
AVATAR: Fixing Semantic Bugs with
Fix Patterns of Static Analysis Violations

Kui Liu, Anil Koyuncu, Dongsun Kim, Tegawendé F. Bissyandé
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

{kui.liu, anil.koyuncu, dongsun.kim, tegawende.bissyande}@uni.lu

Abstract—Fix pattern-based patch generation is a promising
direction in Automated Program Repair (APR). Notably, it has
been demonstrated to produce more acceptable and correct
patches than the patches obtained with mutation operators
through genetic programming. The performance of pattern-based
APR systems, however, depends on the fix ingredients mined from
fix changes in development histories. Unfortunately, collecting a
reliable set of bug fixes in repositories can be challenging. In
this paper, we propose to investigate the possibility in an APR
scenario of leveraging code changes that address violations by
static bug detection tools. To that end, we build the AVATAR APR
system, which exploits fix patterns of static analysis violations
as ingredients for patch generation. Evaluated on the Defects4J
benchmark, we show that, assuming a perfect localization of
faults, AVATAR can generate correct patches to fix 34/39 bugs.
We further find that AVATAR yields performance metrics that
are comparable to that of the closely-related approaches in the
literature. While AVATAR outperforms many of the state-of-the-
art pattern-based APR systems, it is mostly complementary to
current approaches. Overall, our study highlights the relevance of
static bug finding tools as indirect contributors of fix ingredients
for addressing code defects identified with functional test cases.

Index Terms—Automated program repair, static analysis, fix
pattern.

I. INTRODUCTION

The current momentum of Automated Program Repair
(APR) has led to the development of various approaches in
the literature [1]–[16]. In the software engineering community,
the focus is mainly placed on fixing semantic bugs, i.e., those
bugs that make the program behavior deviate from developer’s
intention [1], [17]. Such bugs are detected by test suites.
APR researchers have then developed repair pipelines where
program test cases are leveraged not only for localizing the
bugs but also as the oracle for validating the generated patches.

Unfortunately, given that test suites can be incomplete,
typical APR systems are prone to generate nonsensical patches
that might violate the intended program behavior or simply
introduce other defects which are not covered by the test
suites [4]. A recent study by Smith et al. [18] has thoroughly
investigated this issue and found that overfitted patches are
actually common: these are patches that can pass all the
available test cases, but are not actually correct.

To address the problem of patch correctness in APR, two
research directions are being investigated in the literature. The
first direction attempts to develop techniques for automatically
augmenting the test suites [19]. The second one focuses
on improving the patch generation process to reduce the

probability of generating nonsensical patches [20], [21]. The
scope of our work is the latter.

Mining fix templates from common patches is a promising
approach to achieve patch correctness. As first introduced by
Kim et al. [4], patch correctness can be improved by relying
on fix templates learned from human-written patches. In their
work, the template constructions were performed manually,
which is a limiting factor and is further error-prone [22].
Since then, several approaches have been developed towards
automating the inference of fix patterns from fix changes in
developer code bases [14], [20], [23]–[25]. A key challenging
step in the inference of patterns, however, is the identification
and collection of a substantial set of relevant bug fix changes to
construct the learning dataset. Patterns must further be precise
and diverse to actually guarantee repair effectiveness.

There have been approaches to mining fix patterns and
exploring the challenges in achieving the diversity and re-
liability of fix ingredients. Long et al. [14] have relied on
only three simple bug types, while Koyuncu et al. [21] have
focused on bug linking between bug tracking systems and
source code management systems to identify probable bug
fixes. Unfortunately, the former approach cannot find patterns
to address a variety of bugs, while the latter may include
patterns that are irrelevant to bug fixes since developer changes
are not atomic [26]; it is thus challenging to extract useful and
reliable patterns focusing on fix changes.

Our work proposes a new direction for pattern-based APR
to overcome the limitations in finding reliable and diverse
fix ingredients. Concretely, we focus on developer patches
that are fixing static analysis violations. The advantages of
this approach are: (1) the availability of toolsets for assessing
whether a code change is actually a fix [27], [28], and (2) the
ability to further pre-categorize the changes into groups target-
ing specific violations, leading to consistent fix patterns [29],
[30]. Although static analysis violations (e.g., FindBugs [31]
warnings) may appear irrelevant to the problem of semantic
bug fixing, there are two findings in the literature, which can
support our intuition of leveraging fix patterns from static
analysis violation patches to address semantic bugs:
• Locations of semantic bugs (unveiled through dynamic

execution of test cases) can sometimes be detected by static
analysis tools. In a recent study, Habib et al. [32], have
found that some bugs in the Defects4J dataset can be iden-
tified by static analysis tools: SpotBugs [33], Infer [34] and
ErrorProne [35]. Other studies [36]–[38] have also suggested

that violations reported by static analysis tools might be
smells of more severe defects in software programs.

• Violation fix patterns have been used to successfully fix bugs
in the wild. In preliminary live studies, Liu et al. [29] and
Rolim et al. [30] have shown that it can systematically fix
statically detected bugs by using some of their previously-
learned fix patterns. They further showed that project de-
velopers are even eager to integrate the systematization of
such fixes based on the mined patterns.

Our work investigates to what extent fix patterns for static
analysis violations can serve as ingredients to the patch
generation step in an automated program repair pipeline.

This paper thus makes the following contributions:
1) We discuss a counterpoint to a recent study in the literature

on the usefulness of static analysis tools to address real
bugs. We find that, although static bug finding tools, can
detect a relatively small number of real-world semantic
bugs from the Defects4J dataset, fix patterns inferred from
the patches addressing statically detected bugs can provide
relevant ingredients in an APR pipeline that is targeting
semantic bugs.

2) We propose AVATAR (static analysis violation fix pattern-
based automated program repair), a novel fix pattern-based
approach to automated program repair. Our approach dif-
fers from related work in the dataset of developer patches
that is leveraged to extract fix ingredients. We build on
patterns extracted from patches that have been verified
(with bug detection tools) as true bug fix patches. Given the
redundancy of bug types detected by static analysis tools,
the associated fixes are intuitively more similar, leading to
the inference of reliable common fix patterns. AVATAR is
available at: https://github.com/SerVal-Repair/AVATAR.

3) We report on an empirical assessment of AVATAR on
the Defects4J benchmark. We compare our approach with
the state-of-the-art based on different evaluation aspects,
including the number of fixed bugs, the exclusivity of fixed
bugs, patch correctness, etc. Among several findings, we
find that AVATAR is capable of generating correct patches
for 34 bugs, and partially-correct patches for 5 bugs, when
assuming a perfect fault localization scenario.

II. BACKGROUND

We provide background information on general pattern-
based APR, as well as on pattern inference from static analysis
violation data.

A. Automated Program Repair with Fix Patterns

Fix pattern-based APR has been widely explored in the
literature [4], [10], [11], [14], [39], [40]. The basic idea is to
abstract a code change into a pattern (interchangeably referred
to as a template) that can be applied to a faulty code. The
fixing process thus consists in leveraging context information
of faulty code (e.g., abstract syntax tree (AST) nodes) to match
context constraints defined in a given fix pattern. For example,

the fix template “Method Replacer” provided in PAR [4] is
presented as:

obj.method1(param) → obj.method2(param)

where the faulty method call method1 is replaced by another
method call method2 with compatible parameters and return
type. A method call is the context information for this template
to match buggy code fragment. Thus, this template can be
applied to any faulty statement that includes at least one
method call expression. The template further guides the patch
candidate generation where changes are proposed to replace
the potentially faulty method call with another method call.

