
SOFTWARE TESTING, VERIFICATION AND RELIABILITY

Softw. Test. Verif. Reliab. 2018; 00:1–28

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Empirical Evaluation of Mutation-based
Test Case Prioritization Techniques

Donghwan Shin1∗, Shin Yoo1, Mike Papadakis2, Doo-Hwan Bae1

1KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, Republic of Korea
2University of Luxembourg, Luxembourg

SUMMARY

A new test case prioritization technique that combines both mutation-based and diversity-aware approaches
is proposed. The diversity-aware mutation-based technique relies on the notion of mutant distinguishment,
which aims to distinguish one mutant’s behavior from another, rather than from the original program. The
relative cost and effectiveness of the mutation-based prioritization techniques (i.e., using both the traditional
mutant kill and the proposed mutant distinguishment) are empirically investigated with 352 real faults
and 553,477 developer-written test cases. The empirical evaluation considers both the traditional and the
diversity-aware mutation criteria in various settings: single-objective greedy, hybrid, and multi-objective
optimization. The results show that there is no single dominant technique across all the studied faults. To
this end, the reason why each one of the mutation-based prioritization criteria performs poorly is discussed,
using a graphical model called Mutant Distinguishment Graph (MDG) that demonstrates the distribution
of the fault-detecting test cases with respect to mutant kills and distinguishment. Copyright c© 2018 John
Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Mutation testing, Test case prioritization, Regression testing

1. INTRODUCTION

Regression testing is performed when changes are made to existing software; the purpose of
regression testing is to provide confidence that the performed changes do not obstruct the behavior of
the existing, unchanged parts of the software [1]. In regression testing, test case prioritization finds
an ordering of test cases that maximizes a desirable property, such as the rate of fault detection. To
achieve this goal, test case prioritization needs to “predict” which test cases will detect faults.

Although test case prioritization techniques have been extensively studied in the literature [2, 3],
most of them rely on the use of various types of structural coverage [1]. Little attention has been
paid to advanced test elements like mutants (i.e., artificial faults). We believe the mutation-based
criteria call for further attention, given that mutants have been shown to be effective at revealing

∗Correspondence to: KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, Republic of Korea. E-mail: donghwan@se.kaist.ac.kr

Copyright c© 2018 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2 D. SHIN ET AL.

faults [4, 5] and that mutant killing (i.e., detecting the deference between a mutant and its original
program) ratios are similar with the fault detection ratios [6, 7, 8, 9]. Yet very few approaches
study the mutation-based test case prioritization and none of them evaluates them with real-world
applications and faults.

Recent advances in test case prioritization focus on identifying and promoting the diversity of
the selected test cases [10, 3, 11], rather than maximizing the coverage. This trend can provide
several advantages, especially in cases where there is no source code availability [3]. Therefore, the
combination of mutation-based and diversity-based approaches could provide substantial benefits by
increasing early fault detection. Investigating such a combination is the primary aim of this study.

In this paper, we propose and empirically investigate a new diversity-aware mutation-based
test case prioritization technique. The technique relies on the diversity-aware mutation adequacy
criterion, which is recently proposed by Shin et al. [12, 13]. The diversity-aware criterion aims
at distinguishing the behavior of every mutant from that of all the others (including the original
program), in contrast to the traditional mutation adequacy criterion which aims at distinguishing
only the behavior of the mutants from that of the original program. According to Shin et al.,
distinguishing mutants improves the fault detection capabilities of mutation testing. Therefore,
our diversity-aware mutation-based prioritization gives higher priority to those test cases that help
distinguish all mutants as early as possible.

Our study investigates the relative cost and effectiveness of two mutation-based prioritization
techniques, i.e., one using traditional mutant kill and another using distinguishement, with real-
world applications and faults. For this, we use 352 real faults and 553,477 developer-written test
cases in the Defects4J data set [14]. The empirical evaluation considers both the traditional
kill-only and the proposed diversity-aware mutation-based prioritization criteria in various settings:
single-objective greedy, single-objective hybrid, as well as multi-objective optimization that seeks
to prioritize using both criteria simultaneously. We find that there is no single superior technique.
To this end, we provide a graphical model called Mutant Distinguishment Graph (MDG) to help us
understand how a set of test cases that kills and distinguishes mutants related with fault detection.
This visualization scheme demonstrates why and when each one of the mutation-based prioritization
criteria performs poorly.

Overall, the technical contributions of this paper can be summarized as follows:

• We present a large empirical study that investigates the relative cost and effectiveness of
mutation-based prioritization techniques with real faults.

• We investigate two different mutation-based test prioritization techniques under both single
(greedy and hybrid) and multi-objective prioritization schemes.

• We investigate and identify the reasons behind the differences between the traditional kill-only
mutation and distinguish mutation prioritization schemes, using intuitive graphical models.

The rest of this paper is organized as follows. Section 2 provides background for mutation
adequacy criteria and test case prioritization. Section 3 explains the mutation-based test case
prioritization techniques that are studied in this paper. Section 4 explains our experimental settings,
including research questions, measures and variables, subject faults, test, and mutants. The results
of the empirical evaluation are given in Section 5, together with the threats to validity. Section 6
presents the related work, and Section 7 concludes this paper.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 3

2. BACKGROUND

2.1. Mutation Adequacy Criteria

In the late 1970s, DeMillo et al. [15] proposed the mutation adequacy criterion as a way to assess the
quality of a test suite. The criterion focuses on the differences between the original program version
and its mutant versions (i.e., artificially mutated programs) in the program outputs to measure the
mutant kills. This technique relies on the idea that a test suite capable of distinguishing the behavior
of mutants from those of the original programs are also capable of revealing faults. This idea was
recently extended by Shin et al. [13], who proposed distinguishing the behavior of mutants among
themselves (in addition to the original program). This forms a diversity-aware mutation adequacy
criterion that caters for the diversity of behaviors introduced by the mutants.

To be precise, we formally represent and discuss the mutation adequacy criteria using the essential
elements of an existing formal framework (for the mutation-based testing methods) [16]. Let P be a
set of programs which includes the program under test. There are an original program po ∈ P and a
mutant m ∈M ⊂ P generated from po. For a test case t in a set of test cases T , if the behaviors of
po and m are different for t, it is said that t kills m. Note that the notion of behavioral difference is
an abstract concept. It is formalized by a testing factor, called a test differentiator, which is defined
as follows:

Definition 1 (Test Differentiator)
A test differentiator d : T × P × P → {0, 1} is a function,† such that

d(t, px, py) =

1 (true), if the behaviors of px and py are different for t

0 (false), otherwise

for all test cases t ∈ T and programs px, py ∈ P .

By definition, a test differentiator concisely represents whether the behaviors of px ∈ P and
py ∈ P are different for t. In addition to a differentiator which formalizes the difference of two
programs for a single test, it will be helpful to consider whether the two programs are different for
a set of tests. A d-vector is defined to represent such difference of the programs as follows:

Definition 2 (d-vector)
A d-vector d : Tn × P × P → {0, 1}n is an n-dimensional vector, such that

d(TS, px, py) = 〈d(t1, px, py), ..., d(tn, px, py)〉

for all TS = {t1, · · · , tn} ⊆ Tn, d ∈ D, and px, py ∈ P .

In other words, a differentiator d returns Boolean value (i.e., 0 or 1) from a single test, whereas a
d-vector d returns n-dimensional Boolean vector from n test cases. Note that a test suite TS is used
to denote the order of test cases in the test suite, while T denotes a set of tests without any particular
order of test cases.

Using the test differentiator and d-vector, we define the notion of mutant kill as follows:

†This function-style definition is replaceable by a predicate-style definition, such as d ⊆ T × P × P .

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

4 D. SHIN ET AL.

Figure 1. A working example for mutation adequacy criteria. The table represents whether a test case kills a
mutant. For example, d(t1, po,m1) is 1 which means that t1 kills m1.

Definition 3 (Mutant Kill)
A mutant m generated from an original program po is killed by a test case t when the following
condition holds:

d(t, po,m) 6= 0.

Similarly, m generated from po is killed by a test suite TS when the following condition holds:

d(TS, po,m) 6= 0.

Based on the notion of mutant kill, the traditional mutation adequacy criterion is defined as
follows:

Definition 4 (Traditional Mutation Adequacy Criterion)
For a set of mutants M generated from an original program po, a test suite TS is mutation-adequate
when the following condition holds:

∀m ∈M,d(TS, po,m) 6= 0.

This definition means that a test suite TS is mutation-adequate for M if and only if all mutants
m ∈M are killed by at least one test case t ∈ TS. For example, consider four mutants and three test
cases that provide the the killing matrix of Figure 1. The killing matrix entries are binary (0 or 1) and
represent the outcome of the test-mutant execution, i.e., whether the test case kills a mutant or not.
According to the definition of the traditional mutation adequacy criterion, a test suite TS1 = {t1} is
mutation-adequate for M = {m1,m2,m3,m4} because all the mutants in M are killed by t1.

Note that TS1 is mutation-adequate for M , despite the fact that only one of the mutants in
M could be sufficient for such an assessment. In other words, the diversity (differences between
the mutant versions) offered by the four mutants in M is ignored. This is because the traditional
mutation adequacy criterion simply checks whether each one of the mutants is killed (or not) without
considering the differences between the mutants (diversity offered by the mutants). To formally
consider the diversity of mutants, the notion of mutant distinguishment is defined as follows:

Definition 5 (Mutant Distinguishment)
Two mutants mx and my generated from an original program po are distinguished by a test case t
when the following condition holds:

d(t, po,mx) 6= d(t, po,my).

