
FraudDroid: Automated Ad Fraud Detection for Android Apps
Feng Dong
Haoyu Wang

Beijing University of Posts and
Telecommunications, China

Li Li
Faculty of Information Technology,

Monash University, Australia

Yao Guo
Key Laboratory of High-Confidence
Software Technologies (MOE), Peking

University, China

Tegawendé F. Bissyandé
University of Luxembourg,

Luxembourg

Tianming Liu
Guoai Xu

Beijing University of Posts and
Telecommunications, China

Jacques Klein
University of Luxembourg,

Luxembourg

ABSTRACT
Although mobile ad frauds have been widespread, state-of-the-art
approaches in the literature have mainly focused on detecting the
so-called static placement frauds, where only a single UI state is
involved and can be identified based on static information such
as the size or location of ad views. Other types of fraud exist that
involve multiple UI states and are performed dynamically while
users interact with the app. Such dynamic interaction frauds, al-
though now widely spread in apps, have not yet been explored
nor addressed in the literature. In this work, we investigate a wide
range of mobile ad frauds to provide a comprehensive taxonomy to
the research community. We then propose, FraudDroid, a novel
hybrid approach to detect ad frauds in mobile Android apps. Fraud-
Droid analyses apps dynamically to build UI state transition graphs
and collects their associated runtime network traffics, which are
then leveraged to check against a set of heuristic-based rules for
identifying ad fraudulent behaviours. We show empirically that
FraudDroid detects ad frauds with a high precision (∼ 93%) and
recall (∼ 92%). Experimental results further show that FraudDroid
is capable of detecting ad frauds across the spectrum of fraud types.
By analysing 12,000 ad-supported Android apps, FraudDroid iden-
tified 335 cases of fraud associated with 20 ad networks that are
further confirmed to be true positive results and are shared with
our fellow researchers to promote advanced ad fraud detection.

CCS CONCEPTS
• Security and privacy→ Software security engineering; Eco-
nomics of security and privacy; • Software and its engineering
→ Software verification and validation;

KEYWORDS
Android, ad fraud, automation, user interface, mobile app

The names of the first two authors are in alphabetical order. Haoyu Wang is the
corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236045

ACM Reference Format:
Feng Dong, HaoyuWang, Li Li, Yao Guo, Tegawendé F. Bissyandé, Tianming
Liu, Guoai Xu, and Jacques Klein. 2018. FraudDroid: Automated Ad Fraud De-
tection for Android Apps. In Proceedings of the 26th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236045

1 INTRODUCTION
The majority of apps in Android markets are made available to
users for free [5, 40, 66, 76]. This has been the case since the early
days of the Android platform when almost two-thirds of apps were
free to download. Actually, developers of third-party free apps are
compensated for their work by leveraging in-app advertisements
(ads) to collect revenues from ad networks [31]. The phenomenon
has become common and is now part of the culture in the Android
ecosystem where advertisement libraries are used in most popular
apps [66]. App developers get revenue from advertisers based either
on the number of ads displayed (also referred to as impressions) or
the number of ads clicked by users (also referred to as clicks) [61].

While mobile advertising has served its purpose of ensuring
that developer interests are fairly met, it has progressively become
plagued by various types of frauds [45, 56]. Unscrupulous develop-
ers indeed often attempt to cheat both advertisers and users with
fake or unintentional ad impressions and clicks. These are known
as ad frauds. For example, mobile developers can typically employ
individuals or bot networks to drive fake impressions and clicks
so as to earn profit [15]. A recent report has estimated that mo-
bile advertisers lost up to 1.3 billion US dollars due to ad fraud in
2015 alone [28], making research on ad fraud detection a critical
endeavour for sanitizing app markets.

Research on ad frauds has been extensively carried in the realm
of web applications. The relevant literature mostly focuses on click
fraud which generally consists of leveraging a single computer
or botnets to drive fake or undesirable impressions and clicks. A
number of research studies have extensively characterized click
frauds [1, 10, 54] and analysed its profit model [51]. Approaches
have also been proposed to detect click frauds by analysing network
traffic [52, 53] or by mining search engine’s query logs [81].

Nevertheless, despite the specificities of mobile development and
usage models, the literature on in-app ad frauds is rather limited.
One example of work is the DECAF [45] approach for detecting
placement frauds: these consist in manipulating visual layouts of

257

https://doi.org/10.1145/3236024.3236045
https://doi.org/10.1145/3236024.3236045

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA F. Dong, H. Wang, L. Li, Y. Guo, T. Bissyandé, T. Liu, G. Xu, J. Klein

 !"#$%&"

'((%')*"

+,%-(%./%!01

Figure 1: An example of interaction fraud. A rapid user might
accidentally click on the ad instead of the intended "Exit/Cancel".

ad views (also referred to as elements or controls) to trigger un-
desirable impressions in Windows Phone apps. DECAF explores
the UI states (which refer to snapshots of the UI when the app is
running) in order to detect ad placement frauds implemented in
the form of hidden ads, the stacking of multiple ads per page, etc.
MAdFraud [15], on the other hand, targets Android apps to detect
in-app click frauds by analysing network traffic.

Unfortunately, while the community still struggles to properly
address well-known, and often trivial, cases of ad frauds, deception
techniques used by developers are even getting more sophisticated,
as reported recently in news outlets [27, 35]. Indeed, besides the
aforementioned click and placement frauds, many apps implement
advanced procedures for tricking users into unintentionally clicking
ad views while they are interacting with the app. In this work, we
refer to this type of ad frauds as dynamic interaction frauds.

Figure 1 illustrates the case of the app named taijiao music1

where an ad view gets unexpectedly popped up on top of the exit
button when the user wants to exit the app: this usually leads to an
unintentional ad click. Actually, we performed a user study on this
app and found that 9 out of 10 users were tricked into clicking the
ad view. To the best of our knowledge, such frauds have not yet
been explored in the literature of mobile ad frauds, and are thus
not addressed by the state-of-the-art detection approaches.

This paper.We perform an exploratory study of a wide range of
new ad fraud types in Android apps and propose an automated ap-
proach for detecting them in market apps. To that end, we first pro-
vide a taxonomy that characterizes a variety of mobile ad frauds in-
cluding both static placement frauds and dynamic interaction frauds.
While detection of the former can be performed via analysing the
static information of the layout in a single UI state [45], detection
of the latter presents several challenges, notably for:
• Dynamically exercising ad views in a UI state, achieving scalability,
and ensuring good coverage in transitions between UI states: A UI
state is a running page that contains several visual views/elements,
also referred to as controls in Android documentation. Because
dynamic interaction frauds involve sequences of UI states, a de-
tection scheme must consider the transition between UI states,
as well as background resource consumption such as network
traffic. For example, in order to detect the ad fraud case pre-
sented in Figure 1, one needs to analyse both current and next
UI states to identify any ad view that is placed on top of buttons
and which could thus entice users to click on ads unexpectedly.

1An educational music player (com.android.yatree.taijiaomusic) targeting pregnant
mothers for antenatal training.

Exercising apps to uncover such behaviours can however be time-
consuming: previous work has shown that it takes several hours
to traverse the majority UI states of an app based on existing
Android automation frameworks [38].

• Automatically distinguishing ad views among other views: In con-
trast with UI on the Windows Phone platform targeted by the
state-of-the-art (e.g., DECAF [45]), Android UI models are generic
and thus it is challenging to identify ad views in a given UI state
since no explicit labels are provided to distinguish them from
other views (e.g., text views). During app development, a view can
be added to the Activity, which represents a UI state implemen-
tation in Android, by either specifying it in the XML layout [21]
or embedding it in the source code. In preliminary investigations,
we found that most ad views are actually directly embedded in
the code, thus preventing any identification via XML analysis.
Towards building an approach that achieves accuracy and scala-

bility in Android ad fraud detection, we propose two key techniques
aimed at addressing the aforementioned challenges:
• Transition graph-based UI exploration. This technique builds
a UI transition graph by simulating interaction events associated
with user manipulation.We first capture the relationship between
UI states through building the transition graphs between them,
then identify ad views based on call stack traces and unique fea-
tures gathered through comparing the ad views and other views
in UI states. The scalability of this step is boosted by our pro-
posed ad-first exploration strategy, which leverages probability
distributions of the presence of an ad view in a UI state.

• Heuristics-supported ad fraud detection. By manually inves-
tigating various real-world cases of ad frauds, we devise heuristic
rules from the observed characteristics of fraudulent behaviour.
Runtime analysis focusing on various behavioural aspects such
as view size, bounds, displayed strings or network traffic, is then
mapped against the rules to detect ad frauds.
These techniques are leveraged to design and implement a proto-

type system called FraudDroid for detecting ad frauds in Android
apps. This paper makes the following main contributions:
(1) We create a taxonomy of existing mobile ad frauds. This tax-

onomy, which consists of 9 types of frauds, includes not only
previously studied static placement frauds, but also a new cate-
gory of frauds which we refer to as dynamic interaction frauds.