Mining fix patterns has some intrinsic issues. The first
issue relates to the variety of patterns that must be identified
to support the fixing of different bug types. There are two
strategies in fix pattern mining: (1) manual design and (2)
automatic mining. The former can effectively create precise
fix patterns. Unfortunately, it requires human effort, which
can be prohibitive [4]. The latter infers common modification
rules [14] or searches for the most redundant sub-patch in-
stance [20], [21]. While this strategy can substantially increase
the number of fix patterns, it is subject to noisy input data
due to tangled changes [26], which make the inferred patterns
less relevant. The second issue relates to the granularity (i.e.,
the degree of abstraction). Coarse-grained and monolithic
patterns [41] can cover many types of bugs but they may not
be actionable in APR. A fine-grained or micro pattern [14]
can be readily actionable, but cannot cover many defects.

B. Static Analysis Violations

Static analysis tools help developers check for common
programming errors in software systems. The targeted errors
include syntactic defects, security vulnerabilities, performance
issues, and bad programming practices. These tools are quali-
fied as “static” because they do not require dynamic execution
traces to find bugs. Instead, they are directly applied to source
code or bytecode. In contrast with dynamic analysis tools
which must run test cases, static tools can cover more paths,
although it makes over-approximations that make them prone
to false positives.

Many software projects rigorously integrate static analysis
tools into their development cycles. The Linux kernel devel-
opment project is such an example project where developers
systematically run static analyzers against their code before
pushing it to maintainers repositories [42]. More generally,
FindBugs [31], PMD [43] and Google Error-Prone [35] are
often used in Java projects, while C/C++ projects tend to adopt
Splint [44], cppcheck [45], and Clang Static Analyzer [46].

Static analysis tools raise warnings, which are also referred
to as alerts, alarms, or violations. Given that these warnings are
due to the detection of code fragments that do not comply with
some analysis rules, in the remainder of this paper we refer
to the issues reported by static analysis tools as violations.

Figure 2 shows an example patch for a violation detected
by FindBugs. This violation (the red code) is reported because
the equals method should work for all object types (i.e.,

GumTree

Pattern MiningData PreprocessingData Collection

Projects Commits

Static analysis tool

Fixed static
analysis violations

Buggy tree

Fixed tree
Edit scripts

Fig. 1. Summarized steps of static analysis violation fix pattern mining.

public boolean equals(Object obj) {
// Violation Type: BC_EQUALS_METHOD_SHOULD_WORK_FOR_ALL_OBJECTS
- return getModule().equals(}
- ((ModuleWrapper) obj).getModule());
+ return obj instanceof ModuleWrapper &&
+ getModule().equals(
+ ((ModuleWrapper) obj).getModule());
}

Fig. 2. Example patch for fixing a violation detected by FindBugs. Example
excerpted from [29].

Object): in this case, the method code violates the rule since
it assumes a specific type (i.e., ModuleWrapper).

Note that, not all violations are accepted by developers as
actual defects. Since static analysis tools use limited infor-
mation, detected violations could be correct code (i.e., false
positive) or the warning may be irrelevant (e.g., cannot occur at
runtime, or not a serious issue). In the literature, many studies
assume that a violation can be classified as actionable if it
is discarded after a developer changed the location where the
violation is detected. The violation in Figure 2 [29] is fixed
by adding an instanceof check (c.f., the green code in the
patch diff); this violation can thus be regarded as actionable
since this violation is gone after fixing its source code.

Motivation: Mining patterns from developer patches that
fix static analysis violations may help overcome the issues
of fix pattern mining described in Section II-A. First, since
static analysis tools specify the type of each violation (e.g.,
bug descriptions1 of FindBugs), each bug instance is already
classified as long as it is fixed by code changes. Thus, we can
reduce the manual effort to collect and classify bugs and their
corresponding patches for fix pattern mining. Second, we can
mitigate the issue of tangled changes [26] because violation-
fixing changes can be localized by static analysis tools [28].
Finally, the granularity of fix patterns can be appropriately
adjusted for each violation type since static analysis tools often
provide information on the scope of each violation instance.

III. MINING FIX PATTERNS FOR STATIC VIOLATIONS

Mining fix patterns for static analysis violations has recently
been explored in the literature [29], [30]. The general ob-
jective so far, however, is to learn quick fixes for speeding
maintenance tasks and towards understanding which violations
are prioritized by developers for fixing. To the best of our
knowledge, our work is the first reported attempt to investigate
fix patterns of static analysis violations in the context of
automated program repair (where patches are generated and
validated systematically with developer test cases).

There have been two recent studies of mining fix pat-
terns addressing static analysis violations. Our previous

1http://findbugs.sourceforge.net/bugDescriptions.html

study [29] focuses on identifying fix patterns for FindBugs
violations [47], while Rolim et al. [30] consider PMD vi-
olations [48]. Both approaches, which were developed con-
currently, leverage a similar methodology in the inference
process. We summarise below the process of fix pattern mining
of static analysis violations into three basic steps (as shown
in Figure 1): data collection, data preprocessing, and fix
pattern mining. Implementation details are strictly based on
the approach of our previous study [29].

A. Data Collection

The objective of this step is to collect patches that are
relevant to static analysis violations. This step is done in the
wild based on the commit history of open-source projects by
implementing a strict strategy to limit the dataset of changes
to those that are relevant in the context of static analysis
violations. To that end, it is necessary to systematically run
static bug detection tools to each and every revision of the
programs. This process can be resource-intensive: for example,
FindBugs takes as input compiled versions of Java classes,
requiring to build thousands of project revisions.

This step collects code changes (i.e., patches) only if they
are identified as violation-fixing changes. For a given violation
instance, we can assume that a change commit is a (candidate)
fix for the instance when it disappears after the commit: i.e.,
the violation instance is identified in a revision of a program,
but is no longer identified in the consecutive revision. Then,
it is necessary to figure out whether the change actually fixed
the violation instance or it just disappears by coincidence. If
the affected code lines are located within the code change diff
2 of the commit, it is regarded as an actual fix for the given
violation instance. Otherwise, the violation instance might be
removed just by deleting a method, class, or even a file.
Eventually, all code change diffs associated to the identified
fixed violation instances are collected to form the input data
for fix pattern mining.

B. Data Preprocessing

Once violation patch data are collected, they are processed
to extract concrete change actions. Patches submitted to pro-
gram repositories are presented in the form of line-based GNU
diffs where changes are reported in a text-based format of edit
script. Given that, in modern programming languages, such as
Java, source code lines do not represent a semantic entity of a

2A “code change diff” consists of two code snapshots. One snapshot
represents the code fragment that will be affected by a code change, while
the other one represents the code fragment after it has been affected by the
code change.

Patch CandidatesSelected
fix pattern

Patch Generation

Pass

Fail

Patch Validation

Patch

Testing

Fix Pattern Matching

Fault
Localization
with GZoltar

A Ranked List of
Suspicious

Code Locations

Buggy Program

Passing
tests

tests
Failing

Fix pattern
data base

< Code Fragment > Select relevant
fix patterns

Mutate
suspicious code

Next
fix

pattern
Next suspicious code location

Fault Localization

Fig. 3. Overview bug fixing process with AVATAR.

code entity (e.g., a statement may span across several lines),
it is challenging to directly mine fix patterns from GNU diffs.

