Healthcare, NJ, USA), using enhanced chemiluminescence reagents (GE Healthcare, NJ, 

USA) and Amersham Hyperfilm. Protein band intensities were measured using ImageJ 

software, and band intensity determined in the linear range was normalized to band intensity 

of either porin or GAPDH. 

 

OXPHOS enzyme activity assays 

The complex I and complex IV dipstick activity assays were performed using 20 µg protein 

of whole cell lysates from control and subject fibroblasts following the manufacturer’s 

instructions (catalogue numbers ab109720 and ab109876; MitoSciences, Eugene, OR, USA). 

The dipsticks were then placed in the MitoSciences MS1000 Dipstick Reader (MitoSciences, 

Eugene, OR, USA) for signal intensity quantitation. Data was normalized to protein 

concentration. Duplicate measurements were taken for each sample, and each cell line was 

assayed in triplicate. 

 

Mitochondrial ROS production 

Fibroblasts were seeded at 2x104 cells/ well into 96-well black-walled, clear bottomed plates 

in basal media and allowed to attach overnight. The following day, the media was replaced 

with fresh basal media containing dihydroethidium (DHE, 10µg/ml) with or without rotenone 

(2.5µM). Cells were incubated at 37°C with 5% CO2 for 45 minutes, washed with warm PBS, 

then 100 µl of warm PBS added to each well prior to DHE fluorescence being measured 

(Ex=320 nm, Em=615 nm, FLUOstar, BMG Labtech). PBS was then aspirated and replaced 

with 100 µl basal media containing Hoechst dye (2 µg/ml). The cells were incubated at 37°C 

with 5% CO2 for 15 minutes, washed in warm PBS, then 100 µl of warm PBS was added to 

each well prior to measuring Hoechst fluorescence (Ex=340 nm, Em=460 nm). Relative 

fluorescent units (RFU) for DHE was normalized to the RFU for Hoechst for each well. 

 

Lentiviral gene rescue 
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The coding sequences of mNAXD or cNAXD were PCR-amplified from the GenScript 

NAXD-pcDNA3.1 plasmid using primers containing flanking attB1 and attB2 sites and the 

PCR products were inserted into the Gateway pDONR221 vector as described above to 

generate the desired Entry vectors. The mNAXD and cNAXD inserts were then shuttled into 

the lentiviral destination vector pLX301 (pLX301 was a gift from David Root; Addgene 

plasmid # 25895 (Yang et al., 2011)) using LR clonase, to generate the final NAXD-pLX301 

constructs. The pLX301 unrecombined Destination vector is not suitable as a control 

construct as it contains the toxic CmR and ccdB genes. Therefore, a construct containing 

EGFP in the pLX301 lentiviral vector was generated to be used as a negative control. The 

EGFP-pLX301 control vector was generated by shuttling EGFP from the pDONR221_EGFP 

plasmid (a gift from David Root; Addgene plasmid # 25899 (Yang et al., 2011)) into the 

pLX301 vector using LR clonase (Thermo Fisher Scientific). All vector identities were 

confirmed by Sanger sequencing. To generate lentiviral particles, human embryonic kidney 

(HEK) 293T cells at ~70% confluency on 10cm dishes were co-transfected in fresh basal 

medium with three plasmids (either mNAXD-pLX301 or cNAXD-pLX301 or EGFP-

pLX301, the packaging plasmid pCMV-δ8.2, and the pseudotyping plasmid pCMV-VSVg 

used previously (Calvo et al., 2012)) using Effectine reagents (Qiagen). Fresh medium was 

applied to the cells 16 hours after transfection, and after another 24 hours of incubation, 

media supernatants containing packaged virus were harvested and filtered through a 0.45 µm 

membrane. Primary human fibroblasts at a density of 3x105 cells in triplicate 6-well dishes 

per construct were transfected with viral supernatant along with polybrene (5 mg/ml) (Sigma) 

for 48 hours. As a negative control, untransfected cells were treated with puromycin, to 

confirm puromycin sensitivity. As a positive control, untransfected cells at the same passage 

number were also expanded in parallel. Transfected cells were grown in antibiotic-free basal 

medium for 72 hours before application of basal medium containing puromycin (1 mg/ml) 

with daily media change for 7 days, then every 2-3 days for a further 9 days. After at least 16 

days of selection, cells were expanded and harvested for NAD(P)HX metabolite analysis. All 

primers used for cloning and sequence verification are listed in Supplementary Table 2.  