(2) We propose FraudDroid, a new approach to detect mobile
ad frauds based on UI transition graphs and network traffic
analysis. Empirical validation on a labelled dataset of 100 apps
demonstrates that FraudDroid achieves a detection precision
of 93% and recall of 92%. To the best of our knowledge, Fraud-
Droid is the first approach that is able to detect the five types
of dynamic interaction ad frauds presented in our taxonomy.

(3) We have applied FraudDroid in the wild on 12,000 apps from
major app markets to demonstrate that it can indeed scale to
markets. Eventually, we have identified 335 apps performing ad
frauds, some of them are popular apps with millions of down-
loads. 94 of such apps even come from the official Google Play
store, which indicates that measures are not yet in place to fight
fraudulent behaviour. We have released the benchmarks and
experiment results to our research community at:

https://github.com/FraudDroid-mobile-ad-fraud

258

https://github.com/FraudDroid-mobile-ad-fraud

FraudDroid: Automated Ad Fraud Detection for Android Apps ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

2 A TAXONOMY OF MOBILE AD FRAUDS
Before presenting the taxonomy of mobile ad frauds, we briefly
overview the mobile advertising ecosystem. Figure 2 illustrates
the workflow of interactions among different actors in the mobile
advertising ecosystem.

App
Developer

Ad Network Advertiser

User

1 put an Ad

3 publish an app

4 Ad feedback

6 pay for Ad

7 pay for Ad

2 get Ad SDK

5 Ad Feedback

Apps with Ad library

Figure 2: An overview of the mobile advertising ecosystem.

2.1 Mobile Advertising
The role of an advertiser is to design ads that will be distributed to
user devices. Such ads are displayed through third-party apps that
are published by app developers. The ad network thus plays the role
of a trusted intermediary platform, which connects advertisers to
app developers by providing toolkits (e.g., in the form of ad libraries
that fetch and display ads at runtime) to be embedded in app code.
When a user views or clicks on an ad, the ad network (which is
paid by advertisers) receives a feedback based on which the app
developer is remunerated.

Because app developers earn revenues based on the number of
ad impressions and clicks, it is tempting to engage in fraudulent
behaviour to the detriment of users or/and advertisers. To avoid app
developers tricking users into clicking ad views (and thus artificially
increasing their revenues), ad networks have put in place some strict
policies and prohibition guidelines on how ad views should be
placed or used in apps. For example, violations of any of the AdMob
program policies [24, 29, 58] is regarded as ad frauds by the Google
AdMob ad network. Besides, popular app markets [49, 50, 58, 70]
have released strict developer policies on how the ads should be
used in apps. Nevertheless, unscrupulous app developers resort to
new tricks to commit ad frauds that market screeners fail to detect
while ad networks are un-noticeably cheated. This is unfortunate as
ad frauds have become a critical concern for the experience of users,
the reputation of ad networks, and the investments of advertisers.
2.2 Ad Frauds
While the literature contains a large body of work on placement
frauds in web applications and the Windows Phone platform, very
little attention has been paid to such frauds on Android ecosys-
tem. Furthermore, dynamic interaction frauds have even not been
explored by the research community to the best of our knowledge.

Definition of Mobile Ad Fraud. To build the taxonomy of An-
droid ad frauds, we first investigate the example policy violations
listed by app markets and ad-networks, including: (1) the usage
policies provided by popular ad libraries [25, 29], (2) the developer
policies provided by official Google Play market [58] and popular
third-party app markets, including Wandoujia (Alibaba App) Mar-
ket [70], Huawei App Market [49] and Tencent Myapp Market [50],
(3) the guidelines on ad behaviour drafted by a communication

Mobile Ad Fraud

Static Placement Fraud Dynamic Interaction Fraud

Hidden

Size

Num
ber

O
verlap

Interaction

Drive-by
Dow

nload

O
utside

Frequent

Non-content

Figure 3: A taxonomy of mobile ad frauds.

standards association [6], and (4) some real-world ad fraud cases.
Figure 3 presents our taxonomy, which summarizes 9 different types
of ad frauds, which represents by far the largest number of ad fraud
types. Particularly, the five types of dynamic interaction frauds
have never been investigated in the literature. Note that some cases
tagged as frauds may actually be perceived as “annoying ads”, and
app markets view them as bad developer behaviours that break ad
policies and take measures to remove the associated apps.

2.2.1 Static Placement Frauds. Many fraud cases are simply per-
formed by manipulating the ad view form and position in a UI
state. “Static” implies that the detection of these frauds could be
determined by static information and occur in a single UI state.
“Placement” implies that the fraudulent behaviour is exploiting
placement aspects, e.g., size, location, etc. We have identified four
specific types of behaviour related to static placement frauds:
(1) The Ad Hidden fraud. App developers may hide ads (e.g., un-

derneath buttons) to give users the illusion of an “ad-free app”
which would ideally provide better user experience. Such ads
however are not displayed in conformance with the contract
with advertisers who pay for the promotional role of ads [29, 70].

(2) The Ad Size fraud. Although advice on ad size that ad net-
works provide is not mandatory, and there are no standards on
ad size, the size ratio between the ad and the screen is required
to be reasonable [70], allowing the ads to be viewed normally
by users [26]. Fraudulent behaviour can be implemented by
stretching ad size to the limits: with extremely small ad sizes,
app developers may provide the feeling of an ad-free app, how-
ever cheating advertisers; similarly, with abnormally large ad
size, there is a higher probability to attract users’ attention
(while affecting their visual experience), or forcing them to
click on the ad in an attempt to close it.

(3) The Ad Number fraud. Since ads must be viewed by users
as mere extras alongside the main app content, the number of
ads must remain reasonable [25, 70]. Unfortunately, developers
often include a high number of ads to increase the probabil-
ity of attracting user interests, although degrading the usage
experience of the app, and even severely affecting the normal
functionality when ad content exceeds legitimate app content.

(4) The Ad Overlap fraud. To force users into triggering unde-
sired impressions and clicks, app developers may simply display
ad views on top of actionable functionality-relevant views [25,
29, 70]. By placing ads in positions that cover areas of inter-
est for users in typical app interactions, app developers create
annoying situations where users must “acknowledge” the ad.

259

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA F. Dong, H. Wang, L. Li, Y. Guo, T. Bissyandé, T. Liu, G. Xu, J. Klein

State
A

State
B

State
C

TextView

Layout
ImageView

AdView WebView

Button

View Tree

Network
Traffic

UI State Transition Graph Construction Ad Fraud Detection

Ad Load Method

String Feature

Type Feature

Placement Feature

Ad View Detector

Hidden

Size

Number

Overlap

Ad Fraud Checker

Drive-by Download

Outside

Frequent

Non-Content

Interaction

Figure 4: Overview of FraudDroid.

2.2.2 Dynamic Interaction Frauds. We have also identified cases
of frauds that go beyond the placement of ad views on a single
UI state, but rather involve runtime behavior and may then occur
in an unexpected app usage scenario. “Dynamic” implies that the
detection of these frauds occur at runtime. “Interaction” implies
that the fraudulent behavior is exploiting user interaction scenarios
and may involve multiple UI states.
(5) The Interaction Ad fraud. In web programming, developers

use interstitials (i.e., web pages displayed before or after an
expected page content) to display ads. Translated into mobile
programming, some ad views are placed when transitioning
between UI states. However, frauds can be performed by placing
interstitial ads early on app load or when exiting apps, which
could trick users into accidental clicks since interaction with
the app/device is highly probable at these times [6, 29, 70].

(6) The Drive-by download Ad fraud. Ads are meant to provide
a short promotional content designed by advertisers to attract
user attention into visiting an external content page. When app
developers are remunerated not by the number of clicks but ac-
cording to the number of users that are eventually transformed
into actual consumers of the advertised product/service, there
is a temptation of fraud. A typical fraud example consists in
triggering unintentional downloads (e.g., of advertised APKs)
when the ad view is clicked on [6, 70]. Such behavior often
heavily impacts user experience, and in most cases, drive-by
downloads cannot even be readily cancelled.

(7) The Outside Ad fraud. Ads are supposedly designed to appear
on pages when users use the app. Fraudulent practices exist
however for popping up ads while apps are running in the
background, or even outside the app environment (e.g., ad views
placed on the home screen and covering app icons that users
must reach to start new apps) [6, 29, 49, 70]. In some extreme
cases, the ads appear spuriously and the user must acknowledge
them since such ads can only be closed when the user identifies
and launches the app from which they come.

(8) The Frequent Ad fraud. App developers try to maximize the
probability of ad impressions and clicks to collect more revenue.
This probability is limited by the number of UI states in the
app. Thus, developers may implement fraudulent tactics by
displaying interstitial ads every time the user performs a click
on the app’s core content (e.g., even when the click is to show
a menu in the same page) [6, 29].