Pattern-mining studies leverage edit scripts of program
Abstract Syntax Trees (ASTs). Concretely, the buggy version
(i.e., program revision file where the violation can be found)
and the fixed version (i.e., consecutive program revision file
where the violation does not appear) are given as inputs
to the GumTree [49], an AST-based code differencing tool,
to produce the relevant AST edit script. This edit script
describes in a fine-grained manner the repair actions that
are implemented in the patch. Figure 4 provides an example
GNU Diff for a bug fix patch, while Figure 5 illustrates the
associated AST edit scripts.
--- a/src/com/google/javascript/jscomp/Compiler.java
+++ b/src/com/google/javascript/jscomp/Compiler.java
@@ -1283,4 +1283,3 @@

// Check if the sources need to be re-ordered.
if (options.dependencyOptions.needsManagement() &&

- !options.skipAllPasses &&
options.closurePass) {

// Defects4J Dissection:
// Repair Action: Conditional expression reduction.

Fig. 4. Patch of the bug Closure-133 in Defects4J.

UPD IfStatement@@‘‘if statement code’’
---UPD InfixExpression@@‘‘infix-expression code’’
------DEL PrefixExpression@@‘‘!options.skipAllPasses’’
------DEL Operator@@‘‘&&’’

Fig. 5. AST edit scripts produced by GumTree for the patch in Fig. 4.

C. Fix Pattern Mining

Given a set of edit scripts, the objective of the pattern
mining step is to group “similar” scripts in order to infer the
common subset of edit actions, i.e., a consistent pattern across
the group. To that end, Rolim et al. [30] rely on the greedy
algorithm to compute the distance among edit scripts. Edit
scripts with low distances among them are grouped together.
Our previous study [29], on the other hand, leverage a deep
representation learning framework (namely, CNNs [50]) to
learn features of edit scripts, which are then used to find
clusters of similar edit scripts. Clustering is performed based
on the X-means algorithm. Finally, the largest common subset
of edit actions among all edit scripts in a cluster is considered
as the pattern.

Mined fix patterns with this approach have already been
proven useful by the authors. For example, our previous
study [29] and Rolim’s work [30] conducted live studies by
making pull requests to projects in the wild: the pull requests
contained change details of a patch that is generated based

3http://program-repair.org/defects4j-dissection/#!/bug/Closure/31

on the inferred fix patterns to fix static analysis violations
in developer code. Developers accepted to merge 67 out of
116 patches generated for FindBugs violations in our previous
study [29]. Similarly, 6 out of 16 pull requests by Rolim et
al. [30] have been merged by developers in the wild. Such
promising results demonstrated the possibility to automatically
fix bugs that are addressed by static bug detection tools.

Fix patterns of static analysis violations have been explored
in the literature to automate patch generation for bugs
that are statically detected. To the best of our knowledge,
AVATAR is the first attempt to leverage fine-grained patterns
of static analysis violations as fix ingredients for automated
program repair that addresses semantic bugs revealed by
test cases.

IV. OUR APPROACH

As shown in Figure 3, AVATAR consists of four major
steps for automated program repair. In this section, we detail
the objective and design of each step, and provide concrete
information on implementation.

A. Fault Localization

We rely on the GZoltar4 [51] framework to automate the
execution of test cases for each program. In the framework,
we leverage the Ochiai [52] ranking metric to actually compute
the suspiciousness scores of statements that are likely to
be the faulty code locations. This ranking metric has been
demonstrated in several empirical studies [53]–[56] to be
effective for localizing faults in object-oriented programs. The
GZoltar framework for fault localization is also widely used
in the literature of APR [15], [16], [20], [21], [57]–[60].

B. Fix Pattern Matching

In the running of the repair pipeline, once fault localization
produces a list of suspicious code locations, AVATAR itera-
tively attempts to match each of these locations with a given
pattern from the database of mined fix patterns. Fix patterns
in our database are collected from the artifacts released by Liu
et al. [29] and Rolim et al. [30]. Table I shows statistics about
the pattern collection in these previous works. As most of the
fix patterns released by Liu et al. will not change the program
behavior, we only select 13 of them for 10 violation types after
manually checking that they can change the program behavior
(details shown in the aforementioned website).

Recall that each pattern is actually an edit script of repair
actions on specific AST node types. AST nodes associated

4http://www.gzoltar.com

TABLE I
STATISTICS ON FIX PATTERNS OF STATIC ANALYSIS VIOLATIONS.

Projects # violation # violation # fix
fix patches types patterns

Liu et al. [29] 730 88,927 111 174
Rolim et al. [30] 9 288,899 9 9

to the faulty code locations are then regarded as the context
of matching the fixing patterns: i.e., these nodes are checked
against the nodes involved in the edit scripts of fix patterns.
For example, the fix pattern shown in Figure 6 contains three
levels of contexts: (1) IfStatement, which means that the
pattern is matched only if the suspicious faulty statement is
an IfStatement; (2) InfixExpression indicates that
the pattern is relevant when the predicate expression of the
suspicious IfStatement is an InfixExpression; (3)
the matched InfixExpression predicate in the suspicious
statement must contain at least two sub-predicate expressions.
// Fix Pattern: Remove a useless sub-predicate expression.
UPD IfStatement
---UPD InfixExpression@expA Operator expB
------DEL Expression@expB
------DEL Operator

Fig. 6. A fix pattern for UC_USELESS_CONDITION5 violation [29].

A pattern is found to be relevant to a faulty code location
only if all AST node contexts at this location matches with
the AST node of the pattern. For example, the bug shown
in Figure 4 is located within an IfStatement with an
InfixExpression which is formed by three sub-predicate
expressions. This buggy fragment thus matches the fix pattern
shown in Figure 6.
C. Patch Generation

Given a suspicious code location and an associated matching
fix pattern, AVATAR applies the repair actions in the edit scripts
of the pattern to generate patch candidates. For example,
the code change action of the fix pattern in Figure 6 is
interpreted as removing a sub-condition expression (or sub-
predicate expression) in a faulty IfStatement. Thus, three
patch candidates, as shown in Figure 7, can be generated by
AVATAR for the buggy code in Figure 4 since the statement
has three candidate sub-predicates expressions.
D. Patch Validation

Patch candidates generated by AVATAR must then be sys-
tematically assessed. Eventually, using test cases, our approach
verifies whether a patch candidate is a plausible patch or not.
We target two types of plausible patches:
• Fully-fixing patches, which are patches that make the

program pass all available test cases. Once such a patch is
validated, the execution iterations of AVATAR are halted.

• Partially-fixing patches, which are patches that make the
program pass not only all previously-passing test cases,
but also part of the previously-failing test cases.

The first generated fully-fixing patch is prioritized over
any other generated patch, and is considered as the plausible

5The condition has no effect and always produces the same result as the
value of the involved variable was narrowed before. Probably something else
was meant or condition can be removed.

// Patch Candidate I.
- if (options.dependencyOptions.needsManagement() &&
- !options.skipAllPasses &&
+ if (!options.skipAllPasses &&

options.closurePass) {

// Patch Candidate II.
if (options.dependencyOptions.needsManagement() &&

- !options.skipAllPasses &&
options.closurePass) {

// Patch Candidate III.
if (options.dependencyOptions.needsManagement() &&

- !options.skipAllPasses &&
- options.closurePass) {
+ !options.skipAllPasses) {

Fig. 7. Patch Candidates generated by AVATAR with a fix pattern that is
mined from patches for UC_USELESS_CONDITION violations (cf. Fig. 6),
and which matches the buggy statement in Closure-13 bug (cf. Fig. 4).

patch for the given bug. After iterating over all suspicious
statements with all matching fix patterns, if AVATAR fails to
generate a fully-fixing patch for a bug, but generates some
partially-fixing patches, these patches are considered as plau-
sible patches. Nevertheless, we implement a selection scheme
where partially-fixing patches that change the program control-
flow are prioritized over those that only change data-flow.

