
A Methodology for Handling Data Movements by

Anticipation: Position Paper?

Raphaël Bleuse1,2[0000−0002−6728−2132], Giorgio
Lucarelli

1[0000−0001−7368−355X], and Denis Trystram1[0000−0002−2623−6922]

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG
38000 Grenoble, France

giorgio.lucarelli@imag.fr, denis.trystram@imag.fr
2 FSTC/CSC, University of Luxembourg

Luxembourg
raphael.bleuse@uni.lu

Abstract. The enhanced capabilities of large scale parallel and dis-
tributed platforms produce a continuously increasing amount of data
which have to be stored, exchanged and used by various tasks allocated
on di�erent nodes of the system. The management of such a huge com-
munication demand is crucial for reaching the best possible performance
of the system. Meanwhile, we have to deal with more interferences as
the trend is to use a single all-purpose interconnection network whatever
the interconnect (tree-based hierarchies or topology-based heterarchies).
There are two di�erent types of communications, namely, the �ows in-
duced by data exchanges during the computations, and the �ows re-
lated to Input/Output operations. We propose in this paper a general
model for interference-aware scheduling, where explicit communications
are replaced by external topological constraints. Speci�cally, the inter-
ferences of both communication types are reduced by adding geometric
constraints on the allocation of tasks into machines. The proposed con-
straints reduce implicitly the data movements by restricting the set of
possible allocations for each task. This methodology has been proved to
be e�cient in a recent study for a restricted interconnection network
(a line/ring of processors which is an intermediate between a tree and
higher dimensions grids/torus). The obtained results illustrated well the
di�culty of the problem even on simple topologies, but also provided a
pragmatic greedy solution, which was assessed to be e�cient by simula-
tions. We are currently extending this solution for more complex topolo-
gies. This work is a position paper which describes the methodology, it
does not focus on the solving part.

Keywords: Scheduling · A�nity · Data movements · Heterogeneity ·

Topology · HPC

? This work has been partially supported by a DGA-MRIS scholarship, and is par-
tially funded by the joint research programme UL/SnT-ILNAS on Digital Trust for
Smart ICT.



2 R. Bleuse et al.

1 Introduction

In High Performance Computing (HPC), the demand for computation power is
steadily increasing [27]. To meet up the challenge of always more performances,
while being constrained by ever growing energy costs, the architecture of super-
computers also grows in complexity at the whole machine scale. This complexity
arises from various factors: �rstly, the size of the machines (supercomputers now
integrates millions of cores); secondly, the heterogeneity of the resources (various
architectures of computing nodes, mixed workloads of computing and analyt-
ics, nodes dedicated to I/O, etc.); and lastly, the interconnection topology. The
architectural evolutions of the interconnection networks at the whole machine
scale pose two main challenges that are described as follows. First, the commu-
nity proposed several types of topologies including hierarchies and heterarchies
(which are based on structural well-suited topologies), the trend today is to cre-
ate mixed solutions of tree-like machines with local structured toplogies [22];
and second, the interconnection network is usually unique within the machine
(which means that the network is shared for various mixed data �ows). Sharing
such a single multi-purpose interconnection network begets complex interactions
(e.g., network contention) between running applications. These interactions have
a strong impact on the performances of the applications [4,15], and hamper the
understanding of the system by the users [11]. As the volume of processed data
increases, so does the impact of the network.

We propose in this work a generic framework for interference-aware schedul-
ing. More precisely, we identify two main types of interleaved �ows: the �ows in-
duced by data exchanges for computations, and the �ows related to I/O. Rather
than explicitly taking into account these network �ows, we address the issue of
harmful or ine�cient interactions by constraining the shape of the allocations.
Such an approach aims at taking into account the complexity of the new HPC
platforms in a qualitative way that is more likely to scale properly. The schedul-
ing problem is then de�ned as an optimization problem with the platform (nodes
and topology) and the jobs' description as input. The objective is to minimize
the maximum completion time, maximize the throughput or optimize any other
relevant objective while enforcing constraints on the allocations.