(9) TheNon-content Ad fraud. To maximize the number of ad im-
pressions and trick users into unintended clicks, developers can
place ads on non-content-based pages such as thank you, error,
login, or exit screens. Ads on these types of UI states can confuse
a user into thinking that the ads are real app content [29].

3 FRAUDDROID
To address ad frauds in the Android ecosystem we design and im-
plement FraudDroid, an approach that combines dynamic analysis
on UI state as well as network traffic data to identify fraudulent
behaviours. Figure 4 illustrates the overall architecture of Fraud-
Droid. The working process unfolds in two steps: (1) analysis and
modelling of UI states, and (2) heuristics-based detection of ad frauds.

To efficiently search for ad frauds, one possible step before
sending apps to FraudDroid is to focus on such apps that have
included ad libraries. To this end, FraudDroid integrates a pre-
processing step, which stops the analysis if the input app does
not leverage any ad libraries, i.e., there will be no ad frauds in
that app. Thus we first propose to filter apps that have no per-
missions associated with the functioning of ad libraries, namely
INTERNET and ACCESS_NETWORK_STATE [39]. Then, we leverage Li-
bRadar [43, 46, 72], a state-of-the-art, obfuscation-resilient tool to
detect third-party libraries (including ad libraries) in Android apps.

3.1 Analysis and Modelling of UI States
While an app is being manipulated by users, several UI states are
generated where ad views may appear. UI states indeed represent
the dynamic snapshots of pages (i.e., Activity rendering) displayed
on the device. One key hypothesis in FraudDroid is that it is possi-
ble to automate the exercise of ad views by traversing all UI states.
To that end, we propose to leverage automatic input generation
techniques to collect UI information. Nevertheless, since exhaus-
tively exercising an app is time-consuming, the analysis cannot
scale to market sizes. For example, in our preliminary experiments,
the analysis of a single app required several hours to complete.
Empirical investigations of small datasets of ad-supported apps
have revealed however that over 90% of the UI states do not include
an ad view [55]. We thus develop in FraudDroid a module, here-
after referred to as FraudBot, which implements an automated and
scalable approach for triggering relevant UI states. This module
exploits a fine-tuned exploration strategy to efficiently traverse UI
states towards reaching most of those that contain ad views in a
limited amount of time. FraudBot thus focuses on modelling a UI
State Transition Graph (UTG for short), i.e., a directed graph where:
• A node represents a UI state, and records information about the
network traffic that this state is associated with, the trace of
method calls executed while in this state, and the view tree of
the UI layout in this state.

• An edge between two nodes represents the test input (e.g., event)
that is associated with the transition between two states.
Figure 5 illustrates an example of UTG, which is constructed on

the fly during app automation where input event triggering state

260

FraudDroid: Automated Ad Fraud Detection for Android Apps ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

State B State CState A

Event 2Event 1

View tree: [{View 1
 "temp_id": 0, "parent": null, "resource_id": "NO_ID",
 "text": null, "bounds": [[0, 0], [1080, 1776]],
 "class":"com.android.internal.policy.impl...",
 "children": [1], "size": "1080*1776"},
{View 2...},...]
Process info: Activity: taijiaomusic
Services: WapPushManager State B

{
"Source state": "2017-03-08_160110",
"Destination state": "2017-03-08_160128",

 "Event_type": "touch"
 "class": "android.widget.Button",

"resource_id": "id/0x8765405",
 ...
} Event 2

Figure 5: Simplified illustrative example of a UTG.

changes aswell as information on the new state are iteratively added
to an initially empty graph. Before discussing how FraudDroid
exploits the UTG to unroll the app execution behaviour so as to
detect ad frauds, we providemore details on the exploration strategy
of FraudBot as well as on the construction of view trees.

3.1.1 Ad-first Exploration Strategy. We developed a strategy that
prioritizes the traversal of UI states which contain ads to account
for coverage and time constraints. To simulate the behaviour of
real app users, FraudBot generates test inputs corresponding to
typical events (e.g., clicking, pressing) that are used to interact with
common UI elements (e.g., button, scroll). Inspired by previous
findings [55] that most ads are displayed in the main UI state and
the exit UI state, our exploration is biased towards focusing on these
states. To prioritize ad views in a state, we resort to a breadth-first
search algorithm where all views in a state are reordered following
ad load method traces and other ad-related features which are
further described in Section 3.2.1. Considering that loading an ad
from a remote server may take time, we set the transition time in
app automation to 5 seconds, a duration that was found sufficient in
our network experimental settings. By using this strategy, we can
reduce the app automation time from 1 hour per app to 3 minutes
on average, which is a significant gain towards ensuring scalability.

3.1.2 View Tree Construction. For each state generated by FraudBot,
a view tree is constructed to represent the layout of the state aiming
at providing a better means to pinpoint ad views. The tree root
represents the ground layout view on top of which upper views are
placed. By peeling the UI state we build a tree where each view is
represented as a node: parent nodes are containers to child nodes,
and users actually manipulate only leaf nodes. Each node is tagged
with basic view information such as position, size, class name, etc.
Such attributes are used to identify which nodes among the leaf
nodes are likely ad view nodes. Figure 6 illustrates an example of
a view tree where a leaf node representing a pop-up view that is
identified as an ad view. The identification is based on the string
feature representing the in-app class name (“com.pop.is.ar”, a
customized type), the bound values of the view ({[135, 520],
[945, 1330]}) corresponding to the center position of the device
screen, as well as the size of view (810*810) which is common to
interstitial ads. We describe in more detail in the next section the
string and placement features that are used to detect ads.

3.1.3 Network Traffic Enhancement. Because some ad fraudulent
behaviours such as drive-by download cannot be detected solely
based on view layout information, we enhance the constructed view

 !"#$%&'$!('$)*+!,'#*"%,"-&.+

/!"#$%&'$!0'*(!1'*(2+.3 4!"#$%&'$!('$)*+!5%"6*,"-&.+

7!"#$%&'$!('$)*+!,'#*"%,"-&.+

8!"#$%&'$!('$)*+!1'*(59'::*%

;!<&6!:&:!'=!&

>!"#$%&'$!('$)*+!?*9"+'0*,"-&.+

2+"+*@1'*(@A%**@

B!<&6!"#$%&'$!'#+*%#"9!:&9'<-!'6:9!CD&#*E'#$&(FG*<&%1'*(

HI<&6!:&:!'=!<J

KI<&6!:&:!'=!"% BI"#$%&'$!('$)*+!L.++&# I"#$%&'$!('$)*+!A*M+1'*(

NO+*6:P'$OI@KQ@

@@@@@@O:"%*#+OI@HQ@

@@@@@@O%*=&.%<*P'$OI@O'$RBMH8>7;B4OQ@

@@@@@@O+*M+OI@#.99Q@

@@@@@@O0'*(P=+%OI@

O<9"==I<&6!:&:!'=!"%Q%*=&.%<*P'I'R

BMH8>7;B4Q='S*IH BTH BQ+*M+IU&#*OQ@

@@@@@@O*#"39*$OI@+%.*Q@

@@@@@@O3&.#$=OI@VV 47Q@7/BWQ@

@@@@@@@@VK;7Q@ 44BWWQ@

@@@@@@O<9"==OI@O<&6!:&:!'=!"%OQ@

@@@@@@OX&<.=*$OI@X"9=*Q@

@@@@@@O<D'9$%*#OI@VWQ@

@@@@@@O='S*OI@OH BTH BOYQ@

KI<&6!:&:!'=!"%

Figure 6: An example of view tree for interactive fraud.

tree with network traffic data by connecting each view node with its
associated HTTP request and the data (e.g., APK files) transmitted.
The associated network data is helpful for FraudDroid to detect
silent downloading behaviours where certain files such as APKs
are downloaded without user’s interaction after an ad is clicked.

3.2 Heuristics-based Detection of Ad Frauds
Once a UI state transition graph is built, FraudDroid can find
in it all necessary information for verifying whether an ad fraud
is taking place in the app. These information include, for each
relevant state, the layout information, the method call trace and the
network traffic information. We implement in FraudDroid two
modules to perform the ad fraud detection, namely AdViewDetector
for identifying ad views in a state, and FraudChecker, for assessing
whether the ad view is appearing in a fraudulent manner.

Ad state*State method call trace
...
java/util/zip/Inflater:end
java/util/zip/Inflater:finalize
cn/waps/AppConnect:a
cn/waps/AppConnect:showMore
cn/waps/AppConnect:getInstance

...

Ad view features

String feature

Type feature

Placement feature

View A

View B

View C

View D

Ad load method

Step 1: Finding the ad state by ad load method Step 2: Finding the ad view by ad view features

APP UTG

State A

State B

State C

Ad view

Figure 7: Detection of ad views.

