
Next Generation Cryptographic Ransomware

Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg

{ziya.genc,gabriele.lenzini,peter.ryan}@uni.lu

Abstract. We are assisting at an evolution in the ecosystem of crypto-
ware —the malware that encrypts files and makes them unavailable unless
the victim pays up. New variants are taking the place once dominated
by older versions; incident reports suggest that forthcoming ransomware
will be more sophisticated, disruptive, and targeted. Can we anticipate
how such future generations of ransomware will work in order to start
planning on how to stop them? We argue that among them there will
be some which will try to defeat current anti-ransomware; thus, we can
speculate over their working principle by studying the weak points in the
strategies that seven of the most advanced anti-ransomware are currently
implementing. We support our speculations with experiments, proving at
the same time that those weak points are in fact vulnerabilities and that
the future ransomware that we have imagined can be effective.

Keywords: Software security and malware · Ransomware · Anti-Ransomware
· Cryptographic Techniques · Security evaluation and measurement

1 Introduction

Cryptographic ransomware, a breed of malware (also known as cryptoware) that
encrypts files, makes them inaccessible, and asks for a ransom to decrypt them

—an action that victims are unable to do, if encryption is strong— has boomed
in the last years. Their attacks have left in disarray companies and single users
alike creating an economic damage that has been estimated at billions of US
dollars [27].

As other virulent cyber-threats, ransomware evolves with time. In its latest
2018 annual incident report [29] Symantec shows that in the last two years about
one hundred more new families of ransomware have emerged (although less in
2017 than in 2016) and that, although certain families representatives like Cerber,
Locky, and TorrentLocker “have disappeared from the scene over the course of
the year” (ibid) the number of new variants per families has increased by 46% in
2017, adding to the existing cryptoware samples about 350 new mutants.

Together with other white papers written by security professionals, like the
report of Kaspersky [13] and that of Barkly [1], such studies present ransomware as
a malware stock in continuous evolution, “a lucrative venture for cybercriminals,
spurring an increase in ransomware variants and their sophistication” (ibid).

2 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

In the attempt to contain the damage, anti-malware research has reacted
promptly. Anti-ransomware applications have stopped a tantamount number of
attacks (5.4 billions of them from some WannaCry variants only [1]) but defenders
and attackers are embraced in a race that has just started. At today, the severity
of ransomware threat is increasing and the worst is yet to come.

Is there a way to stop the threat? Is there a way to anticipate how the future
generation of ransomware will look like? Although at the time of writing, statistics
report that the sheer numbers of attacks is slowing down —Barkly in its blog1

says that “in order to pull off a successful ransomware heist, the stars really have
to align for attackers. Not only do they have to infect a victim who doesn’t have
reliable backups (or the time/resources required to use them), the victim also has
to have quick and easy access to cryptocurrency, and be willing to put their trust
in a criminal and pay them upfront. Making matters more difficult, attackers also
have to price their ransom demands just right.”— ransomware are expected to
become more sophisticated and more disruptive [1]. Those implementing strong
cryptography like ExPetr, Petya and NotPetya are even being used as disk
wipers, that is, have become weapons of digital destruction in waster operations
of cyberwar2.

Thus, the research question for us researchers is whether there is a way to
anticipate into what those sophisticated cryptoware will evolve in such a way to
be prepared when the attacks will come. There is of course a great amount of
criminal strategies that could work. Ransomware engineers can be quite inventive
in this business. However, in our opinion, there is at least one direction that future
ransomware will take, and we can guess it without invoking any foresight skill. If
the history of malware and virus teaches us something (e.g., see [30,11]), some
new generation of the threat will be designed to respond to existing protections.
Thus assuming that in the forthcoming generations of ransomware there will be
some trying to overcome those protections, we can study the weaknesses in these
latter’s working principles and imagine what those evasive ransomware can do to
dribble some of the most modern anti-ransomware strategies.

The exercise is not exempt from ethical consequences. As J. P. Sullins points
out in “it must be acknowledged that working with malware is not ethically
neutral” [28]. We discuss our position in this regards in §7.1. The paper opens
with a review of seven of the most advanced anti-ransomware strategies (§2).
Then it discusses their limitations (§2), and speculates on what a ransomware
can do to evade their guard (§3 and §4). To prove that our speculation are in
fact more than a thought experiment, we implemented the ransomware samples
we have imagined and prove that it actually pass untouched the anti-ransomware
applications, if they are available to us (§5 and §6). For those whose code is
closed, or not yet implemented (e.g., only described in research papers) we argue
how our implementation is able to overcome them. We conclude the paper by

1 Barkly, Must-Know Ransomware Statistics 2018, https://blog.barkly.com/
ransomware-statistics-2018.

2 For this reason, some does not even consider them be ransomware; they are however
cryptoware, and therefore in the scope of this paper’s research.

https://blog.barkly.com/ransomware-statistics-2018
https://blog.barkly.com/ransomware-statistics-2018

Next Generation Cryptographic Ransomware 3

pointing the future work and by discussing the ethical choices that we had to
take in this kind of research and our motivation to even start such work, and the
code of conduct that we commit ourselves to follow (§7).