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 5

Similarly, mx and my generated from po are distinguished by a test suite TS when the following
condition holds:

d(TS, po,mx) 6= d(TS, po,my).

In other words, a test suite distinguishes mutants when it distinguishes their d-vectors. In the
working example of Figure 1, it is clear that TS1 = {t1} cannot distinguish the four mutants of M .
This example also highlights the additional requirements imposed by mutant distinguishment over
the traditional mutation adequacy criterion.

We now introduce the diversity-aware mutation adequacy criterion, called the distinguishing
mutation adequacy criterion, based on the mutant distinguishment as follows:

Definition 6 (Distinguishing Mutation Adequacy Criterion)
For a set of mutants M generated from an original program po, a test suite TS is distinguishing
mutation-adequate when the following condition holds:

∀mx,my ∈M ′,d(TS, po,mx) 6= d(TS, po,my)

where mx 6= my and M ′ = M ∪ {po}.

In other words, a test suite TS is distinguishing mutation-adequate if and only if TS

distinguishes all the d-vectors of the mutants in M ′ = M ∪ {po}. In Figure 1, TS3 =

{t1, t2, t3} is distinguishing mutation-adequate because it distinguishes all the d-vectors of
the mutants in M ′ = {po,m1, · · · ,m4} as d(TS3, po, po) = 〈0, 0, 0〉, d(TS3, po,m1) = 〈1, 0, 0〉,
d(TS3, po,m2) = 〈1, 0, 1〉, d(TS3, po,m3) = 〈1, 1, 0〉, and d(TS3, po,m4) = 〈1, 1, 1〉.

It is important to quantitatively measure the adequacy of test suites. To do so, the distinguishing
mutation criterion requires computing the number of mutants distinguished by test suites. In the
working example in Figure 1, the number of mutants distinguished by TS1 = {t1} is 2, because
M ′ = {po,m1,m2,m3,m4} is distinguished as {po} and {m1,m2,m3,m4} by TS1. After t2 is
added, the number of distinguished mutants increases to 3, because TS2 = {t1, t2} distinguishes
{po}, {m1,m2}, and {m3,m4}. The number of distinguished mutants becomes 5 when all the
mutants in M ′ are distinguished from each other by TS3 = {t1, t2, t3}, which is distinguishing
mutation-adequate.

For the sake of simplicity, let d-criterion hereafter refers to the distinguishing mutation adequacy
criterion (i.e., diversity-aware) and, similarly, k-criterion to the traditional mutation adequacy
criterion (i.e., kill-only).

By definition, the d-criterion subsumes the k-criterion: for a set of mutants M generated from
an original program po, if a test suite TS is adequate to the d-criterion, it is guaranteed that TS is
adequate to the k-criterion as well. In other words, the d-criterion is stronger than the k-criterion.
For more information, please refer to the recent study of Shin et al. [13].

2.2. Test Case Prioritization

Rothermel et al. [8] formally define the test case prioritization problem as follows:

Definition 7 (Test Case Prioritization Problem)
Given: A test suite, TS, the set of permutations of TS, Π, and an objective function from Π to real

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 D. SHIN ET AL.

Figure 2. Example test suite with fault detection information. Executing t3 first followed by t2 is clearly the
most beneficial ordering for early fault detection.

numbers, f : Π→ R.
Problem: Find a permutation π ∈ Π such that ∀π′ ∈ Π, (π′ 6= π) ∧ (f(π) ≥ f(π′)).

In this definition, Π represents all possible orderings of the given test cases in TS, and f represents
an objective function that calculates an award value for an ordering π ∈ Π. Consider a test suite with
fault detection information in Figure 2 as a simple example. An ordering π1 = 〈t3, t2, t1〉 is better
than another ordering π2 = 〈t1, t2, t3〉, since π1 detects faults earlier than π2.

The main usage scenario of the prioritization techniques is to be used for the test of the program
changes made on subsequent program versions. Recent research [3] has shown that the effectiveness
degradation of the prioritization techniques over subsequent program versions is small and that
taking into account the code changes performed on a subsequent version does not provide any
important information [17]. Therefore, testers need to obtain the required information at a specific
point in time (prioritization time) and then use it to prioritize and order the relevant test suites in the
subsequent program versions.

At prioritization time, we need to consider a surrogate for fault detection based on the historical
information of the test cases instead of re-executing them, hoping that early maximization of
the surrogate will result in early maximization of fault detection. Therefore, while the goal of
test case prioritization remains the early maximization of fault detection, it actually aims for the
early maximization of the chosen surrogate. Naturally, the test case prioritization techniques vary
depending on the chosen surrogate.

The structural coverage information, such as statement coverage, of test cases is one of the widely-
used surrogates in test case prioritization [8, 18, 19]. For example, the statement-total approach
prioritizes test cases according to the number of statements covered by individual test cases. In
other words, a test case covering more statements has higher priority. Similarly, the statement
additional approach prioritizes test cases according to the additional number of statements covered
by individual test cases.

Mutants are also used as another surrogate for test case prioritization [8, 20, 21]. Instead of using
the structural coverage of individual test cases, the mutant kill of individual test cases is utilized.
For example, Rothermel et al. [8] consider the Fault Exposing Potential (FEP)-total approach that
prioritizes test cases according to the number of mutants killed by individual test cases. Similarly, the
FEP-additional approach prioritizes test cases according to the additional number of mutants killed
by individual test cases. Note that, to kill a mutant, a test case not only needs to cover the location
of mutation but also to execute the mutated part [1]. It means the mutation-based approaches can be
constructed at least as strong as coverage-based approaches.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 7

In this paper, we focus on the mutation-based test case prioritization, using the two mutation-
based adequacy criteria (i.e., kill and distinguish), while we use the coverage-based and random
approaches as baselines.

2.3. Multi-Objective Test Case Prioritization

The essence of the multi-objective optimization is the notion of Pareto optimality. Given multiple
objectives, an ordering of test cases is said to be non-dominated if none of the objectives can be
improved in value without degrading the other objective values. Otherwise, an ordering of test cases
is said to be dominated by another ordering that has at least one higher objective value without
decreasing any other objective values. Formally, let O be the number of different objectives. For
i ∈ {1, 2, · · · , O}, each objective function is represented as fi : Π→ R. An ordering π is said to
dominate another ordering π′ if and only if the following is satisfied:

(∀i ∈ {1, 2, · · · , O}, fi(π) ≥ fi(π′)) ∧ (∃i ∈ {1, 2, · · · , O}, fi(π) > fi(π
′))

When evolutionary algorithms are applied to multi-objective optimization, they produce a set of
orderings that are not dominated by each other. Such a set is called a Pareto front. The number
of orderings in a Pareto front is determined by the number of population in the evolutionary
algorithms. For example, the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [22], one
of the most widely studied multi-objective evolutionary algorithm, generates K number of Pareto
optimal solutions in a Pareto front, where K is the predefined population size.

3. MUTATION-BASED TEST CASE PRIORITIZATION TECHNIQUES

In this paper, we consider six different test case prioritization techniques as described in Table I.
The first column represents the mnemonic for each technique that will be used throughout this
paper. The second column represents the prioritization objective of each technique. The letters for
the mnemonic are capitalized. The third column represents the tie-breaking rule when there are
multiple candidate test cases (for greedy and hybrid) or orderings (for multi-objective optimization)
satisfying the same level of the objective(s). The last column summarizes each technique. Additional
details regarding the techniques listed in Table I can be found in the following subsections.

3.1. Greedy and Hybrid Techniques

We first describe the single-objective greedy techniques: GRK, GRD, and HYB. Algorithmically,
these techniques are in essence instances of additional greedy algorithms [23]. The additional
greedy test case prioritization technique iteratively selects a test case that maximizes the additional
achievement of the objective at a time. Note that the hybrid technique is also an instance of the
single-objective additional greedy because its only objective is the form of the weighted sum of
GRK and GRD.

GRK and GRD: Based on the k-criterion, GRK iteratively selects a test case that maximizes the
number of additionally killed mutants. Formally, let κ(t) be the number of additional mutants killed

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 D. SHIN ET AL.

Table I. Summary of mutation-based test case prioritization techniques

Mnemonic Objective Tiebreaker Description

GRK GReedy,

Kill

random iteratively select a test case that maximizes the
number of additionally killed mutants

GRD GReedy,

Distinguish

random iteratively select a test case that maximizes the
number of additionally distinguished mutants

HYB-w HYBrid,

weight

random iteratively select a test case that maximizes the
weighted sum of the number of additionally
killed mutants and additionally distinguished
mutants

MOK Multi-Objective,

kill &

distinguish

kill optimize an ordering of test cases to both kills
and distinguishes mutants as early as possible,
and select one of the Pareto optimal orderings
that kills mutants as early as possible

MOD Multi-Objective,

kill &

distinguish

distinguish optimize an ordering of test cases to both kills
and distinguishes mutants as early as possible,
and select one of the Pareto optimal orderings
that distinguishes mutants as early as possible

RND RaNDom random randomized ordering

SCV Statement

CoVerage

random iteratively select a test case that maximizes the
number of additionally covered statements

by a test case t. GRK iteratively selects t in a test suite TS that satisfies arg maxt∈TS(κ(t)). If there
are multiple test cases additionally killing the same number of mutants, one of them is randomly
selected. If there are no more test cases that can kill mutants, one of the remaining test cases is
randomly selected.