 

Statistical analysis 

Statistical analyses were carried out using either a two-tailed student’s t-test or one-way 

ANOVA corrected for multiple comparisons as appropriate (GraphPad Prism® Software). 
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Error bars represent the standard deviation of the mean (± SD). A p-value <0.05 was 

considered to be statistically significant. 
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Subject clinical summaries 

 

Case 1 clinical summary 

This previously healthy 3 year 7 month old boy was first admitted with a two week history of 

behavior change occurring after  hitting his head on a glass table, without losing 

consciousness. His behavior worsened over the two week period. He had a history of delayed 

speech development but had stopped talking, dribbled, put objects in his mouth, clenched his 

fists, scratched his face, and made mumbling noises. In addition he had mild gait 

unsteadiness. The parents are non-consanguineous.   

Apart from being clumsy no focal neurological deficit was noted. Investigations at that time 

including a full metabolic work up of blood, urine and CSF (including lactate) were normal 

except for detection of oligoclonal bands in cerebrospinal fluid (CSF). Initial brain Magnetic 

Resonance Imaging (MRI) and electroencephalography (EEG) were normal. He made some 

improvement during his hospital stay and was discharged without treatment.   

He was readmitted two months later after further deterioration of gait, behavior and speech. 

As oligoclonal bands were still present in the CSF he was treated for autoimmune 

encephalitis with intravenous immunoglobulin and high dose intravenous 

methylprednisolone.  Two months after his initial presentation he had an episode of 

pancytopenia.  At that stage he had a very high C reactive protein of 225mg/L (normal up to 

10).  A bone marrow aspiration showed decreased granulopoiesis with markedly left shift 

with few mature neutrophils and an occasional precursor showing cytoplasmic vacuolation.  

There was markedly decreased erythropoietic activity represented by occasional early pro-

erythroblasts. The majority of these pro-erythroblasts had cytoplasmic vacuolation. There 

were very occasional mature forms and some binucleate forms seen. Megakaryocytes were 

present and an increase in plasma cells was seen. There were plentiful iron stores with an 

occasional ring sideroblast seen in mature erythroid cells. The blood count gradually 

improved over the next month to normal without any specific treatment.  

After discharge he had increased aggression, worsening ataxic gait and further deterioration 

in his speech which was by now completely lost. Three months later he developed “burn like” 

skin lesions in the groins and axillae. Repeat haematological, biochemical investigations and 

computed tomography (CT) of abdomen and pelvis were normal. Measles serology in blood 

and CSF was normal. A brain biopsy showed extensive neuronal damage and reactive gliosis. 

Liver and rectal biopsies were normal. He was started on biotin and thiamine.  Around this 
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time he began having short seizures and was started on anti-epileptic drugs.  EEGs showed 

epileptiform activity bilaterally. Choreiform movements and dystonia were noted.   

Despite treatment he continued to deteriorate with bilateral ophthalmoplegia, spastic 

quadriplegia, and more prominent chorea and dystonia It later became apparent that he was 

deaf with profound bilateral sensorineural hearing loss.  He continued to have seizures 

despite anti-epileptic drug therapy.  

He was re-admitted at 4 years 6 months of age with fevers, mucositis, and vesicular lesions 

on his penis and anal area. These lesions were positive for herpes simplex virus. This was 

associated with profound pancytopenia.  A bone marrow examination showed a markedly 

hypocellular bone marrow. Also in the course of this admission he developed a respiratory 

syncytial virus (RSV) infection and diarrhoea which resolved. He was started on granulocyte 

stimulating factor to which he initially responded well with improvement of his clinical 

condition. However the neutrophil count remained low after a brief improvement.  He was 

discharged from the hospital but 4 days later became tachypnoeic and died soon after. 

Permission for autopsy was refused. Fibroblast cultures were established as part of the 

diagnostic investigations. 

 

Case 1 MRI Scans 

On the first admission the MRI scan was normal. Three months later it showed progression of 

disease with now bilateral, nearly symmetrical diffusion changes in the entire frontal lobes, as 

well as the anterior frontal lobes and the anterior temporal lobes with bilateral hippocampal 

involvement. Extensive diffusion abnormalities were also identified within the caudate head, 

globus pallidus bilaterally and thalamus. The lesions were T2 hyperintense (Fig. 1 A – C). 