2 Defense Techniques: The State of the Art

Cryptographic ransomware families share a common goal: to encrypt a victim’s
files. They also share a few fundamental tasks that they necessarily have to
execute to achieve the goal. For instance, they have to manage encryption and
decryption keys; and they have to read, encrypt (and if the victim is lucky)
decrypt, and write files. However, cryptographic ransomware comes in different
forms. Although constrained to perform those common steps, they can reach the
goal in different ways, so giving raise to different families of them.

For the same reason there are also many potential, not all necessarily effec-
tive, strategies to counteract ransomware. Current anti-ransomware approaches
implement mainly two strategies: key-oriented protection and behavioral analysis.

Key-oriented Protection (KP). The rationale of those who follow a key-oriented
protection strategy is that ransomware needs encryption keys and therefore it
is better to keep those keys under control. “Keep keys under control” is not a
simple action; current solutions have interpreted and implemented it in at least
three distinguished methods:

(KP-i) - controlling accesses over random number generators.
In this method the access to Cryptographically Secure Pseudo Random Num-
ber Generators (CSPRNGs) is controlled. CSPRNGs are functions that return
good quality random numbers, which are essential ingredient to construct
strong encryption keys. UShallNotPass [10] uses this principle. It allows
access to CSPRNGs only if the call comes from a whitelisted application; all
unauthorized processes are blocked and the callers are terminated.

(KP-ii) - placing backdoors in random number generators. In this strategy, a trapdoor
is inserted to the CSPRNG of the host system. The aim of this trapdoor is to
enable reproducing the previous outputs of CSPRNG for a given time. Thus,
the random numbers used by ransomware as a seed can be obtained after an
attack. Using these seed values, the keys used by ransomware are re-derived
and the files are restored. In [16], Kim et al. proposed this technique to
mitigate ransomware.

(KP-iii) - escrowing encryption keys. In this approach, cryptographic Application
Programming Interfaces (APIs) are hooked, encryption keys and other pa-
rameters are acquired, and stored in a secure location. After a ransomware
incident, these materials are used to recover the files. The first key-escrow
based ransomware defense systems are proposed independently by Lee et
al. [18] and Palisse et al. [21] and focused on only the built-in cryptographic
APIs. Later, PayBreak [17] extended this technique to include the functions
in third-party cryptographic libraries.

4 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

Behavioural Analysis (BA). Defenses that implement behavior analysis, monitor
the interactions of applications and measure certain factors that may indicate
the presence of a ransomware activity. Solutions diversify depending on the
indicators used to monitor for the presence of ransomware. We recognize four
major methods:

(BA-i) - measuring entropy inflation. Encryption increases the entropy of the files.
Therefore, encryption can be detected by measuring the entropy of files,
before and after file-write operations. A rough estimate of the entropy e, of a
byte array (xi)n

i=1 that is often used is Eq. (1).

e =
255∑
k=0

P x
k log2

1
P x

k

where P x
k = |{i : xi = k}|

n
(1)

Monitoring entropy changes is a method commonly used by CryptoDrop [25],
ShieldFS [2], UNVEIL [14] and Redemption [15].

(BA-ii) - detecting content modification. Modern cryptographic algorithms produce
ciphertext that completely differs from the plaintext data. Therefore, if the
similarity between original file and modified file is small, the file might have
been encrypted. In this respect, CryptoDrop utilizes sdhash [23] tool to
compute dissimilarity of files to detect encryption performed by ransomware.

(BA-iii) - identifying file-type changes. File type can be identified by position-sensitive
tests, e.g., reading byte values at specific locations in a file. In contrary to
benign applications, ransomware changes this information when encrypting a
file, transforming the file into an unknown type. Therefore, changing file types
is a strong indicator of ransomware activity. For example, CryptoDrop
uses file [4] utility to detect modifications of file types.

(BA-iv) - testing goodness-of-fit. Encryption produces data which have a pseudo-
random distribution. Based on this fact, DaD [20] employs χ2 goodness-of-fit
test to determine if the written data is close to random distribution and
conclude that the file is being encrypted. To this aim, observed byte array is
put into a frequency histogram with class interval 1 from 0 to 255. Let Ni

denote the number of variates in bin i, and ni be a known distribution. The
χ2 test value of this array is computed as in Eq. (2)

χ2 =
∑

i

(Ni − ni)2

ni
(2)

Indicators do recognize ransomware activities but also benign applications,
e.g., file compression utilities, show similar patterns. False positives can be reduced
by combining indicators, as CryptoDrop does with indicators (BA-i), (BA-ii)
and (BA-iii).

There are other indicators based on file access patterns e.g., read/write/delete
operations, access frequency, observed in ransomware attacks. Redemption,
ShieldFS and UNVEIL use these indicators, but these systems are left for
a future analysis. The analyzed systems in this paper and their corresponding
defense techniques are given in Table 1.

Next Generation Cryptographic Ransomware 5

Table 1. Select anti-ransomware systems and their main defense methods.