Similarly, GRD iteratively selects a test case that maximizes the number of additionally
distinguished mutants, based on the d-criterion as explained in Section 2.1. Formally, let δ(t) be
the number of additional mutants distinguished by a test case t. GRD iteratively selects t in a test
suite TS that satisfies arg maxt∈TS(δ(t)). If there are multiple test cases additionally distinguishing
the same number of mutants, one of them is randomly selected. If there are no more test cases that
can distinguish mutants, one of the remaining test cases is randomly selected.

Semantically, GRK distinguishes mutants from its original program as early as possible, whereas
GRD distinguishes all mutants from each other as early as possible. In other words, GRK is
essentially based on the concept of intensification, whereas GRD is essentially based on the concept
of diversification. Such difference may lead the effectiveness difference between GRK and GRD in
prioritization. Section 5.6 discusses this issue in more detail.

As we explained in Section 2.2, GRK is another name of FEP-additional used by Rothermel et
al. [8]. Since they have already report that FEP-additional is more effective than FEP-total, we only
consider the additional approaches for the our greedy techniques.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 9

HYB-w: This hybrid prioritization technique is a weighted sum of GRK and GRD. It iteratively
selects a test case that maximizes the number of the weighted sum of additionally killed mutants
and additionally distinguished mutants. Formally, for a weight factor w ∈ [0, 1], HYB-w iteratively
selects a test case t in a test suite TS that arg maxt∈TS(w × κ(t) + (1− w)× δ(t)). By definition,
w = 1 refers the GRK technique and w = 0 refers the GRD technique.

3.2. Multi-Objective Optimization Techniques

Unlike the greedy techniques, which iteratively select a test case that suits its objective in a given
situation, a multi-objective prioritization technique optimizes an ordering of test cases as a whole to
both kill and distinguish mutants as early as possible.

MOK and MOD: To represent the two mutation-based objectives (i.e., kill mutants as early as
possible and distinguish mutants as early as possible) as two measurable functions (i.e., fitness
functions in an evolutionary algorithm), we define metrics called APMK (Average Percentage of
Mutants Killed) and APMD (Average Percentage of Mutants Distinguished), respectively. The
core of these metrics are in APFD (Average Percentage of Faults Detected) [18] that is the most
commonly used test case prioritization evaluation metric. The APFD implies how quickly faults
are detected by a given ordering of test cases. It is defined as the area under the curve connecting
the points where (x, y) = (test suite fraction, percentage of faults detected) for a given ordering
of test cases. The APFD value ranges from 0 to 1; higher APFD means more effective test case
prioritization. We extract the core concept of the APFD as a template and call it APXX (Average
Percentage of XX) that implies how quickly XX is satisfied by a given ordering of test cases.
Figure 3 visualizes the APXX. To be precise, let π(i) be the ordering fraction of the first i test
cases for an ordering of n test cases, and let PXX(π(i)) be the percentage of XX for π(i). Note
that PXX(π(n)) = 1 by definition. For an ordering of n test cases, the APXX value as the area
under the curve is calculated as follows:

APXX =
1

n

n∑
i=1

PXX(π(i))− 1

2n

Using the APXX template, we define APMK and APMD as follows:

Definition 8 (APMK and APMD)
For an ordering π of a test suite TS, the APMK and APMD values are calculated as follows:

APMK =
1

n

n∑
i=1

PMK(π(i))− 1

2n

APMD =
1

n

n∑
i=1

PMD(π(i))− 1

2n

where n = |TS| and π(i) is the ordering fraction that contains the first i test cases.

In other words, the APMK and APMD imply how quickly mutants are killed and distinguished by
a given ordering of test cases, respectively. As a result, the multi-objective prioritization technique

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 D. SHIN ET AL.

1
𝑛

2
𝑛

3
𝑛

𝑛
𝑛

𝑖
𝑛

Test	suite	
fraction

𝑃𝑋𝑋

𝑃𝑋𝑋(𝜋(𝑛))
𝑃𝑋𝑋(𝜋(𝑖))

𝑃𝑋𝑋(𝜋(3))
𝑃𝑋𝑋(𝜋(2))

𝑃𝑋𝑋(𝜋(1))

Area	under	 the	curve	
=	𝐴𝑃𝑋𝑋

Figure 3. The concept of APXX. The area under the curve is the APXX value.

optimizes an ordering of test cases to maximize both APMK and APMD values using a multi-
objective optimization algorithm such as NSGA-II. As described in Section 2.3, NSGA-II returns a
set of Pareto optimal orderings, and an additional rule is necessary to choose one of these orderings.
MOK selects one of the Pareto optimal orderings that has the highest APMK value. Similarly, MOD
selects one of the Pareto optimal orderings that has the highest AMPD value.

3.3. Techniques for Comparison

To facilitate our empirical studies, we introduce two simple but widely studied techniques as
baselines.

RND: We consider random prioritization that randomly prioritizes test cases as a minimum
prioritization baseline.

SCV: As an additional control in our studies, we apply the statement-coverage-based test case
prioritization. As explained in Section 2.2, the structural coverage information is widely used
surrogate in test case prioritization. We implement the statement-additional that iteratively selects a
test case that maximizes the number of additionally covered statements, which is the most effective
coverage-based prioritization scheme [3]. If there are multiple test cases that additionally covers the
same number of statements, one of them is randomly selected.

4. EXPERIMENTAL DESIGN

4.1. Research Questions

In the experiments, we investigate the following five research questions:

• RQ1: How do the mutation-based prioritization techniques compare with the random and
coverage-based prioritization in terms of early fault detection?

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 11

• RQ2: What is the superior mutation-based prioritization technique in terms of early fault
detection?

• RQ3: What is the effect of using different weight values in the hybrid (single-objective) test
prioritization scheme?

• RQ4: How effective are the Pareto front solutions of the multi-objective prioritization scheme?
• RQ5: How much time does it take to perform each one of the examined techniques?

RQ1 compares the effectiveness of the mutation-based prioritization techniques with that of
the random and coverage-based prioritization. Specifically, we count the number of faults where
each of the prioritization techniques is statistically significantly superior, equal, or inferior with the
random ordering and the coverage-based ordering, respectively. We also measure the effect size of
the effectiveness differences of the techniques with the controls.

RQ2 compares the effectiveness of the studied techniques among each other with the aim of
identifying the best performing technique. Similar to RQ1, we count the number of faults where a
technique A is statistically significantly superior, or equal, inferior to another technique B, as well
as their exact effectiveness difference.

RQ3 focuses on the hybrid prioritization techniques that uses both the k-criterion (i.e., kill) and
the d-criterion (i.e., distinguish). We examine different weight factors (between kill and distinguish)
and see how it impacts the prioritization effectiveness.

RQ4 considers the effectiveness of orderings of test cases in a Pareto front given by the multi-
objective test case prioritization techniques. For the multi-objective prioritization, all orderings
of test cases in a Pareto front are equally good in terms of the their objectives. However, since
the objectives are proxies, the important question is how these orderings perform in terms of the
prioritization effectiveness. Thus, for the Pareto front orderings, we investigate the relationship
between the prioritization objectives and the prioritization effectiveness.

RQ5 attempts to answer the cost of mutation-based prioritization techniques. One obvious cost
of a prioritization technique is the execution time of the technique. We compare the execution times
of all the mutation-based prioritization techniques including greedy, hybrid, and multi-objective.

4.2. Usage Scenario of Mutation-based Test Case Prioritization

To clearly explain the suggested usage scenario of mutation-based test case prioritization and the
experimentally modified scenario, consider an original program po and a test suite TS for po. The
suggested usage scenario consists of the following 4 steps:

• Step 1. Mutate the entire program po and record the killed mutants of each test case in TS
by performing mutation analysis for TS. Also, record the coverage (e.g., covered classes) of
each test case in TS.

• Step 2. Change happens on po: identify which classes are changed from po.
• Step 3. Only consider “relevant” test cases in TS whose coverage overlaps with the changes

classes identified in Step 2. Similarly, only consider “relevant” mutants from the results of
Step 1 in the changed classes.

• Step 4. Using the relevant test cases and mutants, chosen in Step 3, perform mutation-based
test case prioritization based on the mutant kill record of Step 1.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 D. SHIN ET AL.

Table II. Summary for subject faults, test cases, and mutants. The number of fault-detecting test cases (dT),
all mutants (aM), killed mutants by the test cases (kM), and distinguished mutants by the test cases (dM) are

also presented.

Program Faults Test Cases (sum) dT (sum) aM (sum) kM (sum) dM (sum)

Chart 25 5,806 91 21,611 8,614 1,462

Closure 133 443,596 347 109,727 82,676 34,685

Lang 65 11,409 124 81,524 63,551 5,467

Math 106 20,661 172 101,978 73,931 14,591

Time 27 72,005 76 19,996 13,665 3,838

Total 352 553,477 810 334,836 242,437 60,043

Obviously, a developer cannot know a priori what classes will be modified, and mutants should
be generated in all classes of po beforehand and mutation analysis should be performed for all test
cases in TS in Step 1. While it looks expensive, it is rarely performed in practice as it supports a
number of subsequent regressions with the small effectiveness degradation of prioritization [17].
Also, there is enough time to perform mutation analysis for TS in Steps 1 and 2 (i.e., the time from
the code analysis to the testing time of the new changes).

However, in the experiments, we know what was changed and thus, there is no reason to generate
“irrelevant” mutants and perform mutation analysis for “irrelevant” test cases in TS as we consider
only those mutants and test cases “relevant” to the changed classes in Step 3 anyway. To speedup
the experiments, we omit Step 1 and consider only those mutants and test cases “relevant” to the
changed classes.

