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Abstract

Propositional Typicality Logic (PTL) is a recently proposed logic, ob-
tained by enriching classical propositional logic with a typicality opera-
tor capturing the most typical (alias normal or conventional) situations
in which a given sentence holds. The semantics of PTL is in terms of
ranked models as studied in the well-known KLM approach to preferen-
tial reasoning and therefore KLM-style rational consequence relations can
be embedded in PTL. In spite of the non-monotonic features introduced
by the semantics adopted for the typicality operator, the obvious Tarskian
definition of entailment for PTL remains monotonic and is therefore not
appropriate in many contexts. Our first important result is an impossibil-
ity theorem showing that a set of proposed postulates that at first all seem
appropriate for a notion of entailment with regard to typicality cannot be
satisfied simultaneously. Closer inspection reveals that this result is best
interpreted as an argument for advocating the development of more than
one type of PTL entailment. In the spirit of this interpretation, we in-
vestigate three different (semantic) versions of entailment for PTL, each
one based on the definition of rational closure as introduced by Lehmann
and Magidor for KLM-style conditionals, and constructed using different
notions of minimality.

1 Introduction

Propositional Typicality Logic (PTL) [1, 2] is a recently proposed logic allowing
for the representation of and reasoning with an explicit notion of typicality. It is
obtained by enriching classical propositional logic with a typicality operator •,

∗This technical report presents an extended and elaborated version of a paper presented
at the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015).
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the intuition of which is to refer to those most typical (or normal or conven-
tional) situations in which a given sentence holds. PTL is characterised using
a preferential semantics similar to that originally proposed by Shoham [25] and
extensively developed by Kraus et al. [20] and Lehmann and Magidor [22] in
the propositional case, and by others [4, 7, 8, 18, 24, 14, 15] in more expressive
languages.

In spite of the non-monotonic features introduced by the adoption of a pref-
erential semantics for •, the obvious definition of entailment for PTL, i.e., the
one based on a Tarskian notion of logical consequence, remains monotonic.
Of course, such a notion of entailment is inappropriate in non-monotonic con-
texts, in particular when reasoning about typicality, as is already clear from
an enriched version of the classical Tweety example: If birds typically fly, and
penguins are birds (and that is all we know), we would expect to be able to
conclude that typical penguins are typical birds, and therefore that typical pen-
guins fly. Learning that penguins typically do not fly should lead us to conclude
that penguins are not typical birds, and to retract the conclusions about typical
penguins being typical birds, and about typical penguins flying.

In this paper, we investigate three semantic versions of entailment for PTL,
constructed using three different forms of minimality. All these are based on the
notion of rational closure as defined by Lehmann and Magidor [22] for KLM-
style conditionals in a propositional setting. We show that they can be viewed
as distinct extensions of rational closure, equivalent with respect to the condi-
tional language originally proposed by Kraus et al., but different in the PTL
framework.

We shall study the aforementioned forms of entailment in an abstract formal
setting, obtained by proposing a set of postulates that, at first glance, seem
appropriate for any notion of entailment with regard to typicality. Our first
important result is a negative one, though. It is an impossibility result proving
that the set of postulates cannot all be satisfied simultaneously. A more detailed
analysis of the result shows that, instead of being viewed as negative, this result
should rather be interpreted as an indication that PTL allows for different types
of entailment, corresponding to different subsets of the full set of postulates we
provide. In line with this argument, we define three types of entailment for
PTL corresponding to distinct subsets of the postulates, referred to as LM-
entailment, PT-entailment, and PT’-entailment, a modification of the latter.
Our argument for more than one type of entailment for the same logic is in
line with the proposal put forward by Lehmann in the context of entailment
for conditional knowledge bases, where he proposes both prototypical reasoning
and presumptive reasoning as acceptable forms of entailment [21]. The details
of the distinct forms of entailment need not concern us here. Rather, what is
important is the acknowledgement of the existence of more than one form of
entailment for the same representational formalism.

The remainder of the present paper is structured as follows. Section 2 pro-
vides the background and notation for the rest of the work. In Section 3 we
discuss the complexities surrounding a notion of entailment for PTL. In Sec-
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tion 4 we put forward our postulates and show the impossibility result. In
Section 5 we define LM-entailment while Section 6 is devoted to the definition
of PT-entailment, and Section 7 to the definition of PT’-entailment. Section 8
addresses the implications of the impossibility result, making the case for three
forms of PTL entailment. Section 9 concludes and discusses future work.

2 Logical preliminaries

Let P be a finite set of propositional atoms with at least two elements.1 We
use p, q, . . . as meta-variables for atoms. Propositional sentences (and, in later
sections, sentences of the richer language we shall introduce in Section 2.3 below)
are denoted by α, β, . . ., and are recursively defined in the usual way: α ::=
p | ¬α | α ∧ α | ⊤ | ⊥. All the other Boolean connectives (∨, →, ↔, . . . ) are
defined in terms of ¬ and ∧ in the standard way. With L we denote the set of
all propositional sentences.

We denote by U the set of all propositional valuations v : P −→ {0, 1}, i.e.,
U := {0, 1}P . Whenever it eases the presentation, we shall represent valuations
as sets of literals (i.e., atoms or negated atoms), with each literal indicating
the truth-value of the respective atom. Thus, for the logic generated from
P = {p, q}, the valuation in which p is true and q is false will be represented
as {p,¬q}. Satisfaction of a sentence α ∈ L by v ∈ U is defined in the usual
truth-functional way and is denoted by v 
 α.

2.1 KLM-style rational conditionals

In the conditional logic investigated by Kraus et al. [20], often referred to as
the KLM approach, one is interested in (defeasible) conditionals of the form
α |∼ β, read as “typically, if α, then β” (or, depending on the example at hand,
as “αs are typically βs” and variants thereof). For instance, if P = {b, f, p},
where b, f and p stand for, respectively, “being a bird”, “being able to fly”, and
“being a penguin”, the following are examples of defeasible conditionals: b |∼ f

(birds typically fly), p ∧ b |∼ ¬f (penguins that are birds typically do not fly).
Kraus et al. put forward the following list of properties that the condi-

tional |∼ ought to satisfy in order to be considered as appropriate in a non-
monotonic setting (these properties have been discussed at length in the non-
monotonic reasoning community and we shall not do so here):

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ

α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ

α ∨ β |∼ γ
(RW)

α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

A conditional satisfying such properties is called a preferential conditional.
We can require |∼ to satisfy other properties as well, one of which is rational

1This (reasonable) assumption is needed for technical reasons.
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monotonicity:

(RM)
α |∼ γ, α 6|∼ ¬β

α ∧ β |∼ γ

A preferential conditional also satisfying (RM) is called a rational conditional.
The semantics of KLM-style rational conditionals is given by structures

called ranked interpretations [22]:

Definition 2.1 (Ranked interpretation) A ranked interpretation R is a
function from U to N ∪ {∞} satisfying the following convexity property: for
every i ∈ N, if R(v) = i, then, for every j such that 0 ≤ j < i, there is a v′ ∈ U
for which R(v′) = j.

Observe that R generates a modular order ≺R on U as follows: u ≺R v if and
only if R(u) < R(v) (where i < ∞ for every i ∈ N). If there is no ambiguity,
we will omit the subscript and refer to the modular order as ≺.2

In a ranked interpretation R the intuition is that valuations lower down in
the ordering are deemed more normal (or typical) than those higher up, with
those with an infinite rank (a rank of ∞) being regarded as so atypical as to be
impossible.

The possible valuations in R are defined as follows: UR := {u ∈ U | R(u) <
∞}. Given α ∈ L, we let JαKR := {v ∈ UR | v 
 α}. Given α, β ∈ L, we say R

satisfies (is a ranked model of) the conditional α |∼ β (denoted R 
 α |∼ β)
if all the ≺-minimal α-valuations also satisfy β, i.e., if min≺JαKR ⊆ JβKR. We
say R is a ranked model of a set of conditionals C if R 
 α |∼ β for every
α |∼ β ∈ C.