System (KP-i) (KP-ii) (KP-iii) (BA-i) (BA-ii) (BA-iii) (BA-iv)

Kim et al. [16] •
CryptoDrop [25] • • •
Lee et al. [18] •
UShallNotPass [10] •
Palisse et al. [21] •
DaD [20] •
PayBreak [17] •

3 Vulnerability Analysis of Countermeasures

“Every law has a loophole” says an old proverb, meaning that once a rule is
known, it becomes known also how to evade it. This holds true also in the
ransomware versus anti-ransomware arms race and in both ways. Knowing how
ransomware works, one can design more effective defenses; knowing how defenses
work, one can design more penetrating ransomware. In this section we discuss
potential limitations in current anti-ransomware, and we imagine and discuss how
future generation ransomware could evolve to overcome those defenses. In this
exercise, we apparently take the side of ransomware but the goal is to stimulate
the scientific community to anticipate better defenses that can work not only
against current ransomware but also against forthcoming generation of them.
This choice is not exempt from consequences. We discuss in §7 the ethical aspects
in this research and we comment on the code of conduct we have committed
ourselves to in developing this work.

3.1 Limits of Key-Oriented Protection

Key-oriented protection defenses aim at to prevent ransomware from using,
undisturbed, cryptographic APIs.

In this respect, (KP-i) controls CSPRNG APIs on the host system, and
(KP-ii) inserts a backdoor into CSPRNG APIs. A ransomware may evade these
defences by using an alternative source of randomness. The critical question is
whether there exist sources of randomness that are as good as CSPRNGs. We
will elaborate more on this approach in §4.

Instead, (KP-iii) logs parameters and outputs of CSPRNG, built-in crypto-
graphic APIs, and recognized functions in third-party libraries. As stated in [17],
the critical limitation of this approach is that recognizing statically linked func-
tions from third-party libraries is sensitive to obfuscation. Obfuscation does not
affect recognizing calls to built-in APIs, so evasion is possible when ransomware
binary is obfuscated and the ransomware refrain from using built-in APIs.

6 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

3.2 Limits of Behavioural Analysis

To detect cryptographic activities, behavioural analysis uses indicators, which
are features revealing the presence of certain suspect behaviours; it also relies
on constantly applying measurements and tests on files, before and after I/O
operations.

In this respect, (BA-i) tests if the entropy of the file increases during a write
operation using Eq. (1). It assumes that the encryption always increases the
Shannon Entropy of a file. Indeed, this assumption holds for standard ciphers
such as AES [3]. The entropy inflation test can be bypassed by changing the
encryption algorithm with a one that preserves the entropy of the blocks.

Likewise, (BA-ii) compares the contents of a file before and after a file write
operation and checks if the similarity score is above a threshold. A fully encrypted
file should look like a random data and the comparison should yield a score close
to 0, indicating a strong dissimilarity. This is true if the whole file is encrypted.
A partially encrypted file, when compared with the plaintext version, is likely
to result in high similarity scores: (BA-ii) may not be triggered while the file
becomes practically unusable.

(BA-iii) can also be easily bypassed. If ransomware saves the file header,
i.e., does not encrypt the lead bytes of the file, and encrypts the rest, than
the output of probe for file-type remains same. It should be noted that this
information is generic, i.e., publicly available, therefore cannot be considered as
a critical data. Consequently, ransomware would not lose any profit by omitting
the file-type identifying bytes. To nullify this strategy, anti-ransomware systems
may utilize context-sensitive tests which scan entire file to detect a file’s type,
with the expense of degraded performance. In the experiments (§6), however,
we haven’t encountered such a detection. We remark that this defense might be
bypassed by adding read/write routines for specific target file types, which is an
implementation effort.

Finally, (BA-iv) tests if the written data is close to random distribution,
based on the observation that standard ciphers like AES produce randomly
distributed outputs. For this aim, χ2 test given in Eq. (2) is used. However, if
the χ2 values can be kept constant during the obfuscation of file, this indicator
will not trigger the alarm.

4 Future Ransomware Strategies

We present the blueprints of two novel ransomware samples that we claim are able
to evade the defense systems listed in Table 1. The architecture of the samples is
similar to that of WannaCry from the point of key management3. That is, each
file in the victim’s computer is encrypted with a unique symmetric key. Moreover,
these symmetric keys are encrypted with a public key generated on the victim’s

3 This work focuses on the cryptographic aspects of ransomware. Other malicious
operations, e.g., spreading over network, are out of the scope of this paper.

Next Generation Cryptographic Ransomware 7

computer. The corresponding secret key is then encrypted with the master public
key embedded in the binary executable.

While this approach brings the risk of private key’s being captured, it also
removes the necessity of active connection to our hypothetical command and
conquer (C&C) server which might be blocked by network firewalls and cause
ransomware to fail.

4.1 Bypassing Key-Oriented Defenses

Our first construction targets key-oriented defense systems. As we point in §3.1,
(KP-i) and (KP-ii) can be bypassed by utilizing an alternate randomness source.
However, to defeat (KP-iii) completely, it is also required to statically link against
a third-party library and apply obfuscation.