The purpose of this paper is to describe the methodology for interference-
aware scheduling. The design of an algorithm and the corresponding simula-
tions/experiments are another side of this subject. We are currently studying
e�cient solutions for assessing this methodology, but this paper does not focus
on this point.

2 General Problem Setting

Modelization. A platform is of a set V of m nodes divided in two sets: mC nodes
dedicated to computations VC, and mI/O nodes that are entry points to a high
performance �le system VI/O . The nodes are indexed by i ∈ 0, . . . ,m− 1. This



A Methodology for Handling Data Movements by Anticipation 3

numbering provides an arbitrary ordering of the nodes. We distinguish two in-
teresting distributions of the nodes:

1. coupled I/O, where some compute nodes are also entry points for the I/O op-
erations (i.e., VI/O ⊆ VC = V);

2. separate I/O, when there is no overlap between compute and I/O nodes (i.e.,
VI/O ∩ VC = ∅).

We also distinguish two ways of interacting with the I/O nodes, namely, shared
I/O when any number of jobs can access an I/O node at any time, and exclusive
I/O when an I/O node is exclusively allocated to a job for the job's lifespan.
We further annotate node symbols with ?I/O (?C, resp.) if there is a need to
distinguish I/O nodes (compute nodes, resp.).

The nodes communicate thanks to an interconnection network with a given
topology (i.e., the connected graph of the interconnection) or by a hierarchi-
cal topology (tree-like interconnection). The localization of every node within
the topology is known. We de�ne the distance that intrinsically derives from a
topology as follows:

De�nition 1 (Distance) The distance dist (i, i′) between two nodes i and i′

(either compute or I/O) is de�ned as the minimum number of hops to go from i to
i′. For hierarchical topologies, the distance is de�ned as the number of traversed
levels (switches) to go from i to i′.

Batch schedulers are a critical part of the software stack managing super-
computers: their goal is to e�ciently allocate resources (nodes from V in our
case) to the jobs submitted by the users of the platform. The jobs are queued in
a set J of n jobs. Each job j requires a number of compute nodes qCj and some

I/O nodes q
I/O
j . The I/O nodes requirements can either be a number of nodes

(unpinned I/O), or a dedicated subset of VI/O (pinned I/O). The number of
allocated nodes is �xed (i.e., the job is rigid [17]). We denote by V(j) the nodes
allocated to the job j. Each job j requires a certain time pj to be processed, and
it is independent of every other jobs. Once a job starts executing, it runs until
completion (i.e., it cannot be preempted). Finally, any compute node is able to
process at most one job at any time.

Before presenting the constraints we consider in this work, we need to pre-
cisely de�ne the network �ows we target. We distinguish two types of �ows,
directly deriving from the fact that we are dealing with two kinds of nodes.

De�nition 2 (Communication types) We distinguish two types of commu-
nications (see Figure 1):

compute communications are the communications induced by data exchanges
for computations. Such communications occur between two compute nodes
allocated to the same application.

I/O communications are the communications induced by data exchanges be-
tween compute nodes and I/O nodes. Such communications occur when com-
pute nodes read input data, checkpoint the state of the application, or save
output results.



4 R. Bleuse et al.

(a) compute communications (b) I/O communications

Fig. 1: Figuration of the two distinguished types of communications. Note that
some communications stay within the allocation, while others do not. White
nodes represent compute nodes, and black nodes represent I/O nodes.

As stated in the introduction, we do not aim at �nely modeling the context
of execution. We propose here to model the platform in such a way that network
interactions are implicitly taken into account. We enrich the scheduling problem
with alien geometric constraints on the allocations deriving from the platform
topology or the application structure.