4.3. Test Subjects and Faults

For the purposes of the present study, we consider the Java applications in the Defects4J

database [14]. These are all open source software systems and are accompanied by 357 developer-
fixed and manually verified real faults. In total, we use the following five applications: JFreeChart
(Chart), Closure compiler (Closure), Commons Lang (Lang), Commons Math (Math), and Joda-
Time (Time). In Defects4J, each fault is given as an independent fault-fix pair of the program
versions.

Out of 357 faults, five faults are excluded because they are not able to give mutation analysis
results within a practical time limit (i.e., one-hour per each test case). As a result, we consider the
remaining 352 faults, which are summarized in Table II. Detailed information for each subject fault
is available from our webpage at http://se.kaist.ac.kr/donghwan/downloads.

4.4. Test Suites

For each fault, Defects4J provides “relevant” JUnit test cases that touch the modified classes
between the faulty version and the fixed version. Test prioritization is performed when testing newly
introduced changes. Thus, it is reasonable to use the information about the modified classes, and
focus on them instead of the whole program. This is common practice in industry and is performed
by retrieving the test cases that have a dependence with the files that were changed [24]. To account

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://se.kaist.ac.kr/donghwan/downloads

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 13

for this issue in our experiments, we compose a test suite of relevant test cases for each fault we
consider.

JUnit test cases are Java classes that contain one or more test methods. It leads to two different test
suite granularity by considering JUnit test cases as the test-class level and the test-method level [20].
We use the test-method level because it is finer and more informative than the test-class level. In
Table II, the column Test Cases (sum) shows the sum of the number of test cases for each fault. For
example, there are a total of 5,806 test cases for the 25 Chart faults. The column dT (sum) shows the
sum of the number of fault-detecting test cases for each fault. For example, there are total 91 fault-
detecting test cases for the 25 Chart faults. Total 553,477 test cases including 810 fault-detecting
test cases are considered for the 352 subject faults.

4.5. Mutants

We use Major [25] mutation analysis tool for generating and executing all mutants to the test
cases for each fault. It provides a set of commonly used set of mutation operators [9, 26] including
the AOR (Arithmetic Operator Replacement), LOR (Logical Operator Replacement), COR
(Conditional Operator Replacement), ROR (Relational Operator Replacement), ORU (Operator
Replacement Unary), STD (STatement Deletion), and LVR (Literal Value Replacement). We
applied all the mutation operators. Since the use of sufficient mutation operators may affect on
the experimental results, we will discuss this issue in Section 5.7.

We generate mutants out of the fixed (i.e., clean) version of each fault. To perform a controlled
experiment, we assume the fixed version is the norm, and perform mutation analysis on it:
subsequently, we “reverse” the fix patch to recreate the fault, and evaluate our prioritization. We
will discuss this in Section 5.7 as well.

We generate mutants only from the modified classes between the fixed version and the faulty
version, as we considered only the relevant test cases. In Table II, the column aM (sum), kM (sum),
and dM (sum) show the sum of the number of all generated mutants, killed mutants by the test
cases, and distinguished mutants by the test suite for each fault, respectively. For example, for the
25 faults in the Chart program, 8,614 mutants and 1,462 mutants among 21,611 mutants are killed
and distinguished by the test cases, respectively.

4.6. Multi-Objective Algorithm Configuration

For NSGA-II, we set the population size as 100. The chosen genetic operators are ones that are
widely used for permutation type representation: partially matched crossover, swap mutation, and
binary tournament selection [27, 28]. The crossover rate is set to 0.9, and the mutation rate is set
to 0.2. The maximum fitness evaluation is set to 100,000. Since finding the best configuration for
the mutation-based test case prioritization falls out of the scope of our work, we simply follow the
default configuration and parameter values, which are commonly used and tuned. Using the default
parameter values is a common practice and has been found to be suitable for our context [29], i.e.,
search-based testing.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 D. SHIN ET AL.

4.7. Variables and Measures

For independent variables, RQ1, RQ2, RQ5 manipulate all the prioritization techniques listed in
Table I, whereas RQ3 and RQ4 focus on the hybrid techniques and the multi-objective techniques,
respectively.

For dependent variables, we mainly measure the quality and the cost of the test case prioritization
techniques. For the quality of the prioritization, we measure the APFD value for each ordering of
test cases. For the cost of the prioritization, we measure the execution time for each ordering of
test cases. To provide statistical analysis, we independently generate 100 orderings of test cases for
each of the greedy, hybrid, and control techniques. For each of the multi-objective techniques, we
independently generate 30 orderings of test cases because it takes too long (more than hours for one
ordering in the longest case). All our experiments were performed on the Microsoft Azure Clould
Platform using the Ubuntu 16.04 operating system on 8 DS3v2 (4 vcpus, 14 GB memory) virtual
machines.

To compare the effectiveness of two prioritization techniques, we perform statistical hypothesis
tests following the guideline provided by Arcuri and Briand [30]. We perform the Mann-Whitney
U-test to assess the difference in stochastic order, that is, whether the APFD values in one technique
are more likely to be greater than the APFD values in the other technique. Note that the Mann-
Whitney U-test is a non-parametric test which makes no assumption about the distribution of the
data. To reduce Type I error, the significance level is α = 0.001. We also measure the Vargha and
Delaneys ÂAB statistics [31] to represent the effect size of the effectiveness difference between the
compared prioritization techniques, A and B. It measures the number of times that the technique
A yields higher APFD values than the technique B. For example, ÂAB = 0.7 means that the
technique A outperforms the technique B in 70% of the runs. Usually, the differences between
the compared techniques, as measured by ÂAB , can be characterized as small, medium, and large
when the ÂAB value exceeds 0.56, 0.64, and 0.71, respectively [31]. Note that ÂAB = 1− ÂBA

and ÂAB = ÂBA = 0.5 means the two compared techniques are stochastically equivalent.
For the calculation of APFD values, we use the following equation:

APFD =
1

n

n∑
i=1

PFD(π(i))− 1

2n
(1)

where PFD(π(i)) is the percentage of faults detected by the ordering fraction π(i). We should note
that there is another commonly used equation provided by Elbaum et al. [18] as follows:

APFD = 1− TF1 + · · ·+ TFn

nm
+

1

2n
(2)

where TFj is the first test case position among n test cases which detects the jth fault among
m faults. Both (1) and (2) give the same APFD value, whereas (1) uses the percentages of faults
detected by test suite fraction and (2) uses the positions of the first test case that detects each of
faults.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 15

To investigate the relationship between the prioritization effectiveness (i.e., APFD) and objectives
(i.e., APMK‡), we measure the Pearson linear correlation and Spearman rank correlation between
APFD and APMK for the orderings in Pareto fronts. When Pearson (or Spearman) correlation
is 1, it means that APFD perfectly linearly (or monotonically) increases as APMK increases for
the Pareto optimal orderings. When Pearson (or Spearman) correlation is -1, it means that APFD
perfectly linearly (or monotonically) decreases as APMK increases for the Pareto optimal orderings.
Consequently, the closer to +1 the correlation is, the more effective MOK is, and the closer to -1 the
correlation is, the more effective MOD is.

5. RESULTS AND ANALYSIS

5.1. RQ1: Comparison with Controls

Table III records the results for the comparison of the prioritization techniques with the random
orderings. For every compared pair (A, B), the column Superiority provides the number of subject
faults where the effectiveness of A is statistically superior (+), equal (=), or inferior (-) to B, based
on the Mann-Whitney U-tests with α = 0.001. The column Effect size provides the average ÂAB

statistics to represent how much one technique outperforms the other in average. In terms of superior
cases, HYB-010 is the best where 86.4% (304/352) of the subject faults show that the effectiveness
of HYB-010 is statistically superior than that of random. In terms of inferior cases, GRD is the best
where only 2.27% (8/352) of the subject faults show that the effectiveness of GRD is statistically
inferior than that of random. In terms of effect size, HYB-015 is the best where the ÂAB value
is 0.8520. Overall, the mutation-based test case prioritization techniques are statistically superior
than or equal to random for 95.5% of the subject faults. The average ÂAB value is 0.8452, which
means that the differences between the mutation-based prioritization techniques and random are
large enough.

Table III also shows that hybrid techniques are at least effective as the simple greedy techniques
GRD and GRK. Specifically, HYB-095 is more effective than GRK (i.e., HYB-100), even the weight
for the GRD is only 0.05. This signifies that it is more effective to consider the k-criterion and the
d-criterion together than to consider the k-criterion only.

Interestingly, multi-objective techniques are relatively ineffective than the hybrid techniques.
It means that, in comparison with random, multi-objective optimization techniques using the k-
criterion and the d-criterion are less beneficial than merely merging the two greedy techniques.

Table IV records the results related to the comparison of the prioritization techniques with SCV.
The structure of the table is the same as Table III. In terms of superior cases, HYB-015 is the best
where 76.1% (268/352) of the subject faults show that the effectiveness of HYB-015 is statistically
superior than that of SCV. In terms of inferior cases, HYB-070, HYB-080, and HYB-090 are the
best where 15.6% (55/352) of the subject faults show that the effectiveness of them are statistically
inferior than that of SCV. In terms of effect size, HYB-090 is the best where the ÂAB value is
0.7838. Overall, the mutation-based test case prioritization techniques are statistically superior than

‡We do not need to additionally investigate the relationship between APMD and APFD because there is a clear inverse
relationship between APMK and APMD in Pareto fronts.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 D. SHIN ET AL.