Further MRI scan one month later showed diffusion restriction and increased T2 signal in the 

basal ganglia, grey matter and to a lesser extent adjacent to the subcortical white matter of the 

frontal parafalcine/surface gyri. M agnetic resonance angiography and venogram showed no 

vascular obstruction (Fig. 1 D – F). Three years later MRI showed marked diffuse bilateral 

cerebral atrophy, particularly in the frontal and anterior temporal lobes, associated with white 

matter volume loss and ex vacuo dilatation of the lateral and third ventricles. Bilateral deep 

and subcortical T2 and FLAIR hyperintensities of the cerebral white matter were most 

prominent in the frontoparietal and temporal lobes.  In addition, there was marked 

hyperintensity, consistent with gliosis, within the frontal lobes bilaterally. The corpus 

callosum was diffusely thinned (Fig. 1 G – I). Inner ear structures were normal.  
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Case 1 Genetic Investigations 

WES data from Case 1 revealed no rare homozygous variants, and two genes with rare 

compound heterozygous variants; NAD(P)HX Dehydratase (NAXD) and spectrin, beta, 

erythrocytic (SPTB). SPTB is linked to autosomal dominant type 2 spherocytosis, which is 

characterized by the presence of spherical-shaped erythrocytes (spherocytes) on a peripheral 

blood smear. Haematological investigations did not identify any morphological abnormalities 

in spherocytes in pre-transfusion blood films from the subject, providing no support that the 

identified SPTB compound heterozygous variants were likely to be disease-causing. 

Furthermore, variants in SPTB would not explain the neurological abnormalities observed in 

the subject. However, the compound heterozygous variants in NAXD (NM_001242882.1; 

c.839+1G>T, p.(?); c.922C>T, p.(Arg308Cys)) were considered to be of potential 

significance (Table 2, Supplementary Table 1 and Supplementary Fig. 1) because Case 1 

shared many clinical features with NAXE deficient subjects, including episodes of fever and 

illness prior to deterioration, neurodegeneration and early death (Kremer et al., 2016; Spiegel 

et al., 2016). In addition, 51 heterozygous variants were identified in Case 1 by WES which 

were not considered pathogenic or validated at this stage. As Case 1 was a boy, X-linked 

analysis was also performed without any rare deleterious variants detected. 

 

Case 1 Histological Investigations 

Two skin punch biopsies from Case 1 showed an epidermis that had detached from the 

underlying dermis. There was extensive necrosis of the epidermis with lifting of the 

epidermis almost completely, with the separation being at the dermoepidermal 

junction just above the basement membrane. Some vacuolated basal cells were still 

present around the superficial hair follicle. There were a few inflammatory cells noted 

on one biopsy (scattered eosinophils and lymphocytes in the epidermis and in the 

subepidermal blister) with some inflammation in the dermis. The upper dermis was 

oedematous. The papillary dermis showed dilation of the superficial vessels and 

pigment incontinence, but no significant inflammation. The subcutis showed focal 

septal inglammantion and necrosis.  There was no vasculitis and the biopsies were 

nevative for the following markers; C1q, C3C, IgM, IgG, IgA and fibrinogen. Overall 
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there was a subepidermal blistering skin presentation with extensive epidermal 

necrosis.  

 

Case 1 Further Investigations 

Whole body positron emission tomography (PET) and CT of abdomen and pelvis did not 

reveal any tumor. Extensive viral studies were normal. Metabolic investigations included 

urinary glycosaminoglycans, amino and organic acids, , white cell lysosomal enzyme assay, 

plasma very long chain fatty acids, transferrin isoforms, plasma and urine creatine and 

guanidinoacetate, biotinidase assays, heavy metals (copper, lead, selenium, zinc), porphyria 

assay, thyroid studies and antinuclear antibody and lupus studies, N-Methyl-D-aspartic acid 

or N-Methyl-D-aspartic acid receptor antibody assay and voltage gated potassium channel-

complex antibody assays, CSF and serum lactate and liver function tests were all negative.  A 

brain biopsy was PCR negative for Herpes simplex. The subject’s karyotype was normal 

male, 46XY. Mitochondrial respiratory chain enzymology performed on a liver sample was 

all normal. Sequencing of the POLG gene was normal. Mitochondrial deletion and 

duplication studies were also normal. 

 

Case 2 Clinical summary 

Case 2 was the second child of healthy unrelated parents. She was born at full term in good 

condition with a birth weight of 3.8kg. She was healthy with normal development until age 

14 months. At this age she was cruising but not yet walking independently and could say one 

or two words. She presented at age 14 months with progressive generalized dystonia, 

irritability, oral mucositis, diarrhoea and pancytopenia. Her condition improved slowly over 

several months with supportive treatment such that her dystonia resolved but she remained 

ataxic with axial hypotonia and ophthalmoplegia. She was unable to walk or speak but could 

finger feed and use a spoon. Over the following 2 years until her death at age 3 years and 10 

months she suffered approximately 6 or 7 similar episodes of severe dystonia with further 

loss of skills after each. Fevers were associated with some, but not all episodes. In addition, 

there were more frequent episodes of pancytopenia accompanied by mucositis, vomiting, 

diarrhoea and skin rash. Brain MRI during the initial episode revealed bilateral hyperintensity 

of striatal nuclei and this remained unchanged in subsequent scans (Fig. 1 J – M). CSF 

analysis was normal and screening of blood, urine and CSF revealed no evidence of infection. 