Sometimes it is convenient to represent a ranked interpretation R as a
partition (L0, . . . , Ln−1, L∞) of U where, for i ∈ N ∪ {∞}, Li = {u ∈ U |
R(u) = i} and where n is some i ∈ N for which Li = ∅. That is, for each
i ∈ {0, . . . , n− 1,∞}, Li is the set of all valuations of rank i. We refer to such
a ranked interpretation as an n-rank interpretation.

Observe that the partition above has a finite number of cells, but includes
the possibility for some of the Lis to be empty. This is necessary for two
reasons. First, the cell L∞ (the set of all impossible valuations) may be empty.
Second, as we shall see below, this representation will often be used to compare
ranked interpretations. In cases where such ranked interpretations do not have
the same number of non-empty cells, this representation allows us to represent
them as having the same (finite) number of cells, say (L0, . . . , Ln−1, L∞) and
(M0, . . . ,Mn−1,M∞), where n is the smallest integer such that Li =Mi = ∅.

Figure 1 depicts an example of a ranked interpretation for P = {b, f, p}
satisfying both b |∼ f and p ∧ b |∼ ¬f. (In our graphical representations of the
ranked interpretations we frequently omit the rank ∞.)

2 Recall that, given a set X, ≺ ⊆ X × X is modular if and only if there is a ranking
function rk : X −→ N s.t. for every x, y ∈ X, x ≺ y if and only if rk(x) < rk(y). Note also
that modular orders can be obtained from total preorders by imposing anti-symmetry.
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2 {b, f, p}
1 {b,¬f,¬p}, {b,¬f, p}
0 {¬b,¬f,¬p}, {¬b, f,¬p}, {b, f,¬p}

Figure 1: A ranked interpretation for P = {b, f, p}.

For a better understanding of the reasons behind the aforementioned prop-
erties and the semantic constructions, the reader is referred to the work of
Kraus et al. [20, 22].

2.2 Rational closure

Given a set of conditionals C, reasoning in the KLM framework amounts to
the derivation of new conditionals from C. Towards this end, Lehmann and
Magidor [22] proposed what they refer to as rational closure. Here we focus on
the semantic version of rational closure they present.

Their idea was to define a preference relation ELM over the set of possible
ranked interpretations and then to base entailment on choosing only the most
preferred, i.e., minimal w.r.t. ELM, ranked models of C.

The relation ELM can be described as follows. Consider any pair of ranked in-
terpretations R1 = (L0, . . . , Ln−1, L∞) and R2 = (M0, . . . ,Mn−1,M∞). Then,

R1 ELM R2 if either Li =Mi for all i ∈ {0, . . . , n− 1,∞},
or Lj ⊇Mj for the smallest j ≥ 0 s.t. Lj 6=Mj .

This is not exactly the semantic representation defined by Lehmann and
Magidor, but this representation can easily be derived from other work on ra-
tional closure, such as that of Booth and Paris [3] and Giordano et al. [19]. The
idea is that those ranked interpretations should be preferred in which as many
valuations as possible are judged to be as plausible as the background knowl-
edge C allows. Observe also that one of the consequences of this ordering is
that, all other things being equal, a ranked interpretation in which a valuation
is deemed to be possible will be preferred over one in which the same valuation
is seen as impossible.

Clearly ELM forms a partial order over ranked interpretations. Lehmann
and Magidor showed that for every set of conditionals C, there exists a unique
ELM-minimum element Rrc(C) among all the ranked models of C. We will refer
to this element as the LM-minimum. Then the rational closure of C is the set
|∼rc

C
:= {(α, β) | Rrc(C) 
 α |∼ β}. Rational closure is commonly viewed as

the basic (although certainly not the only acceptable) form of entailment over
propositional conditional knowledge bases, on which other, more venturous,
forms of entailment can be constructed. It is therefore an appropriate choice on
which to base our investigations into versions of entailment for PTL.
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2.3 Propositional Typicality Logic

PTL [1] is a logical formalism explicitly allowing for the representation of and
reasoning about a notion of typicality. Syntactically, it extends classical propo-
sitional logic with a typicality operator •, the intuition of which is to capture
the most typical (alias normal or conventional) situations or worlds. Here we
shall briefly present the main results about PTL relevant for our purposes.

The language of PTL, denoted by L•, is recursively defined by:

α ::= p | ¬α | α ∧ α | ⊤ | ⊥ | •α

As before, p denotes an atom and all the other Boolean connectives are defined
in terms of ¬ and ∧.

Let P = {b, f, o, p}, where b, f and p are as before and o represents “being an
ostrich”. The following are examples of L•-sentences: •b (being a typical bird),
o→¬•b (ostriches are not typical birds), (p∨o) ↔ (b∧•¬f) (being a penguin or
an ostrich is equivalent to being a bird and being a typical non-flying creature).

Intuitively, a sentence of the form •α is understood to refer to the typical
situations in which α holds. Note that α can itself be a •-sentence. The se-
mantics of PTL is also in terms of ranked interpretations (see Definition 2.1).
Satisfaction is defined inductively in the classical way, adding the following con-
dition: v 
 •α if v 
 α and there is no v′ such that v′ ≺ v and v′ 
 α.
That is, given R, J•αKR := min≺JαKR. In the ranked interpretation R of Fig-
ure 1, we have J•bKR = {{b, f,¬p}}, J•pKR = {{b,¬f, p}} and J•(b ∧ ¬f)KR =
{{b,¬f,¬p}, {b,¬f, p}}.

We say that α ∈ L• is satisfiable in a ranked interpretation R if JαKR 6= ∅,
otherwise α is unsatisfiable in R. We say that R is a ranked model of α (denoted
R 
 α) if JαKR = UR.

A PTL knowledge base is a finite set of sentences KB ⊆ L•. We define
Mod(KB) := {R | R 


∧
KB}.

A useful property of the typicality operator • is that it allows us to express
KLM-style conditionals. That is, for every ranked interpretation R and every
α, β ∈ L, R 
 α |∼ β if and only if R 
 •α → β. The converse does not hold
since it can be shown that there are L•-sentences that cannot be expressed as
a set of KLM-style |∼-statements on L [2].

The representation result below, extending Theorem 3.12 of Lehmann and
Magidor [22] to L•, shows that the formalisation of the KLM rational condi-
tional |∼ inside PTL is appropriate.

Observation 1 (Booth et al. [2], Corollary 22) Let R be a ranked inter-
pretation and let |∼R := {(α, β) | α, β ∈ L• and R 
 •α → β}. Then |∼R is a
rational conditional. Conversely, for every rational conditional |∼, there exists
a ranked interpretation R such that, for every α, β ∈ L•, α |∼ β if and only if
R 
 •α→ β.

For more details on PTL and the aforementioned properties, the reader is
referred to the work by Booth et al. [2].
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3 The entailment problem for PTL

The purpose of this section is to provide a more formal motivation for the
remainder of the paper. From the perspective of knowledge representation and
reasoning (KR&R), a central issue is that of what it means for a PTL sentence
to follow from a (finite) PTL knowledge base KB. An obvious approach to the
matter is to embrace the notion of entailment advocated by Tarski [26] and
largely adopted in the logic-based KR&R community.

Definition 3.1 (Ranked entailment and consequence) Let KB ⊆ L• and
α ∈ L•. We say KB ranked-entails α (noted KB |≈0 α) if Mod(KB) ⊆ Mod(α).
Its associated ranked consequence operator is defined by setting, for KB ⊆ L•,
Cn0(KB) := {α ∈ L• | KB |≈0 α}.

As we shall see below, this version of entailment is not appropriate in the con-
text of PTL for a number of reasons. For one, consider the following definition
of a conditional induced from a set of PTL sentences.

Definition 3.2 (Induced conditional relation) Let X ⊆ L•. We define
|∼X := {(α, β) | α, β ∈ L and •α→ β ∈ X}.

