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1 INTRODUCTION

The Internet of Things (IoT) envisions a world in which Things with sensing and actuating functions
are connected through the Internet, bringing boundless societal and economic opportunities [164].
Unfortunately, building a single global ecosystem of Things that communicate with each other
seamlessly is virtually impossible today, the main reason being that the IoT is essentially a collection
of isolated “Intranets of Things” (also referred to as “vertical silos”), where data is siloed in a unique
system, cloud, domain, and stay there. This situation imposes significant limitations on the IoT
vision, in which “people and things [are] connected anytime, anyplace, with anything and anyone”
[142]. Current research trends such as 5G-IoT indicate further growth and a need for convergence
of heterogeneous data, IoT middleware solutions, as well as IoT data analytics [78].

One part of the interoperability problem in the IoT relates to the semantic layer, as there is no
unique way of annotating IoT data when publishing it to the Web, also known as Web of Things (WoT)
[46]. The wide range of employed data modeling approaches as well as available data models hinder
the efficient development of disruptive cross-platform and cross-domain applications [106, 155], as
it makes it difficult to efficiently (and on demand) discover, access and integrate heterogeneous
IoT data sources. To tackle this issue, increased research efforts investigate the integration of
Semantic Web technologies to move towards a truly open and connected IoT ecosystem [11],
along with the difficult standardization efforts for semantic interoperability in the IoT [31]. Indeed,
the Semantic Web [15] provides a machine-understandable knowledge infrastructure on the Web
that can be easily integrated into existing software environments [133]. It is inherent to the
Semantic Web that vocabularies can be shared, reused, extended and integrated through the Web.
Despite its advantages, the adoption of Semantic Web technologies adds further challenges. For
example, modeling data with linked vocabularies is not trivial, as the fundamental principle to
achieve semantic interoperability between distributed systems is to reuse existing vocabulary
terms and establish interconnectivity between them [56, 133]. This requirement led to the need
of recommendation tools that help various Semantic Web users (e.g., vocabulary creators, data
modelers, Linked Data consumers) to find, select, and apply appropriate vocabularies and terms.

According to [133], the reuse of vocabularies is divided into three aspects; (1) discovery, (2)
selection, and (3) integration. Furthermore, vocabulary recommendation is performed for a spe-
cific purpose or scenario [122], i.e., a recommendation could differ based on the user’s intent of
usage. Such Semantic Web scenarios and tools include, e.g., ontology-based query answering and
semantic browsing [122], data mapping and publishing Linked Open Data (LOD) [129], vocabulary
and knowledge engineering [133], as well as semantically annotating IoT data streams [49]. The
following example intends to illustrate this issue.

Example: Alice and Bob are both looking for a recommendation about collected obser-
vations. While Alice would like to publish it as a statistical dataset in the LOD cloud,
Bob intends to annotate a data stream generated by a sensor network. One reasonable
recommendation for Alice could be to reuse the term <http://purlorg/linked-data/
cube#Observation> because of its wide adoption in existing LOD datasets whereas for
Bob one reasonable recommendation could be the term <http:// www.w3.org/ns/sosa/
Observation> as it provides a way to further model the sensor setup.

Within this context, this survey aims at reviewing and assessing relevant tools with regard to
existing state-of-the-art theories, techniques and approaches. This evaluation is subsequently used
as basis for identifying and discussing challenges of the integration of vocabulary recommendation
in IoT ecosystems. Vocabulary recommendation is a composition of several processes, which
themselves inherit various challenges. As of the time of writing, one may find related surveys
of recommendation tools and related work on architectural design considerations with respect
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to vocabulary discovery and/or selection [34, 56, 122, 156], as well as integration of semantics
in the IoT [132, 146]. However, to the best of our knowledge, no previous work has proposed a
joint conceptualization nor an extensive framework to compare existing recommendation tools of
various types with similar purpose, nor reviewed the feasibility of such tools for IoT ecosystems. In
this paper, the term vocabulary recommendation tool (VRT) is used as an umbrella term for tools
that provide means for discovery and/or selection of linked vocabularies.

The rest of the paper is structured as follows: Section 2 discusses the main concepts, theories
and techniques underlying the Semantic Web, along with its importance (from an interoperability
perspective) considering emerging IoT ecosystems. Section 3 presents the evaluation methodology
of this survey. The associated vocabulary recommendation evaluation framework is developed
in Section 4. The specified framework thereby serves as a basis for comparing existing linked
vocabulary recommendation tools in Section 5, which further presents the findings. Section 6
discusses the integration challenges of vocabulary recommendation in today’s IoT projects and
Section 7 summarizes the identified research challenges and directions; the conclusion follows. An
overview of all acronyms used in this paper is given in Appendix A.

2 SEMANTIC WEB AND 10T ECOSYSTEMS

This Section aims at introducing in Section 2.1 the main concepts, theories and techniques underly-
ing the Semantic Web, along with details about the vocabulary recommendation process. Section 2.2
discusses the important role of vocabulary recommendation in the context of open IoT ecosystems.
Section 2.3 concludes related semantic challenges and the contribution of this survey.

2.1 Semantic Web: Concept and Terminology

The Semantic Web offers a technology stack that makes it possible to (1) fundamentally represent a
web embedded graph structure (a schema and corresponding instances) with clear referencing to
entities through Universal Resource Identifiers (URIs) (i.e., RDF [90]), (2) define concept taxonomies
and relationships (i.e., RDFS [89]), (3) define logical constraints and rules between concepts, relations
and instances (e.g., based on Description Logics with OWL [4] and SWRL [62]), (4) reason over the
defined models to automatically infer new relations (e.g., with reasoners like Pellet [134]), (5) enrich
vocabularies and data sets with metadata, and (6) use query languages to retrieve information (e.g.,
SPARQL [111]).

The Semantic Web approach comes with various characteristics that prevail the way to work
with these technologies. First of all, data modeling is separated from the syntax, meaning that
RDF-based models can be serialized in various formats. Second, vocabularies (i.e., classes, relations,
constraints, etc.) and data (i.e., instances of classes and properties, including metadata) are repre-
sented with the same formalism, so that the model and instance level are not clearly separated.
Vocabularies themselves are expressed as Web Data, and thus, Semantic Web tools often do not
clearly distinguish these levels. In contrast, the underlying knowledge representation formalisms
make a clear distinction between these two, which are referred to as Terminological Box (TBox) for
the schema, and Assertional Box (ABox) for the data [40]. In the Semantic Web community, the
terms vocabulary, ontology, and knowledge base are commonly used. A widely-accepted definition
of ontology is given by Gruber who defines it as “an explicit specification of a conceptualization” [44].
In the Semantic Web context, an ontology corresponds to the schema definition (TBox). The term
vocabulary is often used interchangeably with the term ontology, as argued by the The World Wide
Web Consortium (W3C) “there is no clear division between what is referred to as vocabularies and
ontologies™ . However, it is further noted that the term ontology is often used for “more complex”

Thttps://www.w3.org/standards/semanticweb/ontology — accessed 09/2018
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Fig. 1. Dimensions of vocabulary recommendation with regard to discovery and selection.

schema definitions, whereas the term vocabulary does not focus on a “strict formalism”. It can
be perceived that recent popular schemas that could be described as lightweight ontologies (e.g.,
schema.org?, and the redesign of the Semantic Sensor Network (SSN) ontology”, particularly its
new core SOSA [64]) often use the term vocabulary. Semantic interoperability in the IoT focuses
mainly on a common collection of terms to describe relations among concepts, and - as a first
step — does not necessarily require complex semantic constraints. Thus, the term linked vocabulary,
or short vocabulary, is used in this paper to refer to models defined with Semantic Web technologies.
The knowledge base is commonly referred to as a populated vocabulary/ontology, i.e., instantiations
of classes that represent data (i.e., TBox and ABox) [35].