Most scheduler implementations are naive, in the sense that they allocate
resources greedily. This is known to impact performances [15], and is the core
di�erence between parallel machine scheduling and packing problems. Constrain-
ing the allocations to enhance performance is however no new idea. For example,
Lucarelli et al. studied the impact of enforcing contiguity or locality constraints
in back�lling scheduling [23]. They showed that enforcing these constraints can
be done at a small computational cost, and has minimum negative impact on
usual metrics such as makespan (i.e., maximum completion time), �ow-time (i.e.,
absolute time spent in the system), or stretch (i.e., time spent in the system rel-
ative to each job size). One may refer to [9,14] for a detailed de�nition of classic
optimization objectives in scheduling.

We go further with this model as we target heterogeneous machines, and
distinguish network �ows. We seek the following properties for the constraints:

� It captures part of the execution context : enforcing the constraint should help
minimize nocuous e�ects arising from the execution context.

� It derives from minimal reliable data: constraints on the allocations are en-
forced ahead of the scheduling decisions. As a result, the proposed constraints
only use the topology of the interconnection network and the size of the al-
location as input data.

� It is cheap to compute: enumerating the list of allocations respecting some
constraints cannot be a performance bottleneck for the scheduler.



A Methodology for Handling Data Movements by Anticipation 5

We study in more detail in the two following sections how to consider these
constraints for structured topologies and for hierarchical topologies.

3 Intrinsic constraints for structured topologies

For the sake of clarity, we consider here a 2D-torus (the same constraints also
hold for other regular topologies like higher-dimensional torus or hypercubes).

Avoiding compute-communication interactions. Considering this classi�cation of
network �ows, we �rst expose three constraints targeting compute communica-
tions.

De�nition 3 (Connectivity) An allocation π is said to be connected i� there
exists a subset Vπ of VI/O such that

(
π ∩ VC

)
∪ Vπ is connected in the graph-

theory sense. Vπ may be empty.

The connectivity constraint ensures, for a given allocation, that there exists a
path without interference between any pair of compute nodes of the allocation.
This however, with regard to the interconnection topology, can either require
support for dynamic routing or demand to the application to implement its own
routing policy. Moreover, it may lead to islets of isolated compute nodes. Hence,
although satisfactory from the graph theoretical point of view, the connectivity
constraint is not su�cient to ensure that compute communication do not in-
terfere. We propose the convexity constraint with the goal of overcoming these
limits.

De�nition 4 (Convexity) An allocation is said to be convex i� it is impossible
for compute communications from any other potential allocation to share an
interconnect link with respect to the underlying routing algorithm.

By taking into account the e�ective routing policy, and by forbidding any po-
tential sharing, the convexity constraint does forbid interactions.

Note that the convexity constraint dominates the connectivity constraint, as
stated in the following Proposition.

Proposition 1 Given any topology, any convex allocation is connected.

De�nition 5 (Contiguity [6, 23]) An allocation is said to be contiguous if
and only if the nodes of the allocation form a contiguous range with respect to
the nodes' ordering.

One has to note that the contiguity constraint is intrinsically unidimensional as
it relies on the nodes' ordering. For topologies such as trees, lines or rings the
ordering is natural. On higher dimension topologies, no natural ordering exists,
and an arbitrary mapping is needed. An usual strategy to order nodes is to
use space-�lling curves (e.g., Z-order curve [24], Hilbert curve [20], etc.) as they



6 R. Bleuse et al.

Fig. 2: Example of a convex allocation (dotted orange contour), and a non-
convex, but connected allocation (dashed blue contour). The underlying topol-
ogy is a 2D-torus, with dimension-order routing. White nodes represent com-
pute nodes, and black nodes represent I/O nodes.

enforce a strong spatial locality. Albing proposes various orderings that may be
more suited for HPC use cases, and a method to evaluate them [3]. Contiguity is
an interesting relaxation of convexity as it o�ers good spatial locality properties
for a reasonable computing cost. It is however unable to ensure that no jobs
could interact.

