
BlockPGP: A Blockchain-based Framework
for PGP Key Servers

Alexander Yakubov ∗, Wazen M. Shbair ∗, Radu State ∗
∗ University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg

Email:{alexander.yakubov, wazen.shbair, radu.state}@uni.lu

Abstract—Pretty Good Privacy (PGP) is one of the most
prominent cryptographic standards, offering end-to-end
encryption for email messages and other sensitive information.
PGP allows to verify the identity of the correspondent in
information exchange as well as the information integrity. It
implements asymmetric encryption with certificates shared
through a network of PGP key servers. Many recent breaches
show that certificate infrastructure can be compromised as well
as exposed to operational errors. In this paper, we propose
a new PGP management framework with the key server
infrastructure implemented using blockchain technology. Our
framework resolves some problems of PGP key servers focusing
in particular on fast propagation of certificate revocation among
key servers and elimination of man-in-the-middle risk. We also
provided user access right control where only the certificate
holder can change information related to the certificate. We
designed and developed a prototype for key server deployment
on permissioned Ethereum blockchain. Permissioned blockchain
should allow to control the costs of PGP key server infrastructure
maintenance at the present level.

Index Terms—PGP; PKI; Key Server; Blockchain

I. INTRODUCTION

Pretty Good Privacy (PGP) is popular cryptographic proto-
col used for encryption of e-mail messages, text and files,
directories and even disk partitions. PGP concept is based
on asymmetric public key cryptography for user identifica-
tion, where each user is given public and private keys. To
send confidential information, the sender firstly retrieves the
recipient public key, then the sensitive information (e.g. email
message) is encrypted with temporary symmetric key and the
sender encrypts the symmetric key with the receiver’s public
key and adds the encrypted symmetric key to the message.
As the public key is derived from the private key, but not vice
versa, only the private key holder is able to decrypt and access
the message [1]. The distribution and management of PGP key
pair is one of the main issues that need to be solved.

In contrast to traditional centralized hierarchical Public Key
Infrastructure (PKI) used for issuing SSL/TLS certificates
by Certificate Authority (CA), PGP adopts distributed trust
network for certificate identity confirmation known as “Web
of Trust“. There is no central authority which everybody trusts,
but instead, participants sign each other’s keys and progres-
sively build a web of individual public keys interconnected by
links formed by this signatures.

Although PGP benefits from absence of centralized CAs as
points of failure in PKI due to PGP’s distributed architecture,

the validity assessment of certification paths can be expensive
with the growth of participant amount [2]. Moreover, recent
research [3] disclosed a major breach in some mail clients
using PGP, allowing to retrieve decrypted body of a protected
email message. Although OpenPGP as a concept remains
intact, the mail clients should be updated to remove the vulner-
ability. There are also potential problems with PGP key servers
including Man-in-the-Middle attack. According to description
of PGP key server protocol1 key servers presently are not
considered as a secure method of public key distribution.

A. Our contribution

The contribution of this paper is threefold:
1) We designed blockchain-based framework (BlockPGP)

providing reliable management for OpenPGP certificates
and key server infrastructure. Based on implementation
of this framework PGP key server security challenges
mentioned below can be solved.

2) We proposed technique of blockchain-related data in-
corporation into PGP certificate in line with the current
OpenPGP standard. Putting blockchain-related data to
PGP certificate is crucial for arrangement of user access
control in a key server.

3) We developed a prototype that demonstrates the practical
applicability of the proposed approach. The prototype is
distributed and available on Github2.

B. Web of Trust (WoT)

WoT is a decentralized public key environment where each
participant of the ecosystem can “introduce“ public keys of
other participants. It substantially differs from the centralized
hierarchical concept of traditional SSL certificates also known
as PKI. In PKI a certificate can be introduced only by CA, a
participant with a special status, while in PGP any participant
can be considered as a certificate authority from PKI view-
point. PGP users are able to designate public keys of others
with different levels of trust indicating how trustworthy the
signature (introduction) of the certificate holder when he signs
public key certificates of other participant. In other words, how
trustworthy his introduction of other participants is.