Muscle biopsy showed changes compatible with neurogenic atrophy only and skin biopsy 
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showed epidermal necrosis with re-epithelialisation, vacuolar damage of the basal membrane 

and dermo-epidermal detachment. Bone marrow aspirate showed hypoplasia of all three cell 

lines, interstitial infiltrate (30-40%) and abundant stromal ferric deposits. Respiratory chain 

studies of biopsied muscle showed decreased activities of complexes II+III. Normal 

investigations included blood and urine amino acids, urine organic acids, CSF lactate, 

fibroblast pyruvate dehydrogenase activity, chromosome breakage studies (diepoxybutane, 

DEB) and echocardiogram. Sequencing of a panel of genes associated with defects in 

oxidative phosphorylation and with cyclic neutropenia as well as sequencing of the 

mitochondrial genome revealed no likely disease causing variants and there was no evidence 

of mitochondrial DNA depletion in muscle or bone marrow. 

 

Case 2 Genetic Investigations 

WES data from Case 2 and parental samples were analysed by trio analysis. Rare potentially 

deleterious variants were then selected by different modes of inheritance (de novo, 

homozygous and compound heterozygous). In Case 2, using MAF filters of <0.001, there 

were three genes identified with compound heterozygous variants, and only one likely 

heterozygous de novo SNV/indel variant (with balanced read depth). The compound 

heterozygous genes included NAXD (NM_001242882.1; c.187G>A, p.(Gly63Ser); 

c.948_949insTT, p.(Ala317Leufs*64)), KIAA1586 (E3 SUMO-protein ligase) and RECQL4 

(ATP-dependent DNA helicase). RECQL4 was not considered a likely candidate because it is 

associated with Baller-Gerold, Rothmund-Thomson and or RAPADILINO syndrome, which 

present with growth retardation and other features including skeletal abnormalities. In 

addition one of the variants was synonymous and the other predicted to be tolerated and not 

conserved.  KIAA1586 is not a known disease gene and the variants (an intronic duplication 

and a missense variant) were not likely to be deleterious. Therefore, NAXD was considered 

the most likely candidate gene (Table 2, Supplementary Table 1 and Supplementary Fig. 1). 

There was a heterozygous de novo SNV/indel variant in TUFM (mitochondrial Elongation 

Factor Tu) which was potentially interesting as recessive variants in this gene have been 

associated with combined oxidative phosphorylation deficiency resulting in severe lactic 

acidosis and a range of other symptoms including severe infantile macrocystic 

leukodystrophy (Valente et al., 2007), encephalomyopathy or hypertrophic cardiomyopathy 

(Smeitink et al., 2006). However, this was a heterozygous variant, with no evidence of a 
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second variant in trans, and CSF lactate levels were normal making this variant unlikely to be 

causative.  

 

 

Case 3 Clinical summary 

The 10-month-old female was second born to non-consanguineous parents at term by elective 

caesarean section. At birth, her weight was 2.5 kg (normal), length was 44 cm (-2.5 SD) and 

head circumference was 32.5 cm (normal). She had a female sibling who suddenly died. The 

female sibling was born by emergency caesarean section due to uncontrolled hypertension in 

the mother. The sibling had poor weight gain during infancy, mild developmental delay, mild 

anemia, recurrent episodes of fever and became lethargic at the age of 1 year 6 months. The 

sibling died after an episode of vomiting and lethargy at 1 year 7 months. In view of her 

sibling’s unexplained death, a metabolic workup was carried out for Case 3 at a young age. 

On day 3, her blood lactate levels was 4.08 mmol/L (normal 0.5-1 mmol/L). The lactate 

levels at 2, 3, 4 and 6 months were 4.0, 8.8, 6.5 and 3.5 mmol/L respectively. Tandem mass 

spectrometry blood newborn screening returned normal metabolites, whereas urine gas 

chromatography–mass spectrometry showed elevated levels of lactic acid, succinic acid and 

2-oxo-glutaric acid. Developmental milestones were normal for her age and she achieved 

sitting without support, monosyllables and stranger anxiety by 10 months. She had one 

episode of fever diagnosed as a urinary tract infection. She grew well and at 10 months her 

weight was 7.4 kg (normal), length was 69 cm (normal) and head circumference was normal. 