Partially-fixing patches that change the control flow are
further naı̈vely ordered by the edit distances (at AST node
level) between the patched fragments and the buggy frag-
ment: smaller edit distances are preferred. Ties are broken by
considering precedence in the generation: the first generated
partially-fixing patch is the final plausible patch.

V. ASSESSMENT

We evaluate AVATAR on Defects4J [61], which is widely
used by state-of-the-art APR systems targeting Java programs.
Table II summarizes the statistics on the number of bugs and
test cases available in the version 1.2.06 of Defects4J.

TABLE II
DEFECTS4J DATASET INFORMATION.

Project Bugs kLoC Tests
JFreeChart (Chart) 26 96 2,205
Closure compiler (Closure) 133 90 7,927
Apache commons-lang (Lang) 65 22 2,245
Apache commons-math (Math) 106 85 3,602
Mockito 38 11 1,457
Joda-Time (Time) 27 28 4,130
Total 395 332 21,566

“Bugs”, “kLoC”, and “Tests” denote respectively the num-
ber of bugs, the program size in kLoC (i.e., thousands of lines
of code), and the number of test cases for each subject. The
overall number of kLoC and test cases for project Mockito
are not indicated in the Defects4J paper [61] from where the
reported information is excerpted.

A. Research Questions

Our investigation into the repair performance of AVATAR
seeks to answer the following research questions (RQs):
• RQ1: How effective are fix patterns of static analysis

violations for repairing programs with semantic bugs?
Recall that we broadly consider as semantic bugs all bugs

6https://github.com/rjust/defects4j/releases/tag/v1.2.0

that are uncovered by executing developer test cases. Our
first research question assesses how many bugs in the
Defects4J benchmark can be fixed with fix patterns of static
analysis violations. To that end, we first (1) investigate how
effectively AVATAR can fix such semantic bugs that appear
to be localizable by static analysis tools. Then, (2) building
on the assumption that the location of the semantic bug
is known, we investigate whether AVATAR can generate a
correct patch to fix it.

• RQ2: Which bugs and which patterns are relevant targets
for AVATAR in an automated program repair scenario?
This research question dissects the data yielded during the
investigation of RQ1, with the objective of assessing the
diversity of bugs that can be fixed as well as the types of
violation fix patterns that have been successfully leveraged.

• RQ3: How does AVATAR compare to the state-of-the-art
with respect to repair performance? With this research
question, we aim at showing whether the proposed approach
is relevant in the landscape of APR systems. Does AVATAR
offer comparable performance? To what extent can AVATAR
complement existing APR systems?

B. Experimental Setup

For evaluation purpose, we apply different fault localization
schemes to the experiment of each RQ, while the default
setting of AVATAR is to use the GZoltar framework with the
Ochiai ranking metric for ordering suspicious statements. The
usage of GZoltar and Ochiai reduces the comparison biases
since both are widely used by APR systems in the literature.
• First, we apply AVATAR to Defects4J bugs that are local-

ized by three state-of-the-art static analysis tools (namely,
SpotBugs [33], Facebook Infer [34], and Google Error-
Prone [35]) (for RQ1; see Section V-C). To that end, we
consider recent data reported by Habib and Pradel [32]. This
configuration focuses on the effectiveness of AVATAR on
such semantic bugs that can also be detected statically.

• Second, we apply AVATAR on all faulty code positions in the
benchmark (for RQ1; see Section V-D). We thus assume that
a perfect localization is possible, and assess the performance
of the approach on all bugs.

• Finally, for RQ3, we compare AVATAR with the state-of-the-
art APR tools that are evaluated on the Defects4J benchmark
(see Section V-F). To that end, we attempt to replicate two
scenarios of fault localization used in APR assessments:
the first scenario assumes that the faulty method name is
known [10] and thus focuses on ranking the inner-statements
based on Ochiai suspiciousness scores; the second scenario
makes no assumption on fault location and thus uses the
default setting of AVATAR.

C. Applying AVATAR to Statically-Detected Bugs in Defects4J

Table III provides details on the Defects4J bugs that can be
detected by static analysis tools and are successfully repaired
by AVATAR. We report that out of the 14, 4, and 7 bugs that
can be detected respectively by SpotBugs, Facebook Infer and
Google ErrorProne on version 1.2.0 of Defects4J, AVATAR can
successfully generate correct patches for 3, 2 and 1 bugs.

TABLE III
STATICALLY-DETECTED BUGS FIXED BY AVATAR.

Bug ID SpotBugs Infer ErrorProne Static Analysis Violation Type
Chart-1 l l NP_ALWAYS_NULL7

Chart-4 l l NP_NULL_ON_SOME_PATH8

Chart-24 l DLS_DEAD_LOCAL_STORE9

Math-77 l UPM_UNCALLED_PRIVATE_METHOD10

Total 3/14 (18) 2/4 (5) 1/7 (8)

x/y(z) reads as: x is the number of bugs fixed by AVATAR among the y bugs
in version 1.2.0 of Defects4J that can be localized by each static analysis
tool. z is given as an indicator for the number of statically localizable bugs in
an augmented version11of Defects4J. The information on localizable bugs
is excerpted from the study of Habib and Pradel [32]. Since most of the
state-of-the-art APR systems targeting Java program are evaluated on the
version 1.2.0, our experiments focus on localizable bugs in this version.

Overall four distinct localizable bugs have been correctly
fixed with patches generated from the fix patterns that were
mined from patches fixing FindBugs violations [29]. All the
four bugs are related to distinct violation types. In their work,
Liu et al. [29] claimed that their mined patterns could be
applied to violations reported by other static analysis tools.
Our experiment indeed shows that these patterns fixed two
bugs detected by SpotBugs (i.e., the successor of FindBugs),
which are also detected by Facebook Infer.

RQ1IAVATAR demonstrates the usefulness of violation fix
patterns in a scenario of automating some maintenance
tasks involving systematic checking of developer code with
static checkers.

Our experiments, however, reveal that AVATAR’s fix pat-
terns for static analysis violations are not effective on many
supposedly statically-detectable bugs in Defects4J. We inves-
tigate the cases of such bugs, and find that:

1) some of the bugs have a code context that does not match
any of the mined fix patterns;

2) in some cases, the detection is actually a coincidental
false positive reported in [32], since the violation does not
really match the semantically faulty code entity that must
be modified. Figure 8 provides a descriptive example of
such false positives.

3) finally, in other cases, the fixes are truly domain-specific,
and no pattern is thus applicable.

// Violation Type: FE_FLOATING_POINT_EQUALITY
// The comparing result of two floating point values for
// equality may not be accurate.

// Defects4J Dissection:
// Bug Pattern: Conditional block removal.

- if (x == x1) {
- x0=0.5*(x0+x1-FastMath.max(rtol*FastMath.abs(x1),atol));
- f0=computeObjectiveValue(x0);
- }
break;

Fig. 8. A bug is false-positively identified as a statically-detected bug in [32]
(Math-50): the violation is not related to the test case failures.