There are four levels of trust in PGP regarding the intro-
duction of other certificates:

1https://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
2https://github.com/alyakubov/blockpgp



• Full (level=4): certificate holder’s signature of other
users’ certificates is fully trusted

• Marginal (level=3): certificate holder’s signature can be
trusted, but it is better to find other signatures with full
trust to confirm the introduction of a certain certificate

• Untrustworthy (level=2): certificate holder’s signature
should not be trusted and his signature on other users’
certificates should be ignored

• Don’t know (level=1): there is uncertainty about trustwor-
thiness of certificate holder’s signatures of other users’
certificates

Based on the multiple introductions of PGP certificates by
different users it is possible to create a “chain of trust“, or
a path from one user to another when identity confirmation
is required for sending protected information. Basically, this
problem can be considered as finding paths between two
vertices in a directed graph with variable vertix weights. To
reach a reasonable identification trust level for a given third-
party public key one should find several paths with number of
edges less than five ([4], Chapter 3). Notably trust levels are
stored locally in GNU OpenPGP application’s data (gpg) and,
to best of our knowledge, are not loaded to PGP key servers
discussed below. In our approach we will not use trust level
data of PGP participants.

The main advantage of PGP’s WoT public key infrastructure
stems from its distributed nature as it excludes any central
point of failure. However, this implies difficulty for new or
remote users to join the network, since some existing member
of WoT typically must meet with the new user personally to
have her/his identity verified and public key signed for the first
time (usually it is done on PGP Keysigning events3 arranged
for authentication of new participants).

C. Public Key Infrastructure (PKI)

In contrast to PGP with its distributed introduction of
certificates known as WoT, PKI is a hierarchical structure
of certificate issuers (Certificate Authorities) authenticating
identities over Internet. The PKI defines the certificate issue
and management policies which for instance envisage periodic
audits of CAa s as well as other security measures [5].
PKI management of public keys is based on the certificate
standard X.509 defined as a data structure that binds public key
values to subjects (for instance domain names). The binding
is asserted by CAs digitally signing each certificate. The CA
may base this assertion on profound validation of the private
certificate holder’s identity [6].

There are three types of X.509 certificates according to the
depth of verification: the Domain Validated certificate (DV)
asserts that a domain name is mapped to the correct web server
(IP address) through DNS. The Organization Validated certifi-
cate (OV) also envisages additional CA-verified information,
such as an organization name and a postal address. These
extra validations make OV SSL Certificates more expensive
compared to DV certificates. Extended Validation certificate

3https://www.debian.org/events/keysigning

(EV) implies the highest level of authentication, including
diligent human validation of a site’s identity and business
registration details. Because of the extensive validation, EV
is the most expensive among digital certificates [7].

D. Security issues of PGP and PKI

Both PGP and PKI should provide fast update and revo-
cation of certificates efficiently handling risks associated with
lost or compromised private keys, etc. Thus most vulnerable
point may be infrastructure of PKI’s Certificate Authorities
being central point of failure.

Recent research [3], however, disclosed a major breach in
some mail clients using PGP allowing to retrieve decrypted
body of a protected email message with manipulations of
HTML tags built-in to the message. Although this vulnerability
can be resolved by careful use of the client software with PGP
support, still there are many questions regarding PGP security.
For instance, there are potential problems with PGP key
servers including Man-in-the-Middle attack stemming from
potential breaches of PKI used in user’s exchange with key
servers. Details regarding PGP key servers’ security problems
will be discussed later.

The security of PKI systems relies on the infrastructure
of CAs. To resolve CAs’ risks as single centers of failure,
it is possible to impose strict technical and management
requirements (for instance the audits we discussed above).
However, many breaches show that the security of CAs can
be compromised or subjected to operational errors. As CAs
are designed to be crucial for PKI’s security, CA’s errors
or mismanagement have resulted in unauthorized certificates
being issued [8]. For instance, one of well known events is
the security breach of CA DigiNotar, which led to use of the
company’s infrastructure for the issue of hundreds of rogue
digital certificates for high-profile domains, including those
for Google.com and Facebook.com. These certificates were
later used in a mass surveillance attack against some Internet
users [9].

In another PKI breach, a Malaysian subordinate certificate
authority DigiCert Sendirian Berhad (Sdn. Bhd.) mistakenly
issued 22 weak SSL certificates, which could be used to
impersonate websites and sign malicious software. As a result,
major browsers had to revoke their trust in all certificates
issued by DigiCert Sdn. Bhd. (Note: DigiCert Sdn. Bhd. is not
affiliated with the U.S.-based corporation DigiCert, Inc.) [9].
The above breach events illustrate how easy it is for CAs to
make operational and management errors. The consequences
of CA breaches can be quite severe. PKI security issues are
also crucial for PGP as the present exchange among key
servers and end-customers is conducted with SSL protocol
using PKI certificates.