It is worth investigating whether |∼Cn0(KB) is rational, i.e., whether it sat-
isfies all the KLM properties for rationality from Section 2.1. The following
proposition, which mimics a similar result by Lehmann and Magidor in the
propositional case, shows that this is not the case:

Observation 2 (Booth et al. [2], Proposition 25) |∼Cn0(KB) is a preferen-
tial conditional, but is not necessarily a rational conditional.

Hence, ranked consequence as defined above delivers an induced defeasible
conditional that is preferential but that need not be rational. This forms an
argument against ranked entailment being an appropriate notion of entailment
for PTL.

One of the principles to give serious consideration when investigating PTL
entailment is the presumption of typicality [21, p. 63]. Informally, this means
that one should assume that every situation is assumed to be as typical as
possible. Sections 4 and 6 contain a formalisation of this principle. For now, we
illustrate it with an example.

Example 3.1 Let KB1 = {p → b, •b → f} (penguins are birds, and typical
birds fly). Given just this information about birds and penguins, it is reason-
able to expect both •p → •b (typical penguins are typical birds) and therefore
•p → f (typical penguins fly) to follow from KB1. It is easy to see that with
ranked entailment these requirements are not met, as ranked entailment is not
ampliative, i.e., it does not allow for venturing beyond what is sanctioned by
the knowledge base. �
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Besides requiring PTL entailment to be ampliative, we also want it to be
defeasible, that is, the conclusions derived under the presumption of typicality
in an ampliative way can be retracted in case of new conflicting information.
This is illustrated by the following example.

Example 3.2 Assume •p → •b and •p → f (somehow) could follow from KB1

in Example 3.1, but then we are informed that typical penguins do not fly. That
is, let KB2 = KB1 ∪ {•p → ¬f}. While we want p → ¬•b (penguins are not
typical birds) to follow from KB2, we do not want •p → f to follow from KB2,
which is not possible with ranked entailment. �

4 Towards a notion of entailment for PTL

We have seen that ranked entailment has some serious drawbacks in a non-
monotonic context. Therefore, the question as to what logical consequence
in PTL should mean remains mostly unanswered so far. In this section, we first
specify and discuss a list of postulates formalising the requirements motivated
in the last section and that, at first glance, seem reasonable for an appropriate
notion of entailment in PTL. In the subsequent section, we consider specific
alternatives to ranked entailment and check them against our postulates.

We start by introducing some notation. With |≈? ⊆ P(L•) × L•, we de-
note any entailment relation on the language of PTL. Given an entailment
relation |≈?, its associated consequence operator is defined in the usual way by
setting, for each KB ⊆ L•, Cn?(KB) := {α ∈ L• | KB |≈? α}.

Following the tradition in the non-monotonic reasoning literature, the obvi-
ous starting point is to consider some of the basic properties of classical conse-
quence operators.

P1 KB ⊆ Cn?(KB) (Inclusion)

P2 Cn?(KB) = Cn?(Cn?(KB)) (Idempotence)

Idempotence specifies that a consequence operator behaves as a ‘once-off’ op-
eration, in the same spirit as that of a closure operator. It implies also its finitary
version, the Cumulativity Property: If α ∈ Cn?(KB), then Cn?(KB ∪ {α}) =
Cn?(KB). There is agreement in the literature that both Inclusion and Cumu-
lativity are desirable properties to have.

Ranked entailment, as defined in Section 3, satisfies Properties P1 and P2.
Nevertheless, Cn0(·), the associated consequence relation of ranked entailment,
also satisfies the classical property of Monotonicity: If KB ⊆ KB′, then Cn0(KB) ⊆
Cn0(KB′). As seen in Example 3.1, this is a property that we do not want Cn?(·)
to satisfy (certainly not in general).

So, we require Cn?(·) to be a non-monotonic consequence operator. This
amounts to requiring Cn?(·) to satisfy the following two postulates:

P3 For every KB ⊆ L•, Cn0(KB) ⊆ Cn?(KB) (Ampliativeness)

8



P4 For some KB,KB′ ⊆ L•, KB ⊆ KB′ but Cn?(KB) 6⊆ Cn?(KB′) (Defeasibil-
ity)

Ampliativeness, a property generalising supra-classicality [23] (where the
basic underlying entailment relation is classical), says that Cn?(·) should be at
least as venturous as its underlying ranked entailment. Defeasibility specifies
that Cn?(·) should be flexible enough to disallow previously derived conclusions
in the light of new (possibly conflicting) information. In Example 3.1, assuming
•p → f ∈ Cn?(KB1) is the case, then •p → f should no longer be concluded
if •p → ¬f is added to KB1. Note that Defeasibility actually implies a strict
version of Ampliativeness which says Cn?(·) should in some cases be more ven-
turous than its underlying ranked entailment. (Since, if Cn?(KB) = Cn0(KB)
for all KB, then Cn?(·) is just ranked entailment, which is monotonic.)

P2 and P3 together imply that the closure operation Cn?(·) gives as output
a theory that is closed under Cn0(·).

Lemma 4.1 If Cn?(·) satisfies P2 and P3, then, for every KB,

Cn?(KB) = Cn0(Cn?(KB))

Proof:
Since Cn0(·) clearly satisfies inclusion, Cn?(KB) ⊆ Cn0(Cn?(KB)) is immedi-
ate. By P3 we have Cn0(Cn?(KB)) ⊆ Cn?(Cn?(KB)), that, by P2, implies
Cn0(Cn?(KB)) ⊆ Cn?(KB). �

Similarly to KLM in the propositional case, we would ideally like the de-
feasible conditional induced by Cn?(KB) (see Definition 3.2) to satisfy all the
rationality properties:

P5 For every KB ⊆ L•, |∼Cn?(KB) is a rational conditional relation on L (Con-
ditional Rationality)

As observed above, P5 requires the defeasible conditional induced by Cn?(KB)
to be rational—that is, to satisfy all the rationality properties. But from Theo-
rem 3.12 of Lehmann and Magidor [22] it follows that every rational defeasible
conditional can be obtained from a single ranked interpretation. So, from this
it follows that requiring the defeasible conditional induced by Cn?(KB) to be
rational amounts to requiring that the defeasible conditional be generated by a
single ranked interpretation. That is, by courtesy of this result, P5 can also be
rephrased as follows:

P5’ For every KB ⊆ L•, there is a ranked interpretation R s.t., for every
α, β ∈ L, α |∼Cn?(KB) β if and only if R 
 •α→ β. (|∼ Single Model)

The next postulate we consider, which is easily shown to be a strengthening
of P5, simply applies this same requirement, not just to defeasible statements,
but to all statements expressible in PTL:

P6 For every KB ⊆ L•, there is a ranked interpretation R s.t., for all α ∈ L•,
α ∈ Cn?(KB) if and only if R 
 α (Single Model)

9



An important special case of a PTL knowledge base is when the individual
elements of KB correspond to KLM-style conditionals.

Definition 4.1 ((Propositional) conditional knowledge base) A PTL knowl-
edge base KB will be called a (propositional) conditional knowledge base if
each element of KB is of the form •α→ β, for α, β ∈ L.

The next postulate says that if KB is a propositional conditional knowledge
base, then the result should coincide with Lehmann and Magidor’s definition of
rational closure:

P7 If KB is a conditional knowledge base, then |∼Cn?(KB)= |∼rc
KB (Extends

Rational Closure)

Clearly, P7 implies P4.
The following property was shown by Lehmann and Magidor to be satisfied

by the rational closure for conditional knowledge bases.

P8 Let α ∈ L. Then α ∈ Cn?(KB) if and only if α ∈ Cn0(KB) (Strict
Entailment)

P8 states that Cn?(·) should coincide with ranked entailment for those sen-
tences not involving typicality. The motivation for Strict Entailment is twofold.
First, it is a proposal for ranked entailment to be the lower bound for entail-
ment w.r.t. classical sentences (those not involving typicality), a proposal that
is not controversial. But secondly, it also requires entailment of classical sen-
tences to correspond to exactly those sanctioned by ranked entailment. This
can be viewed as adhering to the principle of minimal change. Being Tarskian,
ranked entailment is monotonic, and the argument is therefore that, while non-
monotonicity may be applicable for sentences involving typicality, it should not
be applicable to classical statements.