The development of linked vocabularies is part of the vocabulary engineering process (cf. Figure 1)
and considered as a complex task. Various methods, methodologies and tools (such as ontology
editors) have been proposed to support and guide the engineering process with regard to design
considerations and vocabulary evolution aspects to accurately capture the domain of discourse.
The vocabulary engineering process is out of the scope of this survey and the reader is referred to
the literature for further reading [42, 82, 140]. VRTs are concerned with finding and choosing the
most appropriate published vocabulary/term based on a query. Figure 1 provides a greater insight
into the vocabulary recommendation process, which can be divided into two fundamental tasks,
i.e., (1) discovery and (2) selection. Both tasks consist of various steps, which will be referred to as
dimensions in the following discussion of the evaluation framework. The figure further illustrates
how these steps are interconnected. The discovery process is comprised of collection, evaluation,
and curation, which are respectively concerned with finding/gathering existing vocabularies on the
Web, assessing their quality, and maintaining the repository of suitable candidates. The selection
process, on the other hand, requires interaction, query matching, and ranking, which are respec-
tively concerned with providing intuitive interfaces for users/agents, finding a match of suitable
candidates in the repository based on a query, and ranking these candidates for vocabulary/term

Zhttp://schema.org/ — accessed 09/2018
3https://www.w3.org/TR/vocab-ssn/ — accessed 09/2018
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Table 1. Interoperability Issues based on LCIM [149]

Interoperability level Description

6 Conceptual Refers to a fully specified model to be shared among all stakeholders.
5 Dynamic Refers to means to track the evolution of and the ability to discover services.
4  Pragmatic Refers to description of the service to access relevant data; e.g., RESTful, WSDL, Swagger.
3 Semantic Refers to understanding of the data model, the meaning of terms, relations, language, etc.
2 Syntactic Refers to agreement about the data format; e.g., XML, JSON(-LD), CSV.
1 Technical Refers to OSI-layers 1-6.
7 Data providers 7 Data analysts Data consumers
&P Smartobjectowners =y wt# Start-ups, SMEs, etc. @# Decision-makers, etc.
Y= u:i[“ New
Q‘, S Sensed data {} |£ knowledge h Manufacturers
5 o - .* @ * e .
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mar SPﬁcefbl TWC gateways Data analy_tlcs for Knowledge integration
as palit 0 o ! veCO_S)’Stvem knowledge inference (e.g. to improve product design,
(homes, buildings, cities, factories, etc.) data fusion, Al, context-aware, etc. business processes, etc.)

*Interoperability issues, cf. Table 1

Fig. 2. loT ecosystem vision (based on [103]).

recommendation purposes. The dimensions of vocabulary recommendation are discussed in detail
in Section 4 to identify key features and specify an evaluation framework for related tools. The
last step, (3) integration of the vocabulary recommendation in IoT use cases, (cf. Figure 1), is the
subject in Section 6.

2.2 Towards Emerging loT Ecosystems: loT Data Trading

Several organizations and standardization fora have started to build up consortia and initiatives with
the aim of creating IoT ecosystems that are fundamentally based upon openness [137], including
identification, discovery and interoperation of services across platforms [115], e.g., the Alliance
for Internet of Things Innovation (AIOTI) launched by the EU [1], the Open Platform 3.0™ at
The Open Group, the OneM2M global standards initiative [145], the IEEE Internet of Things
(IoT) initiative [93], and the International Technical Working Group on IoT-Enabled Smart City
Framework developed at NIST [117].

The IoT ecosystem vision that is followed in these projects aims for the breakdown of vertical silos
and achievement of horizontal integration [2], the emergence of open innovation ecosystems with
co-creation capabilities [63], as well as the creation of a new value chain through establishing an
environment for data trading, as depicted in Figure 2. Three ecosystem stakeholders are illustrated,
including end-users who own smart objects (e.g., a smart fridge), data analysts (startups, SMEs, etc.)
who may be interested in accessing smart object-related data to deliver new services that fulfill
untapped needs, whether end-user needs (e.g., offering a new service that propose recipes with
food items that are going to exceed the best before date) and/or business needs (e.g., generating
some knowledge such as usage patterns, failure prediction, etc., which could benefit the fridge
manufacturer to improve the fridge design). As emphasized in Figure 2, various types of incentives
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between these stakeholders can be imagined that could be supported by a digital marketplace acting
as an [oT search engine and thus enabling multimodal registration, discovery and trading of data and
services (see e.g., [18, 103, 119]). One key challenge to realize this vision is to enable interoperability
between the IoT data published from heterogeneous sources and the data consumed by analysts,
but achieving such an interoperability is not only a technical matter [48], as summarized in Table 1
from a conceptual perspective. This survey addresses the semantic interoperability problem, which
is a prerequisite for upper levels of the interoperability scheme and thereby also for IoT ecosystem
building blocks such as IoT marketplace-like components.

2.3 Semantic Challenges & Survey Contribution

This state-of-the-art survey is motivated by the presented IoT ecosystem vision in which VRTs
could provide the essential building in order to converge to semantic interoperability. Several
vocabularies have been proposed in order to model data with respect to IoT aspects like sensor
setups, observations, actuators, services, etc., which have previously been reviewed in the literature
[30,73, 131, 157]. However, when it comes to modeling the information that smart objects (or Things)
provide, domain-specific ontologies are required to annotate the data [131], which emphasizes
the need for appropriate recommendation tools. However, existing IoT platforms often rely on
a pre-defined data model that the published data must comply with in order to be incorporated
in the platform. These data models have inherited characteristics (e.g., different formats, units,
languages) that make them incompatible with one another. From an IoT ecosystem perspective,
no single data model should be imposed at the data provider level. Indeed, it is neither feasible
nor manageable to create a single data model/ontology that describes all aspects of the IoT and
related domains (i.e., one that would satisfy all stakeholders) [84], moreover, it is not possible to
develop a single approach to semantically annotate sensor data for gateways [104]. Nonetheless,
semantic annotations are a requirement to discover and integrate available IoT data in intelligent
and autonomous systems, e.g., for WoT search engines [150]. This is a key motivational aspect that
convinced us to survey and evaluate existing VRTs for the IoT. Overall, recommendation is meant
to guide providers and consumers in finding and reusing the most suitable vocabularies/terms for
their specific intent and circumstance.

Furthermore, the semantic-oriented vision of the IoT [7] with its related challenges and the
benefits of linked vocabularies in the IoT go beyond the interoperability issue [79, 158]. Ontologies
have been excessively used in IoT settings for intelligent systems such as context- and situation
awareness approaches [72, 105], activity recognition [68], and other analytics (cf. Figure 2). In these
systems, linked vocabularies are often combined with logical constraints and rules to apply semantic
reasoning. VRTs can also support the development of such applications, since the recommendation
can similarly be applied to select vocabularies for knowledge specification of the respective domain.
Moreover, VRTs could not only support the discovery of related IoT data streams, but further ease the
integration of the data in the knowledge bases of the applications. Despite the advantages of linked
vocabularies in terms of interoperability, Semantic Web reasoning techniques are often associated
with performance issues for IoT platforms [125], which brings new challenges in embedding linked
vocabularies in more efficient data analytics approaches (e.g., RDF stream processing [160]).