E. PGP key servers

PGP key servers are important component in OpenPGP
system. Participants of PGP environment are supposed to
upload their certificate updates including signatures of other
participants, expiration dates, revocations, etc. If the sender



does not have public key of the receiver on its local computer
he may also download it from a key server.

However, if one wants to use PGP key servers infrastructure
it is important to bear in mind the following:

• PGP key servers now can become more trustworthy:
based on security section in OpenPGP key server proto-
col4, PGP key servers should not be trusted and must be
used for informational purposes only. Basically it means
that key servers do not provide full user access control,
which can be misused by an attacker to upload compro-
mised certificate of other users to the key server’s storage.
Blockchain-based certificate storage grants write access
only to certificate holder’s Ethereum account specified in
the certificate (and also to administrator).

• Man-in-the-middle risk: accessing PGP key servers is
conducted using HTTP Key Server Protocol (HKP) which
can be protected with SSL/TLS protocol. Given the
potential vulnerabilities of PKI stemming from its single
point of failure at CAs, it can be concluded that the whole
PGP ecosystem becomes dependent on security of PKI.
Indeed, if attacker can obtain a fake X.509 certificate with
one of compromised CAs, as it was mentioned above, it
can intercept the public key retrieve request and send
a fake public key to the PGP participant. Blockchain
fully resolves Man-in-the-Middle risk as the required
certificate can be retrieved from the user’s local replica of
blockchain which cannot be altered due to hash reference
check for each block.

• Key server synchronization delays: PGP key servers
provide important functionality like publication of cer-
tificate revocations which is not fully available in PKI
environment. However the delays with PGP key server
synchronizations which may take 15-30 hours can re-
sult in security breaches with compromised certificates
already revoked by their owners.

• Key server should be active: According to studies [10]
there are more than 100 PGP key servers but some of
them do not synchronize very often (up to several days
and even more) implying risk of downloading revoked
(compromised) certificates.

F. Outline

The rest of the paper is organized as follows: Section II
provides a background of the PGP certificate validation mech-
anism, an introduction to the blockchain technology and how
it can be used to build secure key server ecosystem. Section
III explores the works related to revoked certificate logging,
blockchain-based certificate management, etc. In Section IV
we provide some details of our blockchain-based solution.
Finally, Section V concludes the paper.

II. BACKGROUND

In this section, first we present the idea behind the certificate
revocation and different key server systems in PGP and PKI,

4https://tools.ietf.org/html/draft-shaw-openpgp-hkp-00

which are crucial infrastructure for secure certificate valida-
tion. Then we provide a brief introduction to the blockchain
technology and how it can be used to build key server
management framework.

A. Revocation of certificates and validity in PGP and PKI

Revocation is an important part in certificate management
as any certificate can be potentially compromised and there
should be efficient procedure in place to quickly suspend the
certificate validity. There are significant differences between
PGP and PKI in the approach to revocation.

In PGP revocation can be conducted by a “revocator“, a PGP
participant holding revocation key for a given certificate. The
idea here can be connected with the risk of operating system
breach for a PGP certificate holder as she/he may not be able to
revoke the certificate himself. The certificate updates related
to its revocation should be uploaded to PGP key server to
stop downloading of this certificate for encryption of sensitive
information.

In PKI the certificate can be revoked by “introducer“, i.e. a
CA that issued the certificate. The certificate is then supposed
to be published in Certificate Revocation List (CRL) of this
CA, but as there is no universal revocation list yet available,
the check of certificate validity in PKI is not straightforward.
Based on X.509 concept [11], certificate validation should
be conducted along “Chain of Trust“, the path from a given
certificate up to its issuing CA, then to parent CA and climbing
the hierarchy up to the Root CA certificate (along the CA tree
from the leaf to the root). All certificates along the chain of
trust should be checked for validity.

B. Existing solutions to the certificate revocation security
challenges

As we discussed above key servers play important role in
supporting of OpenPGP authentication validation. According
to a recent study the update of PGP total key storage is quite
marginal and comes to 0.02 percent per day (1000 updates a
day) [12]. According to the author, the efficiency of existing
synchronization algorithms can be increased for that relatively
minor updates as key server software was developed at time
when the PGP key storage was smaller in terms of the number
of uploaded certificates. Presently it takes 15-30 hours for
certificate updates to be synchronized over the network of PGP
key servers. The reduction of synchronization latency should
reduce risks of using compromised public keys which were
already revoked but not yet published with their new status on
all key servers.