We are also interested in a couple of progressively weaker versions of Strict
Entailment (and the reasons will become clear later on). The first restricts it
to hold only when KB is a conditional knowledge base.

P9 Let KB be a conditional knowledge base and α ∈ L. Then α ∈ Cn?(KB) if
and only if α ∈ Cn0(KB) (Conditional Strict Entailment)

Note that P7 also implies P9. The latter implies that entailment for PTL
coincides with classical propositional entailment in the case of propositional
knowledge bases, as formalised by the next property.

P9’ Let KB ⊆ L and α ∈ L. Then α ∈ Cn?(KB) if and only if KB entails α in
classical propositional logic. (Classical Entailment)

Since for every KB∪{α} ⊆ L, KB entails α in classical propositional logic if
and only if α ∈ Cn0(KB), and any α ∈ L is equivalent •¬α → ⊥, P9’ is indeed
a weakening of P9 (provided that P8 also holds).

Finally, we consider another property shown by Lehmann and Magidor to
be satisfied by the rational closure for conditional knowledge bases.
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P10 Let α ∈ L. Then •⊤ → α ∈ Cn?(KB) if and only if •⊤ → α ∈ Cn0(KB)
(Typical Entailment)

The motivation for P10 is similar to that for P8 above. Consequences of
the form •⊤ → α are those for which α holds in the most typical situations.
So, on the one hand, P10 is a proposal for ranked entailment to provide a
lower bound for those statements holding in the most typical situations. But
as with P8 above, it also provides an upper bound, thereby requiring that of
those statements holding in typical situation exactly those sanctioned by ranked
entailment ought to be regarded as being entailed by the knowledge base. The
argument for this is that ranked entailment is monotonic and, applying the
principle of minimal change, it is only when dealing with atypical situations
that ranked entailment is not always sufficient.

Although these postulates all seem reasonable on their own, it turns out
that they cannot all be satisfied simultaneously. In fact, this impossibility result
already holds for a strict subset of the postulates.

Theorem 4.1 There is no PTL consequence operator Cn?(·) satisfying all of P1,
P2, P3, P5, P8 and P10.

Proof:
About (P5), requiring |∼Cn?(·) to satisfy (RM) is equivalent to requiring that,
for every knowledge base KB and whatever formulas α, β, γ, if •α→ γ ∈ Cn?(·)
and •α→ β /∈ Cn?(·), then we have •(α ∧ ¬β) → γ ∈ Cn?(·).

Assume Cn?(·) satisfies the given properties, and let KB = {•⊤ → p, •¬p→
•q}. By Strict Entailment (P8), p 6∈ Cn?(KB) (because of e.g. the 2-rank
model ({{p,¬q}}, {{¬p, q}}) of KB). By Typical Entailment (P10), •⊤ → ¬q 6∈
Cn?(KB) (because of e.g. the 1-rank model ({{p, q}, {p,¬q}}) of KB). By In-
clusion (P1) •⊤ → p ∈ Cn?(KB), and then by (RM) we must conclude that
•(⊤ ∧ q) → p ∈ Cn?(KB), that is, (⊤ ∧ q, p) ∈|∼Cn?(KB); since |∼Cn?(·) must
satisfy LLE, the latter implies (q, p) ∈|∼Cn?(KB), that is, •q → p ∈ Cn?(KB).

Since by Inclusion (P1) •¬p → •q ∈ Cn?(KB), we have {•q → p, •¬p →
•q} ⊂ Cn?(KB). Since •¬p → p ∈ Cn0({•q → p, •¬p→ •q}) and Cn0(·) is
monotonic, we have •¬p → p ∈ Cn0(Cn?(KB)). Then, by Lemma 4.1, that
assumes P2 and P3, we have that •¬p→ p ∈ Cn?(KB).

Since ((•¬p → p) ↔ p) ∈ Cn0(∅), we have that p ∈ Cn0({•¬p→ p}), that
is, p ∈ Cn0(Cn?(KB)), that is, by Lemma 4.1, p ∈ Cn?(KB), against (P8). �

While, at first glance, this seems to be a negative result, our contention is
that it should be interpreted as an indication that a logic as expressive as PTL
admits more than one form of entailment. We elaborate directly on this point
in Section 8, and indirectly in Sections 5 and 6, where we define and discuss two
instances of entailment for PTL.

11



5 LM-entailment

We now come to our first construction of an entailment relation in PTL. The
idea is to try to lift the rational closure construction from conditional knowledge
bases to arbitrary knowledge bases in L•. We first observe that there is nothing
to stop us from using the preference relation ELM (see Section 2.2) to compare
ranked interpretations of any PTL knowledge base KB. The question then is,
does there always exist a unique LM-minimum element of the ranked models
of KB, as there does in the restricted conditional case? And if so, how can we
construct it? We now answer these questions.

We assume as input a PTL knowledge base KB = {α1, . . . , αn}, where each
sentence αj is in normal form:

Definition 5.1 (Normal form) α ∈ L• is in normal form if it is of the
form

∧
i≤t •θi → (φ ∨

∨
i≤s •ψi), where t, s ≥ 0 and the θi, φ and ψi are all

purely propositional sentences.

Theorem 5.1 The normal form is complete for L•, i.e., for every sentence
α ∈ L• there is a (finite) set of sentences X ⊆ L•, each one in normal form,
such that Mod(α) = Mod(

∧
X).

Proof:
From the results by Booth et al. [1, Section 4], it follows that we need only
consider sentences with non-nested instances of the typicality operator. So we
let α be such a sentence. We let the set of typicality atoms be the propositional
atoms occurring in L• together with every sentence of the form •β where β is
a propositional sentence (we refer to the latter as pure typicality atoms). And
we define the set of typicality literals in the obvious way: the set of typicality
atoms and their negations. The set of pure typicality literals consists of the pure
typicality atoms and their negations.

Now we define typicality conjunctive normal form as a conjunctive normal
form defined on typicality atoms. It follows immediately that α can be rewritten
as a sentence, say α′, in typicality conjunctive normal form. Let X ′ be the set
of conjuncts occurring in α′. We show below how to rewrite each conjunct in X ′

into a sentence in normal form. The resulting set X of sentences in normal form
is the set referred to above.

By construction, each sentence γ ∈ X ′ is a disjunction of typicality literals.
We separate them into three disjoint sets, the set of propositional literals, the
set of positive pure typicality literals (with cardinality of, say t, where t ≥ 0)
and the set of negative pure typicality literals (with cardinality of, say s, where
s ≥ 0). Let φ be the disjunction of propositional literals, denote the s positive
pure typicality literals by ψ1, . . . , ψs, and the t negative pure typicality literals
by θ1, . . . θt. It follows immediately that γ can be rewritten as the sentence∧

i≤t θi → (φ ∨
∨

i≤s ψi). �

For any ranked interpretation R, and S ⊆ UR, let R
∞
S be the ranked in-

terpretation such that R∞
S (v) = R(v) for every v ∈ S, and R∞

S (v) = ∞ for
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every v ∈ U \ S. That is, R∞
S is the ranked interpretation obtained from R

by turning all valuations not in S into impossible valuations. Similarly, let R1
S

be the ranked interpretation such that R1
S(v) = R(v) for every v ∈ S, and

R1
S(v) = R(v) + 1 for every v ∈ U \S. That is, R1

S is the ranked interpretation
obtained from R by increasing the rank of all valuations not in S by 1.