Table III. Comparison of prioritization effectiveness with random. For every pair (A, B), there are the number
of cases where the effectiveness of A is statistically superior (+), equal (=), or inferior (-) to B, based on the

Mann-Whitney U-tests with α = 0.001. The average ÂAB value is given to represent the effect size.

Pair Superiority Effect size Pair Superiority Effect size

A B + = - ÂAB A B + = - ÂAB

GRD RND 294 50 8 0.8269 HYB-060 RND 298 37 17 0.8480

HYB-005 RND 298 38 16 0.8447 HYB-065 RND 298 36 18 0.8482

HYB-010 RND 304 34 14 0.8519 HYB-070 RND 299 35 18 0.8474

HYB-015 RND 300 39 13 0.8520 HYB-075 RND 301 33 18 0.8475

HYB-020 RND 298 40 14 0.8498 HYB-080 RND 299 36 17 0.8473

HYB-025 RND 296 41 15 0.8476 HYB-085 RND 300 34 18 0.8484

HYB-030 RND 296 41 15 0.8468 HYB-090 RND 297 38 17 0.8488

HYB-035 RND 296 39 17 0.8475 HYB-095 RND 300 35 17 0.8478

HYB-040 RND 295 39 18 0.8476 GRK RND 275 56 21 0.8188

HYB-045 RND 297 38 17 0.8471 MOK RND 296 43 13 0.8396

HYB-050 RND 298 36 18 0.8479 MOD RND 294 47 11 0.8401

HYB-055 RND 298 36 18 0.8476 Average RND 296.8 39.2 16.0 0.8452

Table IV. Comparison of prioritization effectiveness with coverage-based prioritization. For every pair (A,
B), there are the number of cases where the effectiveness of A is statistically superior (+), equal (=), or
inferior (-) to B, based on the Mann-Whitney U-tests with α = 0.001. The average ÂAB value is given to

represent the effect size.

Pair Superiority Effect size Pair Superiority Effect size

A B + = - ÂAB A B + = - ÂAB

GRD SCV 238 36 78 0.7012 HYB-060 SCV 266 30 56 0.7813

HYB-005 SCV 257 29 66 0.7514 HYB-065 SCV 267 29 56 0.7820

HYB-010 SCV 267 25 60 0.7687 HYB-070 SCV 267 30 55 0.7822

HYB-015 SCV 268 28 56 0.7791 HYB-075 SCV 267 29 56 0.7820

HYB-020 SCV 264 32 56 0.7756 HYB-080 SCV 266 31 55 0.7822

HYB-025 SCV 262 31 59 0.7736 HYB-085 SCV 266 30 56 0.7836

HYB-030 SCV 263 31 58 0.7738 HYB-090 SCV 265 32 55 0.7838
HYB-035 SCV 263 30 59 0.7739 HYB-095 SCV 266 30 56 0.7830

HYB-040 SCV 264 32 56 0.7772 GRK SCV 236 58 58 0.7501

HYB-045 SCV 267 27 58 0.7793 MOK SCV 253 39 60 0.7444

HYB-050 SCV 267 28 57 0.7806 MOD SCV 250 38 64 0.7367

HYB-055 SCV 267 29 56 0.7809 Average SCV 261.6 31.9 58.5 0.7699

or equal to the coverage-based prioritization technique at least 83.3% of the subject faults. The
average ÂAB = 0.7699.

The mutation-based prioritization is superior to or equal to the random prioritization for
95.5% of the faults, and is superior to or equal to the coverage-based prioritization for 83.3%
of the faults.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 17

Table V. Comparison of prioritization effectiveness of all mutation-based techniques. For every pair (A, B),
there are the number of cases where the effectiveness of A is statistically superior (+), equal (=), or inferior
(-) to B based on the Mann-Whitney U-tests with α = 0.001. The average ÂAB value is given to represent

the effect size.

Pair Superiority Effect size Pair Superiority Effect size

A B + = - ÂAB A B + = - ÂAB

HYB-010 GRD 218 74 60 0.6780 HYB-090 HYB-050 81 226 45 0.5415

HYB-050 GRD 212 62 78 0.6633 GRK HYB-050 83 188 81 0.5078

HYB-090 GRD 215 55 82 0.6637 MOK HYB-050 40 170 142 0.3913

GRK GRD 214 50 88 0.6441 MOD HYB-050 75 113 164 0.4029

MOK GRD 122 116 114 0.5049 GRK HYB-090 47 225 80 0.4562

MOD GRD 138 127 87 0.5409 MOK HYB-090 38 163 151 0.3830

HYB-050 HYB-010 102 169 81 0.5285 MOD HYB-090 79 100 173 0.3951

HYB-090 HYB-010 109 163 80 0.5411 MOK GRK 71 137 144 0.4274

GRK HYB-010 108 147 97 0.5200 MOD GRK 99 84 169 0.4230

MOK HYB-010 62 139 151 0.4003 MOD MOK 47 259 46 0.5077

MOD HYB-010 70 144 138 0.4277

5.2. RQ2: Comparison between the Techniques

This section investigates whether there is a superior technique or not among the mutation-based
test case prioritization techniques. We only consider GRD, HYB-010, HYB-050, HYB-090, GRK,
MOK, and MOD, because there are too many pairs containing all weights for the hybrid techniques.
Table V contains the comparison results for the pair of the techniques. The structure of the table is
the same as Table III.

Comparing GRK and GRD in Table V, GRK is more effective at 60.8% (214/352) faults, whereas
GRD is more effective at 25% (88/352) faults. There is no statistical difference for the remaining
14.2% (50/352) faults. For all subject faults, the average effect size ÂAB is 0.6441, which means
that GRK outperforms GRD with the probability of an average 64.41% of all runs. While GRK is
more effective than GRD in general, GRD outperforms GRK for some faults. Section 5.6 discusses
the effectiveness difference between GRK and GRD in more detail.

Interestingly, in comparison to GRD, the average ÂAB values of the hybrid techniques are greater
than 0.64, while that of the multi-objective techniques are less than 0.56. In other words, the hybrid
techniques outperform GRD with medium effect sizes, while the multi-objective optimization
techniques are stochatically almost equivalent to GRD. In terms of considering mutant kill and
distinguishment together, simple hybrid is more effective than multi-objective optimization in
mutation-based test case prioritization.

Comparing MOK and MOD, they are equally effective at 73.6% (259/352) faults, and it is almost
the same when MOK is more effective and MOD is more effective for the remaining faults. This
implies that orderings of test cases in a Pareto front may have similar prioritization effectiveness.
This issue will be investigated in Section 5.4.

Overall, Table V shows that all pairs have both superior and inferior cases that cannot be ignored.
Also, the average ÂAB of all pairs are not large. It means that, in terms of mutation-based test case
prioritization using the k-criterion and the d-criterion, there is no single superior technique among
greedy, hybrid, and multi-objective.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 D. SHIN ET AL.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
PF

D

Chart Closure Lang Math Time

Figure 4. Effect of changing the weight factor in hybrid technique. The effectiveness is maximized when the
weight is between 0 and 1 and not on the extreme values 0 or 1.

Among greedy, hybrid, and multi-objective strategies using the traditional kill-only mutation
adequacy and the diversity-aware mutation adequacy, there is no single superior test case
prioritization technique.

5.3. RQ3: Effect of Changing Weight between Kill and Distinguish

To investigate the effect of weight w change on APFD for the HYB-w prioritization techniques, the
average APFD is obtained by changing w from 0 to 1 in steps of 0.05. Figure 4 shows the results;
the x-axis is w and the y-axis is the APFD.

In Figure 4, all the subject programs show the same result: the highest APFD is whenw is between
0 and 1 (i.e., neither 0 nor 1). This means that the combination of GRK and GRD has a positive effect
on the test case prioritization effectiveness.

There is no single w value showing the highest APFD for all programs. For Chart and Lang,
w = 0.05 shows the highest APFD. For Closure, w = 0.15 shows the highest APFD. For Math and
Time, w = 0.90 and w = 0.75 shows the highest APFD, respectively. It means that the best weight
w between GRK and GRD depends on the program characteristics.

The test case prioritization effectiveness is maximized when the weight is between 0 and 1
and not on the extreme values 0 and 1. This means that the combination of GRK and GRD
increases the effectiveness. The optimal weight depends on the subject programs.

5.4. RQ4: Effectiveness of Orderings in Pareto Fronts

This section investigates the effectiveness of orderings in Pareto fronts. To do that, we measure the
Pearson and Spearman correlation coefficients between APMK (i.e., how quickly mutants are killed)
and APFD (i.e., how quickly faults are detected) for the orderings in Pareto fronts. For 207 among

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 19

−1.0

−0.5

0.0

0.5

1.0

Chart Closure Lang Math Time
Program

C
or

re
la

tio
n

co
ef

fic
ie

nt

(a) Pearson correlation

−1.0

−0.5

0.0

0.5

1.0

Chart Closure Lang Math Time
Program

C
or

re
la

tio
n

co
ef

fic
ie

nt

(b) Spearman correlation

Figure 5. Correlation coefficients between APMK and APFD for orderings in Pareto fronts. Each point
represents the (a) Pearson or (b) Spearman correlation coefficient of a fault. The bottom and top of the
box are the first and third quartiles, and the band inside the box is the median. The top and bottom of
the whisker are the highest and lowest datum still within 1.5 IQR of the upper and lower quartile. The
correlation coefficients widely vary depending on the studied faults, except for the Time program. The box
for the Pearson correlation of the faults in the Time program looks different because the orderings in Pareto
fronts for each of the faults in the Time program have almost no linear correlation between APMK and

APFD.

the 352 subject faults (i.e., 58.8%), the correlation coefficients are undefined because the variance
of APFD is zero. It means that, for the 207 fault, all the orderings in a Pareto front are equally good
in terms of APFD. This partially explains the fact that MOK and MOD are statistically equally
effective at 74.1% faults as noted in Section 5.2. Remaining 145 faults have correlation coefficients
ranging from -1 to +1.