Her 2D-ECHO and MRI and MRS brain were reported normal. 

The child was healthy till the age of one year when she had an episode of acute 

gastroenteritis. There were 2 - 3 episodes of vomiting followed by loose stools the following 

day. She was treated with anti-emetics and oral fluids and recovered. A week after this 

illness, her parents noted lethargy and a decreased appetite. She was admitted to hospital for 

observation. On clinical examination she had a normal heart rate, blood pressure and 

respiratory rate. Her tone was mildly decreased. The rest of the systemic examination was 

unremarkable.  

She had mild anemia (Hb: 10.5 gm %) with microcystosis (MCV: 59.2 fl). Leucoytosis was 

noted with total leukocyte count of 19,900/ul. Liver enzymes were slightly elevated (ALT- 

107 IU/L, AST-156 IU/L). Blood glucose, renal function tests, ESR and CRP were within 

normal limits. Blood lactate was increased (37.5 mg/dl).  
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On day 2 of admission, she had an episode of vomiting, followed by uprolling of eyeballs, 

cyanosis and bradycardia.  Resuscitative measures were initiated. However, she did not 

respond to these measures and succumbed.   

The previous sibling of the proband was born at term by emergency caesarean section due to 

uncontrolled hypertension in mother. She weighed 2.4 kg (normal), length was 42.5 cm (-2.8 

SD) and head circumference was 33 cm (normal). She had repeated febrile illnesses and poor 

weight gain during infancy. She could support her head against gravity by 3 months, roll over 

at 5 months and sat unaided at 9 months. She could walk with support at the age of 1 year 6 

months. At this age she was mildly lethargic and not gaining weight. The tests performed 

were repeated at 11 months, with mild microcytic hypochromic anemia identified (Hb-8.7 

gm/dl). She was treated with oral iron supplements. At 1 year 7 months she had lethargy and 

one episode of vomiting followed by sudden death. No other investigations were undertaken. 

 

Case 3 Genetic Investigations 

WES was performed for Case 3 and her parents.  After data analysis of the trio, no de-novo or 

compound heterozygous variants of pathogenic significance were identified. However, a 

homozygous frameshift loss-of-function variant in NAXD was noted (NM_001242882.1; 

c.51_54delAGAA, p.(Ala20Phefs*9); Table 2, Supplementary Table 1 and Supplementary 

Fig. 1). This was considered a candidate variant due to the predicted crucial role of NAXD in 

mitochondrial function, evidence of persistent lactic acidosis in the proband and early 

unexplained sudden death in the previous sibling. 

 

 

 

Case 4 Clinical summary 

This boy, the first child to non-consanguineous White British parents, had normal 

development until 3 months of age at which time he was first admitted after an apparently 

trivial viral infection and regressed developmentally with the onset of infantile spasms and 

showed loss of previously attained skills such as visual attention, head control and social 

smiling. Within a week he also displayed explosive onset of infantile spasms with a 

hypsarrhythmic EEG and he was commenced on adrenocorticotropic hormone injections for 

these. MR imaging at that time demonstrated symmetrical high T1 changes in the basal 
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ganglia (globus pallidi and caudate) associated with restricted diffusion suggestive of a 

mitochondrial disorder (Fig. 1 N). 

After 2 weeks of steroid treatment the child suffered an acute respiratory collapse and was 

noted to have extensive, progressive skin lesions in the form of a purple rash on the neck in 

both axillae and over the occiput, back and buttocks. He commenced antibiotic treatment for 

presumed cellulitis but given the unusual appearance of the skin, he proceeded to have a 

punch biopsy, which showed an acute, full thickness epidermal necrosis best classified as 

toxic epidermal necrolysis. No bacteria were identified on histology. 

The child remained critically ill and developed a pancytopenia with a haemoglobin of 74g/L 

(normal range 105-122), platelets of 15 x 109/L (normal range 150-400) and leucopenia of 0.6 

x 109/L (normal range 5.0-17.5). There was absolute neutropenia with the blood film showing 

no detectable neutrophils, crenated and diamorphic red cells and a few atypical lymphocytes. 

Bone marrow aspirate was haemodilute and showed limited haematopoiesis with evidence of 

increased macrophage activity with some vacuolated macrophages seen. Lymphocyte subset 

analysis demonstrated absent CD16+ NK cell [<0.01 x 109/L (normal range 0.1-1.3)], 

reduced CD3+ T-cells [0.58 x 109/L (normal range 2.3-6.5)] but preserved CD19+ B-Cells 

[0.99 x 109/L (normal range 0.6-3.0)].  Inflammatory markers were elevated with highest C-

reactive protein 133 mg/L (normal range 0-10) and ferritin 438 µg/L (normal range 20-159). 