3.2.1 Detection of Ad Views. We recall that Android views lack
explicit labels that would allow to readily discriminate ad views
from other views. In a previous step of FraudDroid, the ad-first
exploration strategy was guided towards reaching UI states which
are likely to include ads, as recommended by Suman Nath [55]. For
each of the reached UI state, theAdViewDetectormodule first checks
if it has involved in ad-loading methods, as illustrated in Figure 7.
After this step, most UI states are excluded from consideration
as they are not really ad-contained states. For the remaining UI
states, the AdViewDetector module of FraudDroid again excludes
irrelevant states that are not ad-contained ones, where all the leaf
nodes in the view tree associated to the UI states are checked against
common ad features (i.e., String, Type and Placement features).

We have identified relevant ad features after manually labelling a
large amount of ad views and normal views that we have compared
them from different aspects (namely string, type and placement
features). Table 1 presents some sample values for the ad detection
features considered.

261

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA F. Dong, H. Wang, L. Li, Y. Guo, T. Bissyandé, T. Liu, G. Xu, J. Klein

Table 1: Sample values for the features considered.

Aspects Attribute Value

String Resource_id AdWebview, AdLayout, ad_container, fullscreenAdView, FullscreenAd, AdActivity, etc.
Type Class ImageView, WebView, ViewFlipper
Placement Size (Bounds) 620*800[Center], 320*50[Top or Bottom], 1776*1080[Full screen], etc.

• String. Manual investigations of our labelled datasets revealed
that String attributes in view definitions, such as associated class
name, can be indicative of whether it is an ad view. Most ad
libraries often implement specialized classes for ad views instead
of directly using Android system views (“android.widget.Button”,
“android.widget.TextView”, etc.). We noted however that these spe-
cialized classes’ names reflected their purpose with the keyword
“ad” included: e.g., “AdWebview”, “AdLayout”. Since simply match-
ing the keyword “ad” in class names would lead to many false
positives with common other words (e.g., shadow, load, etc.), we
rely on a whitelist of English words containing “ad” based on the
Spell Checker Oriented Word Lists (SCOWL) [36]. When a view
is associated to a class name matches the string hint “ad” but is
not part of the whitelist, we take it as a potential ad view.

• Type. Since some ad views may also be implemented based on
Android system views, we investigate which system views are
most leveraged. All ad views in our labelled dataset are associated
to three types: “ImageView” [20], “WebView” [22] and “ViewFlip-
per” [23], in contrast to normal views which use a more diverse
set of views. We therefore rely on the type of view used as an
indicator of probable ad view implementation.

• Placement. In general, ad views have special size and location
characteristics, which we refer to as placement features. Indeed,
mobile ads are displayed in three common ways: 1) Banner ad
is located in the top or bottom of the screen; 2) Interstitial ad is
square and located in the centre of the screen; 3) Full-screen ad
fills the whole screen. Furthermore, ad networks actually hard-
code in their libraries the size for the different types of views
implemented [29], which are also leveraged in FraudDroid to
identify possible ad views.

Using the aforementioned features, we propose a heuristic-based
approach to detect ad views from a UI state. First, string and type
features help to identify respectively customised views that are
good candidates for ad views. Subsequently, placement features
are used to decide whether a candidate ad view will be considered
as such by FraudDroid. We have empirically confirmed that this
process accurately identifies ad views implemented by more than
20 popular ad libraries, including Google Admob and Waps.

3.2.2 Identification of Fraudulent Behaviour. Once ad views are
identified across all UI states in the UTG, the FraudChecker module
can assess their tag information to check whether a fraudulent
behaviour can be spotted. This module is designed to account for the
whole spectrum of frauds enumerated in the taxonomy of Android
ad frauds (cf. Section 2.2). To that end, FraudChecker implements
heuristics rules for each specific ad fraud type:

Ad Hidden. FraudChecker iteratively checks whether any ad
view has boundary coordinate information which would indicate
that it is (partially or totally) covered by any other non-ad views:

i.e., it has a z-coordinate below a non-ad view and the 2-D space
layout occupied by both views intersect at some point.

Ad Size.Although the ad view size may vary on different devices,
our manual investigation has shown that the size ratio between
ad view and the screen is relatively stable for legitimate ads. We
empirically define a ratio of [0.05, 0.1] for banner ads, [0.2, 0.8] for
interstitial ads and [0.9, 1] for full-screen ads. FraudChecker uses
these values as thresholds, combined with position information
(cf. Taxonomy in Section 2.2), to determine whether there is a
fraudulent behaviour. Note that these values are configurable.

Ad Number. In a straightforward manner, FraudChecker verifies
that a basic policy is respected: the number of banners ads should be
less than three, and the combined space occupied by all the banner
ads in a UI state must not exceed the space reserved to app content.
When there are more than one banner ad views in a UI state along
side app content (i.e., all as view tree leafs), the size of ad views in
total should not exceed 50% of the screen size.

Ad Overlap. Similarly to the case of Ad Hidden, FraudChecker
checks whether the space occupied by an ad view on the screen
intersects with the space of other normal views. In contrast to Ad
Hidden, the overlapping views are on the same level in z-coordinate.

Interactive Ad. This fraud occurs with an interstitial ad. Fraud-
Checker first traverses the UTG to identify any UI state that contains
interactive views (e.g., dialogue or button) which are tempting for
users to click. Then, it checks the next UI state in the UTG to inspect
whether there is an ad view that is placed on top of the aforemen-
tioned interactive views (i.e., dialogue or button from the preceding
UI state). If so, FraudDroid flags it as an interactive fraud.

Drive-by download Ad.We follow policy statements and con-
sider that any behaviour that triggers unwanted downloads (of
apps or other files) via ad view where user interaction (such as
double confirmation) is not required is a fraudulent ad behaviour.
FraudChecker flags a given UI state as drive-by download as long as
the following conditions are met: 1) there are ad views in this state;
2) there is a downloading behaviour; 3) the next state in the UTG is
still associated with the same Activity (e.g., it does not switch to
other interfaces); and 4) the state is triggered by a touch event.

Outside Ad. Outside Ad fraud only occurs in the interstitial
ads. Note that for the full screen ads pop up after exit states, we
regard it as Non-content Ad fraud. FraudChecker keeps track of all
the interstitial ads. For each ad view, it records the screen shot of
current state, and compare the four side of the screen shot with
the original home screen to measure their similarity using the
Perceptual hashing [79] and Histogram [78] algorithms.

Frequent Ad.We consider an app is suspicious to frequent ad
fraud as long as it has interstitial ads or full-screen ads displayed
more than three times (this number is configurable) in the UTG,
where the three displays are triggered by different UI state transi-
tions (i.e., several visits via the same transition path to the same
ad-contained UI state are considered as one visit).

262

FraudDroid: Automated Ad Fraud Detection for Android Apps ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Non-content Ad. FraudChecker flags such UI states as Non-
content Ad fraud when it identifies that interstitial ads or full screen
ads exist before or after launch/login/exit states.

3.3 Implementation
We have implemented a lightweight UI-guided test input generator
to dynamically explore Android apps with a special focus on UI
states. The UI-guided events are generated according to the position
and type of UI elements. Regarding network traffic, we leverage Tcp-
dump [64] and The Bro Network Security Monitor [59], respectively,
to harvest and analyse the network traffic.

4 EVALUATION
We evaluate the effectiveness of FraudDroid with respect to its
capability to accurately detect ad frauds (cf. Section 4.1), and its
scalability performance (cf. Section 4.2) through measurements
on runtime and memory cost of running FraudDroid on a range
of real-world apps. Eventually, we run FraudDroid in the wild,
on a collected set of 12,000 ad-supported apps leveraging 20 ad
networks, in order to characterize the spread of ad frauds in app
markets (cf. Section 4.3). All experiments are performed on Nexus
5 smartphones. We do not use emulators since ad libraries embed
checking code to prevent ad networks from serving ads when the
app is being experimented on emulator environments [65].
4.1 Detection Accuracy
Accuracy is assessed for both the detection of ad views by Ad-
ViewDectector and the actual identification of frauds by Fraud-
Checker. In the absence of established benchmarks in this research
direction, we propose to manually collect and analyse apps towards
building benchmarks that we make available to the community.

AdViewBench. Our first benchmark set includes 500 apps that
were manually exercised to label 4,403 views among which 211 are
ad views. Two authors manually labelled and cross-validated this
dataset. If consensus was not reached among them, more authors
were involved and a majority voting was implemented.

AdFraudBench. Our second benchmark set includes 100 apps
that embed ads, 50 of which exhibit fraudulent behaviours that
are manually picked and confirmed. To select the benchmark apps,
we have uploaded more than 3,000 apps that use ad libraries to
VirusTotal [69], and manually checked the apps that are labelled
as AdWare by at least two engines from VirusTotal. We selected
apps to cover all 9 types of frauds, from the static placement and
dynamic interactive categories, and ensure that each type of fraud
has at least two samples. Figure 8 illustrates the distribution of 50
labelled apps across the fraud types. We have obtained an overall
of 54 ad fraud instances for 50 apps: some apps in the benchmark
set indeed perform more than one types of ad frauds2.