Avoiding I/O-communication interactions. The constraints exposed so far are
well suited to take into account the compute communications, but not the I/O
communications. Indeed, the compute communications may occur between any
pair of compute nodes within an allocation: we usually describe this pattern
as all-to-all communications. I/O communications, on the other hand, generate
tra�c towards few identi�ed nodes in an all-to-one or one-to-all pattern. Hence,
we propose the locality constraint, whose goal is to limit the impact of the I/O
�ows to the periphery of the job allocations (see Figure 3). We must emphasize
that the locality constraint proposed here is not related to the locality constraint
previously described by Lucarelli et al. [23].

De�nition 6 (Locality) A given allocation for a job j is said to be local i� it
is connected, and every I/O nodes from VI/O(j) are adjacent to compute nodes
from VC(j), with respect to the underlying topology. In other words, VI/O(j) is
a subset of the closed neighborhood of VC(j).

Interestingly, the locality constraint enforces a bound on the number of con-
current jobs that can target a given I/O node.

Proposition 2 Given any topology, any I/O node i, at any time, the number
of local jobs targeting i cannot exceed the number of adjacent compute nodes of
i.



A Methodology for Handling Data Movements by Anticipation 7

Fig. 3: Given an allocation (dotted orange contour) for a job j, the allocation is
local i� j uses a subset of the I/O nodes marked with the orange dot. Foreign
compute nodes potentially impacted by I/O communications of j are depicted
in gray: these nodes can only be in the neighborhood of the allocation thanks to
the locality constraint. The underlying topology is a 2D-torus, with dimension-
order routing. White nodes represent compute nodes, and black nodes represent
I/O nodes.

As a consequence, if the I/O nodes can be shared, the number of concurrent
jobs targeting a given I/O node is bounded by the degree of this I/O node. This
identity obviously also holds for exclusive I/O, but has limited interest in this
case.

4 Intrinsic constraints for hierarchical topologies

Hierarchical platforms are composed of computing nodes and communication
switches. The interconnect is a tree where the leaves are the computing nodes,
and the internal nodes correspond to the switches. A group of leaves connected by
the same switch is a cluster. The communications inside a cluster are negligible
while external communications require to cross all the switches along the unique
path from a node to another. Figure 4 depicts a model of hierarchical platform.

1 2 3 4 5 6 7 8

Fig. 4: Example of a hierarchical topology. White nodes represent compute nodes,
and black nodes represent internal nodes (switches).



8 R. Bleuse et al.

Avoiding compute-communication interactions. In tree-like topologies the three
constraints introduced for torus topologies should be revisited. Speci�cally, the
convexity constraint is not relevant for hierarchical topologies since it implies
that the internal nodes (switches) should be exclusively used by a single appli-
cation, which signi�cantly a�ects the platform utilization. On the other hand,
the contiguity constraint can be naturally applied, by considering an arbitrary
order of the children of any internal node and then numbering the leaves from
left to right. Finally, the de�nition of connectivity constraint does not directly
apply to hierarchical topologies.

The main characteristic of the hierarchical topologies is that there is no
reason to distinguish among nodes that are connected under a common switch.
However, the distance among two nodes of the same allocation is very important.
In what follows, we de�ne two new constraints that are better suited to tree-like
topologies.

De�nition 7 (Proximity) A given allocation π for a job j satis�es the prox-
imity constraint i� the quantity maxi,i′∈π dist(i, i

′) is minimized.

In other words, the maximum distance among any two computing nodes
assigned to the job j should be minimum. Hence, the allocation a�ects the min-
imum number of levels of the tree (see Figures 5b and 5c).

De�nition 8 (Compacity) A given allocation π for a job j is called compact
i� the quantity

∑
i,i′∈π dist(i, i

′) is minimized.