The contribution of this paper is to thoroughly analyze existing VRTs and assess whether these
tools are appropriate for constraints of the aforementioned IoT ecosystem vision. The evaluation
framework developed in this survey can guide the development of new VRTs, which, e.g., are able
to recommend best suited ontologies for IoT use cases. It should be noted that the evaluation of
existing IoT vocabularies and identifying best suited vocabularies for IoT domains is out of scope
of this survey.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 2018.
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3 EVALUATION METHODOLOGY

As a typical purpose for systematic reviews [69], this survey aims to compare existing approaches in
terms of advantages and disadvantages, provide a joint conceptualization of the various approaches
in the field, and identify open challenges. The methodology followed in this survey is illustrated in
Figure 3.

Corpus: ACM, IEEE, Springer, Science Direct, Google Scholar, etc.

T

T T
v v | Section 4.1 - 4.3 cetion W \l,

Feature Feature-based
[Tool collection}—’ identification evaluation I(_’T
framework . projects
l Evaluation
and l
Tool findings Integration
L 5 . 5
selection ——> intoday’s
IoT projects

Fig. 3. Evaluation methodology of this survey.

Firstly, tools related to vocabulary recommendation have been collected from well-known
digital libraries and search engines. An analysis over this set exposed different dimensions that
inherit various challenges for these tools. Subsequently, based on the dimensions of vocabulary
recommendation presented in Section 2.1, key features have been identified in an exhaustive
manner through corpus refinement, as detailed in Sections 4.1 — 4.3. These features represent the
unified aggregation of relevant tools and serve as criteria of the evaluation framework specification,
as presented in Section 4.4. The comparison study, findings, and consideration of IoT ecosystem
aspects are discussed in Section 5. Lastly, the integration of vocabulary recommendation in IoT
projects and the feasibility of surveyed VRTs for IoT scenarios is discussed in Section 6.

Relevant tools and respective publications for the comparison in Section 5 were selected following
the PRISMA methodology [94]. To be included in the evaluation analysis, the recommendation
tool must satisfy the following requirements: both/either propose a discovery mechanism and/or a
selection mechanism for linked vocabularies. Studies presented in doctoral dissertations, master’s
theses, textbooks, and non peer-reviewed papers were ignored. Further, the following (closely
related) tool types were excluded:

e Expert vocabulary collections with no selection mechanism being offered (e.g., LOV4IoT [49],
Protege Online Library*, vocab.org®, ontologi.es®, joinup’, and SWEET ontologies [116]);

e Tools that solely focus on the validation of a single vocabulary which, however, could support
evaluation in VRTs (e.g., OntoCheck [130] and Oops! [109]);

e Analytical tools that could also provide valuable inputs for VRTs like metadata extraction
(e.g., Aether [83]);

o Tools computing plain schema-related statistics of a single vocabulary (e.g., RDFStats [76]).

“Protege Ontology Library: https://protegewiki.stanford.edu/wiki/Protege_Ontology Library#OWL_ontologies - accessed
09/2018

Svocab.org: http://purl.org/vocab/ — accessed 09/2018

®ontologi.es: http://ontologi.es — accessed 09/2018

7joinup core vocabularies: https:/joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/core-
vocabularies — accessed 09/2018
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Eventually, 40 tools with 45 associated studies were selected, published in the following scientific
libraries: Springer (~22.2%), IOS Press (~13.3%), CEUR (~13.3%), Science Direct (~8.9%), ACM (~6.7%),
IEEE (~6.7%), AAAI (~4.4%), IGI Global (~4.4%), IADIS (~4.4%), Wiley (~4.4%), and others (~11%).

4 EVALUATION FRAMEWORK SPECIFICATION FOR VRTS

This section provides a more in-depth discussion of vocabulary recommendation by identifying
key features for each dimension. To help the reader to follow the features that are introduced and
discussed with regard to each category, i.e., for general features in Section 4.1, discovery features in
Section 4.2, and selection features in Section 4.3. An at-a-glance overview in the form of a tree graph
(e.g., Figure 4) is given in each of the following sections. The enumeration of dimensions/features
shown in the graph is kept throughout the survey. Section 4.4 presents the resulting evaluation
framework.

4.1 General Features

Before going into detail for vocabulary discovery and selection, general dimensions and features
are defined to characterize VRTs. Features were associated with two general dimensions, namely
approach and tool characteristics, as summarized in Figure 4.

Category

cf. Section 4.1 General

Dimensions / \

o Section 4.1X L. Approach II. Tool characteristics

Features / / \ / / \\\

(1§/Feature) (1) Name  (2) Year  (3) Reference  (4) Type (5) Availability ~ (6) Domain  (7) Scope
Search engine I: Available Vocabularies
Statistical Not available I: Knowledge
Evaluation base
Repository
Recommender

Retrieval

Fig. 4. General dimensions and features to characterize VRTs.

4.1.1 Approach. This first dimension is introduced to present the approaches, considering the
following features:

Name: The name of the tool as used in its publication, to uniquely identify the approach.

Year: Year of the first associated publication that serves for identification of trends in proposed
tools over time.

Reference: Scientific reference of the study used as basis for the evaluation.

4.1.2  Tool characteristics. Secondly, more detailed characteristics of the tools are considered.
These general features include:

Type: Different types of vocabulary libraries have been identified in [34]. However, as a broader
scope of recommendation tools is considered, an own classification scheme was used that is based
on the dimension(s) a tool puts particular emphasis on. Six different types of VRTs were identified,
namely:

e Search engine: Focus on vocabulary collection, e.g., discovery and indexing of semantic
documents through Web crawling.
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e Statistical tool: Focus on vocabulary collection and evaluation, e.g., analyzing the usage of
vocabularies, often extracted from LOD sources, to guide end-users in choosing an appropriate
vocabulary/term.

e Evaluation tool: Focus on vocabulary evaluation, e.g., assessing quality of the discovered
vocabularies to give recommendations (considering a given set of metrics).

e Repository: Focus on vocabulary curation, e.g., the provision of a platform for a community
to manually collect and review vocabularies based on pre-defined requirements.

e Recommender: Focus on vocabulary ranking, e.g., by applying information filtering techniques
or learning over LOD datasets to recommend most suitable vocabularies/terms.

e Retrieval tool: Focus on vocabulary interaction and matching, e.g., by proposing advanced
means for querying, exploring, and matching candidates upon a query from an existing set
of vocabularies.

Availability: Whether the tool is available or not available®, which also indicates whether it could
be evaluated experimentally. It is determined by checking whether an active website or download
of the tool could be found by following URLs in the publication(s) and via a web search with the
tool’s name.

Domain: Covered domains of the vocabulary collection (if not independent). It is concluded from
the vocabularies that are maintained in the tool’s repository.

Scope: Indicates whether the approach focuses on vocabularies or further supports knowledge
bases (since schemas and data in the Semantic Web are based on the same formalism). The scope is
inferred by checking whether the tool’s repository exclusively contains vocabularies.

4.2 Discovery Features

The discovery of vocabularies is a fundamental process of VRTs, as only discovered vocabularies
can be in the set of potential candidates to be recommended upon a query. Three dimensions with
regard to discovery are discussed, namely collection, evaluation, and curation, as summarized in
Figure 5.

4.2.1 Collection. The first step of the recommendation process is concerned with the collection
process of available vocabularies. Two distinct features and associated approaches were identified
through the tools’ evaluation and based on the discussion on ontology collections in [34], namely:

Crawling: In this process, the Web is browsed systematically by a software system realized
through Semantic Web crawling, re-using common Web search engines, processing LOD sources
and endpoints, or accessing APIs of existing vocabulary collections and VRTs. These approaches
rely on a fundamental best practice that states that vocabularies should be hosted and made publicly
accessible at the URI of the vocabulary.