7A null pointer is dereferenced and will lead to a NullPointerException
when the code is executed.

8Possible null pointer dereference.
9Dead store to a local variable.
10A private method is never called.
11https://github.com/rjust/defects4j/pull/112

TABLE IV
NUMBER OF DEFECTS4J BUGS FIXED BY AVATAR WITH AN ASSUMPTION OF PERFECT LOCALIZATION INFORMATION.

Fixed Bugs Chart (C) Closure (Cl) Lang (L) Math (M) Mockito (Moc) Time (T) Total
of Fully Fixed Bugs 7/8 10/13 5/10 8/13 2/2 2/3 34/49
Partially Fixed Bugs 2/3 1/4 1/3 1/4 0/0 0/0 5/14
† In each column, we provide x/y numbers: x is the number of correctly fixed bugs; y is the number of bugs for which a plausible
patch is generated by the APR tool. The same as the following similar tables.

D. Applying AVATAR to All Defects4J Bugs

After focusing on those Defects4J bugs that can be statically
detected, we run AVATAR on all the dataset bugs. Given that
the objective is to assess whether a correct patch can be
generated if the bug is known, we assume in this experiment
that the faulty code locations are known. Concretely, we do
not rely on any fault localization tool. Instead, we consider the
ground truth of developer patches and list the locations that
have been modified as the faulty locations.

The repair operations thus consist in generating patches
for the relevant bug locations. Table IV details the number
of Defects4J bugs that are fixed by AVATAR. Fully and par-
tially fixed bugs are fixed with fully-fixing and partially-fixing
patches (c.f. Section IV-D) generated by AVATAR, respectively.
Overall, AVATAR can fix 49 bugs with plausible patches
(i.e., that pass all available tests). 35 of them are further
manually confirmed to be correct (i.e., they are syntactically
or at least semantically equivalent to the ground truth patches
submitted by developers). We also note that, for 14 other bugs,
AVATAR generates plausible patches that make the program
pass some previously-failing test cases, without failing any of
the previously-passing test cases. Five among these patches
are manually found to be correctly fixing part of the bugs.
To the best of our knowledge, AVATAR is the first APR tool
which partially, but correctly, fixes bugs in Defects4J that have
multiple fault code locations.

RQ1IAVATAR can effectively fix several semantic bugs
from the Defects4J dataset. We even observe that the fine-
grained fix ingredients can be helpful to target bugs with
multiple faulty code locations.

E. Dissecting the Fix Ingredients

We now investigate how fix patterns of static analysis
violations can be leveraged to address semantic bugs from the
Defects4J benchmark. To that end, we dissect the ingredients
that were successfully leveraged in the generated correct
patches. Table V provides the summary of this dissection.

First, we note that all correctly fixed bugs were addressed
with patches generated from patterns mined in the study of Liu
et al. [29] (i.e., based on FindBugs violations). Fix patterns
from the study by Rolim et al. [30] (which are based on PMD
violations) are indeed associated to exceedingly simple viola-
tions, which are unlikely to be revealed as semantic bugs (i.e.,
detected via developer test cases). An example of such simple
pattern is their EP7 fix pattern: “replace List<String> a
= new ArrayList() with List<String> a = new
ArrayList<>()”. In any case, 6 among the 9 fix patterns
released by Rolim et al. are related to performance, code

practice or code style. Our manual investigation of Defects4J
bugs reveals that none of the bugs are associated to these types
of issues.

Second, we note that the fix patterns of only seven (out
of 10) violation types have been successfully used to gen-
erate correct patches for Defects4J bugs (c.f. Table V).
Among the 40 (fully or partially) correctly fixed bugs, 36
(90%) are fixed with fix patterns of 4 violation types: NP_
NULL_ON_SOME_PATH, DLS_DEAD_LOCAL_STORE, UC_
USELESS_CONDITION, and UCF_USELESS_CONTROL_
FLOW. The latter two violation types are related to the issues
of conditional code entities (e.g., If statements and conditional
expressions), which are relevant to 18 (45%) of the fixed
bugs. Comparing against the ACS [16] state-of-the-art APR
tool which focuses on repairing condition-related faulty code
entities, we find that AVATAR correctly fixes 15 relevant bugs
that are not fixed by ACS.

Finally, we investigate the diversity of the bugs that are
correctly addressed by AVATAR. To that end, we resort to the
dissection study of Defects4J bugs by Sobreira et al. [62].
Table VI summarizes the bug patterns and the associated repair
actions for the bugs that are correctly fixed by AVATAR. We
note that AVATAR can currently address 11 bug patterns out
of the 60 bug patterns enumerated in the dissection study.

RQ2IAVATAR exploits a variety of fix ingredients from
static violations fix patterns to address a diverse set of bug
patterns in the Defects4J dataset.

F. Comparing against the State-of-the-Art

To reliably compare against the state-of-the-art in Auto-
mated Program Repair (APR), we must ensure that the Fault
Localization (FL) step is properly tuned as FL could bias the
bug fixing performance of APR tools [63]. We identify three
major configurations in the literature:
1) Normal FL-based APR: in this case, APR systems di-

rectly use off-the-shelf fault localization techniques to
localize the faulty code positions. In this case, which
is realistic, the suspicious list of fault locations may be
inaccurate leading to a poor repair performance. APR tools
that are run in ASTOR [57] work under this configuration.

2) Restricted FL-based APR: in this case, APR systems
make the assumption that some information of the code
location is available. For example, in HDRepair [10],

12The current code contains a useless control flow statement, where the
control flow continues onto the same place regardless of whether or not the
branch is taken.

13The cast expression is unchecked or unconfirmed, and not all instances
of the type casted from can be cast to the type it is being cast to. It needs to
check that the program logic ensures that this cast will not fail.

TABLE V
FIX INGREDIENTS LEVERAGED IN THE STATIC ANALYSIS VIOLATION FIX PATTERNS USED BY AVATAR TO CORRECTLY FIX SEMANTIC BUGS.

Violation Types associated with the Fix Patterns Fix Ingredients from the Violation Fix Patterns Fixed Bug IDs

NP_ALWAYS_NULL
Mutate the operator of null-check expression:
“var != == null”, or “var == != null”. C-1.

NP_NULL_ON_SOME_PATH

1. Wrap buggy code with if-non-null-check block:
“if (var != null) {buggy code}”;

2. Insert if-null-check block before buggy code:
“if (var == null) {return false;} buggy code;” or
“if (var == null) {return null;} buggy code;” or
“if (var == null) {throw IllegalArgumentException.} buggy code;”.

C-4,26,
C-14,19,

C-25,Cl-2,
M-4,

Moc-29,38.

DLS_DEAD_LOCAL_STORE
Replace a variable with other one:
e.g., “var1 = var2var3;”.

C-11,24,
L-6,57,59,

M-33,59,T-7.

UC_USELESS_CONDITION

1. Mutate the operator of an expression in an if statement:
e.g., “if (expA >>= expB) {...}”;

2. Remove a sub-predicate expression in an if statement:
“if (expA || expB) {...}” or “if (expA || expB) {...}”;

3. Remove the conditional expression:
“expA ? expB : expC” or “expA ? expB : expC”.

Cl-18,31,
Cl-38,62,
Cl-63,73,

L-15,M-46,
M-82,85,

T-19.

UCF_USELESS_CONTROL_FLOW12

1. Remove an if statement but keep the code inside its block:
“if (exp) { code }”;
2. Remove an if statement with its block code:
“if (exp) { code }”.