Intuitively, the compacity constraint intents not only to use the minimum
number of levels in the tree, but also to consider two qualitative properties of
the allocation (see Figure 5c). First, compacity implies that an allocation spans
as few clusters as possible. Second, if a cluster is used, the compacity constraint
aims at maximizing the number of nodes allocated within this cluster.

Avoiding I/O-communication interactions. In the previous presentation of hi-
erarchical topologies, the I/O nodes have been implicitly placed at the switch
levels, as it is common in many existing architectures [1]. Let notice that our
analysis also holds where the I/O nodes are located at the leaves level as it is
the case in some architectures like in the interconnect of the private cloud [25].

5 Related Work

Tackling the nocuous interactions arising from the context of execution�or,
more speci�cally, network contention�can be seen as a scheduling problem with
uncertainties. Within this framework, there exist two main approaches to abate
the uncertainty: by either preventing some uncertainties from happening (proac-
tive approach), or by mitigating the uncertainties impact (reactive approach) [5].
We start reviewing some related works in the prevention/mitigation of interac-
tions before discussing monitoring techniques.



A Methodology for Handling Data Movements by Anticipation 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) contiguous, non-proximate, non-compact allocation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b) non-contiguous, proximate, non-compact allocation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(c) non-contiguous, proximate, compact allocation

Fig. 5: Figuration of the constraints on a hierarchical topology. The depicted
allocations contain �ve compute nodes (i.e., qj = 5). White nodes represent
compute nodes, and black nodes represent internal nodes (switches).



10 R. Bleuse et al.

Interactions Prevention. Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into the batch
scheduler. For example, Georgiou et al. studied the integration of TreeMatch

into SLURM [19]. Given the communication matrix of an application, the sched-
uler minimizes the load of the network links by smartly mapping the application's
processes on the resources. This approach however is limited to tree-like topolo-
gies, and does not consider the temporality of communications. Targeting the
mesh/torus topologies, the works of Tuncer et al. [29] and Pascual et al. [26] are
noteworthy. Another way to prevent interactions is to force the scheduler to use
only certain allocation shapes with good properties: this strategy has been im-
plemented in the Blue Waters scheduler [15]. The administrators of Blue Waters
let the scheduler pick a shape among 460 precomputed cuboids.

Yet, the works proposed above only target compute communications. HPC
applications usually rely on highly tuned libraries such as MPI-IO, parallel
netCDF or HDF5 to perform their I/O. Tessier et al. propose to integrate topol-
ogy awareness into these libraries [28]. They show that performing data aggrega-
tion while considering the topology allow to diminish the bandwidth required to
perform I/O. The CLARISSE approach proposes to coordinate the data staging
steps while considering the full I/O stack [21].

Interactions Mitigation. Given a set of applications, Gainaru et al. propose to
schedule I/O �ows of concurrent applications [18]. Their work aim at mitigating
I/O congestion within the interconnection once applications have been allocated
computation resources. To achieve such a goal, their algorithm relies on past I/O
patterns of the applications to either maximize the global system utilization, or
minimize the maximum slowdown induced by sharing bandwidth. Deeper in the
I/O stack, at the I/O node level, the I/O �ows can be reorganized to better
match the characteristics of the storage devices [8].

Application/Platform Instrumentation. The approaches discussed above require
the knowledge of the application communication patterns (either compute or I/O
communications). A lot of e�ort has been put into developing tools to better un-
derstand the behavior of HPC applications. Characterizing I/O patterns is key
as it allows the developers to identify performance bottlenecks, and allows the
system administrator to better con�gure the platforms. Some tools, such as Dar-
shan [10], instrument the most used I/O libraries, and record every I/O-related
function call. The gathered logs provide valuable data for postmortem analysis.
Taking a complementary path, Omnisc'IO aims at predicting I/O performances
during execution [13]. The predictions rely on a formal grammar to model the
I/O behavior of the instrumented application.