4.1.1 Accuracy in Ad View Identification. We run the AdViewDe-
tector module on the UI states associated to the AdViewBench of
4,403 views. The detector reports 213 views as ad views, 197 of
which are indeed ad views according to the benchmark labels. The
detector however misses to identify 11 ad views in the benchmark.
2For example, app az360.gba.jqrgsseed is found to implement both an interaction
and a drive-by download fraud.

5

33

2 2 3 2 3 2 2

50

0

10

20

30

40

50

60

Figure 8: Distribution of the 50 labelled apps.
Table 2 summarizes the results of AdViewDetector. With over 90% of
precision and recall, FraudDroid is accurate in detecting ad views,
an essential step towards efficiently detecting ad frauds.

We further investigate the false positives and false negatives
by the AdViewDetector module. On the one hand, we found by
analysing the UI states collected during app automation that some
ads are not successfully displayed: the library fails to load ad content
due to network connection failures or loading time-outs. Neverthe-
less, because of the calls to ad loading methods, FraudDroid will
anyway flag those views (without ads displayed) as ad views, which
however are not considered as such during our manual benchmark
building process, resulting in false positive results. On the other
hand, we have found that some UI states, although they include
ad views, do not include calls to ad loading methods: the ad views
were inherited from prior states, and some events (e.g., drag or
scroll events) that triggered the transition to new states do not
cause a reloading of views. Such cases result in false negatives by
AdViewDetector, which misses to report any ad view in the UI state.
Table 2: Confusion matrix of AdViewDetector on the Ad-
ViewBench benchmark.

Predicted views
Ad-contained Ad-free

La
be

ll
ed

vi
ew

s Ad-contained 197 True Positives 11 False Negatives

Ad-free 14 False Positives 4181 True Negatives

4.1.2 Accuracy in Ad Fraud Detection. To evaluate the accuracy
of our approach in detecting ad fraud behaviours, we run Fraud-
Droid on the AdFraudBench benchmark apps. Table 3 provides
the confusion matrix obtained from our experiments in classifying
whether an app is involved in any ad fraud. Among the 100 apps
in the benchmark, FraudDroid flags 49 as performing ad frauds:
checking against the benchmarks, these detection results include
3 cases of false positives (1 Ad-Overlap and 2 Ad-Hidden) and 4
false negatives (1 Ad-Overlap and 3 Drive-by-download), leading
to precision and recall metrics of 93.88% and 92% respectively.
Table 3: Confusion matrix of fraud detection by FraudDroid
on the AdFraudBench benchmark.

Predicted frauds
Ad fraud w/o Ad fraud

La
be

ll
ed

fr
au

ds Ad fraud 46 True Positives 4 False Negatives

w/o Ad fraud 3 False Positives 47 True Negatives

We further investigate the failure cases to understand the root
causes of false positives/negatives. We find that all such cases are

263

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA F. Dong, H. Wang, L. Li, Y. Guo, T. Bissyandé, T. Liu, G. Xu, J. Klein

0
50

100
150
200
250
300

Ti
m

es
(S

)

0
5

10
15
20
25
30
35

M
em

or
y(

M
B)

0
0.2
0.4
0.6
0.8

1

Ti
m

es
(S

)

0
5

10
15
20
25

M
em

or
y(

M
B)

(b) Performance evaluation of ad fraud detection

(a) Performance evaluation of UI transition graph construction

Figure 9: Performance evaluation of FraudDroid.

caused by misclassification results of the AdViewDetector module.
FraudDroid misses ad frauds because the UI state is not marked
as relevant since no ad views were identified on it. Similarly, when
FraudDroid falsely identified an ad fraud, it was based on be-
haviours related to a view that was wrongly tagged as an ad view.

4.2 Scalability Assessment
To assess the capability of FraudDroid to scale to app markets,
we measure the runtime performance of the steps implementing
the two key techniques in our approach: (1) the UI state transition
graph construction, and (2) the heuristics-based detection of ad
frauds. To comprehensively evaluate time and memory consumed
by FraudDroid, we consider apps from a wide size range. We
randomly select 500 apps in each of the following five size scales3:
100KB, 1MB, 10MB, 50MB and 100MB. Overall, the experiments
are performed on 2,500 apps for which we record the time spent to
complete each step and the memory allocated.

The results are presented in Figure 9. The average time cost for
constructing UI transition graphs (216.7 seconds) is significantly
higher than that of detecting ad frauds (0.4 seconds). However, we
note that, unlike for UI transition graphs, time to detect ad frauds
is not linearly correlated to the app size. The UI transition graph is
built by dynamically exploring the app where larger apps usually
have more running states while detection solely relies on a pre-
constructed graph. Nevertheless, thanks to the ad-first exploration
strategy, FraudDroid is able to analyse every apps in the dataset
within 3.6 minutes. Comparing with experiments performed in
state-of-the-art app automation works [12, 45], FraudDroid pro-
vides substantial improvements to reach acceptable performance
for scaling to app market sizes. Interestingly, memory consumption
is reasonable (around 20MB), and roughly the same for both steps.

4.3 Detection In-the-Wild
We consider over 3 million Android apps crawled between April
2017 and August 2017 from eight app markets, namely the offi-
cial Google Play store and alternative markets by Huawei, Xiaomi,
Baidy, Tencent, PP, Mgyapp and 360 Mobile. Using LibRadar [46],
we were able to identify ad libraries from 20 ad networks repre-
sented each in at least 500 apps. For the experiments in the wild,
we randomly select 500 apps per ad network, except for Admob,
3E.g., for the scale 100KB, the apps must be of size between 80KB and 120KB.

for which we consider 2,500 apps to reflect the substantially larger
proportion of ad-supported apps relying on Admob. Eventually, our
dataset is formed by 12,000 Android apps, as shown in Table 4.

4.3.1 Overall Results. FraudDroid identified 335 (2.79%) apps among
the 12,000 dataset apps as implementing ad frauds. We note that
ad frauds occur on a wide range of app categories, from Games
to Tools. Some detected ad-fraud apps are even popular among
users with over 5 million downloads. For example, the app Ancient
Tomb Run [14] has received over 5 million downloads, although
FraudDroid has found that it contains a non-content ad fraud.

4.3.2 Ad Fraud Distribution by Type. Figure 10 shows the distribu-
tion of the apps based on the types of frauds. Static placement frauds
only account for a small portion of the total detected ad fraud apps.
Over 90% of the fraud cases are dynamic interaction frauds. This is
an expected result, since dynamic interaction frauds (1) are more
difficult to detect, and thus they can easily pass vetting schemes
on app markets, and (2) they are most effective in misleading users
into triggering ad clicks, leading to more revenues.

30

99

29 27

207

2 7 3
31

335

0

50

100

150

200

250

300

350

400

Figure 10: Ad fraud distribution by type.

4.3.3 Ad Fraud Distribution by App Markets. Table 4 enumerates
the distribution of detected ad-fraud apps based on the markets
where they were collected. The PP Assistant market includes the
highest rate (4.84%) of ad frauds among its ad-supported apps in
our study. Huawei Market includes the lowest rate (0.87%) of ad
frauds. Finally the ad fraud rate in Google Play is slightly lower
than the average across markets.
Table 4: Dataset from eight major Android app markets.

App Market #Ad Apps #Fraud Percentage
Google Play 3,630 94 2.59%

360 Mobile Assistant 1,012 25 2.47%
Baidu Mobile Assistant 1,588 55 3.46%

Huawei 1,145 10 0.87%
Xiaomi 1,295 29 2.24%

Tencent Yingyongbao 843 18 2.14%
Mgyapp 1,288 46 3.57%

PP Assistant 1,199 58 4.84%
Total 12,000 335 2.79%

These statistics show that no market is exempt from ad frauds,
suggesting that, at the moment, markets have not implemented

264

FraudDroid: Automated Ad Fraud Detection for Android Apps ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

proper measures to prevent penetration of fraudulent apps into
their databases. We also found that some markets do not even
provide explicit policies to regulate the use of ads in apps.

4.3.4 Ad Fraud Distribution by Ad Networks. Table 5 presents the
distribution of ad-fraud apps by ad networks. Although most ad
frauds target some popular ad networks, no ad networks were
exempt from fraudulent behaviours: Appbrain appears to be the
most targeted with 13.6% of its associated apps involved in ad frauds.

Table 5: Distribution of ad-fraud apps based on ad networks.