Ophthalmic examination demonstrated bilateral cataracts and echocardiography revealed left 

ventricular hypertrophy. 

Despite intensive support, the child demonstrated no spontaneous respiratory drive and repeat 

MR imaging demonstrated extensive progression of the intracranial abnormalities. The basal 

ganglia and thalamic changes were more necrotic with multiple haemorrhagic foci and there 

was now involvement of the putamen bilaterally which were swollen with restricted 

diffusion. The brain was more oedematous generally, with patchy cortical and white matter 

oedema but with relative sparing of the post-central gyrus, occipital and temporal poles. 

There was widespread patchy restriction of diffusion in the cortex and white matter although 

the subcortical white matter appeared more affected than the deep white matter. The 

corticospinal tracts also showed restricted diffusion, extending down into the brain stem and 

both hippocampi were affected. There was oedema noted in the pons and medulla. The extra-

axial CSF spaces and lateral ventricles were a little more prominent indicating a mild degree 

of cerebral atrophy. MR spectroscopy showed a lactate peak in the deep grey nuclei and in 

the cerebrum. 
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A muscle biopsy was taken for further mitochondrial investigations, following which critical 

care support was withdrawn with parental consent and the child died shortly afterwards. 

 

Case 4 Genetic Investigations 

Since Case 4 presented clinically with a suspected mitochondrial disorder, an initial gene 

panel of common nuclear Complex I genes revealed no abnormalities. Follow up 

investigations by WES trio analysis revealed a homozygous missense variant in NAXD 

(NM_001242882.1; c.308C>T, p.(Pro103Leu))  that was heterozygous in both parents 

(Supplementary Fig. 2). In silico analysis predicted the variant to be highly pathogenic, and 

the variant resided in a highly conserved residue (Table 2 and Supplementary Table 1). 

 

 

Case 4 Further Investigations 

Extensive viral studies were normal with no positive PCR result in CSF for CMV, HSV1, 

HSV2, HHV6, Parechovirus, VZV and Enterovirus. Blood PCR for CMV, EBV and 

Adenovirus was negative. Swabs of the skin lesions grew no organisms although oral swabs 

did grow Candida albicans and Staphylococcus aureus which were appropriately treated. 

Metabolic investigations included normal urinary glycosaminoglycans and organic acids. 

Urine amino acids and oligosaccharides demonstrated some interference from drug 

metabolites. Plasma very long chain fatty acids were essential normal with only an 

insignificant marginally low C24/C22 ratio. Biotinidase assay, acylcarnitines and total 

homocysteine was normal. CSF lactate was 2.1 mM. Muscle respiratory chain analysis 

demonstrated normal activities of complex IV and complexes II+III but decreased activity of 

complex I [ratio to citrate synthase 0.084 (normal range 0.104 - 0.268)]. The main 

abnormality on muscle histology was non-specific variability in fibre diameter. Given the 

profound neutropenia with cardiomyopathy, cardiolipin screening for Barth syndrome was 

performed which showed normal monolysocardiolipin/cardiolipin characteristics. Given the 

explosive onset of seizures CSF alpha-interferon was analysed for Aicardi-Goutieres 

Syndrome and this was <2.0 iU/L. 

 

 

Case 5 Clinical summary 
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Case 5 was a healthy girl from Indian parents who was well until age 2 years 6 months when 

she was admitted with a two week history of intermittent vomiting, on a background of a 

longstanding history of frequent vomiting. Twenty-four hours before admission, she became 

unsteady on her feet and had intermittent jerky movements of all four limbs; these were 

occurring every few minutes by the time of admission. Her gait was unsteady and she was 

noted to be lethargic.   

Investigations at her local hospital included a lumbar puncture, which showed no definitive 

evidence of infection. A CT brain scan was normal. She was given a presumed diagnosis of 

meningoencephalitis and commenced on antibiotics. She had a persistent tachycardia and was 

increasingly lethargic. An echocardiogram two days after admission showed evidence of a 

dilated cardiomyopathy, with severely impaired ventricular function (ejection fraction 17%). 

That same day, she rapidly deteriorated and became profoundly unwell with shallow 

respirations. She subsequently became apnoeic and pulseless, requiring cardiopulmonary 

resuscitation for six minutes. She was ventilated and transferred to a specialist cardiac unit on 

high inotropic support. 