We now construct a sequence (R0,R1, . . .) of ranked interpretations as fol-
lows:

Step 1 Set R0(v) := 0 for all v ∈ U , S0 := ∅, and i := 1;

Step 2 S1 := JKBKR0 (separate the valuations which satisfy KB w.r.t. the cur-
rent ranked interpretation R0 from those that do not);

Step 3 If Si = Si−1, then return (Ri)
∞
Si

(if there is no change in the new Si

then set the rank of those valuations that do not satisfy KB w.r.t. Rito ∞
and return the interpretation that remains);

Step 4 Otherwise Ri := (Ri−1)
1
Si

(otherwise create a new ranked interpretation
Ri by increasing the rank of every valuation not in Si by 1);

Step 5 Si+1 := JKBKRi and i := i + 1 (separate the valuations which satisfy
KB w.r.t. the current ranked interpretation Ri from those that do not, and
increment i);

Step 6 Go to Step 3.

Algorithm 1 below gives a compact description of the above steps.

Algorithm 1: LM-minimal

Input: KB
Output: R

∗

KB

1 PKB := {p | p is a propositional letter occurring in KB};
2 Let U be the universe of valuations for the vocabulary PKB;
3 R0(v) := 0 for every v ∈ U ;
4 S0 := ∅;

5 S1 := JKBKR0 ;
6 i := 1;
7 while Si 6= Si−1 do

8 Ri := (Ri−1)
1
Si

;

9 Si+1 := JKBKRi ;
10 i := i+ 1;

11 R
∗

KB := (Ri)
∞

Si
;

12 return R
∗

KB

Example 5.1 Let us assume, for the sake of the example, that we are only
talking about birds. Let KB := {•⊤ → (¬p ∧ ¬r), •p → •¬f, •r → •f, p → ¬r}
(the most typical things are neither penguins nor robins, typical penguins are
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typical non-flying birds, and typical robins are typical flying birds, penguins
are not robins). The procedure initialises with all valuations being assigned the
rank of 0. The only valuations that satisfy all three sentences w.r.t. R0 are those
satisfying both ¬p and ¬r. Thus S1 := JKBKR0 = {{¬f,¬p,¬r}, {f,¬p,¬r}} and
so we obtain R1 by changing the rank of all valuations not in S1 to 1. Note that
J•¬fKR1 = {{¬f,¬p,¬r}} and J•fKR1 = {{f,¬p,¬r}}, so we can see that none of
the valuations in U \ S1 is able to satisfy either •p → •¬f or •r → •f w.r.t. R1.
As a consequence, S2 := JKBKR1 = S1 and so the procedure terminates here
with R∗

KB as the ranked interpretation in which all valuations in S1 ({¬f,¬p,¬r}
and {f,¬p,¬r}) have rank 0 and all other valuations have rank ∞. See Figure 2
for the ranked interpretations generated by this example. �

R0 0 {¬f,¬p,¬r}, {¬f,¬p, r}, {¬f, p,¬r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}

R1
1 {¬f,¬p, r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}
0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB

∞ {¬f,¬p, r}, {¬f, p, r}, {f,¬p,¬r}, {f,¬p, r}, {f, p,¬r}, {f, p, r}
0 {¬f,¬p,¬r}, {f,¬p,¬r}

R∗
KB with the valuations of rank ∞ omitted: 0 {¬f,¬p,¬r}, {f,¬p,¬r}

Figure 2: The ranked interpretations generated in Example 5.1.

We now need to show that: (i) the algorithm always terminates; (ii) it
returns a ranked model of KB, and (iii) for any other ranked model R of KB,
we have R

∗
KB ELM R. We know the following about (i) and (ii):

Lemma 5.1 The following hold for each i ≥ 0:

1. Si ⊆ Si+1, i.e., JKBKRi ⊆ JKBKRi+1 ;

2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ JKBKRi ;

3. Ri is a ranked interpretation.

Proof:
See A.1. �

From Item 1 in Lemma 5.1 above, we know the algorithm terminates, since
it generates a sequence of ranked interpretations (by Item 3) in which the set of
valuations satisfying KB increases monotonically from one ranked interpretation
to the next. Since each of these is finite, and since there is a finite number of
valuations, the stopping criterion in Step 3 of the algorithm is guaranteed to
occur eventually.

To show that the algorithm returns a ranked model of KB it suffices to show
the following.
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Lemma 5.2 For every KB and every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof:
See A.2. �

So, at each stage of the algorithm, the current ranked interpretation, when
those valuations not satisfying KB are excluded, forms a ranked model of KB.
Since the output R∗

KB takes precisely this form we have the following result.

Proposition 5.1 R∗
KB 


∧
KB.

Proof:
Follows from Lemma 5.2 and the construction of R∗

KB. �

Next we want to show that for any other ranked model R of KB, we have
R

∗
KB ELM R.

Lemma 5.3 Let R∗
KB

:= (L0, . . . , Ln−1, L∞) and let R := (M0, . . . ,Mn−1,M∞)
be any other ranked model of KB. Let i ∈ {0, . . . , n − 1}. If Lj = Mj for all
j < i, then Mi ⊆ Li.

Proof:
See A.3. �

From this lemma we can state:

Proposition 5.2 Consider any KB and let R be a ranked model of KB. Then
R∗

KB ELM R.

We are now in a position to define our first form of entailment for PTL.

Definition 5.2 (LM-entailment) Let KB ⊆ L• and α ∈ L•. We say KB
LM-entails α, denoted KB |≈LM α, if R∗

KB 
 α. Its corresponding consequence
operator is defined as CnLM(KB) := {α ∈ L• | R∗

KB 
 α}.

The next result outlines which properties from the previous section are sat-
isfied by CnLM(·).

Theorem 5.2 CnLM(·) satisfies P1–P7, P9, and P10, but not P8.

Proof:
For P1, Proposition 5.1 guarantees that R∗

KB is a model of KB. About P2,
by Proposition 5.2, R∗

KB is the LM-minimum model of KB. If R∗
KB 
 α, R∗

KB

must also be the LM-minimum model of KB ∪ {α}. For P3, note that R
∗
KB

is a ranked model of KB (Lemma 5.1, Item 3, plus Proposition 5.1), and so
if α ∈ Cn0(KB), then α ∈ R∗

KB. P4 is an immediate consequence of the
satisfaction of P7.3 P5 is an immediate consequence of the satisfaction of P6.

3For this conclusion we need the requirement (specified in Section 2) that P contains at
least two elements.
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The latter holds by definition of CnLM(KB). For P7, see Section 2.2. P9 is an
immediate consequence of the satisfaction of P7.

Now consider P10. From right to left, it is an immediate consequence of P3.
From left to right, assume there is a formula •⊤ → α that is in CnLM(KB), but
not in Cn0(KB). It means that there is a ranked model R of KB that has
in its lower layer a propositional valuation v s.t. v 
 ¬α; but, given that the
model R∗

KB defining CnLM(KB) is the LM-minimum model of KB, then also the
lower layer of R∗

KB must contain the valuation v, against the hypothesis.
Failure of P8 can be seen in Example 5.1. There we have ¬p ∈ CnLM(KB)

(there is no penguin) because ¬p holds in both valuations occurring in R∗
KB.

But ¬p 6∈ Cn0(KB), because there does exist a ranked model R of KB for which
JpKR 6= ∅, for instance the model R2 appearing in Example 6.1 below. Thus
LM-entailment forces us to infer ¬p from KB. �

In summary then, LM-entailment satisfies all our postulates, except for Strict
Entailment (P8). Lest this be seen as a negative result, bear in mind that LM-
entailment satisfies Conditional Strict Entailment (P9), the weakened version
of Strict Entailment, and therefore also Classical Entailment.

In the next section we turn to a form of entailment satisfying Strict Entail-
ment, but at the price of having to forego Conditional Rationality, and therefore
the Single Model postulate as well.

6 PT-entailment

In this section we consider another option for entailment based on a version of
minimality, and derived from the characterisation of rational closure by Gior-
dano et al. [17, 19]. The general idea is to respect the principle of presumption
of typicality (see Section 3), We shall refer to this form of entailment as Pre-
sumption of Typicality entailment, shortened to PT-entailment. Such a principle
indicates the way in which the property (RM) should be satisfied. If we have
α |∼ γ in our knowledge base KB, then, in order to satisfy (RM), we have to add
either α |∼ ¬β or α∧β |∼ γ. The presumption of typicality requires that, when-
ever possible, we prefer the latter (that corresponds to a constrained application
of monotonicity) over the former. Semantically, given the ranked models of a
knowledge base KB, this corresponds to considering only those models in which
every valuation is taken as typical as possible, that is, it is ‘pushed downward’
in the model as much as possible, modulo the satisfaction of KB.