Semantic Web crawlers, also referred to as RDF crawlers, harvest data from Semantic Web
documents (SWD) to discover linked vocabularies or data. These crawlers focus on extracting
RDF-based data that can be found in various formats (e.g., RDF/XML, turtle, JSON-LD), or embedded
in other documents (e.g., RDFa in HTML). Existing VRTs also exploit conventional web search
engines and associated crawlers (Google, etc.) in order to discover semantic web documents on
the web (e.g., by filtering specific document types such as filetype:rdf and filetype:owl). Deploying
an RDF crawler faces various design and implementation challenges, as for example discussed in
[55]. As an alternative way to browsing the whole web, accessing LOD endpoints or data dumps to
extract used vocabulary terms is another way employed for collection. However, this approach is

8 Availability as of 09/2018
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Fig. 5. Dimensions and features related to vocabulary discovery.

only capable of discovering vocabularies that have been used to model data in the analyzed linked
data set. Lastly, some approaches crawl vocabularies from APIs of existing external libraries.

Manual: In contrast to automatic approaches, those who rely on a manual collection process do
not aim to discover all available vocabularies on the web, but rather to fulfill one of the following
goals: (i) present a proposed vocabulary to the community, (ii) keep supervised control over the
maintained candidate set, or (iii) provide a platform for community consensus. Manual collection
can be achieved either through user submissions or expert selection. Submission-based approaches
are more flexible, and facilitate the evolution of the vocabulary collection. Expert collections are
often maintained by an official body.

4.2.2  Evaluation. The second dimension of vocabulary discovery is concerned with the assess-
ment of the quality and correctness of vocabularies [60]. In the vocabulary recommendation process,
the purpose of evaluating vocabularies are twofold: (i) assuring a certain quality for the selected
vocabulary candidates; and (ii) giving the best recommendation for selection [122, 148]. Thus, as
illustrated in Figure 1, evaluation serves as an input for curation as well as ranking, which are
respectively discussed in Sections 4.2.3 and 4.3.3. In this survey, the focus is on evaluation aspects
relevant for vocabulary recommendation, rather than on ontology evaluation for the vocabulary
engineering process, which has already been the subject of studies in the literature [17, 41, 60, 139].

In this respect, the Semantic Web community has proposed various best practices and guidelines
for vocabulary design, development, publication and reuse. These documents often cover both
schema- and data-related aspects, while providing a source for identifying quality criteria for vocab-
ularies. One may cite, among other examples, the 5 star Linked Data model [14], consumer/publisher
recommendations [61], Linked Data design considerations [57], five star rating for vocabulary use
[65], OntoClean methodology [45], guidelines for Linked Data generation and publication [114],
ontology pitfalls [110], W3C best practices recipes [16], or still the best practices applied to IoT
[50]. Furthermore, quality assessment of vocabularies has been extensively studied in the literature,
as in [37].
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Table 2. Evaluation Criteria of Linked Vocabularies and their Consideration in VRT Processes

Criteria Synonyms Description Implementation Used as criteria for:
Curation Ranking
Availability Dereferencability [57, 61, Whether the vocabulary is HTTP requests, openness of v v
[14, 143, 165] 65] accessable and dereferencable  vocabulary license.
Accessibility [61] through its URL
Validity [112] Syntactic  accu- Whether the vocabulary is syn- Parsing the vocabulary. v v
racy/correctness tactically correct.
[14, 143, 165]
Syntax evaluation
[61, 139]
Consistency [37,41, Machine-readable [65] =~ Whether the vocabulary is free ~ Applying reasoners. v v
60, 61, 165] of logical contradictions with
regard to its underlying repre-
sentation (RDFS, OWL-variant,
etc.).
Accuracy [60, 165] Domain cohesion Whether the schema correctly Human judgment. v v
[60, 139] represents a real-world domain.
Veracity [143]
(Re-)usability [37]
Interlinking [14,57, Connectedness [19] The extent to which the vocab- Counting in- and out-links at v v
65, 165] Coupling [60] ulary includes sufficient seman- the schema level.
Structural evaluation tic relations to external vocabu-
[139] laries.
Popularity [122] Usage statistics [139] The extent to which the vocabu- Analyzing LOD datasets for X v
lary/term is often used to model instantiations of the vocabu-
data of the domain it describes. lary, counting its presence in
ontology repositories, or tak-
ing into account the number
of local requests.
Reputation [165] - Whether users judge the vocab- User reviews and ratings.
ulary to be of integrity.
Understandability ~ Practical quality [143] Whether the vocabulary can  Counting annotation proper-
[57, 165] Interpretability [165] be understood without ambi- ties.
Clarity [60] guity; e.g., through annotation
Metadata [65, 139] properties like rdfs:label and
rdfs:comment.
Believability [165] ~ Provenance metadata Whether the provenance / meta- Checking author information v v
[57] data about the vocabulary indi- and history.
cates that it comes from credible
source.
Versatility [165] - Whether the vocabulary is avail- Checking labels with lan- v X
able in different languages and guage property (@en etc.).
serialization formats.
Richness [37,122] ~ Complexity [143] The extent to which concepts Measure based on number X v
Density [3] in the vocabulary are described of properties, siblings, sub-
Informativeness [6] and specified. classes, and superclasses per
concept.
Centrality [22] Betweenness [3] The extent to which a conceptis Measure based on amount of X v
central in the vocabulary graph. relations of a concept and/or
the count of shortest paths
within the vocabulary that go
through it.
Importance [36] - A combination of popularity Measures of interlinking X v

and interlinking, meaning that
the importance depends on the
quality of the link.

while taking into account
the popularity of the source
for in-links, e.g., PageRank
algorithm.

Quality assessment: The quality attributes considered in the evaluation framework are listed in
Table 2. The selection of criteria is mainly based on the comprehensive review presented in [165]
and was complemented with those stemming from best practices and those considered by the VRTs
that are subject of the evaluation. From the aforementioned sources, only quality attributes that
are concerned with the schema (TBox) and deemed relevant for vocabulary recommendation were
selected. In addition, it is shown whether the quality criteria is typically considered for curation
and/or ranking.
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4.2.3 Curation. The last identified dimension of the discovery process is about vocabulary
curation, which refers to the management and maintenance of the vocabulary candidates from
the internal repository. Indeed, curation is often a collaborative effort to ensure and improve the
quality of formalized knowledge [43]. Two features were identified based on the survey in [43] and
the reviewed tools in this respect, namely:

Curators: This feature indicates who oversees the curation and maintenance of the vocabulary
candidate collection, which could be fulfilled by users, experts or through automated processes.
Whereas human-based curation offers means to improve vocabularies based on reviews and discus-
sions, automated curation is able to handle large sets of discovered vocabularies more efficiently.

Tasks: The curation process can cover different aspects, including metadata completion and
maintenance, review of newly discovered vocabularies, add semantic relations to other vocabularies
of the corpus, consolidation of discovered vocabularies, support of versioning, as well as classification.
It should be noted that the curation process strongly influences the quality and extend of the
vocabulary candidate repository, which could potentially enhance vocabulary selection (e.g., the
classification of vocabularies can be exploited to filter domains).

4.3 Selection Features

The second fundamental task of vocabulary recommendation is to select the most appropriate
candidate from the repository. The dimensions with regard to selection are interaction, matching,
and ranking, as summarized in Figure 6 and discussed in the following.