Traditional revoked certificate publication approaches used
in PKI like CRL lack efficiency due to delays in publication
of updated lists and absence of universal access point to all
CRLs. However, recent initiatives like public PKI logs provide
some solutions to existing certificate revocation challenges.

Log-based PKI approach has been proposed as a technique
for fast publication of revoked certificates due to the problems
stemming from CA breaches and compromised private keys.
The idea behind is using highly-available public log servers



that monitor and publish the certificates issued by CAs.
These public logs provide transparency by ensuring that only
publicly-logged certificates are accepted and trusted by end-
customers, hence, any CAs’ misbehavior will be detected.
Google’s Certificate Transparency (CT) [13] is the most widely
deployed log-based PKI, and it is currently available in both
Chrome and Firefox. In parallel, many proposals intend to ex-
tend the features of log-based PKI schema with further support
for revocation and error handling. Unfortunately, despite these
benefits, log-based PKIs still have several challenges related
to the deployment process as explained in [14], [15].

Recently, many studies [16], [17], [18] propose imple-
mentation of blockchain technology to build secure PKI
systems. Moreover some PKI blockchain-based management
frameworks were already deployed and tested on Ethereum
testnet [19]. Ethereum smart contracts proved to show good
performance for X.509 certificate parsing and validation along-
side extensive Chains of Trusts (up to 1200 certificates in a
row). Parsing and verification of 1200 certificates took around
8 seconds on ordinary modern notebook. We will discuss
blockchain solution to public key management challenges in
details below.

C. Blockchain

Blockchain turns out to be one of the most intriguing tech-
nologies in the Internet industry today mainly due to success of
Ethereum and other smart contract platforms like Hyperledger.
The common key characteristics of all blockchain platforms
are decentralization, persistency and auditability. Blockchain,
also named distributed ledger, is an append-only data structure
that stores transactions grouped into blocks to form the hash-
chain of blocks. Each block references to the previous (parent)
one as it contains the hash of the previous block. The first
block of a blockchain is called Genesis block which has no
parent/preceding block.

Currently most blockchains are used in financial industry,
however more and more new implementations from different
fields start to appear. Applications that require high reliabil-
ity and full elimination of data manipulation risks can use
blockchain. In addition, blockchain is distributed and can
avoid the single point of failure situation. In recent years
blockchains evolved to allow the execution of arbitrary logic
known as Smart Contracts. Conceptually the smart contract is
an application which runs on the top of blockchain and uses
the underlying ordering of transactions to keep consistency of
smart contract results between blockchain participants [20]. A
smart contract code is executed by a network of blockchain
nodes that reach consensus on the outcome of the execution,
and update the contract’s state storage on the blockchain.

In our approach, we used a separate instance of Ethereum
blockchain which can support any currently available consen-
sus (Proof-of-Work or Proof-of-Stake). By separate instance
we mean set of isolated nodes using blockchain only for the
purpose of our application. We believe it is better to use a
separate blockchain instance for key storage infrastructure due
to the following reasons:

• More computation-light consensus algorithms can be
used, like Proof-of-Authority instead of Proof-of-Work.
This leads to higher potential scalability in terms of
transactions per seconds. Proof-of-Authority consensus
implies permissioned nature of our blockchain implemen-
tation as only selected blockchain nodes (key servers) can
confirm blockchain transactions.

• Much lower blockchain download time due to limited
blockchain size. Basically we will have only PGP certifi-
cates in the blockchain.

Notably in the context of PGP key servers blockchain
provides valuable security features such as write access based
on Ethereum user accounts. Based on our implementation
only administrator and the user corresponding to Ethereum
account recorded in the certificate can update certificate data
in the blockchain. Moreover, blockchain-based public key
infrastructure, as a public append-only log, naturally provides
the CT property proposed by Google [17].

III. RELATED WORK

Blockchain implementations for certificate services or digi-
tal identity systems were scrutinized by a number of different
prior works. With exception of Sovrin/Indy embracing as
many kinds of authentication as possible on one platform,
all these works were focused on different aspects of PKI or,
like Emercoin, just on safe storage and transfer of certificates
eliminating Man-in-the-Middle risks.