Figure 5 summarizes the distribution of correlation coefficients of the 145 (=352-207) faults. Each
point represents the Pearson (in Figure 5a) or Spearman (in Figure 5b) correlation coefficient of a
fault. The bottom and top of the box are the first and third quartiles, and the band inside the box
is the median. The bottom and top of the whiskers are the lowest and highest datum still within
1.5 IQR of the lower and upper quartile. For example, Figure 5a shows that all faults in the Time
program have very similar Pearson correlation coefficients, which is nearly zero. This zero Pearson
coefficient means that there is no linear correlation between APMK and APFD for the orderings
in Pareto fronts. Except the Time program, Figure 5 shows that both correlation coefficients are
widely distributed from -1 to +1. This implies that there is no superiority between MOK and MOD
on average for all programs. The faults in Chart and Lang tend to have correlation coefficients close
to -1, whereas the faults in Closure tend to have correlation coefficients close to +1. It implies that
MOK is often more effective than MOD for Chart and Lang, whereas MOD is often more effective
than MOK for Closure. The faults in Math and Time tend to have zero correlation, which implies
that the effectiveness of MOK and MOD is similar.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 D. SHIN ET AL.

Table VI. Execution time for each prioritization technique. The multi-objective techniques require the most
execution time, which is approximately 37 minutes. The greedy and hybrid techniques require less than 8

seconds.

Technique Time (ms)

RND 21.2

SCV 150.3

GRK 2253.9

HYB-050 7245.2

GRD 7651.7

MOK (or MOD) 2198981.8

For 58.8% of the subject faults, the orderings of test cases in Pareto fronts are equally
effective in terms of APFD. For the remaining faults, the correlation coefficient between APMK
(or APMD) and APFD vary from -1 to +1, depending on the studied faults.

5.5. RQ5: Execution Time of the Techniques

Table VI shows the average test case prioritization time for each technique. For example, the GRK
prioritization technique takes 2253.9 ms to prioritize a test suite on average. There is no time
difference between MOK and MOD since both MOK and MOD simply select one orderings of
test cases in a Pareto front, and the information needed for selection (i.e., APMK and APMD) is
calculated beforehand.

In Table VI, GRD takes around 3.4 times more time than GRK. This is because the computation
for mutant distinguishment (i.e., whether a mutant’s d-vector is unique) is more complex than the
computation for mutant kill (i.e., whether a mutant’s d-vector is non-zero). Specifically, for a test
suite TS and a set of mutantsM generated from an original program po, the computation for mutant
distinguishment takes O(|TS| × |M |2) time to evaluate ∃t ∈ TS, d(t, po,mx) 6= d(t, po,my) per
pair mx,my ∈M ∪ {po}, whereas the computation for mutant kill takes O(|TS| × |M |) time to
evaluate ∃t ∈ TS, d(t, po,m) 6= 0 per m ∈M [13]. HYB is similar to GRD, because it also requires
the computation for mutant distinguishment. While GRD and HYB techniques take more time than
GRK, it is within 8 seconds for each prioritization on average. On the other hand, MOK (or MOD)
takes far much time; approximately 37 minutes for each prioritization. This is mainly because the
number of test cases and mutants are too large to optimize permutations as a whole.

We also investigate the effect of the total number of test cases (i.e., the size of a test suite) and the
total number of mutants on the execution time. It turns out that the product of the total number of
test cases and the total number of mutants is linearly proportional to the time for all the subject test
case prioritization technique. The average Pearson correlation coefficient between the product and
the time for all the techniques is 0.930.

Note that Table VI only reports the execution time of the prioritization, not the time for mutation
analysis. On average, mutation analysis takes 651.8 seconds per fault. However, there are several
test cases that do not give mutation analysis results within one-hour time limit. While such test cases

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 21

Figure 6. The MDG corresponding to the example in Figure 1

are excluded in our controlled experiment, it can be problematic in practice. Fortunately, mutation
analysis for each test case can be easily parallelized. Further, it is possible to prepare the mutation
analysis results independently from the future changes and regression testing.

On average, multi-objective techniques requires approximately 37 minutes, whereas greedy
and hybrid techniques require less than 8 seconds. The prioritization execution time for all
techniques has an exact linear relationship with the product of the number of test cases and
mutants.

5.6. Discussion

As described in Section 5.2, there is no clear winner between GRK (i.e., kill mutants as early as
possible) and GRD (i.e., distinguish mutants as early as possible) test prioritization schemes; 60.8%
of the subject faults show that GRK is statistically superior than GRD, whereas 25% of the subject
faults show the opposite result. This is interesting because the d-criterion subsumes the k-criterion as
explained in Section 2.1. Taken together, the d-criterion is stronger than the k-criterion, whereas the
prioritization based on the d-criterion is not superior than the prioritization based on the k-criterion.
To further understand why this happens, we investigate the relationship between kill and distinguish
in test case prioritization.

By definition, the mutant kill concerns the difference between the original program and its
mutants, whereas the mutant distinguishment concerns the difference among all programs including
the original program and mutants. To see how a set of test cases kills and distinguishes mutants
and where the fault-detecting test cases are, we propose a graphical representation called Mutant
Distinguishment Graph (MDG). In an MDG, each node represents a set of undistinguished mutants,
and a directed edge from a node nx to another node ny represents a set of test cases that distinguishes
ny from nx by killing the mutants in ny not nx. We call ny as the child of nx when there is a
directed edge from nx to ny. To represent where the fault-detecting test cases are, we draw the
edges with thickness to be proportional to the percentage of fault-detecting test cases (among the
set of test cases represented by the edge). To avoid zero thickness, we give a default value even if
the percentage is zero. There is a special “root” node that has no incoming edge. In other words,
all the remaining nodes are the children of the root. The root node refers the original program and
the mutants that are not killed by all the test cases in the MDG. The structure of an MDG varies
depending on the given set of test cases and mutants.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 D. SHIN ET AL.

For example, using the four mutants and three test cases given in Figure 1, we have the MDG
as Figure 6. There are five nodes, Root, A, B, C, and D, with the five directed edges between the
nodes. The Root node at the top only has po because all the mutants are killed by the set of test
cases {t1, t2, t3}. The edge from Root to A is labeled with t1. This shows m1 is distinguished from
po by t1. In other words, t1 kills m1. The edge from A to B is labeled with t3, which shows m2 is
distinguished from m1 by t3. We assume t3 is the fault-detecting test case as an example, and the
edges labeled with t3 are thicker than the others.

Note that there is no direct edge from Root to B labeled with t1 in Figure 6, while t1 also kills
m2 as well as m1. This is because the transitivity of the mutant distinguishment [16]. For mutants
mx,my,mz and test cases tx, ty, if my is distinguished from mx by tx and mz is distinguished from
my by ty, then mz is always distinguished from mx by both tx and ty. When it comes to an MDG,
such transitivity implies that the edges between a node and its descendants can be omitted without
any information loss. As a result, we are able to know that both t1 and t3 kill m2 while there is no
direct edge from Root to B.

The transitivity of an MDG provides an interesting property for the test cases in the edges from
Root. Among all test cases in an MDG, the test cases in the edges from Root are sufficient to kill
all the mutants except mutants in Root. Furthermore, a test case in the edges from Root kills all the
mutants in the distinguished node and its descendants. For the example in Figure 6, {t1} (i.e., the
set of test cases in the edges from Root) is sufficient to kill all mutants, and t1 kills all the mutants
in A (i.e., the distinguished node) and B, C, and D (i.e., the descendants of A).

The aforementioned property is an important key to understand the effectiveness difference
between GRK and GRD in test case prioritization. For GRK, giving the test cases in the edges
from Root high priorities is clearly beneficial to kill all mutants as early as possible. In other words,
GRK gives the test cases not in the edges from Root low priorities. If there is no thick edges from
Root, it means the fault-detecting test cases are not in the edges from Root, and GRK gives the
fault-detecting test cases low priorities. In summary, GRK becomes ineffective when there is no
thick edge from Root.

GRD tries to distinguish all mutants as early as possible. However, as GRD has to choose among
test cases that distinguish mutants (select any edge instead of those from theRoot) it is likely to give
less priority to the test cases in the edges from Root. Thus, it is likely to give higher priorities on
test cases that distinguish mutants than killing mutants. On the contrary, when fault-detecting test
cases are triggered by mutant distinguishement (thick edges are not in the Root), we see that GRD
becomes effective. In these cases GRD is more likely to outperform GRK.

Figure 7 shows the four representative MDGs from the 352 subject faults: Figure 7a and Figure 7b
show the MDGs for the faults that GRD is much more effective than GRK, whereas Figure 7c and
Figure 7d show the faults that GRK is much more effective than GRD. For each graph, the big
node near the center refers Root. It is clear that there is no thick edge from Root in Figure 7a and
Figure 7b, whereas there is a thick edge from Root in Figure 7c and Figure 7d.