Ad network #Ad
fraud %Percent Ad network #Ad

fraud %Percent

Admob 113 4.52% Adwhirl 2 0.4%
Appbrain 68 13.6% Dianjin 9 1.8%

Waps 48 9.6% Vpon 1 0.2%
feiwo 29 5.8% Inmobi 6 1.2%

BaiduAd 10 2% Apperhand 8 1.6%
Anzhi 7 1.4% Startapp 5 1%
Youmi 8 1.6% Mobwin 2 0.4%

Doodlemobile 4 0.8% Jumptap 1 0.2%
Adsmogo 5 1% Fyber 1 0.2%

Kugo 7 1.4% Domob 1 0.2%

Interestingly, although Google Admob has published strict poli-
cies [29] on how ad views should be placed to avoid ad frauds,
we still found 113 fraudulent apps associated to Admob. In some
cases, we have found that several popular apps using a specific ad
network library can exhibit serious fraud behaviours. For exam-
ple, app Thermometer [34], with 5-10 million downloads in Google
Play, is flagged by FraudDroid as implementing an interaction
fraud. We also investigate user reviews of some fraudulent apps
and confirmed that users have submitted various complaints about
their ad fraud behaviours [13, 14, 34]. This evidence suggests that
ad networks should not only publish explicit policies to regulate
the usage of ad libraries, but also introduce reliable means to detect
policy-violated cases for mitigating the negative impact on both
app users and advertisers.
4.3.5 Detection Results of VirusTotal. We have uploaded all the
detected 335 fraudulent apps to VirusTotal to explore how many
of them could be flagged by existing anti-virus engines. There
are 174 apps (51.9%) labelled as AdWare by at least one engine.
Some apps are even flagged by more than 30 engines. For example,
app “com.zlqgame.yywd” was flagged by 33 engines [68] and app
“com.scanpictrue.main” was flagged by 30 engines [67]. However,
roughly half of these fraudulent apps are not flagged, which sug-
gests that ad fraud behaviours cannot be sufficiently identified by
existing engines, especially for dynamic interaction frauds as 87.5%
(141 out of 161) of these un-flagged apps contain only such frauds.
4.3.6 Case Studies. We now present real-world case studies to
highlight the capability of FraudDroid for detecting a wide range
of fraud types. Figure 11 illustrates 9 examples of fraudulent apps
that are found by FraudDroid from app markets.
(1) An Interaction Ad fraudwas spotted in app com.android.yatree.

taijiaomusic where an ad view pops up spuriously above the
exit dialogue.

(2) ADrive-by DownloadAd fraud is found in app com.hongap.slider
where a download starts once the ad view is clicked.

(3) App com.natsume.stone.android implements an Outside Ad
fraud where the ad view is displayed on the home screen al-
though the app was exited.

(4) App com.funappdev.passionatelovers.frames includes a
Frequent Ad fraud with an ad view popping up every time the
main activity receives an event.

(5) App cc.chess is identified as showing a Non-content Ad since
the ad view appears on the empty part of the screen (this may
confuse users into thinking that the ad is an actual content of
the host app).

(6) In app forest.best.livewallpaper, an Ad Hidden fraud has
consisted in hiding an ad view behind the Email button.

(7) An Ad Size fraud is found in app com.dodur.android.golf
with the ad view on the right side of the screen made too small
for users to read.

(8) App com.maomao.androidcrack places three ad views on top
of a page with little content, implementing an Ad Number fraud.

(9) App com.sysapk.wifibooster implements anAdOverlap fraud
where an ad view is placed on top of 4 buttons of the host app.

5 DISCUSSION
In this work, we empirically observe that ad frauds have pene-
trated into official and alternative markets. All ad networks are
also impacted by these fraudulent practices, exposing the mobile
advertising ecosystem to various threats related to poor user expe-
rience and advertisers’ losses. We argue that our community should
invest more effort into the detection and mitigation of ad frauds
towards building a trustworthy ecosystem for both advertisers and
end users. FraudDroid contributes to such an effort by providing
the building blocks in this research direction. The implementation
of FraudDroid, however, carries several limitations.

Ad state coverage. Our experiment reveals that over 90% of ads
are displayed in either the main UI state or the exit UI state, which
provide a means for FraudDroid to optimize its UI exploration
strategy in order to achieve a balance between time efficiency and
UI coverage. However, this trade-off may cause certain ad views to
be missed during UI exploration. Fortunately, FraudDroid provides
parameters to customize the coverage (e.g., via traversal depth) and
hence to improve the soundness of the approach to reach states
where the ad fraud behaviour is implemented.

Other types of ad frauds. Although we have considered nine
types of ad frauds, including five new types of dynamic interaction
frauds, which have not been explored before, our taxonomy may
still be incomplete since it was built based on current policies and
samples available. Other emerging types of ad frauds may have
been missed. Nevertheless, the framework is generic and can be
reused to support the detection of potential new types of ad frauds.

6 RELATEDWORK
This work is mainly related to three lines of research: automated
app testing, ad fraud detection and analyzing ad libraries.

6.1 Automated App Testing
Automated app testing has been widely adopted for exploring apps
at runtime [37]. Several Android automation frameworks such as
Hierarchy Viewer [18], UIAutomator [19] and Robotium [32] have

265

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA F. Dong, H. Wang, L. Li, Y. Guo, T. Bissyandé, T. Liu, G. Xu, J. Klein

(1)Interaction

(9)Overlap

(3)Outside

(6)Hidden (7)Size

(2)Drive-by download (4)Frequent

(5)Non-content (8)Number

Ad triggerAd trigger

Ads on exit screen

Figure 11: Case studies of ad-fraud apps.

been developed to facilitate app testing. One critical step to perform
automated app testing is to generate reliable test inputs [12]. The
most straightforward means to achieve that is to follow a random
strategy. Indeed, various tools such asMonkey [17], Dynodroid [47],
Intent Fuzzer [60] and DroidFuzzer [80] have been introduced fol-
lowing this strategy. However, it is not guaranteed that random
testing will reach a good coverage of the code explored, making it
not suitable for some scenarios such as ad fraud detection where
certain parts of the app (e.g., ad views) are expected to be covered.

Thus, researchers have introduced model-based strategy to gen-
erate test inputs for automatically exploring Android apps [2, 3, 7,
9, 11, 33, 42, 44, 63]. More advanced tools such as EvoDroid [48]
and ACTEve [4] use sophisticated techniques such as symbolic
execution and evolutionary algorithms to guide the generation of
test inputs aiming at reaching specific points. However, most of
them need to either instrument the system or the app, making them
hard to be directly used to detect mobile ad frauds. Compared with
them, we have implemented a sophisticated ad view exploration
strategy for automated scalable ad fraud detection in this work.

6.2 Ad Fraud Detection
Existing work on mobile ad fraud is rather limited. Liu et al. [45]
have investigated static placement frauds on Windows Phone via
analysing the layouts of apps. Crussell et al. [15] have developed
an approach for automatically identifying click frauds (fake impres-
sions and clicks). Unfortunately, with the evolution of ad frauds, the
aforementioned approaches are incapable of identifying the latest
fraudulent behaviours, e.g., they cannot be used to identify dynamic
interaction fraud. In this work, in addition to static placement frauds
and click frauds, we have introduced five new types of such frauds
that have not yet been explored by our community.

Although ad fraud has not been substantially explored in the
context of mobile advertising, it has been extensively studied in
the context of web advertising. Many research work have been
proposed to pinpoint ad frauds on the web, e.g, the detection of
click frauds based on network traffic [52, 53] or search engine query
logs [81], characterizing click frauds [1, 10, 54] and analysing profit

models [51]. We believe that these approaches can provide useful
hints for researchers and practitioners in the mobile community to
invent promising approaches for identifying mobile ad frauds.
6.3 Analyzing Ad Libraries
A large number of studies focused on the topic of mobile ad libraries
in various directions including identifying ad libraries [8, 39, 41,
46, 72, 73], detecting privacy and security issues introduced by ad
libraries [16, 30, 57, 62, 77], analysing the impact of ad libraries [71,
74, 75, 82], etc. We believe all the aforementioned approaches can
be leveraged to supplement our work towards providing a better
characterization of mobile ad frauds.
7 CONCLUSION
Through an exploratory study, we characterize ad frauds by inves-
tigating policies set up by ad networks and app markets. We then
build a taxonomy as a reference in the community to encourage the
research line on ad fraud detections. This taxonomy comprehen-
sively includes four existing types of static placement frauds and
five new types focusing on dynamic interaction frauds, which have
not been explored in the literature. We subsequently devise and im-
plement FraudDroid, a tool-supported approach for accurate and
scalable detection of ad frauds in Android apps based on UI state
transition graph and network traffic data. By applying FraudDroid
to real-world market apps, we have identified 335 ad-fraud apps
covering the all considered nine types of ad frauds. Our findings
suggest that ad frauds are widespread across markets and impact
various markets. To the best of our knowledge, FraudDroid is the
first attempt towards mitigating this threat to the equilibrium in
the mobile ecosystem.
ACKNOWLEDGMENT
This work is supported by the National Key Research and Devel-
opment Program of China (No.2018YFB0803603), the National Nat-
ural Science Foundation of China (No.61702045, No.61772042 and
No.61402198), the Luxembourg National Fund under the project
CHARACTERIZE C17/IS/11693861, and the BUPT Youth Research
and Innovation Program (No.2017RC40).