In order to identify the interpretations that are necessary for the definition
of a notion of entailment, we introduce a preference relation EPT on the set of
ranked interpretations that follows directly from the presumption of typicality.

Definition 6.1 (Relation EPT) For two ranked interpretations R1 and R2,
R1 EPT R2 if and only if for every w ∈ U , R1(w) ≤ R2(w). R1 ⊳PT R2 if and
only if R1 EPT R2 and not R2EPTR1.

It is easy to check that EPT is a pre-order. Consistent with the principle of
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presumption of typicality, as a guideline in the choice of the relevant interpreta-
tions, the relation EPT can be used to identify the relevant interpretations for
the definition of a notion of entailment: we choose the models of KB in which
the valuations are presumed to be as typical as possible, that is, the relevant
models are those that are in minEPT

Mod(KB). Then, KB entails α if and only
if α holds in all the (preferred) models in minEPT

Mod(KB).
If we consider knowledge bases composed only of classical non-monotonic

conditionals α |∼ β, it corresponds exactly to LM-minimality as defined in
the previous section. Nevertheless, given the extra expressive power of PTL,
we obtain the surprising result that the two semantic constructions are not
equivalent anymore. Moreover, in the present context, this notion of minimality
can give back a number of minimal models, as the following example shows.

Example 6.1 Consider the knowledge base KB from Example 5.1. Then, one
can see that minEPT

Mod(KB) = {R1,R2,R3}, where:

R1 : 0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2 :

2 {f, p,¬r}
1 {¬f,¬p,¬r}, {¬f, p,¬r}
0 {f,¬p,¬r}

R3 :

2 {¬f,¬p, r}
1 {f,¬p, r}, {f,¬p,¬r}
0 {¬f,¬p,¬r}

In Example 6.1, note that R1 is the LM-minimum of KB. In fact, it is easy to
check from the characterisation of rational closure in Section 3 and Definition 6.1
that the LM-minimum of KB is always in minEPT

Mod(KB).

Proposition 6.1 For every knowledge base KB, the LM-minimum of KB is in
minEPT

Mod(KB).

Proof:
Consider the definition of the preference relation for LM-minimality.

R1 ELM R2 if and only if either Li =Mi for all i ∈ {0, . . . , n− 1,∞},
or Lj ⊇Mj for the smallest j ≥ 0 s.t. Lj 6=Mj.

Let R = (L0, . . . , Ln−1, L∞) be a model of a knowledge base KB that is
minimal w.r.t. ELM, that is, there is no model R′ s.t. R′ ⊲LM R. We have to
prove that it is minimal also w.r.t. EPT. If this were not the case, we would
have a model R

′ = (M0, . . . ,Mn−1,M∞) of KB s.t. there is a valuation w s.t.
R′(w) < R(w). But then we would have that for some i ∈ N, Li ⊆ Mi, and
Lj =Mj for all 0 ≤ j < i. Hence R′ would be preferred also w.r.t. ELM. �

We are now ready for the definition of our second type of entailment:
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Definition 6.2 (PT-Entailment) Let KB ⊆ L• and α ∈ L•. We say KB
PT-entails α, denoted KB |≈PT α, if and only if minEPT

Mod(KB)) ⊆ Mod(α).

Its corresponding consequence operator CnPT(·) is inferentially weaker than
CnLM(·), since it is defined on a possibly larger set of models.

Proposition 6.2 CnPT(·) satisfies P1–P4 and P7–P10.

Proof:
P1. CnPT (KB) is defined using only models of KB.
P2. If every PT -minimal model of KB is also a model of α, they must also
be the PT -minimal models of KB ∪ {α}. Assume R is a PT -minimal model
of KB and R 
 α, but R /∈ minEPT

Mod(KB ∪ {α}), it means that there is a
model R′ of KB ∪ {α} s.t. R′ EPT R, but in such a case R would not be in
minEPT

Mod(KB).
Now assume R is a PT -minimal model of KB ∪ {α} but not of KB, since

there is a KB-model R′ s.t. R′ EPT R and R′ ∈ minEPT
Mod(KB); but in such

a case, R′ would not satisfy α, against the hypothesis.
P3. Every model in minEPT

Mod(KB) is by definition a ranked model of KB,
hence it takes part to the definition of Cn0(KB). So, if α ∈ Cn?(KB), then
α ∈ R∗.
P4. It is an immediate consequence of the satisfaction of P7.4

P7. See the analagous result by Giordano et al. [19, Section 2.3.2]; in par-
ticular Theorem 2, that implies that in case of a conditional KB the use of
PT-minimality leads to a single minimal model, characterising Rational Clo-
sure.
P8. Let α be a propositional formula s.t. α /∈ Cn0(KB): then there is a
ranked model R of KB s.t. R(v) ≤ ∞ for some v s.t. v 
 ¬α. Either R is
a PT -minimal model of KB itself, or there is a PT -minimal model R′ of KB
s.t. R′ EPT R; that is, it must be the case that R′(v) ≤ ∞ for some model
R′ ∈ minEPT

Mod(KB), that in turn implies that α /∈ CnPT (KB).
P9. It is an immediate consequence of the satisfaction of P7.
P10. It is a direct consequence of Proposition 6.1 and the satisfaction of P10
for LM-entailment. �

Unfortunately, Conditional Rationality (P5) is not valid and therefore, nei-
ther is the Single Model postulate (P6).

Theorem 6.1 There is some KB such that the conditional induced by CnPT(KB)
is not a rational conditional.

To see this, consider Example 6.1: we have •¬p → ¬r ∈ CnPT(KB) (typical
non-penguins are not robins—since we know the most typical things are not
robins), but neither •¬p → ¬f ∈ CnPT(KB), nor •(¬p ∧ f) → ¬r ∈ CnPT(KB),
which means the rational monotonicity property (RM) is not satisfied.

4As in Theorem 5.2, for this conclusion we need the requirement (specified in Section 2)
that P contains at least two elements.
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On the other hand, observe that ¬p /∈ CnPT(KB). Recall from the proof
of Theorem 5.2 that we used the fact that ¬p ∈ CnLM(KB) to show that LM-
entailment does not satisfy Strict Entailment (P8).

7 PT’-entailment

As we have shown above, relying on LM-minimality results in the loss of prop-
erty P8 (Strict Entailment), while using PT-minimality results in the loss of the
uniqueness of the minimal model (P6) and the rationality of our conditional rea-
soning (P5). In this section we consider a third possible form of entailment—one
in which we aim to augment the inferential power w.r.t. ranked entailment while
preserving P8. In doing so we still rely on PT-minimality, but among the PT-
minimal models we consider only the ones with the maximal sets of possible valu-
ations (w.r.t. ⊆). That is, we let min⊇EPT

Mod(KB) := {R ∈ minEPT
Mod(KB) |

there is no R′ ∈ minEPT
Mod(KB) s.t. UR

′

⊃ UR}.

The corresponding entailment relation |≈PT′ can be defined as follows.

Definition 7.1 (PT’-Entailment) Let KB ⊆ L• and α ∈ L•. We say KB

PT’-entails α, denoted KB |≈PT′ α, if and only if min⊇
EPT

Mod(KB) ⊆ Mod(α).

For example, in Example 6.1 we would consider only R2 and R3.
Our first result regarding PT’-entailment is that it is inferentially stronger

than PT-entailment.

Proposition 7.1 For every formula α, if KB |≈PT α then KB |≈PT′ α. Con-
versely, there is a fomula α s.t. KB |≈PT′ α and KB 6|≈PT α.