An MDG is useful in explaining the strengths and weakness of the mutation-based test case
prioritization schemes based on the position of mutants that are killed or distinguished by fault-
detecting test cases. However, an MDG cannot be used to predict which of GRK and GRD will
be more effective than the other. This is the because fault-detecting test cases are not known at the
time of prioritization, and the thickness of edges in an MDG cannot be determined without the fault

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 23

(a) Closure-18 (b) Time-4

(c) Math-19 (d) Closure-35

Figure 7. MDGs for representative cases. The big node near the center refers to Root. When there is no
thick edge from Root, such as Closure-18 and Time-4, GRK is more likely to be ineffective than GRD. On
contrary, when there is a thick edge from Root, such as Math-19 and Closure-35, GRK is more likely to be

effective than GRD.

detection information. Fortunately, recent studies show that it is possible to predict and prioritize
mutants that are more likely to be killed by fault-detecting test cases than the others [?, 33]. Such
studies will help to extend the use cases of an MDG. For example, it could be possible to develop
another hybrid prioritization technique that dynamically selects between GRK and GRD to kill and
distinguish the prioritized mutants.

We should note that an MDG is similar to the Mutant Subsumption Graph (MSG) suggested
by Kurtz et al. [34], as the mutant distinguishment is closely related to the mutant subsumption as
discussed by Shin and Bae [16]. The main difference between an MDG and an MSG is that an MDG
additionally contains the information of the fault-detecting test cases in the thickness of edges.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 D. SHIN ET AL.

5.7. Threats to Validity

There are several threats to validity for our experimental results. One threat is due to the subject
programs and faults that we use. These might not be representative of other programs and faults.
While this threat is common to any empirical study and can only be addressed by making multiple
and context-related studies, we tried to mitigate it by using a large set of real faults. Thus, we used all
the faults of Defects4J, which is an independently constructed dataset built to support controlled
experimental results.

Our results are also to some extent dependent on the configuration of NSGA-II. Parameter turning
is an important and challenging problem in evolutionary algorithms [35]. However, we feel that such
a tuning will not impact much our results as the default configurations perform well in our context
[29].

The mutation analysis tool Major [25] and the mutation operators we use form another source
of threats for our study. This is because different types of mutants may result in different behaviour
and influence our results. Therefore, the use of another mutation testing tool employing a different
set of operators, like the PIT [36], may result in different findings. However, we do not consider
this threat as vital as our main contribution lies in the relative comparison of the mutation-based
test prioritization techniques and not on their optimal performance. Moreover, we expect that using
different mutant sets will have a similar influence on all the prioritization techniques we study since
all of them rely on the same set of mutants. Nonetheless, according to a recent study by Kintis et
al.[26], the fault detection capabilities of PIT are considerably lower than those of Major. The
same study reports that another version of the tool, named PIT RV (i.e., the research version of
PIT), is 5% more effective at detecting faults than Major. Therefore, we believe that this 5%
difference from PIT RV cannot make a major difference on the results we report.

Other threats come from the order of the fixed and faulty versions. While the fixed version comes
after the faulty version in the repository timeline, we assume the fixed version as the clean version
that previously passes all regression test cases and the faulty version as the change-introduced
version that should be tested by the regression test cases. Such reverse order is used to perform our
controlled experiment. Still more studies are needed in order to investigate the differences between
the results of the controlled experiments and actual practice.

The APFD metric used for representing the effectiveness of test case prioritization has some
limitations. It does not account for the severity of faults and test case execution cost. Since
Defects4J provides many single-fault program versions instead of one multiple-faults program
version, we do not need to concern the severity of each fault. To overcome the limitation related to
the test case execution cost, we additionally measure the APFDc values [37] which account for the
execution times of individual test cases. The results show that the average difference between the
APFD and APFDc values for each test case ordering is almost negligible (i.e., 3.169e-04). This is
because the execution times of test cases in a test suite are almost equivalent for all the subject test
suites. As a result, we only use the APFD metric for representing the results.

To allow reproducibility of the results presented in this paper, all the prioritization results and the
implementation of the mutation-based test case prioritization techniques are available from our web
page at http://se.kaist.ac.kr/donghwan/downloads.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://se.kaist.ac.kr/donghwan/downloads

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 25

6. RELATED WORK

Since the diversity-aware mutation adequacy criterion (i.e., the d-criterion) has been recently
proposed by Shin et al. [12], there is no previous study for the diversity-aware mutation adequacy in
test case prioritization. However, the d-criterion is experimentally evaluated in test suite selection,
compared to the traditional kill-only mutation adequacy criterion (i.e., the k-criterion). The results
on 45 real faults in Defects4J show that the d-criterion increases the fault detection effectiveness
of adequate test suites in comparison with the k-criterion, whereas the d-criterion requires more test
cases to be adequate than the k-criterion.

In test case prioritization, the traditional mutation adequacy criterion is already investigated by
Rothermel et al. [8]. They investigate the effectiveness of several greedy prioritization techniques
using branches, statements, and mutants, respectively. The branch and statement techniques
prioritizes test cases according to the number of branches and statements covered by each test
case, respectively. They find that there is no single best technique. However, on average across the
programs, the mutant-based technique performs most effectively. Later, Elbaum et al. [18] extend
the empirical study of Rothermel et al. by including function-level coarser granularity techniques
in comparison with the statement-level fine granularity techniques. The empirical results on eight
C programs listed in Siemens benchmarks [38] show that the coarser granularity decreases the
effectiveness of test case prioritization in general.

For the total greedy approach and the additional greedy approach in test case prioritization, Li et
al. [23] report that the additional approach significantly outperforms the total approach. They also
study meta-heuristic algorithms for test case prioritization, whereas the prioritization effectiveness
difference between the performance of meta-heuristic and that of additional greedy is not significant.
Zhang et al. [19] also focus on the total and additional approaches. They develop a unified approach
with the total and additional at two extreme instances. The unified model yields a spectrum of
genetic approaches ranging between the total and additional approaches depending on a control
parameter. The empirical results on four Java programs show that selecting a proper parameter
increases the prioritization effectiveness compared to the simple total and additional approaches.
However, the additional approach is almost effective as the parametrized approach in all programs.

In multi-objective test case prioritization, Epitropakis et al. [28] present an empirical study of
the effectiveness of multi-objective test case prioritization. They mainly investigate two different
multi-objective evolutionary algorithms, NSGA-II and Two Archive Evolutionary Algorithm
(TAEA) [39], for the objectives including statement coverage and fault detection history. The results
show that the multi-objective prioritization techniques are superior to greedy techniques that target
each of the objectives of the multi-objective technique.

Perhaps the work that is the closest to ours is that of Lou et al. [21], which studies mutation-based
prioritization within software evolution. The study concerns two prioritization schemes; one based
on the number of mutants killed and one based on the distribution of the killed mutants. Their results
show that ordering tests by the number of mutants killed performs best. This approach is similar to
our greedy one. While there are similarities between our and Lou et al. studies, our is based on real
faults (while theirs is based on mutant-faults) and we consider the distinguish method with multiple
heuristics, while they do not.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 D. SHIN ET AL.

Regarding diversity-based test prioritization, there are several studies working mainly in a black-
box manner. Henard et al. [10] suggest diversity-aware metric based on the concept of Combinatorial
Interaction Testing. This method performs test prioritization by ordering tests according to the
dissimilarity of the combinations of the test input parameters. Feldt et al. [11] suggest using
a compression utilities to support test prioritization. The techniques measures the dissimilarity
distance of test suites using the concept of Normalized Compression Distance. More recently,
Hennard et al. [3] compare these techniques with other coverage-based test prioritization and find
that they are of similar power despite that they do not use any dynamic information from the tested
systems.

7. CONCLUSION

In this paper, we investigate test case prioritization guided by mutants. Based on the recently
defined diversity-aware mutation adequacy criterion, we present the new prioritization objective
that distinguishing all mutants as early as possible. We evaluate the effectiveness of mutation-based
prioritization techniques by considering the new objective as well as the existing objective, which is
killing all mutants as early as possible. Based on these two objectives, we investigate greedy, hybrid,
and multi-objective prioritization strategies using 352 real faults and 553,477 developer-written test
cases.

Our results show that the mutation-based prioritization is more than or equally effective than the
random prioritization and the coverage-based prioritization for at least 95.5% and 83.3% of the
faults, respectively. Among the greedy, hybrid, and multi-objective optimization strategies using
the kill-only and diversity-aware mutation adequacy criteria, there is no single superior test case
prioritization technique. Interestingly, while there is no superiority between the kill-only mutation
and the diversity-aware mutation adequacy criteria, their combined use improves the effectiveness of
the prioritization. For the multi-objective optimization, the effectiveness of orderings in Pareto fronts
does not have steady correlation with the prioritization objectives. The prioritization execution time
for the multi-objective techniques requires approximately 37 minutes, while the greedy and hybrid
techniques require less than 8 seconds.

There are several implications from the results. For example, both distinguishing and killing
mutants as early as possible are more effective than covering statements as early as possible. To
detect faults as early as possible, the mutation-based prioritization is more beneficial than the
coverage-based one. Interestingly, a greedy hybrid approach, which considers the two mutation-
based objectives at the same time, is more effective than considering one objective at a time. The
same combination of the two mutation-based objectives can be done by using a multi-objective
optimization but unfortunately it does not provide any important benefits and requires far more
execution time to prioritize test cases than the hybrid.