266

FraudDroid: Automated Ad Fraud Detection for Android Apps ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Sumayah A. Alrwais, Alexandre Gerber, Christopher W. Dunn, Oliver Spatscheck,

Minaxi Gupta, and Eric Osterweil. 2012. Dissecting Ghost Clicks: Ad Fraud via
Misdirected Human Clicks. In Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC ’12). 21–30.

[2] Domenico Amalfitano. 2012. Using GUI ripping for automated testing of Android
applications. In Proceedings of the Ieee/acm International Conference on Automated
Software Engineering (ASE 2012). 258–261.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon. 2015.
MobiGUITAR: Automated Model-Based Testing of Mobile Apps. IEEE Software
32, 5 (2015), 53–59.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). Article 59, 11 pages.

[5] AppBrain. 2018. Free vs. paid Android apps. https://www.appbrain.com/stats/
free-and-paid-android-applications

[6] China Communications Standards Association. 2017. Mobile Intelligent Terminal
Malicious Push Information To Determine The Technical Requirements. http:
//www.ccsa.org.cn/tc/baopi.php?baopi_id=5244

[7] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for
systematic testing of android apps. Acm Sigplan Notices 48, 10 (2013), 641–660.

[8] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library
detection in android and its security applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 356–367.

[9] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-based Android
GUI Testing Using Multi-level GUI Comparison Criteria. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE
2016). 238–249.

[10] Tommy Blizard and Nikola Livic. 2012. Click-fraud Monetizing Malware: A
Survey and Case Study. In Proceedings of the 2012 7th International Conference on
Malicious and Unwanted Software (MALWARE 2012). 67–72.

[11] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of
android apps with minimal restart and approximate learning. In ACM Sigplan
International Conference on Object Oriented Programming Systems Languages &
Applications. 623–640.

[12] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings of
the 2015th International Conference on Automated Software Engineering. 429–440.

[13] RILEY CILLIAN. 2018. Google Play App: Font studio. Retrieved March 9, 2018
from https://play.google.com/store/apps/details?id=com.rcplatform.fontphoto

[14] CrazyFunnyApp. 2018. Google Play App: Ancient Tomb Run. Retrieved March 9,
2018 from https://play.google.com/store/apps/details?id=com.CrazyRunGame1.
Templeqqq

[15] Jonathan Crussell, Ryan Stevens, and Hao Chen. 2014. Madfraud: Investigating
ad fraud in android applications. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services (MobiSys 2014). 123–134.

[16] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep me updated: An empirical study of third-party library updatability on
Android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2187–2200.

[17] Android Developers. 2017. The Monkey UI android testing tool. http://developer.
android.com/tools/help/monkey.html

[18] Android Developers. 2017. Profile Your Layout with Hierarchy Viewer. https:
//developer.android.com/studio/profile/hierarchy-viewer.html

[19] Android Developers. 2017. UIautomator. https://developer.android.com/training/
testing/ui-testing/uiautomator-testing.html

[20] Android Developers. 2018. App Widgets. Retrieved February 12, 2018 from
https://developer.android.com/guide/topics/appwidgets/index.html

[21] Android Developers. 2018. Layouts. Retrieved February 12, 2018 from https:
//developer.android.com/guide/topics/ui/declaring-layout.html

[22] Android Developers. 2018. Managing WebViews. Retrieved February 12, 2018
from https://developer.android.com/guide/webapps/managing-webview.html

[23] Android Developers. 2018. ViewFlipper. Retrieved February 12, 2018 from
https://developer.android.com/reference/android/widget/ViewFlipper.html

[24] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Shaodong Zhang. 2018.
How Do Mobile Apps Violate the Behavioral Policy of Advertisement Libraries?.
In Proceedings of the 19th International Workshop on Mobile Computing Systems
& Applications (HotMobile ’18). 75–80.

[25] DoubleClick. 2017. DoubleClick Ad Exchange Program Policies. https://support.
google.com/adxseller/answer/2728052?hl=en

[26] Firebase. 2017. Banner Ads. https://firebase.google.com/docs/admob/android/
banner

[27] Anne Freier. 2017. More fraudulent apps detected on GoogleâĂŹs Play
Store. Retrieved February 12, 2018 from http://www.mobyaffiliates.com/blog/
more-fraudulent-apps-detected-on-googles-play-store/

[28] MARIA GERSEN. 2016. MOBILE AD FRAUD: DEFINITION, TYPES, DETECTION.
https://clickky.biz/blog/2016/12/mobile-ad-fraud-definition-types-detection/

[29] Google. 2017. Google AdMob & AdSense policies. https://support.google.com/
admob#topic=2745287

[30] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. [n. d.].
Unsafe Exposure Analysis of Mobile In-app Advertisements. InWISEC’12. 101–
112.

[31] Michael C. Grace,Wu Zhou, Xuxian Jiang, and Ahmad Reza Sadeghi. 2012. Unsafe
exposure analysis of mobile in-app advertisements. InACMConference on Security
and Privacy in Wireless and Mobile Networks. 101–112.

[32] Robotium Developers Group. 2017. Robotium. https://github.com/
RobotiumTech/robotium

[33] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis
of mobile apps. In International Conference on Mobile Systems, Applications, and
Services. 204–217.

[34] Heaveen. 2018. Google Play App: Thermo. Retrieved March 9, 2018 from
https://play.google.com/store/apps/details?id=com.heaven.thermo

[35] Brandon Jones. 2017. Google Breaks Up Biggest Ad Fraud on Play
Store. Retrieved February 12, 2018 from http://www.psafe.com/en/blog/
google-breaks-biggest-ad-fraud-play-store/

[36] kevina. 2018. Spell Checker Oriented Word Lists. http://wordlist.aspell.net/
[37] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé Bissyandé, and Jacques Klein.

2017. Automated Testing of Android Apps: A Systematic Literature Review.
(2017).

[38] Kyungmin Lee, Jason Flinn, Thomas J Giuli, Brian Noble, and Christopher Peplin.
2013. AMC: verifying user interface properties for vehicular applications. In Pro-
ceeding of the 11th annual international conference on Mobile systems, applications,
and services. ACM, 1–12.

[39] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. An
Investigation into the Use of Common Libraries in Android Apps. In The 23rd
IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER 2016).

[40] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. 2017. AndroZoo++: Collecting Millions
of Android Apps and Their Metadata for the Research Community. arXiv preprint
arXiv:1709.05281 (2017).

[41] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. LibD: scalable and precise third-party library detection in
android markets. In ICSE 2017. 335–346.

[42] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proceedings of the 39th
International Conference on Software Engineering Companion. 23–26.

[43] LibRadar. 2018. Detecting Third-party Libraries Used in Android Apps. https:
//github.com/pkumza/LibRadar

[44] Mario Linares-Vásquez, MartinWhite, Carlos Bernal-Cárdenas, Kevin Moran, and
Denys Poshyvanyk. 2015. Mining Android App Usages for Generating Actionable
GUI-based Execution Scenarios. In Proceedings of the 12th Working Conference on
Mining Software Repositories (MSR ’15). 111–122.

[45] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: Detecting
and Characterizing Ad Fraud in Mobile Apps.. In NSDI. 57–70.

[46] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. Libradar: Fast and
accurate detection of third-party libraries in android apps. In Proceedings of the
38th International Conference on Software Engineering Companion. 653–656.

[47] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 224–234.

[48] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: segmented
evolutionary testing of Android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). 599–
609.

[49] Huawei Market. 2018. Huawei Market App Developer Policy. http://developer.
huawei.com/consumer/cn/devservice/develop/mobile

[50] Tencent Myapp Market. 2018. Tencent Myapp Market App Developer Policy.
http://open.qq.com/

[51] Damon McCoy, Andreas Pitsillidis, Grant Jordan, Nicholas Weaver, Christian
Kreibich, Brian Krebs, Geoffrey M. Voelker, Stefan Savage, and Kirill Levchenko.
2012. PharmaLeaks: Understanding the Business of Online Pharmaceutical
Affiliate Programs. In Proceedings of the 21st USENIX Conference on Security
Symposium (Security’12). 1–1.

[52] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2007. Detectives:
Detecting Coalition Hit Inflation Attacks in Advertising Networks Streams. In
Proceedings of the 16th International Conference on World Wide Web (WWW ’07).
241–250.

[53] Ahmed Metwally, Fatih Emekçi, Divyakant Agrawal, and Amr El Abbadi. 2008.
SLEUTH: Single-pubLisher Attack dEtection Using correlaTion Hunting. Proc.
VLDB Endow. 1, 2 (2008), 1217–1228.