Investigations on admission revealed: high sodium, potassium and urea compatible with 

dehydration, glucose 11.6mmol/L; ALT and AST were raised, with normal ALP; raised 

random cortisol, but subsequently normal short synacthen test. The day after admission, she 

had a creatine kinase of 19,106 U/L (normal 25-146 U/L), amylase 235 U/L (normal 28-100 

U/L), troponin 9,752 ng/L (normal 0-40) and BNP 2,874 ng/L (normal 0-40 ng/L). 

Her echocardiogram showed poor biventricular function. She was treated with IV 

immunoglobulins, in case she had an acute myocarditis, and carnitine supplementation. Her 

ejection fraction on admission was 27%, with a fractional shortening of 12.5%. She made a 

fast clinical recovery and within four days she was extubated and was able to sit up and play 

with toys. 

Further investigations were undertaken over the next two days. These revealed: normal 

lipase, essentially normal plasma acyl carnitines but with mildly raised hexanoyl and 

octanoyl carnitines, mild iron deficiency anaemia; high initial serum urate that rapidly 

returned to normal. The folate and vitamin B12 were high; normal plasma amino acids. A 

viral screen revealed evidence of previous, not current Coxsackie A infection. Her maximum 

CRP was 21mg/L. Immunoglobulins were normal, whilst complement C3 and C4 were 

marginally low. The blood ammonia was normal, and high initial blood lactate normalized on 

recovery. Vitamin D was low (15nmol/L; >50 – 75 nmol/L adequate; >75nmol/L optimal).  

Ultrasound of her abdomen and pelvis were normal, except for some free fluid.  A primary 
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carnitine deficiency was suspected in view of the high initial creatine kinase and amylase in 

the presence of a severe dilated cardiomyopathy. However, SLC22A5 mutation analysis was 

normal. 

She was well for the next two months, and despite having an episode of vomiting and an 

upper respiratory tract infection, she had not decompensated. Her ejection fraction when well 

was 62%. 

She was then however readmitted following a 24-hour history of vomiting with evidence of 

an E. coli confirmed urinary tract infection. A repeat echocardiogram was performed within 

24 hours of admission and showed an ejection fraction of 12%.  She rapidly deteriorated, 

requiring ventilation, and was readmitted to the cardiac intensive care unit. Her lactate was 

high (15mmol/L; nomal range <0.5 - 1 mmol/L). She was commenced on high dose inotropic 

support.  Due to rapid worsening of her cardio-respiratory status, she required extracorporeal 

membrane oxygenation (ECMO). Her clinical condition improved rapidly and she was 

weaned off the ECMO after two days; five days after admission, her cardiac function had 

again normalized.   

A muscle biopsy was performed during that admission which showed an abnormal population 

of scattered very small fibers expressing fetal developmental myosin chain isoforms. Muscle 

fibres showed increased coarse oxidative staining in a mosaic distribution with retained COX 

positive ragged red equivalents. There was a mild to moderate diffuse increase in lipid 

staining. Immunostaining by TOMM20 did not suggest any depletion of complex 1 and IV 

subunits. Skeletal muscle EMG of the tibialis anterior suggested a myopathic process.  

Brain MRI showed symmetrical bilateral abnormal white matter signal in the frontal lobes 

with some overlying thinning of the cortex.  Focal changes were also seen in the left tempero-

occipital and left parietal lobe. Notably, there was no abnormal signal in the basal ganglia. 

She remained well upon discharge, but two months later, she was once again admitted in 

severe cardiac failure with rapid deterioration, after several days of vomiting and coryzal 

symptoms at home. ECMO was again commenced. It was not possible to wean her from the 

ECMO and treatment was withdrawn six days after this admission, with rapid demise. A full 

post-mortem was performed, but no other abnormalities that had not been detected prior to 

death were identified. 

A dilated cardiomyopathy genetic panel including 59 genes was performed, but no 

pathogenic or likely pathogenic mutation was identified. The mitochondrial genome was fully 

sequenced and again no abnormality was identified. 
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Her development, up until her first admission, had not caused her parents any concerns; she 

was less energetic than her older brother aged four and except for her recurrent, almost 

nightly vomiting between seven and fifteen months of age, her parents were not concerned 

about her physical or cognitive development. 

Her parents were non consanguineous, but from the same region in India. Their first child 

was born in Northern Europe and they returned to India when she was one year old. At 

thirteen months she was taken to the local GP with an episode of pallor and floppiness, 

following a vomit. It was noted that her heart beat was irregular and she was referred to 

hospital. She was admitted to intensive care, as she was extremely unwell.  She was 

ventilated, but had a cardiac arrest within four hours of admission and resuscitation was 

unsuccessful. It was presumed that she had died of overwhelming sepsis.  She had been 

previously well, although like her sister vomited frequently. Her brother remains fit and well. 