More research is needed in order to develop a single test case prioritization technique that is
clearly superior to killing and distinguishing mutants. To support such attempts, we provide a
graphical model called Mutant Distinguishment Graph (MDG), which visualizes how mutants are
killed and distinguished by a test suite with respect to the fault-detecting test cases. This way we
demonstrate the reasons why simply killing mutants as early as possible is not always effective.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

EMPIRICAL EVALUATION OF MUTATION-BASED TEST PRIORITIZATION TECHNIQUES 27

REFERENCES

1. Yoo S, Harman M. Regression testing minimization, selection and prioritization: a survey. Software Testing,
Verification and Reliability 2012; 22(2):67–120.

2. Catal C, Mishra D. Test case prioritization: a systematic mapping study. Software Quality Journal 2013; 21(3):445–
478.

3. Henard C, Papadakis M, Harman M, Jia Y, Le Traon Y. Comparing white-box and black-box test prioritization.
Proceedings of the 38th International Conference on Software Engineering, ACM, 2016; 523–534.

4. Chekam TT, Papadakis M, Traon YL, Harman M. Empirical study on mutation, statement and branch coverage
fault revelation that avoids the unreliable clean program assumption. Proceedings of the International Conference
on Software Engineering (ICSE), 2017.

5. Ahmed I, Jensen C, Groce A, McKenney PE. Applying mutation analysis on kernel test suites: an experience report.
Software Testing, Verification and Validation Workshops (ICSTW), 2017 IEEE International Conference on, IEEE,
2017; 110–115.

6. Papadakis M, Shin D, Yoo S, Bae D. Are mutation scores correlated with real fault detection?: a large scale
empirical study on the relationship between mutants and real faults. Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018; 537–548,
doi:10.1145/3180155.3180183. URL http://doi.acm.org/10.1145/3180155.3180183.

7. Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G. Are mutants a valid substitute for real faults
in software testing? Proceedings of the International Symposium on Foundations of Software Engineering (FSE),
2014; 654–665.

8. Rothermel G, Untch RH, Chu C, Harrold MJ. Prioritizing test cases for regression testing. IEEE Transactions on
Software Engineering (TSE) 2001; 27(10):929–948.

9. Andrews JH, Briand LC, Labiche Y, Namin AS. Using mutation analysis for assessing and comparing testing
coverage criteria. IEEE Transactions on Software Engineering (TSE) 2006; 32(8):608–624.

10. Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Le Traon Y. Bypassing the combinatorial explosion:
Using similarity to generate and prioritize t-wise test configurations for software product lines. IEEE Transactions
on Software Engineering 2014; 40(7):650–670.

11. Feldt R, Poulding S, Clark D, Yoo S. Test set diameter: Quantifying the diversity of sets of test cases. Software
Testing, Verification and Validation (ICST), 2016 IEEE International Conference on, IEEE, 2016; 223–233.

12. Shin D, Yoo S, Bae DH. Diversity-aware mutation adequacy criterion for improving fault detection capability.
Proceedings of the International Conference on Software Testing, Verification and Validation Workshops (ICSTW),
2016; 122–131.

13. Shin D, Yoo S, Bae DH. A theoretical and empirical study of diversity-aware mutation adequacy criterion. IEEE
Transactions on Software Engineering 2017; .

14. Just R, Jalali D, Ernst MD. Defects4J: A database of existing faults to enable controlled testing studies for Java
programs. Proceedings of the International Symposium on Software Testing and Analysis (ISSTA), 2014; 437–440.

15. DeMillo RA, Lipton RJ, Sayward FG. Hints on test data selection: Help for the practicing programmer. Computer
1978; 11(4):34–41.

16. Shin D, Bae DH. A theoretical framework for understanding mutation-based testing methods. Proceedings of the
International Conference on Software Testing, Verification and Validation (ICST), 2016; 299–308.

17. Lu Y, Lou Y, Cheng S, Zhang L, Hao D, Zhou Y, Zhang L. How does regression test prioritization perform
in real-world software evolution? Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016; 535–546, doi:10.1145/2884781.2884874. URL http:

//doi.acm.org/10.1145/2884781.2884874.
18. Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: A family of empirical studies. IEEE transactions

on software engineering 2002; 28(2):159–182.
19. Zhang L, Hao D, Zhang L, Rothermel G, Mei H. Bridging the gap between the total and additional test-case

prioritization strategies. Proceedings of the 2013 International Conference on Software Engineering, IEEE Press,
2013; 192–201.

20. Do H, Rothermel G. On the use of mutation faults in empirical assessments of test case prioritization techniques.
IEEE Transactions on Software Engineering 2006; 32(9):733–752.

21. Lou Y, Hao D, Zhang L. Mutation-based test-case prioritization in software evolution. Proceedings of the 26th
International Symposium onSoftware Reliability Engineering (ISSRE), IEEE, 2015; 46–57.

22. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation 2002; 6(2):182–197.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://doi.acm.org/10.1145/3180155.3180183
http://doi.acm.org/10.1145/2884781.2884874
http://doi.acm.org/10.1145/2884781.2884874

28 D. SHIN ET AL.

23. Li Z, Harman M, Hierons RM. Search algorithms for regression test case prioritization. IEEE Transactions on
software Engineering 2007; 33(4).

24. Memon AM, Gao Z, Nguyen BN, Dhanda S, Nickell E, Siemborski R, Micco J. Taming google-scale continuous
testing. 39th IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice
Track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017, 2017; 233–242, doi:10.1109/ICSE-SEIP.2017.
16. URL https://doi.org/10.1109/ICSE-SEIP.2017.16.

25. Just R. The Major mutation framework: Efficient and scalable mutation analysis for Java. Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA), 2014; 433–436.

26. Kintis M, Papadakis M, Papadopoulos A, Valvis E, Malevris N, Le Traon Y. How effective mutation testing tools
are? an empirical analysis of java mutation testing tools with manual analysis and real faults. Technical Report,
Luxembourg University: http://pages.cs.aueb.gr/ kintism/papers/preprint1.pdf, 2017.

27. Goldberg DE, Holland JH. Genetic algorithms and machine learning. Machine learning 1988; 3(2):95–99.
28. Epitropakis MG, Yoo S, Harman M, Burke EK. Empirical evaluation of pareto efficient multi-objective regression

test case prioritisation. Proceedings of the 2015 International Symposium on Software Testing and Analysis, ACM,
2015; 234–245.

29. Kotelyanskii A, Kapfhammer GM. Parameter tuning for search-based test-data generation revisited: Support for
previous results. Quality Software (QSIC), 2014 14th International Conference on, IEEE, 2014; 79–84.

30. Arcuri A, Briand L. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software
engineering. Software Testing, Verification and Reliability (STVR) 2014; 24(3):219–250.

31. Vargha A, Delaney HD. A critique and improvement of the cl common language effect size statistics of mcgraw
and wong. Journal of Educational and Behavioral Statistics 2000; 25(2):101–132.

32. Chekam TT, Papadakis M, Bissyandé TF, Traon YL, Sen K. Selecting fault revealing mutants. CoRR 2018;
abs/1803.07901.

33. Chekam TT, Papadakis M, Bissyandé TF, Traon YL. Predicting the fault revelation utility of mutants. Proceedings
of the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018; 408–409, doi:10.1145/3183440.3195031. URL http://doi.acm.

org/10.1145/3183440.3195031.
34. Kurtz B, Ammann P, Delamaro ME, Offutt J, Deng L. Mutant subsumption graphs. Proceedings of the International

Conference on Software Testing, Verification and Validation Workshops (ICSTW), 2014; 176–185.
35. Eiben ÁE, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Transactions on

evolutionary computation 1999; 3(2):124–141.
36. Coles H, Laurent T, Henard C, Papadakis M, Ventresque A. Pit: a practical mutation testing tool for java.

Proceedings of the 25th International Symposium on Software Testing and Analysis, ACM, 2016; 449–452.
37. Elbaum S, Malishevsky A, Rothermel G. Incorporating varying test costs and fault severities into test case

prioritization. Proceedings of the 23rd International Conference on Software Engineering, IEEE Computer Society,
2001; 329–338.

38. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments of the effectiveness of dataflow-and controlflow-based
test adequacy criteria. Proceedings of the 16th international conference on Software engineering, IEEE Computer
Society Press, 1994; 191–200.

39. Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective
optimization: Nsga-ii. International Conference on Parallel Problem Solving From Nature, Springer, 2000; 849–
858.

Copyright c© 2018 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2018)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://doi.org/10.1109/ICSE-SEIP.2017.16
http://doi.acm.org/10.1145/3183440.3195031
http://doi.acm.org/10.1145/3183440.3195031

	1 Introduction
	2 Background
	2.1 Mutation Adequacy Criteria
	2.2 Test Case Prioritization
	2.3 Multi-Objective Test Case Prioritization

	3 Mutation-based Test Case Prioritization Techniques
	3.1 Greedy and Hybrid Techniques
	3.2 Multi-Objective Optimization Techniques
	3.3 Techniques for Comparison

	4 Experimental Design
	4.1 Research Questions
	4.2 Usage Scenario of Mutation-based Test Case Prioritization
	4.3 Test Subjects and Faults
	4.4 Test Suites
	4.5 Mutants
	4.6 Multi-Objective Algorithm Configuration
	4.7 Variables and Measures

	5 Results and Analysis
	5.1 RQ1: Comparison with Controls
	5.2 RQ2: Comparison between the Techniques
	5.3 RQ3: Effect of Changing Weight between Kill and Distinguish
	5.4 RQ4: Effectiveness of Orderings in Pareto Fronts
	5.5 RQ5: Execution Time of the Techniques
	5.6 Discussion
	5.7 Threats to Validity

	6 Related Work
	7 Conclusion