[54] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich, and Vern Paxson. 2011.
What’s Clicking What? Techniques and Innovations of Today’s Clickbots. In
Proceedings of the 8th International Conference on Detection of Intrusions and

267

https://www.appbrain.com/stats/free-and-paid-android-applications
https://www.appbrain.com/stats/free-and-paid-android-applications
http://www.ccsa.org.cn/tc/baopi.php?baopi_id=5244
http://www.ccsa.org.cn/tc/baopi.php?baopi_id=5244
https://play.google.com/store/apps/details?id=com.rcplatform.fontphoto
https://play.google.com/store/apps/details?id=com.CrazyRunGame1.Templeqqq
https://play.google.com/store/apps/details?id=com.CrazyRunGame1.Templeqqq
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://developer.android.com/studio/profile/hierarchy-viewer.html
https://developer.android.com/studio/profile/hierarchy-viewer.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/guide/topics/appwidgets/index.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/topics/ui/declaring-layout.html
https://developer.android.com/guide/webapps/managing-webview.html
https://developer.android.com/reference/android/widget/ViewFlipper.html
https://support.google.com/adxseller/answer/2728052?hl=en
https://support.google.com/adxseller/answer/2728052?hl=en
https://firebase.google.com/docs/admob/android/banner
https://firebase.google.com/docs/admob/android/banner
http://www.mobyaffiliates.com/blog/more-fraudulent-apps-detected-on-googles-play-store/
http://www.mobyaffiliates.com/blog/more-fraudulent-apps-detected-on-googles-play-store/
https://clickky.biz/blog/2016/12/mobile-ad-fraud-definition-types-detection/
https://support.google.com/admob#topic=2745287
https://support.google.com/admob#topic=2745287
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
https://play.google.com/store/apps/details?id=com.heaven.thermo
http://www.psafe.com/en/blog/google-breaks-biggest-ad-fraud-play-store/
http://www.psafe.com/en/blog/google-breaks-biggest-ad-fraud-play-store/
http://wordlist.aspell.net/
https://github.com/pkumza/LibRadar
https://github.com/pkumza/LibRadar
http://developer.huawei.com/consumer/cn/devservice/develop/mobile
http://developer.huawei.com/consumer/cn/devservice/develop/mobile
http://open.qq.com/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA F. Dong, H. Wang, L. Li, Y. Guo, T. Bissyandé, T. Liu, G. Xu, J. Klein

Malware, and Vulnerability Assessment (DIMVA’11). 164–183.
[55] Suman Nath. 2015. Madscope: Characterizing mobile in-app targeted ads. In

Proceedings of the 13th Annual International Conference on Mobile Systems, Appli-
cations, and Services. ACM, 59–73.

[56] Suman Nath, Felix Xiaozhu Lin, Lenin Ravindranath, and Jitendra Padhye. 2013.
SmartAds: bringing contextual ads to mobile apps. In Proceeding of the Interna-
tional Conference on Mobile Systems, Applications, and Services. 111–124.

[57] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. [n. d.].
AdDroid: Privilege Separation for Applications and Advertisers in Android. In
ASIACCS ’12.

[58] Google Play. 2018. Google Play Developer Policy: Monetisation and Ads. https:
//play.google.com/intl/en-GB_ALL/about/monetization-ads/ads/ad-id/

[59] The Bro Project. 2018. The Bro Network Security Monitor. Retrieved February
12, 2018 from https://www.bro.org

[60] Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: crafting intents of
death. In Joint International Workshop on Dynamic Analysis. 1–5.

[61] Kevin Springborn and Paul Barford. 2013. Impression fraud in online advertising
via pay-per-view networks. In Usenix Conference on Security. 211–226.

[62] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. [n. d.].
Investigating user privacy in Android ad libraries. In MoST 2012.

[63] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). 245–256.

[64] Tcpdump-workers. 2018. Tcpdump. Retrieved February 12, 2018 from http:
//www.tcpdump.org

[65] Timothy Vidas and Nicolas Christin. 2014. Evading android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM symposium on Information,
computer and communications security. ACM, 447–458.

[66] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study
of Google Play. In The 2014 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’14). 221–233.

[67] VirusTotal. 2018. Detection Result of com.scanpictrue.main. https://www.
virustotal.com/#/file/6dc84cb4b9ad3c47bb69797833a48d4405500394e594c582ae2ef\
91d66d41d86/detection

[68] VirusTotal. 2018. Detection Result of com.zlqgame.yywd. https://www.virustotal.
com/#/file/7e59d0219ff4e465dcb083e12bacfbb0462c7b7a98af374e61996028bac496db/
detection

[69] VirusTotal. 2018. VirusTotal. https://www.virustotal.com/

[70] Wandoujia. 2018. Wandoujia (Ali App) Developer Policy. http://aliapp.open.uc.
cn/wiki/?p=140

[71] Haoyu Wang and Yao Guo. 2017. Understanding Third-party Libraries in Mobile
App Analysis. In Proceedings of the 39th International Conference on Software
Engineering Companion (ICSE-C ’17). 515–516.

[72] HaoyuWang, Yao Guo, ZiangMa, and Xiangqun Chen. 2015. WuKong: A Scalable
and Accurate Two-phase Approach to Android App Clone Detection. In ISSTA
2015. 71–82.

[73] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2017. Automated De-
tection and Classification of Third-Party Libraries in Large Scale Android Apps.
Journal of Software 28, 6 (2017), 1373–1388.

[74] Haoyu Wang, Yao Guo, Zihao Tang, Guangdong Bai, and Xiangqun Chen. 2015.
Reevaluating Android Permission Gaps with Static and Dynamic Analysis. In
Proceedings of GlobeCom (GlobeCom’15). 6.

[75] Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I Hong. 2017.
Understanding the purpose of permission use in mobile apps. ACM Transactions
on Information Systems (TOIS) 35, 4 (2017), 43.

[76] Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai Xu, and
Jason Hong. 2017. An Explorative Study of the Mobile App Ecosystem from App
Developers’ Perspective. In Proceedings of the 26th International Conference on
World Wide Web (WWW ’17). 163–172.

[77] Takuya Watanabe, Mitsuaki Akiyama, Fumihiro Kanei, Eitaro Shioji, Yuta Takata,
Bo Sun, Yuta Ishi, Toshiki Shibahara, Takeshi Yagi, and Tatsuya Mori. 2017. Un-
derstanding the origins of mobile app vulnerabilities: A large-scale measurement
study of free and paid apps. In Proceedings of the 14th International Conference on
Mining Software Repositories. 14–24.

[78] Wikipedia. 2018. Histogram. https://en.wikipedia.org/wiki/Histogram
[79] Wikipedia. 2018. Perceptual hashing. https://en.wikipedia.org/wiki/Perceptual_

hashing
[80] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. DroidFuzzer: Fuzzing

the Android Apps with Intent-Filter Tag. In International Conference on Advances
in Mobile Computing & Multimedia. 68.

[81] Fang Yu, Yinglian Xie, and Qifa Ke. 2010. SBotMiner: Large Scale Search Bot
Detection. In Proceedings of the Third ACM International Conference onWeb Search
and Data Mining (WSDM ’10). 421–430.

[82] Chengpeng Zhang, Haoyu Wang, Ran Wang, Yao Guo, and Guoai Xu. [n. d.].
Re-checking App Behavior against App Description in the Context of Third-party
Libraries.

268

https://play.google.com/intl/en-GB_ALL/about/monetization-ads/ads/ad-id/
https://play.google.com/intl/en-GB_ALL/about/monetization-ads/ads/ad-id/
https://www.bro.org
http://www.tcpdump.org
http://www.tcpdump.org
https://www.virustotal.com/#/file/6dc84cb4b9ad3c47bb69797833a48d4405500394e594c582ae2ef\91d66d41d86/detection
https://www.virustotal.com/#/file/6dc84cb4b9ad3c47bb69797833a48d4405500394e594c582ae2ef\91d66d41d86/detection
https://www.virustotal.com/#/file/6dc84cb4b9ad3c47bb69797833a48d4405500394e594c582ae2ef\91d66d41d86/detection
https://www.virustotal.com/#/file/7e59d0219ff4e465dcb083e12bacfbb0462c7b7a98af374e61996028bac496db/detection
https://www.virustotal.com/#/file/7e59d0219ff4e465dcb083e12bacfbb0462c7b7a98af374e61996028bac496db/detection
https://www.virustotal.com/#/file/7e59d0219ff4e465dcb083e12bacfbb0462c7b7a98af374e61996028bac496db/detection
https://www.virustotal.com/
http://aliapp.open.uc.cn/wiki/?p=140
http://aliapp.open.uc.cn/wiki/?p=140
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Perceptual_hashing
https://en.wikipedia.org/wiki/Perceptual_hashing

	Abstract
	1 Introduction
	2 A Taxonomy of Mobile Ad Frauds
	2.1 Mobile Advertising
	2.2 Ad Frauds

	3 FraudDroid
	3.1 Analysis and Modelling of UI States
	3.2 Heuristics-based Detection of Ad Frauds
	3.3 Implementation

	4 Evaluation
	4.1 Detection Accuracy
	4.2 Scalability Assessment
	4.3 Detection In-the-Wild

	5 Discussion
	6 Related Work
	6.1 Automated App Testing
	6.2 Ad Fraud Detection
	6.3 Analyzing Ad Libraries

	7 Conclusion
	References