Proof:
Note firstly that min⊇

EPT
Mod(KB) ⊆ minEPT

Mod(KB) for every KB implies

that |≈PT⊆|≈PT′ . Moreover, observe from Example 7.1 that KB′ |≈PT′ •⊤ → ¬f
but KB′ 6|≈PT •⊤ → ¬f. �

Example 7.1 Consider the knowledge base KB′ := {•⊤ → (¬p ∧ ¬r), •p →
¬f, •r → •f, p → ¬r}, which is a modified version of the knowledge KB from
Example 5.1. The only difference is that now we state that typical penguins are
non-flying birds, not that they are typical non-flying birds.

Then, one can check that minEPT
Mod(KB′) = {R1,R2}, where:

R1 :

2 {f, p,¬r}
1 {¬f, p,¬r}
0 {¬f,¬p,¬r}, {f,¬p,¬r},

R2 :
2 {¬f,¬p, r}, {f, p,¬r}
1 {f,¬p, r}, {f,¬p,¬r}, {¬f, p,¬r}
0 {¬f,¬p,¬r}
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while min⊇EPT
Mod(KB′) = {R2}.

Unfortunately, while PT’-entailment is an improvement over PT-entailment
in terms of inferential strength, it is weaker than PT-entailment when it comes
to the satisfaction of the list of desirable properties. That is, it satisfies, and fails
to satisfy, the same properties as PT-entailment, except for Typical Entailment
(P10), which PT-entailment satisfies, but PT’-entailment does not.

Proposition 7.2 CnPT′(·) satisfies P1–P4 and P7–P9, but does not satify P5,
P6, and P10.

Proof:
Regarding P1, P2, P3, P4, and P9 the proof for CnPT ′(·) is the same as for
CnPT (·) (Proposition 6.2 above).
Regarding the failure of P5, consider Example 6.1. In this example, while
minEPT

Mod(KB) = {R1,R2,R3}, we have that min⊇EPT
Mod(KB) = {R2,R3}.

We can use the same case used in the proof of Theorem 6.1: we have KB |≈PT′

•(¬p) → ¬r, but neither KB |≈PT′ •(¬p) → ¬f, nor KB |≈PT′ •(¬p ∧ f) → ¬r
hold.
The failure of P5 immediately implies the failure of P6.
P7. As pointed out in Proposition 6.2, in case we are dealing with a conditional
KB, deciding PT -minimality over a consistent conditional KB gives back a single
minimal model, characterising Rational Closure. It follows immediately that
such a model is also the only PT’ -minimal one.
P8. Again, it follows from the satisfaction of P8 for PT -entailment (see Propo-
sition 6.2). Let KB be a knowledge base and α be a propositional formula. If
there is a PT -minimal model R s.t. R(v) ≤ ∞ for some v 6
 α, then, by defini-

tion, there must be also in min⊇EPT
Mod(KB) a model R′ of KB s.t. R′(v) ≤ ∞.

For the failure of P10, we consider Example 7.1 and to the case used in the
proof of Proposition 7.1: KB′ |≈PT′ •⊤ → ¬f but, since KB′ 6|≈PT •⊤ → ¬f and
|≈PT satisfies Ampliativeness (P3), •⊤ → ¬f is not in Cn0(KB′).

�

8 Making sense of the impossibility result

Theorem 4.1 in Section 4 shows that there is no PTL consequence operator
satisfying all of our postulates—more specifically, none satisfying P1, P2, P3,
P5, P8, and P10. This raises the important question of which of these postulates
ought to be foregone in the search for an appropriate form of PTL entailment.
In trying to find an answer to this question, it is useful to consider the three
forms of entailment we proposed in the previous sections. The answer seems
to be that it makes sense to consider (at least) two forms of entailment for
PTL, represented here by LM-entailment and PT-entailment. PT’-entailment
is not viewed as a viable option, given that it satisfies fewer properties than
PT-entailment. In essence then, it comes down to a choice between having a
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form of entailment that satisfies Strict Entailment (PT-entailment), and one
that satisfies the Single Model postulate and Conditional Rationality, i.e., is
based on a rational conditional (LM-entailment).

The advantage of LM-entailment is that it satisfies all postulates except
for Strict Entailment, which includes not only Single Model and Conditional
Rationality, but also Conditional Strict Entailment and Classical Entailment,
the weakened versions of Strict Entailment. On the other hand, the argument for
PT-entailment is that the Single Model property is too restrictive in the context
of full PTL, and ought to be dropped. That is, in a logic as expressive as PTL
in which there are not any restrictions on the typicality operator, any form of
entailment based on minimality, and adhering to the presumption of typicality,
as outlined in Section 6, is likely to violate the Single Model property.

The point of view that different forms of entailment can be appropriate in
enriched versions of propositional logic, particularly enriched versions dealing
with aspects of typicality, is not surprising, nor new. Lehmann [21] makes the
case for two forms of entailment for the conditional logic discussed in Section 2.1
on which PTL is based. He draws a distinction between prototypical reasoning,
corresponding to rational closure as discussed in Section 2.2, and presumptive
reasoning. The details of the differences between prototypical and presumptive
reasoning is not that important for our purposes here. The important point is
that differences in context will determine which form of entailment is appro-
priate. It is our contention that the same principle applies to the differences
between LM-entailment and PT-entailment.

As we have seen above, the difference between these two forms of entailment
comes down to a choice between Strict Entailment on the one hand, Conditional
Rationality (and Single Model) on the other hand. Employing LM-entailment
ensures that we remain rational (i.e., satisfying all the KLM properties), but at
the cost of going beyond Tarskian monotonicity for typicality-free sentences.
Conversely, making use of PT-entailment allows us to remain Tarskian for
typicality-free sentences, but forces us to forego rationality, and in particular,
the rational monotonicity property RM. Intuitively then, LM-entailment is the
more permissive form of entailment here. Not only do we remain rational, un-
like PT-entailment, but we do so at the cost of allowing the entailment of more
typicality-free sentences than permitted by PT-entailment. We conclude this
section with an example illustrating this point.

Example 8.1 Consider again the knowledge base KB := {•⊤ → (¬p∧¬r), •p →
•¬f, •r → •f, p → ¬r} introduced in Example 5.1. It is not hard to verify that
both LM-entailment and PT-entailment sanction the conclusion that typical
non-robins are not penguins (KB |≈LM •(¬r) → ¬p and KB |≈PT •(¬r) → ¬p),
and do not allow for the entailment that typical non-robins cannot fly (KB 6|≈LM

•(¬r) → ¬f and KB 6|≈PT •(¬r) → ¬f). This leaves us with a choice. On the one
hand it is reasonable to conclude from this that typical flying non-robins are
not penguins. In fact, rational monotonicity requires of us to be able to draw
this conclusion. But in order to do so, we need to be able to conclude that there
are no penguins, which violates Strict Entailment. This is the route followed by
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LM-entailment. The other option would be to insist that we do not have enough
information to conclude that there are no penguins, but in the process of doing
so, also forego the conclusion that typical flying non-robins are not penguins.
That is, we insist on Strict Entailment at the expense of rational monotonicity.
This is the path followed by PT-entailment. �

9 Conclusion

The focus of this paper is an investigation into the entailment problem for the
logic PTL. We approached the problem from two angles: an abstract formal per-
spective, in which a set of appropriate postulates were presented and discussed,
and a constructive perspective, in which three specific entailment relations were
defined and studied. The primary conclusion to be drawn from this investigation
is that a logic as expressive as PTL supports more than one form of entailment.
This conclusion is supported from the abstract perspective via an impossibility
result, as well as through the constructive approach via the definition of two of
the three distinct types of PTL entailment: LM-entailment and PT-entailment.
While both forms of entailment are generalisations of rational closure, only one,
LM-entailment, retains all the rationality properties associated with rational
closure, formalised as the Conditional Rationality postulate (P5). However, it
does not satisfy Strict Entailment (P8), a postulate which requires an entailment
relation to remain Tarskian for conclusions not involving typicality, although it
satisfies weakened versions of Strict Entailment (P9 and P9′). On the other
hand, the other form of entailment we studied, PT-entailment, satisfies P8, but
not Conditional Rationality (P5).