Category .

of Section 4.3 Selection

of Section 43X VI Interaction VIIL Matching VIIL Ranking

Features / \ \ / \ / x \

(1§/Feature) (13) Query format ~ (14) Query exp.  (15) Access  (16) Granularity ~ (17) Fields (18) Query match ~ (19) Qualitative m.  (20) Scoring func.
Single term Disambiguation User SWDs URIs Term frequency b Validity Simple ordering
Keyword(s) Spelling interface Vocabularies Local names THidf |- Consistency Feature
Text corpora correction APL Terms Labels Levenshtein |- Accuracy aggregation
Structured query Synonyms Entities Literals Jaccard L Iterlinking Rankedlboulcan

pony: trieva
Graph-patterns Hyponyms Combinations Metadata Field importance | Popularity retrieva
i Vector Spa
Knowledge Hypernyms properties Term proximity | Reputation Vector Space
markup Language Classified {— Understandabilit; i
3 o concepts andabiity Learning to rank
Exploration Context P L Believabilit:
i Y Optimization

Facet Personalization Partial
o ) matches [ Richness problem
Restrictions L contrality -

L Importance

Fig. 6. Dimensions and features related to vocabulary selection.

4.3.1 Interaction. Recommendation approaches need to provide means to interact with users
and agents to query the recommendation service. The dimension is broken down to the following
features:

Query format: A VRT interface could offer the following means/formats for querying, as identified
from evaluated tools (in particular from [53]) and the discussions in [58]: single terms, keyword-
based search, text corpora (so-called free text retrieval), logical/structured query (e.g., SPARQL),
graph-patterns, and tasks expressed with knowledge markup. Whereas keyword-based search is
the most popular and easy to use interface, it is often argued that it does not allow for a precise
specification of the information need [58]. Search- and recommendation-based approaches often
require multiple interactions for users to reach their goal, thus, further employed interaction models
include exploration of the vocabulary collection (e.g., object focus, path traversal [53]), specification
of restrictions, and offering facets.
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Query expansion: The idea of query expansion is to express the user’s information need more
precisely for enhanced retrieval results. Available approaches, based on the comprehensive survey
in [26], include disambiguation options (e.g., defining the sense of a keyword in case it has multiple
meanings [47, 162]), perform spelling checks on the user’s input, expend keywords with synonyms,
hyponyms or hypernyms (e.g., through WordNet [91]). Some approaches aim to personalize the query
and retrieve more suitable results for a specific user. In semantic search, such user preferences could
represent the interest of the user in a certain concept. Instead of explicitly defining preferences,
another approach consists to take into account contextual parameters of a request to improve the
recommendation.

Access: VRTs are often designed to provide search oriented towards humans, and thus often
offer a user interface (UI) to access the information. In more detail, yet out of scope of this survey,
Uls are concerned with result presentation and visualization (list, graphs, trees, etc.). However,
the need for Semantic Web applications to discover vocabularies lead to the need of specifying
(RESTful) application programming interfaces (APIs) to access the service, which further allows to
aggregate VRTs.

4.3.2 Retrieval. The second dimension of vocabulary selection is concerned with:

Granularity: The importance of granularity for vocabulary recommendation is discussed in
[118, 122] and served as motivation to collect granularity levels that were considered by the
evaluated tools. Retrieval in VRTs can be done on the level of matching SWDs, vocabularies,
terms, entities, or combinations from different vocabularies. The granularity strongly impacts
the nature of the recommendation process: Whereas some approaches aim at recommending
complete vocabularies that have the best coverage of the queried domain/concepts (also through
recommending combinations of vocabularies), other approaches seek to find a single best term or
entity. Indeed, it is not trivial whether it is best to reuse as little as possible number of vocabularies
for a user’s intended task, or rather combine “better” terms from various vocabularies [127].

Matching fields: The matching process is concerned with retrieving candidates from the reposi-
tory that match the query. This feature shows the detail to which tools match a query against the
information contained in a vocabulary. Due to the inherit structure of RDF vocabularies, matches
can be performed on different fields and properties including URIs, local names, labels, literals, and
metadata properties such as basic properties like rdfs:comment or properties from vocabularies such
as the Dublin Core’ and SKOS'’. Moreover, in case vocabularies are classified during the curation
process, vocabularies of a matching domain/concept can be retrieved. In case of logical queries,
the match is returned from processing the query based on its underlying language. Furthermore,
partial matches could also be taken into account, even though one may dispute its real impact on
the search quality [66]. The matching fields considered by an approach are relevant for vocabulary
selection, since there is no one way or guarantee that vocabularies are annotated in the same
way. Valuable information could reside in different fields/properties that could help to identify a
matching candidate.

4.3.3 Ranking. Algorithms to rank matched candidates form a key component of VRTs. Ranking
aims at determining best candidates of the vocabularies that matched the query by taking into
account various measures, including:

Query match measures: These enable the ranking of the candidate set determined by the query
match through content- and graph-based similarity measures. Due to the huge amount of similarity
measures in the literature, the evaluation framework is limited to those found in the evaluated

“Dublin Core vocabulary: http://purl.org/dc/terms/ - accessed 09/2018
10SKOS vocabulary: https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html - accessed 09/2018
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tools. However, those were aligned to the literature such as [21, 85]. A common approach is to
compute the term frequency in a vocabulary for all words in a query, which is often combined
with the inverse document frequency of the terms (otherwise, rare terms would have no power to
influence the query relevancy), also known as term frequency—inverse document frequency (tf-idf)
[123]. Another way to calculate similarity between query and candidate, at the string level, is
to simply compute the edit distance (Levenshtein). The Jaccard coefficient allows to measure the
overlap between sets, and thus can be applied on the set of words from the query and those from
the vocabulary. Further, finding a match in some field types of a vocabulary might be of higher
importance than others (e.g., a match in the name is more valuable than in the metadata), which can
be represented through assigning different weights to field types (i.e., field importance or weighted
zone ranking [85]). The last query match measure found is concerned with the proximity of multiple
query term matches within the vocabulary graph. This measure is calculated by identifying the
shortest path between matched fields [85].

Query-independent measures: Qualitative measures: These aim to compute a score for a vocab-
ulary or term independent from the query. The approach to the collection of qualitative features is
discussed in Section 4.2.2 and those quality criteria relevant for ranking are indicated in Table 2.
One scoring algorithm standing out is PageRank [98] to measure the importance of a document, a
popular one for ranking Web pages that can be adopted to the needs for SWDs. PageRank falls into
link analysis, being based on a random surfer who, starting from one page/vocabulary, randomly
follows a link. The more often a node is visited by the random surfer during his walk, the more
important it is. For SWDs, the random surfer needs to consider the semantics of the followed links.

Scoring functions: Lastly, previous presented measures are used as inputs of the scoring function
to compute an overall ranking of matching candidates for a query. Due to the large amount of
approaches to achieve a ranking, only those found in the evaluated tools are listed in the evaluation
framework. Further reading include general scoring functions [85] and ranking of vocabularies
[27, 141].

Ranking with only one feature requires simple ordering. In a straightforward manner, multiple
features can be aggregated, e.g., through weighted or unweighted sum or factorization. In the vector
space model [124], documents are represented as vectors with each component representing a
document term, which could be computed based on the tf-idf-like measures. Vector space scoring
calculates the similarity between two documents (e.g., between a query vector and a vocabulary
vector) by calculating the cosine similarity, which, however, is expensive to compute [85]. Weights
of ranking features can be defined through experts or learned from a training data set (learning to
rank [80]), with algorithms such as LambdaMART [159]. Calculating a score for candidates could
also be seen as an optimization problem by formulating features as cost functions. Lastly, features
could also be aggregated through the analytical hierarchy process (AHP) [121].