These instrumentation e�orts allow for a better use of the scarce communi-
cation resources. However, as they are application-centric, they fail to capture
inter-application interactions. Monitoring of the platform is a way of getting in-
sight on the inter-application interactions [2,16]. For example, the OVIS/LDMS
system deployed on Blue Waters collect 194 metrics on every 27648 nodes every



A Methodology for Handling Data Movements by Anticipation 11

minute [2]. Among the metrics of interest are the network counters: the number
of stalls is a good indicator of congestion [12].

6 Conclusion

The goal of this paper was to propose a methodology for handling data commu-
nications in modern parallel platforms for both structured topology and hierar-
chical interconnects.

Our proposal was to identify relevant constraints that can easily be integrated
into an optimization problem. We succesfuly applied this methodology for a
speci�c topology (line/ring of processors) [7]. We are currently working on the
design of a generic heuristic that can address several topologies.

References

1. TGCC Curie Supercomputer, http://www-hpc.cea.fr/en/complexe/

tgcc-curie.htm

2. Agelastos, A., Allan, B.A., Brandt, J.M., Cassella, P., Enos, J., Fullop, J., Gen-
tile, A.C., Monk, S., Naksinehaboon, N., Ogden, J., Rajan, M., Showerman, M.T.,
Stevenson, J., Taerat, N., Tucker, T.W.: The Lightweight Distributed Metric Ser-
vice: A Scalable Infrastructure for Continuous Monitoring of Large Scale Comput-
ing Systems and Applications. In: SC. pp. 154�165. IEEE (Nov 2014)

3. Albing, C.: Characterizing Node Orderings for Improved Performance. In:
PMBS@SC. pp. 6:1�6:11. ACM (2015)

4. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There Goes the Neighborhood:
Performance Degradation due to Nearby Jobs. In: SC. pp. 41:1�41:12. ACM (Nov
2013)

5. Billaut, J.C., Moukrim, A., Sanlaville, É.: Flexibility and Robustness in Scheduling.
Control Systems, Robotics and Manufacturing, Wiley (2008)

6. Bª¡dek, I., Drozdowski, M., Guinand, F., Schepler, X.: On contiguous and non-
contiguous parallel task scheduling. Journal of Scheduling 18(5), 487�495 (Oct
2015)

7. Bleuse, R., Dogeas, K., Giorgio, L., Mounié, G., Trystram, D.: Interference-Aware
Scheduling using Geometric Constraints. In: Euro-Par (Aug 2018), forthcoming

8. Boito, F.Z., Kassick, R.V., Navaux, P.O.A., Denneulin, Y.: Automatic I/O schedul-
ing algorithm selection for parallel �le systems. Concurrency and Computation:
Practice and Experience 28(8), 2457�2472 (Aug 2016)

9. Brucker, P.: Scheduling Algorithms. Springer, �fth edition edn. (2007)
10. Carns, P.H., Harms, K., Allcock, W.E., Bacon, C., Lang, S., Latham, R.,

Ross, R.B.: Understanding and Improving Computational Science Storage Access
through Continuous Characterization. ACM Transactions on Storage 7(3), 8:1�8:26
(Oct 2011)

11. Chen, N., Poon, S.S., Ramakrishnan, L., Aragon, C.R.: Considering Time in De-
signing Large-Scale Systems for Scienti�c Computing. In: CSCW. pp. 1533�1545.
ACM (Feb 2016)

12. Deveci, M., Rajamanickam, S., Leung, V.J., Pedretti, K.T., Olivier, S.L., Bunde,
D.P., Çatalyürek, Ü.V., Devine, K.D.: Exploiting Geometric Partitioning in Task
Mapping for Parallel Computers. In: IPDPS. pp. 27�36. IEEE (May 2014)

http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm


12 R. Bleuse et al.

13. Dorier, M., Ibrahim, S., Antoniu, G., Ross, R.B.: Using Formal Grammars to
Predict I/O Behaviors in HPC: The Omnisc'IO Approach. IEEE Transactions on
Parallel and Distributed Systems 27(8), 2435�2449 (Aug 2016)