Deriving Encryption Keys A simple technique to generate the file encryption
keys that malware might adopt is what is known in Cloud computing circles
as Convergent Encryption [7]. Here, the cryptographic keys are derived from
files themselves. A simple implementation is as follows. Let E be an encryption
algorithm, H be a hash function, and F be the file. The technique consists
in deriving the encryption key from hashing the file itself, that is H(F). The
resulting encryption is therefore E(F, H(F)).

The technique is free from the issues that may arise in the cloud computing.
While convergent encryption is useful in certain scenarios, in the context of cloud
computing, this technique may leak information as follows. For publicly-available
plaintext files, the adversary can check and learn if the ciphertext belongs to
these files. However, this is not really an issue in the context of ransomware: if
the user still has the plaintext file(s), say in a backup, then the ransomware will
not be effective anyway.

Our hypothetical ransomware thus computes H(F) and derives the key by
truncating this hash value to the length of K. This allows to evade the methods
(KP-i) and (KP-ii). To win (KP-iii), we need a little more care: H and E
must be statically-linked against a third-party library and obfuscated, otherwise
(KP-iii) can acquire and store the result of H where K lies therein. The same
requirement also applies to E. However, having a hash function in hand, the
necessity of a block-cipher can also be fulfilled in the context of ransomware.

Symmetric Encryption Method Once the ransomware has got hold of good
grade encryption keys then it can employ various well-established symmetric
encryption techniques to the victim’s files, for example a stream cipher, e.g.,
based on a hash function in counter mode, or block cipher in an appropriate
mode, e.g., chained. The exact choice of algorithm is not so important as long
as it sufficiently cryptographically strong to render cryptanalysis significantly
more expensive than paying the ransom. However the algorithms should be fairly
simple so as to be coded compactly and easy to obfuscate.

8 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

To encrypt the files we built a stream cipher using a keyed hash function build
from H. Our construction utilizes H to generate a keystream in a similar way to
the counter (CTR) mode of block ciphers. The keystream and the plaintext are
combined using the exlusive-or (XOR) operation.

Let F be a plaintext stream such that F = P1 || P2 || . . . || Pn where each
Pi has equal bit length to output of H, except possibly Pn, and K = H(F).
Encryption of F is done as follows:

Si = H(K || i)
Ci = Pi ⊕ H(K || Si)

for i = 1, 2, . . . , n − 1. For i = n, H(K || Sn) is truncated to the length of Pn.
In our design, we assume that H is (i) one-way: given K, it should be hard

to find F such that H(F) = K; and (ii) collision-free: it should be hard to find
Si ̸= Sj such that H(K || Si) = H(K || Sj) (iii) pseudo-random: it is difficult to
guess H(K || i) —in our implementation, i has a fixed length of 32 bits— without
knowing K || i.

Voiding Memory Dump Analysis Current software implementations of
symmetric cryptographic algorithms require the encryption keys to be retrieved
during the execution. Consequently, when encrypting files, the encryption keys
reside in the memory area of the ransomware4 process. Using this observation,
defense techniques emerged (e.g., [12]) which try to dump the memory of the
encrypting process and extract the keys to roll-back the damage.

Deriving keys from the files’ hashes overcomes this defense, as different files
will result in distinct encryption keys. If a defense system detects files being
encrypted, suspends the process and extracts the keys, it can only decrypt the
file which is currently being accessed. Previous files cannot be recovered anymore
as they are encrypted with different keys which were already destroyed at the
time of detection.

File Based PRNG We have developed a pseudo-random number generator
(PRNG) which inputs files, outputs pseudo-random bytes and provides the
sufficient functionality for the purposes of ransomware. The PRNG has a pool,
which is implemented as a byte array and initially filled with the hashes of files
that will be encrypted. As the ransomware needs n bytes of pseudo-random
number, n bytes are copied from the pool to the output buffer; the remaining
bytes are shifted so that they will be in the next output. The output blocks are
hashed and inserted again into the pool to prevent exhaustion. Our file based
pseudo-random number generator (F-PRNG) is depicted in Fig. 1. It should be
noted that as the files on victim’s computer gets more exclusive, i.e., different
from other people’s data, then the outputs of F-PRNG becomes harder to guess or
reproduce after the attack as the plaintext versions of the files will be destroyed.
4 Actually, ransomware might try to inject malicious code into other processes. In this

case, memory of the encrypting process is dumped.

Next Generation Cryptographic Ransomware 9

Remaining Bytes ⇒⇒⇒

H(F1) || H(F2) || . . . || H(Fn)
Initialized F–PRNG

Output Procedure
Output

HashExpand

Insert

Fig. 1. Design view of the F-PRNG. The pool is seeded by file hashes. As pseudo-random
bytes are requested from the F-PRNG, the output buffer is filled (dashed-green) with
the requested amount. The remaining part of the pool (turquoise) is shifted accordingly.
A copy of output bytes are hashed (purple), expanded (red) and inserted to the pool.