One of the most interesting ideas in blockchain-based
authentication appears to be Sovrin, which in 2017 became
known as Hyperledger Indy. Sovrin’s concept is based on DID,
i.e. distributed ID, the identifier of a certain entity, usually
corresponding to a private key [21]. In PGP context such DID
can be considered as certificate’s fingerprint, effectively SHA-
1 hash of public key’s core data.

Hyperledger Indy is declared as a public permissioned
blockchain and appears to be one of few public blockchains
in Hyperledger ecosystem. The concept of permissioned
blockchain stems from Indy’s idea of users’ digital identity au-
thentication by different entities including authorized state and
public services, etc. The user can forward part of her/his digital
identity (for instance driving license only, but not the passport)
to some interested third parties. Although Indy/Sovrin declares
itself as Web-of-Trust system, in reality it is likely to move
towards traditional hierarchical PKI as more state agents are
involved. Nevertheless if users could authenticate some “parts“
of each other’s digital identity in line with PGP concept in the
final production version Indy can be scrutinized as a potential
blockchain platform in the framework of this research in the
future.

Apart from overwhelming concept of Indy/Sovrin there are
some concrete implementation of blockchain-based certificate
management. For instance, PKI management framework [19]
was deployed on Ethereum’s testnet. Golang-based REST
service provides whole range of necessary functionality from
issuing and revocation of X.509 certificates (including CA



certificates) to smart contract-based verification along a whole
Chain of Trust up to the root certificate.

Our experiments find that smart contract-based parsing
and verification of long Chain of Trust consisting of 1200
certificates took around 8 seconds, while the verification of
this Chain of Trust by Golang code retrieving the certificates
from Ethereum took 15 sec, or twice slower compared to the
smart contracts’ performance. Each CA has a separate smart
contract holding hashes of all issued certificates, revocation
list and the certificate of this CA.

To link blockchain infrastructure to certificates the authors
proposed hybrid X.509 certificates. Extensions of the hybrid
certificates envisaged by X.509v3 standard contain issuing
CA’s smart contract address and, in case of CA certificate,
the smart contract address of this CA.

Implementation of blockchain-based PKI was also an-
nounced by Emercoin in its EMCSSH project. Emercoin
is a public blockchain quite close to Bitcoin in terms of
architecture featuring the hybrid Proof-of-Work and Proof-
of-Authority consensus depending on availability of mining
capacity. Emercoin does not have smart contracts and stores
the certificate hashes into blockchain. This means that the
verification of the certificates is not distributed depending
exclusively on the code outside blockchain.

Emercoin’s EMCSSH is not focusing on Chain of Trust as
by default the certificate does not contain links to its parent
CA in the extension fields. On the contrary EMCSSH with
just certificate hashes in its blockchain only mitigates the
Man-in-the-Middle risk and makes administrators’ life easier
according to its creators.

Alternatively, Fromknecht et al. [18] leverage Certcoin to
implement a blockchain-based PKI, storing domains and their
associated public keys. Meanwhile in [17] authors scrutinize
the privacy issue of the Certcoin. In [22] the authors propose
Blockstack that uses Bitcoin blockchain to provide name
registration system where the names are bound with public
keys. In this work we mitigate the privacy issue since we will
use the standard PGP certificate to develop our framework.

IV. BLOCKCHAIN IMPLEMENTATION OF PGP KEY
SERVERS

This section presents the details of our implementations of
blockchain-based PGP key servers. Firstly we will provide an
overview of the main benefits of the proposed approach. Then,
we explain advantages of deployment of a separate instance
of Ethereum blockchain rather than using traditional public
Ethereum. After that we justify our approach of incorporating
blockchain related information to PGP certificate. In the end
of this section we will briefly describe the main functionality
of the smart contract and its user interface.

A. Benefits of blockchain

Our blockchain implementation of key server resolves the
challenges we mentioned in the section “PGP key servers“ of
Introduction. With Ethereum-based user account control the
certificates can be uploaded or modified on a key server only

from Ethereum account specified in the certificate. Blockchain
technology also inherently resolves Man-in-the-Middle risk as
all interested participants can have their own synchronized
replica of blockchain which cannot be altered due to hash
references to the previous block. Blockchain synchronization
latency is usually capped by time period of new block forma-
tion varying from 15 seconds for Ethereum to 10 minutes for
Bitcoin. Present synchronization latency of PGP key servers
varies from several hours up to around one day.