C-18, Cl-106,
Cl-115,126,

L-7,10,
M-50.

UPM_UNCALLED_PRIVATE_METHOD
Remove a method declaration:
“Modifier ReutrnType methodName(Parameters) { code }”. Cl-46,M-77.

BC_UNCONFIRMED_CAST13
Wrap buggy code with if-instanceof-check block:
“if (var instanceof Type) {buggy code}
else {throw IllegalArgumentException;}”.

M-89.

† Only correctly fixed (including partially correctly-fixed bugs highlighted with italic) bugs are listed in this table.

TABLE VI
DISSECTION OF BUGS CORRECTLY FIXED BY AVATAR.

Bug IDs Bug Patterns Repair Actions
C-1. Conditional expression modification Logic expression modification.

C-4, 26. Missing non-null check addition Conditional (if) branch addition.

C-14, 19, 25, Cl-2, M-4, Moc-29, 38. Missing null check addition Conditional (if) branch addition.

C-11, 24, L-6, 57, 59, M-33, 59, T-7. Wrong variable reference Variable replacement by another variable.

Cl-38. Logic expression expansion Conditional expression expansion.

Cl-18, 31, L-15. Logic expression reduction Conditional expression reduction.

Cl-62, 63, 73, M-82, 85, T-19. Logic expression modification Conditional expression modification.

C-18, Cl-106, M-46. Unwraps-from if-else statement Conditional (if or else) branch removal.

Cl-115, 126, L-7, 10, M-50. Conditional block removal Conditional (if or else) branch removal.

Cl-46, M-77. Unclassified Method definition removal.

M-89. Wraps-with if-else statement Conditional (if-else) branches addition.

fault localization is restricted to the faulty methods, which
are assumed to be known. Such a restriction actually
substantially increases the accuracy of the target list of
fault locations for which a patch must be generated. In
Section V-D, we have made a similar strong assumption
that fault locations are known as our objective was to assess
the patch generation performance of AVATAR.

3) Supplemented FL-based APR: in this case, APR systems
leverage existing fault localization tools but improve the lo-
calization approach with some heuristics to ensure that the
patch generation targets an accurate list of code locations.
For example, the SimFix [20] recent state-of-the-art system
employs a test purification [64] technique to improve the
accuracy of the fault localization.

We thus compare the bug fixing performance of AVATAR
with the state-of-the-art APR tools after classifying them into

these three groups.
1) Comparison against a Restricted FL-based APR System:

We first compare AVATAR against the HDRepair [10] state-
of-the-art APR system, which implements a restricted fault
localization configuration. We select faulty locations using the
same assumption as HDRepair, i.e., focusing on attempting
to repair suspicious code statements that are reported by our
fault localization tool but filtering only those that are within the
known faulty methods. This assumption leaves out many noisy
statements, reducing the probability of generating overfitting
patches for bugs and further increasing the chance to generate
a correct patch before a plausible one or any execution timeout.

Table VII presents the comparing results. Comparing with
HDRepair, AVATAR correctly fixes many more bugs (31+4
vs 6) and yields a higher probability to generate correct
patches among all plausible patches (cf. P(%) in Table VII). 34

TABLE VII
COMPARISON OF AVATAR WITH HDREPAIR [10].

Project HDRepair AVATAR
Fully fixed Partially fixed

Chart 0/2 7/9 1/3
Closure 0/7 9/15 1/2
Lang 2/6 5/12 1/3
Math 4/7 6/14 1/3
Mockito 0/0 2/2 0/0
Time 0/1 2/3 0/0
Total 6/23 31/55∗ 4/11∗

P (%) 26.1 56.4 36.4

The results for HDRepair are provided by its author.
∗The number of bugs fixed by AVATAR shown in this table is a little dif-
ferent from the data in Table IV. For fixing each bug, the input of AVATAR
is a ranked list of suspicious statements in the faulty methods, which is
different from the input of AVATAR in the experiment of Section V-D.

(except Lang-6) out of the 35 bugs fixed by AVATAR are not
addressed by HDRepair. AVATAR also correctly fixes 7 bugs
(as highlighted with bold in Figure 9) that are only plausibly
(but incorrectly) fixed by HDRepair. Finally, AVATAR partially
fixes 11 bugs that have multiple faulty code fragments, and 4
of the associated patches are correct. Figure 9 illustrates the
space of correctly fixed bugs by HDRepair and AVATAR.

AvatarHDRepair

L-51,
M-5, 22, 50, 53. L-6

C-1, 4, 11, 14, 18, 19, 24, 26; Cl-2, 18, 31, 38, 46,
Cl-62, 63, 73, 106, 115; L-7, 10, 15, 57, 59; M-4, 33, 46;

M- 59, 77, 85, 89; Moc-29, 38; T-7, 19.

Fig. 9. Bugs correctly fixed by HDRepair and AVATAR, respectively.

RQ3IAVATAR substantially outperforms the HDRepair ap-
proach on the Defects4J benchmark.

2) Comparison against Normal FL-based APR Systems:
We compare the bug fixing performance of AVATAR with the
Normal FL-based state-of-the-art APR tools that are evaluated
on the Defects4J benchmark. These APR tools take as input
a ranked list of suspicious statements that are reported by an
off-the-shelf fault localization technique. In this experiment,
we consider a group of APR systems, namely jGenProg [66],
jKali [66], jMutRepair [57], Nopol [15], FixMiner [21] and
LSRepair [60], which leverage a similar configuration as
AVATAR for fault localization: GZoltar/Ochiai.

Table VIII reports the comparison results in terms of the
number of plausibly-fixed bugs and the number of correctly-
fixed bugs. Data about the fixed bugs are directly excerpted
from the results reported in the relevant research papers. We
note that AVATAR outperforms all of the Normal FL-based
APR systems, both in terms of the number of plausibly fixed
bugs and the number of correctly fixed bugs. It also yields
a higher probability to generate correct patches among its
plausible patches than those tools (except FixMiner). Finally,
18 (15 + 3, as shown in the second row of Table IX) among
the 30 (27 + 3) bugs correctly fixed by AVATAR have not been
correctly fixed by those Normal FL-based APR tools.

RQ3IIn terms of quantity and quality of generated plau-
sible patches, AVATAR addresses more bugs than its im-
mediate competitors. Nevertheless, we note that AVATAR is
actually complementary to the other state-of-the-art APR
systems, fixing bugs that others do not fix.

3) Comparison against Supplemented FL-based APR Sys-
tems: We also compare AVATAR against APR systems which
use supplementary information to improve fault localization
accuracy. We include in this category other APR systems
whose authors do not explicitly describe the actual fault
localization configuration, but which still manage to fix bugs
that we could not localize with GZoltar/Ochiai. We include
in this group the following state-of-the-art works targeted at
Java programs: ACS [16], ELIXIR [40], JAID [12], ssFix [58],
CapGen [59], SketchFix [65] and SimFix [20].

The compared performance results are also illustrated in
Table VIII. Based on the number of correctly fixed bugs,
AVATAR is only inferior to SimFix but outperforms other Sup-
plemented FL-based APR systems. AVATAR further correctly
fixes 14 (11 + 3, as shown in the third row of Table IX) out
of 31 bugs that have never been addressed by any Supple-
mented FL-based state-of-the-art APR system.