4.4 Evaluation Framework

The overall evaluation framework consists of the different sets of features with regard to the
different vocabulary recommendation dimensions, which have all been summarized in Table 3.
This framework is then used in the following as a basis for evaluating and comparing various
recommendation tools.

5 EVALUATION OF VRTS

This Section presents the evaluation of existing VRTs based on the proposed framework. Table 4
and 5 respectively present the results with regard to the general/discovery and selection dimensions.
In the following the findings of the evaluation are discussed.
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Table 3. Evaluation Framework

Category Dimension  Feature Description
General I Approach (1) Name Tool’s name.
(2) Year Year of first relevant publication.
(3) Reference Reference to the tool’s academic publication.
1I. Tool (4) Type The category the tool falls into: Search Engine (M), Statistical (%), Eval-
characteristics uation (), Repository (M), Recommender (M), Retrieval ().
(5) Availability Whether the tool is available (v'), not available (X).
(6) Domain Domains covered, if not domain-independent.
(7) Scope Whether tool focuses on Vocabularies (Voc), or on Knowledge Bases
(KB).
Discovery III Collection (8) Crawling Automatic collection of vocabularies through: Semantic Web crawler

(Cr), Web search engines (SE), LOD Endpoints (LOD), and/or External
Libraries (Lib).

(9) Manual Manual collection through: User Submission (U), and/or Expert Collec-

tion (E).
IV. Evaluation (10) Quality as-  Assessment of discovered vocabularies for curation purposes, based on:
sessment Availability (Ava), Validity (Val), Consistency (Con), Accuracy (Acc), In-

terlinking (Int), Reputation (Rep), Understandability (Und), Believability
(Bel), Versatility (Ver), or Richness (Rich).
V. Curation (11) Curators Curation handled Automatically (A), by Experts (E), or Peers/Users (U).
(12) Tasks Curation tasks covered: Consolidation (Con), Metadata (Met), Content
Review (Rev), Interaction with authors (Int), defining Relations and
Mappings (Rel), maintain Versions (Ver), add Classifications (Clas).
Selection VI. Interaction (13) Query format Ways to query the recommendation service, including: Single Term
(Term), Keywords (Key), Text Corpora (TC), Structured (QL), Graph-
pattern (Gra), Knowledge Markup (KM), Exploration (Exp), Restrictions
(Res), Facets (Fac).
(14) Query expan- Means to improve the query formulated by the user: Disambiguation

sion (Dis), Spelling Correction (Spe), Synonyms (Syn), Hyponyms (Hypo),
Hypernyms (Hyper), Language (Tra), Context (Con), or Personalization
(Per).

(15) Access Whether information access is provided for Users (UI), and/or Agents
(API).

VIL Matching (16) Granularity ~ To which granularity a query is matched and retrieved from the corpus:
Vocabulary (Voc), Terms (Term), Entities (Ent), SWDs (SWD), or support
of Combinations of these (Comb).

(17) Fields To which fields of a vocabulary a query is matched: URIs (URI), Local
names (Nam), Literals (Lit), Labels (Lab), Metadata Properties (Met),
Classified Concepts (Con), Partial Matches (Par).
VIIL Ranking  (18) Query match Assessment of the similarity between query and vocabularies in the
measure corpus, based on: Term Frequency (TF), TF-IDF (TF-IDF), Levensthein
(Lev), Jaccard (Jac), taking into account the Field Importance (FI), and/or
the Term Proximity (TP) of matches in a vocabulary.
(19) Qualitative ~ Assessment of vocabularies in the corpus to calculate a quality score
measures based on: Validity (Val), Consistency (Con), Accuracy (Acc), Interlink-
ing (Int), Popularity (Pop), Reputation (Rep), Understandability (Und),
Believability (Bel), Richness (Rich), Centrality (Cen), or Importance

(Imp).
(20) Scoring func- Approach to calculate a final rank based on the used measures: Simple
tion Ordering (Ord), Feature Aggregation (Agg), Ranked Boolean Retrieval

(RBR), Vector Space Model (VSM), Learning to Rank (L2R), Optimization
Problem (Opt), Analytical Hierarchy Process (AHP).
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Table 4. Evaluation of VRTs regarding General and Discovery Features
I. Approach 1I. Tool characteristics  III. Collection IV. Evaluation V. Curation
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Table 5. Evaluation of VRTs regarding Selection Features
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Fig. 7. Analysis of the VRTs evaluation.

To help readers extract quick and meaningful information, some results of the evaluation (i.e.,
from Table 4 and 5) have been displayed in the form of charts in Figure 7, including:

e Figure 7a: number of tools of each type that have been introduced and are still available;

e Figure 7b: how often evaluation criteria were used, and whether it is for quality assessment
or ranking;

e Figure 7c: whether tools focus on quality assessment, ranking, or both;

e Figure 7d: to show which ranking features were used for each matching granularity;

e Figure 7e: trends of how often interaction features are used.

Shift from semantic search engines and evaluation to repositories, recommenders and retrieval: One
trend that can be observed is the shift from the development of search engines and evaluation-
focused tools to recommender and retrieval systems. As depicted in Figure 7a, only a few search
engines and evaluation tools included in the survey are still available (about 50% of the reviewed
VRTs). Even though a similar observation can be made about tools of type recommenders, it should
be noted that three out of four tools from this category have been introduced just in the recent
years, indicating a growing interest. Semantic search engines are often not solely focused on
vocabularies but also on Linked Data, however, conventional Web search engines like Google
increasingly incorporate capabilities of retrieving Semantic Web content, as claimed by [96] — a
well-known example is the schema.org vocabulary embedded in websites which is supported by
many conventional Web search engines. Evaluation tools are able to thoroughly assess vocabularies;
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however, they are often inefficient in finding suitable candidates from a vocabulary reuse standpoint.
Indeed, with the huge amount of vocabularies published on the Semantic Web, the challenge lies not
in discovering as many as possible, but rather in selecting efficiently as few as possible well-fitting
and requirements-meeting vocabularies/terms.

Curation vs. ranking: A fundamental aspect of recommendation is the assessment of vocabularies’
quality. Figure 7b shows how often the evaluation criteria are used for curation and/or ranking. Most
curation approaches focus on ensuring validity (13 times), consistency (10) and understandability (7)
of newly collected vocabularies, whereas ranking models rather take into account the richness (12),
popularity (9), and interlinking degree (6). Considering Figure 7c, it can be added that VRTs often
focus on either the curation of the vocabulary collection (25%) or efficient ranking for queries (37%).
However, the combination of both, which is implemented by 28% of the reviewed VRTs, would
naturally increase the quality of the recommendation service. An example thoroughly considering
both approaches is the Linked Open Vocabularies platform (LOV).

Limited support of combined recommendations: As previously mentioned, it is not trivial whether
recommendation should be made on a vocabulary or term/entity level. When publishing IoT data,
rarely a single vocabulary would cover all required terms. The most common selection granularity
of the surveyed tools is a complete vocabulary. Identifying the combination of most suitable and
interlinked terms for an existing non-linked schema cannot be easily achieved with existing VRTs,
as engineers are still required to pick and combine suitable terms. Combined recommendations are
especially useful when the recommendation service can take into account all the terms (or other
data structures) that the user/agent is looking for. In this evaluation, only two approaches offer
recommendations based on text corpora, namely NCBO 2.0 and LOVR, whereas the latter takes
HTML as input with the goal to semantically annotate websites.