B. Separate instance of blockchain

Another important consideration regarding blockchain could
be the use of Ethereum separate instance (independent set
of peers) rather than traditional public Ethereum blockchain.
The benefits of Ethereum separate instance deployment are the
following:

• Flexibility in blockchain consensus which can allow to
substantially increase the performance. We propose to use
permissioned blockchain with Proof-of-Authority (PoA)
consensus, where transactions are approved by authorized
nodes, rather than blockchain with Proof-of-Work (PoW)
consensus implying heavy hash calculations conducted
by miners.

• Potential difficulties with public Ethereum’s blockchain
downloading can be easily resolved with deployment
of Ethereum separate instance. On February 2018 the
size of Ethereum’s public blockchain varied from 70GB
to 350GB depending on state history storage options.
Such blockchain size can be explained by massive smart
contract deployments. As we interested only in PGP keys
information stored in our smart contracts it is better to
avoid dealing with all data in public Ethereum. In case
of Ethereum separate instance the blockchain will only
hold the data related to our application.

• Most importantly, participants of PGP infrastructure will
not pay fees for loading data to blockchain. In case of
traditional public blockchain transaction fees are paid to
miners.

Present PGP key servers currently amounting to more than
100 nodes [10] are supported by the community. As PoA
which can be used as consensus mechanism in PGP key
server blockchain implies no substantial electricity expenses,
the community’s costs to support key server infrastructure
are unlikely to increase with implementation of blockchain
technology.

C. Design Methodology: incorporating Ethereum user address
to PGP certificate

We built our application concept on the same princi-
ples implemented in [19] with hybrid X.509 certificates.
Once blockchain information (in our case - the address of
Ethereum user account) is integrated to certificate, we can
link blockchain access control to user identity and design
the whole security concept around it. Instead of expanding
certificate data fields using X.509 extensions we decided to
use Comment field of PGP user identity. Although to the best



Fig. 1: Integrating blockchain user address in PGP certificate

of our knowledge restrictions on use of Comment field in PGP
certificates were not published in the official documentation or
in the research papers, many IT security specialists recommend
to leave Comment field blank 5. Indeed the Comment field
is a part of PGP user identity along with name and e-mail
address. When a user writes “Work“ or “I like strawberries“
in the Comment field of the certificate, the introducer also
should confirm by signing this certificate that the certificate
holder likes strawberries or will use this certificate at work.
On the other hand for our purposes Comment field is a perfect
fit. Introducer should confirm not only the name and email of
certificate holder, but also her/his user address in Ethereum
network corresponding to PGP key storage. As shown in
Figure1 we use the Comment field in the following format:
“blockchain:0x...“, thus Ethereum user address in hexadecimal
format in lower case starting with “0x“ is written after keyword
“blockchain:“

As we mentioned above the main concept of key server
blockchain is based on write access restriction assuming that
only administrator and a user with Ethereum address specified
in the certificate’s Comment field can manipulate data related
to the certificate. Administrator right control is realized with
function modifier onlyOwner specified in the solidity contract
owned, inherited by key server smart contract discussed below.

D. Implementation

The proposed blockchain-based PGP key server Proof-of-
Concept includes two main parts: Unix application providing
simple user interface to the key server and Ethereum smart
contract providing key server core functionality.

1) Unix application: Command line application was de-
veloped with Golang IPC interface to Ethereum geth client
assuming no Man-in-the-Middle risks which can be associated
with RPC or REST interactions with Ethereum. Application
extracts user data from local PGP certificates using GNU
gpg client, parses certificate’s blockchain user account from
Comment field and connects to Ethereum under this user
account. Importantly, Ethereum private key corresponding to
this user account should be locally stored in corresponding
Ethereum folder of key server blockchain instance. Before

5https://debian-administration.org/users/dkg/weblog/97

each Ethereum connection user is asked to enter a password
for Ethereum user.

2) Smart contract: In contrast to PKI blockchain imple-
mentation [19] where each CA has its own smart contract we
decided to implement a single smart contract to store all PGP
certificates’ data.