Expansion Process After providing the output bytes, that part is removed from
the pool and the remaining bytes are shifted accordingly. This process shrinks
the pool so that it exhausts in some finite time. To prevent this, we feed the
pool with the pseudo-random numbers produced from the output that we call
expansion. The method we use for expansion is similar to the approach used by
Stark [26] and Eastlake [8], and described in Algorithm 1.

Algorithm 1 Expand a pseudo-random value to given length
1: function Expand(input, n)
2: global counter ▷ Pool keeps this counter
3: ℓ← Length(input)
4: max ←

⌈
n
ℓ

⌉
5: i = 0
6: output = []
7: for i < max do

8: counter += 1
9: r = Hash(bytes || counter) ▷ Generate pseudo-random chunk

10: output = output || r ▷ and add to output
11: output = Truncate(output, n) ▷ Output is truncated to n bytes
12: return output

Asymmetric Key Pair Generation and Encryption Ransomware needs
to store the locally generated file encryption keys securely. Modern ransomware
employs asymmetric algorithms for this task.

Our imaginary ransomware also follows the same strategy. It employs the
above F-PRNG to generate large primes to use in asymmetric algorithms, and
to generate the padding values used for randomization of ciphertext.

10 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

4.2 Evading Behavioral Analysis

Our second ransomware targets behavioral based defense systems that constantly
monitor file system activity and look for anomalies. In particular, its objective is
to encrypt files without triggering the indicators described in §2.

The presented variant, rather than using standard block ciphers, basically
employs a format preserving encryption algorithm. More specifically, the algorithm
produces ciphertext which is a pure pseudo-random permutation of plaintext.

Bypassing File-Type Checks File-type probing is performed by inspecting
the lead bytes of a file. Our ransomware therefore skips these bytes and starts
encryption at a safe position. We identified this threshold empirically, testing
over different file types including PDF, JPEG and DOCX. Our results shows
that skipping the first 5120 bytes is sufficient for evading (BA-iii).

Preventing Dissimilarity Similarity of files is validated by comparing sdhash
digests which produces a score between 0 and 100. According to the developers
of sdhash, scores between 21-100 are considered as a strong indication of similar-
ity [24]. In our experiments, comparing encrypted files with originals produces
scores 0 or 1. However, we observed that partial encryption allows to obtain
scores higher than 21, depending on the encryption ratio. (BA-ii) might set
a lower threshold level, however, that would result in high false positive rates.
Even in this case, tuning the encryption ratio would allow to keep this indicator
silent. Fig. 2 shows the partially encrypted files of different types and their
corresponding similarity scores.

Evading Statistical Tests (BA-i) measures the Shannon entropy of the files
using Eq. (1), before and after file-write operations, and monitors the increase.
Standard encryption algorithms usually dramatically increase the file-entropy
and so this is detectable. Instead, one might use a transposition style cipher to
obfuscate files: the ransomware generates a pseudo-random permutation of the
bytes of the plaintext blocks. If, as is commonly the case, the anti-ransomware
tools use the measure Eq. (1) then clearly permutation of the bytes leaves this
invariant, and so this goes undetected.

There are two obvious drawbacks with this approach: firstly such a transposi-
tion encryption is cryptographically rather weak, and secondly it only works for
this particular measure of entropy of a string. A weak encryption may be good
enough for the purposes of the ransomware, as long as the cost of cryptanalysis
exceeds the ransom. Given that an easy counter is to use a different measure of
entropy, or better still use more than one, this would not seem to be a long-term
viable solution for the writers of ransomware.

Lastly, pure permutation technique also works against (BA-iv), the single
indicator that DaD employs to detect encryption. DaD computes the sliding
median of the χ2 values of the last fifty write operations and compares this
result to the threshold level αRW = 0.05. However, the χ2 statistics (computed

Next Generation Cryptographic Ransomware 11

10050332520

Encryption Ratio (percent)

0

10

20

30

40

50

s
d
h
a
s
h

S
co

re

PNG

JPEG

PDF

DOCX

XLSX

TXT

Fig. 2. Average scores of sdhash comparison of partially encrypted file types. Scores
above 21 (denoted by the dashed line) is considered as a strong indication similarity
between compared file contents.

using Eq. (2)) remains constant under any permutation as the Ni values are not
altered but rearranged. As a result, the permuted data does not fit the random
distribution and (BA-iv) does not trigger the alarm.

5 Implementation

We have developed two prototypes in order to demonstrate the feasibility of
the methods described in §4. Both programs are implemented in C# language
targeting version 3.5 of .NET Framework. In addition, we ported the second
prototype to Python 3 (see §6).

The prototype which aims to bypass key-oriented defenses first enumerates
the target files in the victim’s computer. It uses an obfuscated SHA-256 function
to compute hashes and the F-PRNG is initialized with 50 files’ digests. This is
the maximum capacity of the F-PRNG’s pool which is implemented as a byte
array. Our novel ransomware uses RSA algorithm for public key encryption.
Once the F-PRNG is ready, two 1024 bit primes are generated, an RSA key
pair is computed, and the private key is encrypted with the embedded master
public key. Primality tests are performed using Miller-Rabin algorithm with the
iteration count set to 3 as indicated in [19]. F-PRNG is also utilized to generate
the padding values used for randomization of ciphertext.