Impact of qualitative measures on ranking quality remains unclear: Despite the various evaluations
for recommendations presented in the selected studies, the general importance of qualitative
measures to achieve better quality of ranking remains unclear, as most approaches focus on a
limited set of criteria, and different metrics are used for same criteria. The selection approach by
Semantic Web users is often driven by the popularity of a vocabulary, as claimed in [127]. The
evaluation reveals that popularity is also among the most used criteria for selection in the surveyed
VRTs (cf. Figure 7d). However, in order to receive good results these query-independent features
need to be combined at least with a reliable query match measure [21]. In general, establishing the
correct weight between features to optimize the ranking model is a tedious task [80], and there
is no common conclusion on the importance of each ranking feature for ranking models. Only
two approaches of the survey use learning-based approaches to assign weights to features, namely
TermPicker that focuses on different metrics related to popularity, and DWRank that focuses on
learning the weights for features like centrality and importance. Furthermore, the aggregation of
features is also dependent on the selection granularity. Figure 7d shows the features used for ranking
per selection granularity. It can be observed that a large variety of features is only considered (and
suitable) when ranking complete vocabularies/SWDs, whereas only a limited number of features is
used for ranking terms/entities.

Simplicity for interaction: The trend of some interaction features is displayed in Figure 7e. It
can be observed that simple interfaces are more popular. Most approaches are keyword-based
and increasingly offer APIs. On the other hand, the use of query expansion features to refine
queries for users and alternative query formats (e.g., query languages or text corpora) are less often
implemented by the surveyed VRTs.
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Fig. 8. Integration of vocabulary recommendation in the loT ecosystem model.

6 VOCABULARY RECOMMENDATION IN TODAY’S 10T

We propose the conceptual integration of vocabulary recommendation in IoT ecosystems in Sec-
tion 6.1, while the consideration of VRTs in today’s IoT platforms is analyzed in Section 6.2.

6.1 Conceptual Integration of VRTs in loT Ecosystems

As previously mentioned, the process of recommending linked vocabularies can be structured
in three steps, namely (1) discovery of available vocabularies, (2) selection of the most suitable
candidates for user queries, and (3) integration of the recommendation for the user’s task at hand.
Figure 8 illustrates the integration of VRTs in the scope of an IoT ecosystem model, which is
dependent on the user’s intent.

Five distinct use cases (denoted by @ — ® in Figure 8) provide insight into different users/agents
who query vocabulary recommendation for different purposes. Case @ shows the most fundamen-
tal use case from the Semantic Web, in which vocabulary engineers use recommendation tools
during the vocabulary development process in order to link to, and potentially extend already
existing definitions during the development process instead of redefining them. Cases @ — ® show
integration cases in the IoT ecosystem model. @ shows the case of smart object owners, who use
the recommendation not only to define a semantic schema, but also to create mappings from local
sensor data to the newly defined schema. With these mapping rules, sensor data streams can be
transformed and published with semantic annotations, which is a core requirement to efficiently
join IoT ecosystems (e.g., to be easily and efficiently discovered). Cases @ and ® represent queries
from developers and domain experts, who respectively intend to discover available IoT data/services
and specify knowledge for an intelligent IoT application. Some of these processes could also be
automated through artificial agents requesting for vocabulary recommendation (®). Eventually the
vocabulary recommendation fosters interoperability and allows for more efficient and elaborate
knowledge extraction.
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6.2 Consideration of VRTs in loT Platforms

As thoroughly reviewed in [92], existing open IoT platforms lack unified and interoperable data
models. Ongoing analysis, discussions and IoT project efforts with regard to linked vocabularies for
the IoT domain indicate that this issue is thoroughly addressed by the community, as evidenced by
[9, 39]. Despite the fact that more and more IoT platforms support SWTs, and that vocabularies to
describe Things are becoming more mature, solely the use of linked vocabularies is not enough to
achieve global interoperability [11]. As a first step, this only makes those platforms interoperable
that either use the same vocabularies, or vocabularies that have been successfully mapped/matched.
Recent efforts in this regard include for example the Fiesta IoT project that achieved semantic
interoperability between the FIWARE and OneM2M platforms (both using different data mod-
els/vocabularies) [75]. Before, the SPITFIRE project was concerned with aligning IoT vocabularies
[107].

VRTs form a key building block to support users of semantic-aware IoT platforms, for all the
IoT ecosystem use cases that have been previously introduced in Section 6.1 (i.e., linked sensor
data publication/transforming sensor data streams, discovering IoT data/services, defining domain
knowledge). However, it can be observed that existing IoT platforms — despite the support of
SWTs - do not yet follow the IoT ecosystem model as presented in Section 2.2, and do not consider
vocabulary recommendation in their scope of tools and platforms. One reason that could explain
this is that vocabularies for IoT-related domains (mobility, city, home, etc.) have not yet reached full
maturity, many still being under specification and development (e.g., the MobiVoc'! vocabulary for
the mobility domain). However, the expectation is that developers can easily extend platforms to
their needs, integrate data from and model data in a format that is understood by various platforms
[92]. VRTs, in their essence, support this goal through collecting and offering means for selecting
appropriate vocabularies. The recent and promising Industry Ontologies Foundry (IOF) initiative'?,
to some extent, agrees with this vision and aims to adapt the success story of the OBO Foundry from
the medical domain to the industrial domain (including IoT), in order to provide a collaborative
tool suite that helps to build and collect jointly interoperable vocabularies. Nonetheless, the idea of
sharing and reusing data models defined by the community has already found its way to the IoT,
e.g., the information model repository (based on a domain-specific language) of the Eclipse Vorto
tool .

Despite the lack of consideration of VRTs in IoT platforms, they have been considered in other
SWT-based tools. For example, [126] describes the integration of TermPicker in Karma [70], which
is a linked data integration tool based on mapping rules. Still, such tools do not satisfy IoT specific
requirements, e.g., applying the transformation on data streams, while considering specific char-
acteristics of sensor data streams [10], and publishing the data in a SWoT gateway. On the other
hand, IoT-specific tools often do not consider vocabulary recommendation. Instead, they are built
upon a pre-selected set of vocabularies, like tools/approaches presented in [51, 74, 95, 102]. In a
recent work [71], a tool to generate a SWoT gateway based on term-level recommendations from
the LOV platform has been proposed in the framework of the bloTope H2020 project'*.

In an open IoT ecosystem in which data is not modeled to suit a single IoT platform, but instead
based on common, community-based vocabularies that could be understood by many platforms,
VRTs are essential. The VRTs surveyed in this paper could be used for this purpose, however, the
variety of tools and that the recommendation differs based on the chosen tool (due to different

I MobiVoc: http://schema.mobivoc.org/ — accessed 09/2018

21OF: https://www.youtube.com/watch?v=y0TeTfoFdSA - accessed 09/2018
BEclipse Vorto: http://www.eclipse.org/vorto/ — accessed 09/2018
14ploTope: http://www.biotope-project.eu/ — accessed 09/2018
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collection and selection capabilities) can be frustrating for users. Further, the success of ontology
usage in the biomedical domain indicates that domain-dependent VRTs have a higher chance to be
used and adopted by the community and to achieve a consensus. A VRT specialized on IoT-related
domains could provide unique collection and selection features, e.g., taking into account the number
of IoT platforms and their capabilities that comply with a certain vocabulary.

7 RESEARCH CHALLENGES AND DIRECTIONS

This Section summarizes the identified research challenges and directions derived from the evalu-
ation and discussions of this survey with regard to both, vocabulary discovery (Section 7.1) and
vocabulary selection (Section 7.2).