The smart contract provides the following core functions:

• checkRights: validates the rights of the user address in
the second parameter to change the blockchain data of
PGP certificate identified by its fingerprint. Usually user
address parameter is the current Ethereum user specified
by built-in variable msg.sender

• newCertificate: uploads PGP certificate to blockchain
alongside with all user data including her/his blockchain
address. Rights of the user to upload the certificate are
verified with checkRights. Event evNewCertificateReturn
is emitted for performance control and error checks.

• newSignt: signs (introduces) certificate of another user
and uploads the signed certificate to specifically designed
storage of proposed certificates, not accessible by other
participants. Only the holder of the signed certificate
can download the certificate with getProposedCert func-
tion and/or publish it with acceptProposedCert function.
Along with event evNewSigntReturn used for error con-
trol the event evProposeCertSignature is emitted to ac-
knowledge the certificate holder regarding the signature.

• revokeCert: revokes PGP certificate with the user right
validation using checkRights function. Notably, the user
can perform the revocation only with the access to cor-
responding Ethereum account without use of revocation
certificate. In our view this may be very convenient as it
provides another protected way to revoke compromised
certificates. Performance control and error checks are
conducted with event evRevokeCertificateReturn

• revokeSignt: revokes user’s signatures (introductions) to
PGP certificates of other participants. In OpenPGP con-
cept it is impossible to revoke signatures, but we decided
to include it into PoC as an experiment. The user right
validation is performed with checkRights function. Event
evRevokeSigntReturn is emitted for performance control
and error check.

• acceptPoposedCert: as discussed above on certificate
holder request copies signed certificate from intro-
ducer’s proposed certificate storage to certificate holder’s
ownCert field. Certificate holder is authenticated with
checkRights function. Event evAcceptedCertSignature is
used for performance control and error check.

The important implications from the functionality above are
the following:

• Full history of key server data is available due to
Ethereum built-in API. Indeed it is possible to obtain
the results of any read-only function (view or pure based
on Solidity’s terminology) at any block in the past.
The number of the block when some specific data was
changed can be retrieved based on events we emitted



within all core functions of our smart contract.
• Introducer who signed a certificate cannot upload it

to key server without the certificate holder’s accep-
tance which is in line with PGP best practices but
implies additional restrictions on existing PGP key server
functionality. Presently introducer can upload the signed
certificate to PGP key server preferably after receiving
consent from the certificate holder.

• Smart contract’s versioning and code updatability
should be handled, as in contrast to [19] we have a
single smart contract for all certificate data. There are
a number of techniques helping to solve smart contract’s
code updatability without affecting its data in Ethereum.
For instance, some advantages of Solidity’s new opcode
delegatecall can be exploited in our future work.

The BlockPGP software including Unix application
and the smart contract is available as open source at
https://github.com/alyakubov/blockpgp with detailed descrip-
tion of command line options and installation procedure.

V. CONCLUSIONS AND FUTURE WORK

Key servers are the important part of OpenPGP Web-of-
Trust infrastructure. Blockchain-based PGP key server Proof-
of-Concept developed in this work solves a number of key
servers’ challenges and improves their performance. This is
achieved by incorporating of blockchain-related data to PGP
certificates. First, the developed Proof-of-Concept provides the
write access rights to key server’s PGP certificates only to
the certificate holder (and to administrator), which reduces
the risk of downloading compromised certificate from the key
server. Second, blockchain resolves Man-in-the-Middle risk
for key servers. Third, blockchain accelerates the synchroniza-
tion between key servers to several minutes from several hours.
Moreover, blockchain provides full history of a key server’s
states based on its built-in functionality.

Notably if we use a separate instance of blockchain (in-
dependent nodes dedicated from blockchain view point ex-
clusively to key server tasks) the calculation-light consensus
mechanisms can be used. This means that the total costs asso-
ciated with the PGP infrastructure support by the community
are unlikely to grow.

As future work, we plan to provide synchronization of
our solution among existing key servers. Basically it means
parallel storage of blockchain-protected certificates with incor-
porated blockchain user information and traditional certificates
that are presently stored in PGP key servers. In this case
the updates of blockchain-protected certificates in traditional
PGP key servers must be scanned and resolved. We also plan
to developed smart contract-based parsing and verification of
PGP certificates.

REFERENCES

[1] C. Adams and S. Lloyd, Understanding PKI: concepts, standards, and
deployment considerations. Addison-Wesley Professional, 2003.

[2] G. Caronni, “Walking the web of trust,” in Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2000.(WET ICE 2000).
Proeedings. IEEE 9th International Workshops on. IEEE, 2000, pp.
153–158.