The second prototype targets behavioral based approaches which monitors
file system activities. It has two working modes: partial and full encryption. The

12 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

former targets CryptoDrop and performs partial encryption and the latter fully
obfuscates files. In our design, we set block size to n = 64, i.e., read 64 bytes,
permute this block and overwrite the original data. Fisher-Yates [9] algorithm is
utilized to permute the blocks. We remark that, while executing Fisher-Yates
algorithm, the required randomness is obtained from the CSPRNG APIs as
behavioral analysis based systems do not control these.

Both of the prototypes contain only encryption routines, file I/O functions,
and codes responsible for the key management tasks. As our main purpose is
to show potential attacks and not to develop a fully functional ransomware,
we deliberately omitted implementing all non-cryptographic functions, such as
spreading over the network and deleting the Volume Shadow Copy Service (VSS)
backups. Furthermore, our prototypes save a copy of encryption key in the same
directory for each encrypted file to prevent accidental damages.

6 Experimental Results

In order to verify the feasibility of the methods described in §4, we tested
our prototypes against ransomware defense systems in Table 1 that provides
a implementation. In this regard, we conducted a series of experiments on
PayBreak, UShallNotPass, DaD and CryptoDrop.

The test environment is prepared as follows. We created a virtual machine
(VM) in VirtualBox5 and performed a clean install of 32 bit version of Windows
7 OS. Next, we created 5 directories on user desktop and randomly placed decoy
files therein. The decoy set contained 10 files with each of the extensions .docx,
.jpg, .pdf, .png, .txt and .xlsx, making 60 in total. Before our experiments,
we confirmed that the decoy files could be opened by the associated applications
and were free of any corruption. Finally, we deactivated User Access Control
(UAC) and Windows Defender to prevent interference, and took a snapshot of
the test system.

We started experiments by testing the first prototype against UShallNot-
Pass. After running the executable of our first prototype, we observed that all
decoy files were encrypted while the UShallNotPass was active. We rollback
to the snapshot and started testing the next system, PayBreak6. Our proto-
type run and the files were encrypted, however, the log file of PayBreak did
not contain any cryptographic material. As a result, we observed that our first
prototype bypassed the software implementations of two key-oriented defense
systems.

We continued our experiments with the behavioral analysis systems. We first
tested the 32-bit version of DaD7 against our second prototype. We activated
DaD, executed the prototype and observed that all the decoy files were corrupted.
Therefore, we conclude that our prototype could evade DaD.

5 VirtualBox, https://www.virtualbox.org/
6 Compiled from source available at: https://github.com/BUseclab/paybreak.
7 Downloaded from http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html.

https://www.virtualbox.org/
https://github.com/BUseclab/paybreak
http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html

Next Generation Cryptographic Ransomware 13

Finally, we evaluated our prototype against CryptoDrop8 as follows. Al-
though we did not have an open source implementation of CryptoDrop, the
mechanisms that [25] uses, i.e., file and sdhash tools are publicly available and
installable on a Linux system. Moreover entropy changes can also be monitored
using ent9 tool. Therefore, we re-implemented our prototype in Python 3 and
run in partial encryption mode on a Linux system. We observed that file
command reported that the original and encrypted files are of exactly same type.
Moreover, all sdhash comparison scores were above 21 using %30 encryption.
Finally, ent tool measured the partially-encrypted files have the same entropy
with the original ones. Based on these results, we conclude that our prototype
can bypass CryptoDrop.

We remark that partial encryption causes damage sufficient to make the files
unusable. In our experiments we observed that images could not be rendered and
documents could not be read even with 20% encrypted files. Only exception is
the TXT files that we could read the non-encrypted contents.

7 Conclusion, Discussion, and Future Work

The purpose of this work is to warn the scientific community of forthcoming
ransomware threats. By talking about how seven cutting-edge anti-ransomware
solutions —at the time of this writing, implementing strategies of access control
over random number generators, key escrow, and behavioral analysis are the
most advanced strategies known against active ransomware samples— could be
overthrown by smarter and more sophisticated malware, we hoped to have revealed
what strategies those malware could trying to implement, so indicating where
anti-ransomware engineers have to focus their efforts. Since it is believed that the
ransomware threat will increase not in number of attacks but in sophistication,
to keep anti-ransomware ideas ahead of time may be a game-changing factor.

That said, malware mitigation is an arms race and we expect new generations
of ransomware coming soon with renovated energy and virulence, adapting their
attack strategies to challenge current defenses. New variants of ransomware have
been observed constantly during the last years. Those called scareware prefer
to exploit people’s psychology, threatening them into pay the ransom without,
however, doing any serious encryption: despite deceitful they are technically
benign applications. Others, however, will be variants of real cryptographic ran-
somware and able to overcome control and to encrypt a victim’s files using strong
encryption. A recent white paper by Symantec [29] reports that ransomware
is becoming instrument for specialists and targeted attack groups, a weapon
8 This paper analyzes the academic paper version of CryptoDrop [25]. The software

available at https://www.cryptodrop.org/ is a proprietary & commercial product,
and its source code is not available. It may include undocumented measures other
than the ones in the academic paper, therefore, we could not inspect the code nor
analyze the actual implementation in this study.