He does not vomit frequently and has more energy than either of his sisters. His cardiac 

screening has been normal. 

Her parents have had normal cardiac investigations. The father, aged forty-two, has had five 

possible seizures, between the ages of sixteen and thirty-two years, associated with periods of 

stress, such as ‘overworking’ and ‘sleep deprivation’. He took anti-epileptic medication for 

three years and then stopped and has not had any further episodes over the last ten years. His 

MRI brain was normal.  

The Guthrie card from the first child also showed the homozygous mutation in NAXD that 

was found in his affected sister, whilst the youngest brother is heterozygous, as are both 

parents. Fibroblast cultures failed to establish from a skin biopsy. 

 

Case 5 Genetic Investigations 

The WES data generated for Case 5 was analysed using the same methodology as for Case 2. 

A homozygous variant was identified in NAXD (NM_001242882.1; c.54_57delAAGA, 

p.(Ala20Phefs*9)) that was heterozygous in both parents. The NAXD variant appeared likely 

a strong candidate as it was predicted to be pathogenic, leading to a frameshift and early 

truncation of the protein.  

 

Case 6 Clinical summary 

Case 6 was a child of non-consanguineous parents of German origin. She was occasionally 

hospitalized with an unknown bowel disease, balance problems, developmental delay, and 
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seizures with normal EEG and MRI reports. At 8 months of age, she presented with impaired 

coordination and delay of motor abilities.  At the age of one year and seven months she was 

taken to the hospital after a seizure-like event (right sided hemiplegia, right hand flexion and 

jerks). She had fever and showed elevated inflammation parameters. During the 

hospitalization EEG and MRI showed a rapid deterioration with increased signal intensity in 

the frontal cortical region as well as in the caudate nucleus and putamen. Moreover, frontal 

brain oedema was seen bilaterally. She showed general developmental regression: she lost 

her ability to sit, to hold her head upright, and eventually did not show any spontaneous 

motor activity apart from occasional alternating eye and hand movements. Skin 

manifestations consisting of redness, blistering and peeling were observed in the anogenital 

region and on the proximal phalanges of the 4th and 5th finger of the right hand. 

Gastrointestinal imaging discovered focal erythematous and partly aphthous insular lesions. 

A metabolic disorder was suspected but investigations for metabolic abnormalities, including 

muscle biopsy, were inconclusive. Muscle respiratory chain analysis demonstrated normal 

activities of Complex II+III but reduced activity of Complex I [ratio to citrate synthase 0.07 

(normal range 0.17 - 0.56)] and Complex IV [ratio to citrate synthethase 0.65 (normal range 

1.10 – 5.00)]. After a rapid regression, at the age of 22 months, the young girl passed away. 

 

Case 6 Genetic Investigations 

WES data from Case 6 was analyzed using methods as previously described (Kremer et al., 

2017) and as detailed in Supplementary Materials. Filtering for genes harboring bi-allelic 

variants with a minor allele frequency (MAF) of less than 1% using the Munich in-house 

database consisting of 14,000 exomes revealed 7 candidate genes. However, none of these 

genes was reported to be associated with a mitochondrial disorder or encode for a 

mitochondrial protein, nor did the genes harbor predicted loss-of-function variants. Due to 

this inconclusive analysis, trio-analysis was performed to search for de novo variants. The 

search identified 3 genes harboring one missense variant, each of which was exclusively 

detected in the subject but not the parents. Two of these variants were predicted probably 

damaging, one of them residing in the mitochondrial protein encoding gene NAXD 

(NM_001242882.1; c.331C>T, p.(Leu111Phe); Table 2, Supplementary Table 1 and 

Supplementary Fig. 1). Strikingly, the subject’s phenotype closely resembled the clinical 

presentation of subjects carrying pathogenic bi-allelic variants in NAXE (Kremer et al., 

2016). To clarify whether the identified variant acted in a dominant fashion or the variant was 
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compounded by a second coding or non-coding heterozygous variant, WGS was performed 

(Kremer et al., 2017). There was no rare (MAF <1%) non-coding variant in NAXD but we 

identified a second de novo missense variant, predicted as possibly damaging which was only 

present in 18% of the reads (NM_001242882.1; c.776T>G, p.(Leu259Arg); Table 2, 

Supplementary Table 1, Supplementary Fig.s 1 and 2). This variant was also detectable upon 

re-analysis of the exome data in 16% of the reads and so was discarded in the initial analysis. 

Importantly, no other individual in the Munich in-house database carried rare (MAF <1%) 

predicted damaging bi-allelic variants in NAXD.  
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