The framework of Booth et al. [1, 2] is, to the best of our knowledge, the first
attempt to introduce a full-fledged typicality operator into propositional logic.
In terms of other related work, the closest we are aware of is the restricted form of
typicality for description logics by Giordano et al. [16]. However, a consequence
of their restricted use of typicality is that a propositional version of their logic
would correspond to a KLM-style conditional logic in which rational closure
behaves well, and which is much less expressive than PTL.

Britz et al. [6] and Giordano et al. [16] have investigated the connection
between the KLM approach and Gödel-Löb modal logic, which is closely re-
lated to PTL. Exploiting this connection should deliver an axiomatisation of
an inference relation corresponding to ranked entailment, but it does not seem
useful for modelling entailment relations based on minimisation as LM- and
PT-entailment.

For future work, an obvious open question is whether our conjecture, that
the subsets of postulates satisfied by LM-entailment and PT-entailment respec-
tively provide appropriate abstract formalisations of two distinct forms of PTL
entailment, can be formalised through representation theorems. From a compu-
tational perspective, it is worth investigating whether, as is the case for rational
closure for conditional logics, the computation of (the different forms of) PTL
entailment can be reduced to a series of classical entailment checks.
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Our results in the propositional setting pave the way for an investigation
of appropriate forms of entailment in other, more expressive, preferential ap-
proaches, such as preferential description logics [8, 18, 5, 10, 12] and modal
logics of defeasibility [7, 9, 11, 13]. The move to logics with more structure is
of a challenging nature, and a simple rephrasing of our approach to these log-
ics may not deliver the expected results. We are currently investigating these
issues.
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Appendix

A Proof of Lemmas 5.1, 5.2 and 5.3

A.1 Proof of Lemma 5.1

Lemma 5.1 The following hold for each i ≥ 0:

1. Si ⊆ Si+1, i.e., JKBKRi ⊆ JKBKRi+1 ;

2. For all v1, v2 ∈ U , if Ri(v1) < Ri(v2), then v1 ∈ JKBKRi ;

3. Ri is a ranked interpretation.

Proof:
We show all three simultaneously by complete induction on i. So, assume all
of Items 1, 2 and 3 hold for all m < i. We will show this implies all three hold
also for i. We assume each α ∈ KB is in normal form.
1. JKBKRi ⊆ JKBKRi+1 .

Let v ∈ JKBKRi and let α ∈ KB with α =
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi) (for some

s, t ≥ 0). We must show v ∈ JαKRi+1 . Since v ∈ JKBKRi we know v ∈ JαKRi .
Hence we know that one of the following must hold:

• v 6∈ J•θkKRi for some k: This means (since θk is propositional) v is not
≺Ri-minimal in JθkK

Ri = JθkK
Ri+1 . But then it is also not ≺Ri+1-minimal

since, by construction, if Ri(v) ≤ Ri(w) then Ri+1(v) ≤ Ri+1(w). Hence
in this case v 6∈ J•θkKRi+1 .

• v ∈ JφKRi : In this case also v ∈ JφKRi+1 , since JφKRi = JφKRi+1 (because
φ is purely propositional).

• v ∈ J•ψkK
Ri for some k: This means v is ≺Ri-minimal in JψkK

Ri . But
then it is also ≺Ri+1-minimal, since we assumed v ∈ JKBKRi = Si+1, and
so by construction of Ri+1 we have that Ri+1(w) < Ri+1(v) if and only
if Ri(w) < Ri(v) for all w ∈ U . Since JψkKRi = JψkKRi+1 (since ψk is
purely propositional) we obtain that v is ≺Ri+1-minimal in JψkK

Ri+1 , i.e.,
v ∈ J•ψkK

Ri+1 .

Thus in all three possible cases we obtain v ∈ JαKRi+1 as required.
2. Ri(v1) < Ri(v2) implies v1 ∈ JKBKRi .
Suppose Ri(v1) < Ri(v2). Observe that, by construction, this can only be the
case if i > 0. Then either Ri−1(v1) < Ri−1(v2) or v2 /∈ Si. If Ri−1(v1) <
Ri−1(v2) then, by the inductive hypothesis, v1 ∈ JKBKRi−1 , while if v2 /∈ Si,
then v1 ∈ Si = JKBKRi−1 . So either way we get v1 ∈ JKBKRi−1 and so we get
the desired conclusion by applying JKBKRi−1 ⊆ JKBKRi which was just proved
in Item 1 above.
3. Ri is a ranked interpretation.
By construction it immediately follows that Ri is a function from U to N∪{∞}.
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We need to show the convexity property: if Ri(u) = j then, for every k such
that 0 ≤ k < j, there is a v ∈ U for which Ri(v) = k. If i = 0, this follows
immediately (since R0(u) = 0 for all u ∈ U). Otherwise we have by the inductive
hypothesis that Ri−1 is a ranked interpretation. We have two cases. (1) Si =
Si−1: Then Ri = (Ri−1)

∞
Si

from which convexity follows immediately. (2)
Si 6= Si−1: Then Ri = (Ri−1)

1
Si

from which convexity also follows immediately.
�

A.2 Proof of Lemma 5.2

Lemma 5.2 For every KB and every i > 0, (Ri)
∞
Si

is a ranked model of KB.

Proof:
Let R denote (Ri)

∞
Si

. We need to show that for every valuation v ∈ UR,

i.e., every v ∈ Si = JKBKRi−1 , and for every α ∈ KB, we have v ∈ JαKR .
Since v ∈ JαKRi−1 we know one of the following must hold (recalling that α is
expressed in normal form

∧
i≤t •θi → (φ ∨

∨
i≤s •ψi).):

• v 6∈ J•θkKRi−1 for some k: This means v is not ≺Ri−1-minimal in JθkK
Ri−1 .

But then it is also not ≺R-minimal in JθkKR = JθkK
Ri−1 ∩ Si, since if

w ≺Ri−1 v and w ∈ JθkK
Ri−1 , then from the former we know w ∈ Si by

Item 2 of the previous lemma. Hence in this case v 6∈ J•θkKR.

• v ∈ JφKRi−1 : In this case also v ∈ JφKR, since JφKR = JφKRi−1∩Si (because
φ is purely propositional).

• v ∈ J•ψkK
Ri−1 for some k: This means v is ≺Ri−1-minimal in JψkK

Ri−1 .
But then it is also ≺R-minimal in JψkK

R = JψkKRi−1∩Si, since ≺Ri−1⊆≺R.
Hence v ∈ J•ψkK

R.

Thus in all three possible cases we obtain v ∈ JαKR as required. �

A.3 Proof of Lemma 5.3

Lemma 5.3 Let R∗
KB

:= (L0, . . . , Ln−1, L∞) and let R := (M0, . . . ,Mn−1,M∞)
be any other ranked model of KB. Let i ∈ {0, . . . , n − 1}. If Lj = Mj for all
j < i, then Mi ⊆ Li.

Proof:
Let v ∈Mi. By construction, Si = JKBKRi−1 where Ri−1 = (L0, . . . , Li−1, (U \⋃

j<i Lj , ∅). Let α ∈ KB, with α =
∧

i≤t •θi → (φ ∨
∨

i≤s •ψi) (for some
s, t ≥ 0). We must show v satisfies α in Ri−1, so assume v satisfies ¬φ and
is a minimal θk-state in Ri−1 for all k. We must show v is a minimal ψk-
state in Ri−1 for at least one k. Since we assume Mj = Lj for all j < i, we
have Ri−1 = (M0, . . . ,Mi−1, (U \

⋃
j<iMj), ∅). Since v ∈ Mi, we can show

that, for any propositional sentence λ, we have that v is a minimal λ-state
in (M0, . . . ,Mi−1, (U \

⋃
j<iMj), ∅) if and only if it is a minimal λ-state in

(M0, . . . ,Mi, ∅). Thus, from the fact that (M0, . . . ,Mi, ∅) is a ranked model of
KB, we obtain our conclusion. �
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