9 ENT: A Pseudorandom Number Sequence Test Program, http://www.fourmilab.
ch/random/

https://www.cryptodrop.org/
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/

14 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

not only to extort money but to cover up other attacks and, when using strong
encryption, used in fact as a disk wiper. It is to this latter category that our
research is dedicated. As security professionals we feel compelled to be prepared
to face forthcoming threats thus to identify and anticipate potentially dangerous
ransomware variants, and warn the scientific community about them.

We are aware that the research we have ourselves embarked may give ideas
to criminals. But there is no reason to believe that criminals will not have those
ideas by themselves. In the history of malware (see e.g., [11]) criminals have
always tried to be one step ahead; besides, our research has nothing fancy and
it does not contain such an inventive step that cannot be reproduced by others.
It more humbly roots into how cryptography works. However, even with this
premise, we questioned ourselves about how to do this research ethically.

7.1 Ethical Code of Conduct

As we anticipated in the introduction, working with malware raises ethical
questions [28], although we have not involved people in our research, nor we have
collected personal or sensitive data or attacked real operating systems, nor were
we involved in any conversations with criminal associations or victims, actions
which would have required us following specific guidelines as discussed in [5].

Despite having conducted our research in isolation, we agree with Rogaway’s
“The Moral Character of Cryptographic Work” [22] when he suggest to “be
introspective about why you are working on the problems you are”. We hope to
have motivated sufficiently why we started this research pathway in the first place.
At the same time we informed ourselves about the University of Luxembourg
Policy on Ethics in Research10; it suggests that researching on protection against
computer viruses is at risk of dual use. The guidelines recommend researchers to
“report their findings responsibly”, but there is no indication that may suggest
what is a responsible behavior. As well there are no guidelines in the ACM
Code of Ethics and Professional Conduct11, another manifesto we looked into.
It suggests principles, like “Avoid harm” and “Ensure that the public good is
the central concern during all professional computing work” but how to comply
with those principles is not told. The EU “Regulation No 428/2009” considers
software as a dual use item, so we are certain that there are ethical consideration
to address. Most of the literature on dual-use refers to life science and cannot be
migrated to computer science but the EU’s “Ethics for researchers” [6] suggests
something general that can be useful in our case: “special measures need to
be taken to ensure that the potential for misuse is adequately addressed and
managed”. Thus we decided to set up our own ethical practise which consist in
embrace two important measures: (i) Responsible Disclosure: before submitting
camera ready version, we informed all parties affected by the vulnerabilities that
we think we have disclosed in this paper, giving them all details about the flaws
10 For more information, please visit https://wwwen.uni.lu/research/chercheurs_

recherche/standards_policies
11 Available at https://www.acm.org/code-of-ethics

https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies
https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies
https://www.acm.org/code-of-ethics

Next Generation Cryptographic Ransomware 15

and the potential attacks. We hope in this way to warn awareness in the scientific
community, and in particular in the researchers that engineered the defences
whole limitations we have discussed; (ii) Safe Handling of Hazardous Code: we
determined ourselves not to share any portion of the source code with the public,
not to send it unsecured in using insecure channels (e.g., emails) and to keep it
stored in an encrypted disk. At the same time all experiments have been done
with a machine whose access is strictly limited to the researchers involved.

7.2 Limitations and Future Work

Current BA systems use statistical tests to detect encryption. To evade this
protection, we had to use pure permutation to obfuscate files and this is definitely
not as secure as standard ciphers, e.g., AES algorithm. If the permutation can be
discovered practically, the ransomware cannot force the victims to pay. However,
the question is still open: does it provide the minimal security level in the context
of ransomware, i.e., decrypting might be possible but paying the ransom is more
economic than decrypting? Due to space restrictions, we leave this task for a
future work.

Pure permutation technique is successful against (BA-i) and (BA-iv). More-
over, it can be adopted to evade (BA-ii) and (BA-iii). Other systems, [14,2,15]
watch additional indicators to detect ransomware activity. We leave the task of
evaluating the feasibility of evading these indicators to a future research.

To the best of our belief, this work is the first one that proposes to gather
entropy from file contents in order to generate prime numbers; but we restricted
ourselves to achieve this aim by using merely a hash function. We remark that
the security of RSA key pair generation method should be carefully studied.