14. Drozdowski, M.: Scheduling for Parallel Processing. Computer Communications
and Networks, Springer (2009)

15. Enos, J., Bauer, G.H., Brunner, R., Sharif, I., Fiedler, R.A., Steed, M., Jack-
son, D.: Topology-Aware Job Scheduling Strategies for Torus Networks. In: Cray
User Group (May 2014), https://cug.org/proceedings/cug2014_proceedings/
includes/files/pap182.pdf

16. Evans, R.T., Browne, J.C., Barth, W.L.: Understanding Application and System
Performance Through System-Wide Monitoring. In: IPDPS Workshops. pp. 1702�
1710. IEEE (May 2016)

17. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and Practice in Parallel Job Scheduling. In: JSSPP. Lecture Notes in Computer
Science, vol. 1291, pp. 1�34. Springer (1997)

18. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.: Scheduling
the I/O of HPC Applications Under Congestion. In: IPDPS. pp. 1013�1022. IEEE
(May 2015)

19. Georgiou, Y., Jeannot, E., Mercier, G., Villiermet, A.: Topology-aware Resource
Management for HPC Applications. In: ICDCN. pp. 17:1�17:10. ACM (2017)

20. Hilbert, D.: Ueber die stetige Abbildung einer Line auf ein Flächenstück. Mathe-
matische Annalen 38(3), 459�460 (Sep 1891)

21. Isaila, F., Carretero, J., Ross, R.B.: CLARISSE: A Middleware for Data-Staging
Coordination and Control on Large-Scale HPC Platforms. In: CCGrid. pp. 346�
355. IEEE (May 2016)

22. Kathareios, G., Minkenberg, C., Prisacari, B., Rodríguez, G., Hoe�er, T.: Cost-
E�ective Diameter-Two Topologies: Analysis and Evaluation. In: SC. pp. 36:1�
36:11. ACM (Nov 2015)

23. Lucarelli, G., Machado Mendonça, F., Trystram, D., Wagner, F.: Contiguity and
Locality in Back�lling Scheduling. In: CCGRID. pp. 586�595. IEEE Computer
Society (May 2015)

24. Morton, G.M.: A computer Oriented Geodetic Data Base; and a New Technique
in File Sequencing. Tech. rep., IBM Ltd. (Mar 1966), https://domino.research.
ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39

25. Ngoko, Y.: Heating as a cloud-service, A position paper (industrial presentation).
In: Euro-Par 2016: Parallel Processing - 22nd International Conference on Parallel
and Distributed Computing, Grenoble, France, August 24-26, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9833, pp. 389�401. Springer (2016)

26. Pascual, J.A., Miguel-Alonso, J., Antonio, L.J.: Application-aware metrics for par-
tition selection in cube-shaped topologies. Parallel Computing 40(5), 129�139 (May
2014)

27. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP500 list, https://www.
top500.org/lists/

28. Tessier, F., Malakar, P., Vishwanath, V., Jeannot, E., Isaila, F.: Topology-
Aware Data Aggregation for Intensive I/O on Large-Scale Supercomputers. In:
COMHPC@SC. pp. 73�81. IEEE (Nov 2016)

29. Tuncer, O., Leung, V.J., Coskun, A.K.: PaCMap: Topology Mapping of Unstruc-
tured Communication Patterns onto Non-contiguous Allocations. In: ICS. pp. 37�
46. ACM (Jun 2015)

https://cug.org/proceedings/cug2014_proceedings/includes/files/pap182.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap182.pdf
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39
https://domino.research.ibm.com/library/cyberdig.nsf/0/0dabf9473b9c86d48525779800566a39
https://www.top500.org/lists/
https://www.top500.org/lists/

	 A Methodology for Handling Data Movements by Anticipation: Position Paper 