To sum up, AVATAR correctly fixes 11 (as shown in the
fourth row of Table IX) out of 31 bugs that have never been
addressed by any state-of-the-art APR system. We also note
that AVATAR outperforms state-of-the-art APR tools on fixing
bugs in project Chart, Closure and Mockito.

RQ3IAVATAR underperforms against some of the most
recent APR systems. Nevertheless, AVATAR is still com-
plementary to them as it is capable of addressing some
Defects4J bugs that the state-of-the-art cannot fix.

VI. THREATS TO VALIDITY

A threat to external validity is related to use of Defects4J
bugs as a representative set of semantic bugs. This threat
is mitigated as it is currently a widely used dataset in the
APR literature related to Java. A threat to internal validity is
due to the use of Java programs as subjects. Eventually, we
only considered fix patterns for FindBugs and PMD violations.
Other static tools, especially for C programs, such as Splint,
cppcheck, and Clang Static Analyzer are not investigated. A
threat to construct validity may involve the assumption of
perfect localization to assess AVATAR. This threat is minimized
by the different other experiments that are comparable with
evaluations in the literature.

VII. RELATED WORK

The software development practice is increasingly accepting
generated patches [42]. Recently, various directions in the
literature have been explored to contribute to the advancement
of automated program repair. One commonly studied direction
is the pattern based (also called example-based) APR. Kim et
al. [4] initiated with PAR a milestone of APR based on fix

TABLE VIII
NUMBER OF BUGS REPORTED AS HAVING BEEN FIXED BY DIFFERENT APR SYSTEMS.

Fault Localization APR Tool Chart Closure Lang Math Mockito Time Total P∗(%)

Normal FL-based APR

AVATAR
Fully Fixed 5/12 8/12 5/11 6/13 2/2 1/3 27/53∗ 50.9

Partially Fixed 1/2 1/1 0/2 1/3 0/0 0/0 3/8∗ 37.5
jGenProg [57] 0/7 0/0 0/0 5/18 0/0 0/2 5/27 18.5
jKali [57] 0/6 0/0 0/0 1/14 0/0 0/2 1/22 4.5
jMutRepair [57] 1/4 0/0 0/1 2/11 0/0 0/1 3/17 17.6
Nopol [15] 1/6 0/0 3/7 1/21 0/0 0/1 5/35 14.3
FixMiner [21] 5/8 5/5 2/3 12/14 0/0 1/1 25/31 80.65
LSRepair [60] 3/8 0/0 8/14 7/14 1/1 0/0 19/37 51.4

Supplemented FL-based APR

ACS [16] 2/2 0/0 3/4 12/16 0/0 1/1 18/23 78.3
ELIXIR [40] 4/7 0/0 8/12 12/19 0/0 2/3 26/41 63.4
JAID [12] 2/4 5/11 1/8 1/8 0/0 0/0 9/31 29.0
ssFix [58] 3/7 2/11 5/12 10/26 0/0 0/4 20/60 33.3
CapGen [59] 4/4 0/0 5/5 12/16 0/0 0/0 21/25 84.0
SketchFix [65] 6/8 3/5 3/4 7/8 0/0 0/1 19/26 73.1
SimFix [20] 4/8 6/8 9/13 14/26 0/0 1/1 34/56 60.7

“P” is the probability of generated plausible patches to be correct.
∗The number of bugs fixed by AVATAR shown in this table is a little different from the data in Table IV and Table VII. In this experiment, for
fixing each bug, the input of AVATAR is a ranked full list of suspicious statements in the faulty program, which is different from the input of
AVATAR in the experiments of Table IV and Table VII.

TABLE IX
BUGS FIXED BY AVATAR BUT NOT CORRECTLY FIXED BY OTHER APR TOOLS.

APR tool group Bug IDs
Fully-fixed Partially-fixed

Normal FL-based APR tools C-14,19,Cl-2,18,31,46,L-6,7,10,M-4,46,59,Moc-29,38,T-7. C-18, Cl-106, M-77.

Supplemented FL-based APR tools C-4,Cl-2,31,38,46,L-6,7,10,M-46,Moc-29,38. C-18, Cl-106, M-77.

All APR tools Cl-2,31,46,L-7,10,M-46,Moc-29,38. C-18, Cl-106, M-77.

templates that were manually extracted from 60,000 human-
written patches. Later studies [10] have shown that the six
templates used by PAR could fix only a few bugs in Defects4J.
Long and Rinard also proposed a patch generation system,
Prophet [11], that learns code correctness models from a set
of successful human patches. They further proposed a new
system, Genesis [14], which can automatically infer patch
generation transforms from developer submitted patches for
program repair.

Motivated by PAR [4], more effective automated program
repair systems have been explored. HDRepair [10] was pro-
posed to repair bugs by mining closed frequent bug fix
patterns from graph-based representations of real bug fixes.
Nevertheless, its fix patterns, except the fix templates from
PAR, still limits the code change actions at abstract syntax
tree (AST) node level, but are not specific for some types
of bugs. ELIXIR [40] aggressively uses method call related
templates from PAR with local variables, fields, or constants,
to construct more expressive repair-expressions that go into
synthesizing patches.

Tan et al. [39] integrated anti-patterns into two existing
search-based automated program repair tools (namely, Gen-
Prog [3] and SPR [8]) to help alleviate the problem of incorrect
or incomplete fixes resulting from program repair. In their
study, the anti-patterns are defined by themselves and limited
to the control flow graph. Additionally, their anti-patterns are
not meant to solve the problem of deriving better patches
automatically, provide more precise repair hints to developers.

More recently, CapGen [59], SimFix [20], FixMiner [21]
are further proposed to fix bugs automatically based on the
frequently occurred code change operations (e.g., Insert If-
Statement (c.f., Table 3 in [20]) that are extracted from the

patches in developer change histories.
So far however, pattern-based APR approaches focus on

leveraging patches that developer applied to semantic bugs. To
the best of our knowledge, our approach is first to investigate
the case of leveraging patches that fix static analysis violations:
they are many more, better identifiable, and more consistent.

VIII. CONCLUSION

The correctness of patches generated is now identified as a
barrier in the adoption of automated program repair systems.
Towards guaranteeing correctness, researchers have been in-
vestigating example-based approaches where fix patterns from
human patches are leveraged in patch generation. Nevertheless,
such ingredients are often hard to collect reliably. In this work,
we propose to rely on developer patches that address static
analysis bugs. Such patches are concise and precise, and their
efficacy (in removing the bugs) are systematically assessed (by
the static detectors). We build AVATAR, an APR system that
utilizes fix ingredients from static analysis violations patches.
We empirically show that AVATAR is indeed effective in repair-
ing programs that have semantic bugs. AVATAR outperforms
several state-of-the-art approaches and complements others by
fixing some of the Defects4J bugs which were not yet fixed
by any APR system in the literature.

As future work, we plan to assess avatar on bigger bug
datasets [67], and use this concept of static analysis-based
patterns for improving method refactoring research [68], [69].

ACKNOWLEDGEMENTS

This work is supported by the Fonds National de la
Recherche (FNR), Luxembourg, through RECOMMEND
15/IS/10449467 and FIXPATTERN C15/IS/9964569.

REFERENCES

[1] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
program repair via semantic analysis,” in Proceedings of the 35th
International Conference on Software Engineering, 2013, pp. 772–781.

[2] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the 31st
International Conference on Software Engineering. ACM, 2009, pp.
364–374.

[3] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, p. 54, 2012.

[4] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the Interna-
tional Conference on Software Engineering. ACM, 2013, pp. 802–811.