References

1. Barkly: 2017 Ransomware Report. Tech. rep., Barkly (2017)
2. Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A., Zanero,

S., Maggi, F.: ShieldFS: A Self-healing, Ransomware-aware Filesystem. In: Proc. of
the 32Nd Annual Conf. on Computer Security Applications. pp. 336–347. ACM,
New York, NY, USA (2016)

3. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag, Berlin, Heidelberg
(2002)

4. Darwin, I.: Fine Free File Command, http://www.darwinsys.com/file/
5. Deibert, R., Crete-Nishihata, M.: Blurred Boundaries: Probing the Ethics of Cy-

berspace Research. Review of Policy Research 28(5), 531–537 (2011)
6. Directorate-General for Research and Innovation: Ethics for Researchers Facilitating

Research Excellence in FP7. Tech. rep., European Commission (July 2013)
7. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming Space

from Duplicate Files in a Serverless Distributed File System. In: Proc. of the 22
Nd Int. Conf. on Distributed Computing Systems. pp. 617–624. IEEE, Washington,
DC, USA (2002)

8. Eastlake 3rd, D.: Publicly Verifiable Nominations Committee (NomCom) Random
Selection. RFC 3797 (June 2004), https://tools.ietf.org/pdf/rfc3797.pdf

http://www.darwinsys.com/file/
https://tools.ietf.org/pdf/rfc3797.pdf

16 Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

9. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd (1938)

10. Genç, Z.A., Lenzini, G., Ryan, P.Y.: No Random, No Ransom: A Key to Stop
Cryptographic Ransomware. In: Proc. of the 2018 Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, Cham (2018)

11. Herrera-Flanigan, J.R., Ghosh, S.: Criminal regulations. In: Cybercrimes: A Multi-
disciplinary Analysis, pp. 265–308. Springer (2011)

12. Hirschberg, B., Kravchik, M., Haenel, A., Solow, H.: Ransomware Key Extractor
and Recovery System (April 2016), https://patentscope.wipo.int/search/en/
detail.jsf?docId=US215058675

13. Kaspersky: KSN Report – Ransomware in 2014-2016. Tech. rep., Kaspersky (2016)
14. Kharaz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: UNVEIL: A Large-

Scale, Automated Approach to Detecting Ransomware. In: 25th USENIX Security
Symposium. pp. 757–772. USENIX Association, Austin, TX (2016)

15. Kharraz, A., Kirda, E.: Redemption: Real-Time Protection Against Ransomware
at End-Hosts. In: Research in Attacks, Intrusions, and Defenses. pp. 98–119 (2017)

16. Kim, H., Yoo, D., Kang, J.S., Yeom, Y.: Dynamic ransomware protection using
deterministic random bit generator. In: 2017 IEEE Conference on Application,
Information and Network Security (AINS). pp. 64–68 (Nov 2017)

17. Kolodenker, E., Koch, W., Stringhini, G., Egele, M.: PayBreak: Defense Against
Cryptographic Ransomware. In: Proc. of the 2017 ACM on Asia Conf. on Computer
and Communications Security. pp. 599–611. ACM, New York, USA (2017)

18. Lee, K., Oh, I., Yim, K.: Ransomware-Prevention Technique Using Key Backup.
In: Jung, J.J., Kim, P. (eds.) Big Data Technologies and Applications. pp. 105–114.
Springer (2017)

19. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptogra-
phy. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (1996)

20. Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C., Lanet, J.L.: Data Aware
Defense (DaD): Towards a Generic and Practical Ransomware Countermeasure. In:
Secure IT Systems. pp. 192–208. Springer, Cham (2017)

21. Palisse, A., Le Bouder, H., Lanet, J.L., Le Guernic, C., Legay, A.: Ransomware and
the Legacy Crypto API. In: 11th International Conference on Risks and Security of
Internet and Systems - CRiSIS. pp. 11–28. Springer (Sep 2016)

22. Rogaway, P.: The Moral Character of Cryptographic Work. Cryptology ePrint
Archive, Report 2015/1162 (2015), https://eprint.iacr.org/2015/1162

23. Roussev, V.: Data Fingerprinting with Similarity Digests. In: Chow, K.P., Shenoi,
S. (eds.) Advances in Digital Forensics VI. pp. 207–226. Springer (2010)

24. Roussev, V., Quates, C.: The sdhash tutorial (2013), http://roussev.net/sdhash/
tutorial/03-quick.html

25. Scaife, N., Carter, H., Traynor, P., Butler, K.R.B.: CryptoLock (and Drop It):
Stopping Ransomware Attacks on User Data. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). pp. 303–312 (June 2016)

26. Stark, P.B.: Pseudo-Random Number Generator using SHA-256, https://www.
stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm

27. Steve Morgan: 2017 Cybercrimes Report. Tech. rep., Cybersecurity Ventures (2017)
28. Sullins, J.P.: A Case Study in Malware Research Ethics Education: When Teaching

Bad is Good. In: Proc. of IEEE Security & Privacy, 17-18 May 2014, San Jose, CA,
USA. IEEE computer society (2014)

29. Symantec Corporation: Internet Security Threat Report. Tech. rep. (April 2018)
30. Touchette, F.: The Evolution of Malware. Network Security 2016(1), 11–14 (2016)

https://patentscope.wipo.int/search/en/detail.jsf?docId=US215058675
https://patentscope.wipo.int/search/en/detail.jsf?docId=US215058675
https://eprint.iacr.org/2015/1162
http://roussev.net/sdhash/tutorial/03-quick.html
http://roussev.net/sdhash/tutorial/03-quick.html
https://www.stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm
https://www.stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm

	Next Generation Cryptographic Ransomware