[3] D. Poddebniak, C. Dresen, J. Mller, F. Ising, S. Schinzel, S. Friedberger,
J. Somorovsky, and J. Schwenk, “Efail: Breaking s/mime and openpgp
email encryption using exfiltration channels,” 2018.

[4] “The gnu openpgp privacy handbook,” 1999.
[5] J. Yu and M. Ryan, “Evaluating web pkis,” in Software Architecture for

Big Data and the Cloud. Elsevier, 2017, pp. 105–126.
[6] D. Cooper, “Internet x. 509 public key infrastructure certificate and

certificate revocation list (crl) profile,” 2008.
[7] “Types of ssl certificates choose the right one,” 2014.
[8] H. Anada, J. Kawamoto, J. Weng, and K. Sakurai, “Identity-embedding

method for decentralized public-key infrastructure,” in International
Conference on Trusted Systems. Springer, 2014, pp. 1–14.

[9] J. Prins and B. U. Cybercrime, “Diginotar certificate authority
breach’operation black tulip’,” 2011.

[10] A. Ulrich, R. Holz, P. Hauck, and G. Carle, “Investigating the openpgp
web of trust,” in ESORICS 2011: Computer Security, 2011, pp. 489–507.

[11] “Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile, rfc 3280,” 2002.

[12] A. Rucker, “An efficient pgp keyserver without prior context,” 2017.
[13] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” Tech.

Rep., 2013.
[14] S. Matsumoto and R. M. Reischuk, “Ikp: Turning a pki around with

blockchains.” IACR Cryptology ePrint Archive, vol. 2016, p. 1018, 2016.
[15] S. Matsumoto, P. Szalachowski, and A. Perrig, “Deployment challenges

in log-based pki enhancements,” in Proceedings of the Eighth European
Workshop on System Security. ACM, 2015, p. 1.

[16] K. Lewison and F. Corella, “Backing rich credentials with a blockchain
pki,” 2016.

[17] L. Axon and M. Goldsmith, “PB-PKI: A privacy-aware blockchain-
based PKI,” in Proceedings of the 14th International Joint Conference
on e-Business and Telecommunications (ICETE 2017) - Volume 4:
SECRYPT, Madrid, Spain, July 24-26, 2017., 2017, pp. 311–318.
[Online]. Available: https://doi.org/10.5220/0006419203110318

[18] C. Fromknecht, D. Velicanu, and S. Yakoubov, “Certcoin: A namecoin
based decentralized authentication system,” Massachusetts Inst. Tech-
nol., Cambridge, MA, USA, Tech. Rep, vol. 6, 2014.

[19] A. Yakubov, W. Shbair, A. Wallbom, D. Sandra, and R. State,
“A blockchain-based pki management framework,” in IEEE/IFIP
Man2block Conference Proceedings, 2018.

[20] E. Androulaki, C. Cachin, A. D. Caro, A. Sorniotti, and M. Vukolic,
“Permissioned blockchains and hyperledger fabric,” ERCIM News, vol.
2017, no. 110, 2017. [Online]. Available: https://ercim-news.ercim.eu/
en110/special/permissioned-blockchains-and-hyperledger-fabric

[21] S. Foundation, “Sovrin tm: A protocol and token for self-sovereign
identity and decentralized trust. a white paper,” 2018.

[22] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A
global naming and storage system secured by blockchains.” in USENIX
Annual Technical Conference, 2016, pp. 181–194.

https://github.com/alyakubov/blockpgp
https://doi.org/10.5220/0006419203110318
https://ercim-news.ercim.eu/en110/special/permissioned-blockchains-and-hyperledger-fabric
https://ercim-news.ercim.eu/en110/special/permissioned-blockchains-and-hyperledger-fabric

	Introduction
	Our contribution
	Web of Trust (WoT)
	Public Key Infrastructure (PKI)
	Security issues of PGP and PKI
	PGP key servers
	Outline

	Background
	Revocation of certificates and validity in PGP and PKI
	Existing solutions to the certificate revocation security challenges
	Blockchain

	Related work
	Blockchain Implementation of PGP Key Servers
	Benefits of blockchain
	Separate instance of blockchain
	Design Methodology: incorporating Ethereum user address to PGP certificate
	Implementation
	Unix application
	Smart contract


	Conclusions and future work
	References