7.1 Vocabulary Discovery for loT

The following discussion on challenges for vocabulary discovery is based on the dimensions
introduced in the previous sections (cf. Figure 5), namely collection, evaluation and curation.

Collection: The collection of vocabularies for IoT domains is a challenging task because most
vocabularies are still being proposed in the scope of research projects. LOV4IoT [49], e.g., is
dedicated to classify proposed vocabularies and to make them accessible by integrating them into
the LOV platform [154]. One challenge for vocabulary collection of IoT domains is the restriction
to certain domains, as sensors are deployed in an increasing number of settings (e.g., in cities and
factories) and thus in new contexts that are required to be modeled. However, projects such as
LOV4IoT indicate that vocabulary collections can be eventually maintained domain-independently.
Future efforts to collect vocabularies for IoT domains will help recommendation tools to build a
better vocabulary candidate set.

Evaluation: The evaluation of IoT vocabularies as such can rely on the quality criteria identified in
the survey. However, since many vocabularies are still being proposed for the same domain and due
to the rapid pace of developments in the IoT, vocabularies are being continuously improved. Hence,
more emphasis can be put on the evolution of vocabularies, i.e., focusing on vocabularies that are
being actively maintained and extended, and, on the other hand, neglecting those out-of-date. The
most critical qualitative evaluation of a vocabulary, its accuracy, requires human judgment. Future
evaluation tools, designed as collaborative platforms, will help to achieve a community consensus
about proposed IoT vocabularies.

Curation: The amount of vocabularies available on the one hand, and the complex task of re-
viewing vocabularies on the other hand, call for semi-automated curation processes. A particular
challenge for the IoT is to keep track of the developments, classify, and collect metadata of proposed
vocabularies that can be of interest to users and provide valuable information for matching and
ranking vocabularies. Despite its importance, a trend was identified in which recent tools rather
focus only on curation or on ranking of vocabularies. The combination of both and the provision-
ing of curated data to ranking models will benefit future recommendation tools. Moreover, the
importance of matching of existing, well-known vocabularies to achieve interoperability has been
highlighted in the survey. A collaborative curation platform could support the vocabulary matching
process and could serve as a documentation of the achieved matches, which can be taken into
account when recommending a vocabulary based on a query.

7.2 Vocabulary Selection for loT

The subsequent discussion on challenges for vocabulary selection is based on the dimensions

introduced in the previous sections (cf. Figure 6), namely interaction, matching, and ranking,.
Interaction: One challenge is the requirement for more expressive ways to formulate the infor-

mation need of the different IoT ecosystem stakeholders. This could, for example, correspond to
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query formats based on outputs from IoT gateways with proprietary data models (i.e., text corpora
such as JSON, XML, etc.). and the specification of the intended use, such as data stream annotation,
knowledge specification for a context-aware system, and IoT data discovery. Such improvements
of tool’s interfaces will foster the adoption of vocabulary recommendation by users and developers
in IoT settings.

Matching: As highlighted previously, it is not a trivial task to decide whether a recommenda-
tion should be made on a vocabulary, term/entity level or based on combinations from different
vocabularies. This may not only depend on the interaction mechanisms provided but also on the
intentions of the user. The development of more sophisticated matches with different levels of
granularity and the consideration of the user’s intent, such as its IoT use cases, will help to optimize
the recommendation task.

Ranking: The survey revealed that the popularity of vocabularies/terms is a desirable feature
and often used for vocabulary recommendation. However, in the surveyed tools, this feature is
computed only by analyzing LOD datasets, which do not represent semantically annotated IoT
data. This may result in miscalculated qualitative scores for IoT vocabularies and does not provide
an objectively appropriate ranking. One challenge is thus to define a popularity measure that is
suitable for IoT vocabularies. Possible directions include the employment of modern information
retrieval techniques, such as analyzing the user click behavior of existing VRTs (that contain IoT
vocabularies and are used by IoT stakeholders) to calculate the popularity of vocabularies and
terms. Lastly, existing VRTs do not consider more complex features for advanced users of linked
vocabularies, such as the reasoning complexity of a vocabulary [13, 163]. Understanding how the
vocabulary recommendation influences reasoning capabilities and constraints in IoT applications is
not trivial and opens new challenges. Specialized ranking models for IoT use cases, e.g., through
additional information generated during the curation process, will significantly improve the overall
recommendation and foster further convergence to most suitable vocabularies for IoT use cases.

8 CONCLUSION

In this survey, the process of vocabulary recommendation was thoroughly reviewed and placed into
the context of IoT ecosystems. VRTs help to guide stakeholders of IoT ecosystems when publishing,
discovering and integrating IoT data and services from heterogeneous sources. A comprehensive
evaluation framework was defined based on dimensions regarding the discovery (i.e., collection,
evaluation, and curation) and selection (i.e., interaction, matching, and ranking) of appropriate
vocabularies. This framework served to evaluate 40 vocabulary recommendation tools from the
literature and trends/findings with regard to the identified features were highlighted. Moreover,
the conceptual integration of vocabulary recommendation in IoT ecosystem use cases and the
consideration of VRTs in today’s landscape of IoT platforms were discussed.

In conclusion, two dimensions of vocabularies recommendation are important: curating a vo-
cabulary collection and providing simple, yet efficient selection mechanisms. The survey revealed
that tools often focus on either one, and that implemented strategies for both differ greatly. It is
not completely clear, however, how different features impact the overall recommendation quality.
Even though first advancements of sharing and reusing data models defined by the community
for the IoT could be evidenced, today’s scope of IoT platforms do not yet consider VRTs. Whereas
VRTs have been integrated in tools that support traditional Semantic Web use cases, only few tools
supporting use cases of 0T ecosystems with vocabulary recommendation could be found.

The presented framework is limited to functional requirements that impact the output of vo-
cabulary recommendation. Non-functional requirements (e.g., performance, reliability, scalability)
impose additional challenges (e.g., efficient indexing of vocabularies) on the implementation of
VRTs which have not been considered in the scope of this survey.
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The evaluation presented in this survey can support Semantic Web developers and IoT researchers
in getting an overview of the state-of-the-art in vocabulary recommendation, and help to choose the
most appropriate tool. Furthermore, the presented evaluation framework can be used to compare
newly proposed approaches to improve vocabulary recommendation with previous work. In our
vision, a tool that serves as a platform to share, extend, curate, and recommend vocabularies of IoT-
related domains, could serve as a fundamental building block for the convergence to interoperable
IoT ecosystems.

A ACRONYMS

An overview of all acronyms used in this paper is given in Table 6.

Table 6. Acronym Table

Acronym  Description Acronym  Description

ABox Assertional Box SSN Semantic Sensor Network

API Application Programming Interface SWD Semantic Web document

IoT Internet of Things SWoT Semantic Web of Things

JSON JavaScript Object Notation SWRL Semantic Web Rule Language

JSON-LD  JavaScript Object Notation for Linked Data SWT Semantic Web Technology

KB Knowledge base TBox Terminological Box

LOD Linked Open Data Ul User Interface

OWL Web Ontology Language URI Unified Resource Identifier

RDF Resource Description Format VRT Vocabulary Recommendation Tool

RDFS RDF Schema WoT Web of Things

REST Representational State Transfer WSDL Web Service Description Language

SMEs Small and Medium-sized Enterprises W3C World Wide Web Consortium

SPARQL  SPARQL Protocol and RDF Query Language XML Extensible Markup Language
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