[5] Z. Coker and M. Hafiz, “Program transformations to fix c integers,” in
Proceedings of the International Conference on Software Engineering.
IEEE, 2013, pp. 792–801.

[6] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search (t),” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2015, pp. 295–306.

[7] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. ACM, 2015, pp. 448–458.

[8] F. Long and M. Rinard, “Staged program repair with condition syn-
thesis,” in Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering. ACM, 2015, pp. 166–178.

[9] X.-B. D. Le, Q. L. Le, D. Lo, and C. Le Goues, “Enhancing automated
program repair with deductive verification,” in Proceedings of the Inter-
national Conference on Software Maintenance and Evolution. IEEE,
2016, pp. 428–432.

[10] X. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering,. IEEE, 2016, pp. 213–224.

[11] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” ACM SIGPLAN Notices, vol. 51, no. 1, pp. 298–312, 2016.

[12] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without
the contracts,” in Proceedings of the 32nd International Conference on
Automated Software Engineering. IEEE, 2017, pp. 637–647.

[13] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,”
in Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 593–604.

[14] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017, pp.
727–739.

[15] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2017.

[16] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in Proceedings of the
39th International Conference on Software Engineering. ACM, 2017,
pp. 416–426.

[17] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoud-
hury, “Semantic program repair using a reference implementation,” in
Proceedings of the 40th International Conference on Software Engineer-
ing. ACM, 2018, pp. 129–139.

[18] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in
Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 532–543.

[19] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better
automated program repair,” in Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp. 831–841.

[20] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2018, pp. 298–309.

[21] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated
program repair,” arXiv preprint arXiv:1810.01791, 2018.

[22] M. Monperrus, “A critical review of automatic patch generation learned
from human-written patches: essay on the problem statement and the
evaluation of automatic software repair,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
234–242.

[23] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients
already exist? an empirical inquiry into the redundancy assumptions of
program repair approaches,” in Proceedings of the 36th International
Conference on Software Engineering-Companion. ACM, 2014, pp.
492–495.

[24] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. Le Traon,
“A closer look at real-world patches,” in Proceedings of the 34th
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2018, pp. 275–286.

[25] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 832–837.

[26] K. Herzig and A. Zeller, “The Impact of Tangled Code Changes,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories. ACM, 2013, pp. 121–130.

[27] S. Heckman and L. Williams, “On establishing a benchmark for eval-
uating static analysis alert prioritization and classification techniques,”
in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement. ACM, 2008, pp.
41–50.

[28] P. Avgustinov, A. I. Baars, A. S. Henriksen, G. Lavender, G. Menzel,
O. de Moor, M. Schäfer, and J. Tibble, “Tracking static analysis
violations over time to capture developer characteristics,” in Proceedings
of the 37th International Conference on Software Engineering. ACM,
2015, pp. 437–447.

[29] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. L. Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software
Engineering, 2019 to appear.

[30] R. Rolim, G. Soares, R. Gheyi, and L. D’Antoni, “Learning quick fixes
from code repositories,” arXiv preprint arXiv:1803.03806, 2018.

[31] “FindBugs,” http://findbugs.sourceforge.net, last accessed: Oct.2018.
[32] A. Habib and M. Pradel, “How many of all bugs do we find? a

study of static bug detectors,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 317–328.

[33] “SpotBugs,” https://spotbugs.github.io, last accessed: Oct.2018.
[34] “Facebook Infer,” https://fbinfer.com, last accessed: Oct.2018.
[35] “Google Error-Prone,” https://errorprone.info, last accessed: Oct.2018.
[36] F. A. Fontana, E. Mariani, A. Mornioli, R. Sormani, and A. Tonello, “An

experience report on using code smells detection tools,” in Proceedings
of the Fourth International Conference on Software Testing, Verification
and Validation Workshops. IEEE, 2011, pp. 450–457.

[37] N. Moha, Y.-G. Gueheneuc, A.-F. Duchien et al., “Decor: A method
for the specification and detection of code and design smells,” IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36, 2010.

[38] A. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in Proceedings of the 20th Working Conference
on Reverse Engineering. IEEE, 2013, pp. 242–251.

[39] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 727–738.

[40] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object-oriented program repair,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2017, pp. 648–659.

[41] K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding of
bug fix patterns,” Empirical Software Engineering, vol. 14, no. 3, pp.
286–315, 2009.

[42] A. Koyuncu, T. Bissyandé, D. Kim, J. Klein, M. Monperrus, and
Y. Le Traon, “Impact of Tool Support in Patch Construction,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ACM, 2017, pp. 237–248.

[43] “PMD,” https://pmd.github.io, last accessed: Oct.2018.
[44] “Splint,” https://www.splint.org, last accessed: Oct. 2018.
[45] “cppcheck,” http://cppcheck.sourceforge.net, last accessed: Oct.2018.
[46] “Clang Static Analyzer,” https://clang-analyzer.llvm.org, last accessed:

Oct.2018.

[47] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm sigplan notices,
vol. 39, no. 12, pp. 92–106, 2004.

[48] T. Copeland, “Pmd Applied,” 2005.
[49] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,

“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated Software
Engineering. ACM, 2014, pp. 313–324.

[50] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent
facial expression recognition with robust face detection using a convolu-
tional neural network,” Neural Networks, vol. 16, no. 5-6, pp. 555–559,
2003.

[51] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378–381.

[52] R. Abreu, A. J. Van Gemund, and P. Zoeteweij, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[53] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the International Symposium on Software
Testing and Analysis. ACM, 2013, pp. 314–324.

[54] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Transactions on Software Engineering and Methodology, vol. 22, no. 4,
p. 31, 2013.

[55] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in Proceedings of the IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2014, pp.
191–200.

[56] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering. ACM, 2017, pp. 609–620.

[57] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis. ACM, 2016, pp. 441–444.

[58] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2017, pp. 660–
670.

[59] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware

patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering. ACM,
2018, pp. 1–11.

[60] K. Liu, K. Anil, K. Kim, D. Kim, and T. F. Bissyandé, “LSRepair: Live
search of fix ingredients for automated program repair,” in Proceedings
of the 25th Asia-Pacific Software Engineering Conference. IEEE, 2018,
pp. 658–662.

[61] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for java programs,” in Proceed-
ings of the International Symposium on Software Testing and Analysis.
ACM, 2014, pp. 437–440.

[62] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a bug dataset: Anatomy of
395 patches from defects4j,” in Proceedings of the 25th International
Conference on Software Analysis, Evolution and Reengineering. IEEE,
2018, pp. 130–140.

[63] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon,
“You cannot fix what you cannot find! an investigation of fault local-
ization bias in benchmarking automated program repair systems,” in
Proceedings of the 12th IEEE International Conference on Software
Testing, Verification and Validation. IEEE, 2019.

[64] J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
52–63.

[65] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Proceedings
of the 40th International Conference on Software Engineering. ACM,
2018, pp. 12–23.

[66] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, 2017.

[67] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs. jar:
a large-scale, diverse dataset of real-world java bugs,” in Proceedings
of the 15th International Conference on Mining Software Repositories.
ACM, 2018, pp. 10–13.

[68] M. Pradel and K. Sen, “Deepbugs: a learning approach to name-based
bug detection,” PACMPL, vol. 2, no. OOPSLA, pp. 147:1–147:25, 2018.

[69] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names,” in Proceedings of the 41st ACM/IEEE International Conference
on Software Engineering. IEEE, 2019.

